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Exploit Every Bit: Effective Caching for
High-Dimensional Nearest Neighbor Search

Bo Tang, Man Lung Yiu, Kien A. Hua, Fellow, IEEE

Abstract—High-dimensional k nearest neighbor (kNN) search has a wide range of applications in multimedia information

retrieval. Existing disk-based kNN search methods incur significant I/O costs in the candidate refinement phase.

In this paper, we propose to cache compact approximate representations of data points in main memory in order to reduce

the candidate refinement time during kNN search. This problem raises two challenging issues: (i) which is the most effective

encoding scheme for data points to support kNN search? and (ii) what is the optimal number of bits for encoding a data point? For

(i), we formulate and solve a novel histogram optimization problem that decides the most effective encoding scheme. For (ii), we

develop a cost model for automatically tuning the optimal number of bits for encoding points. In addition, our approach is generic

and applicable to exact / approximate kNN search methods. Extensive experimental results on real datasets demonstrate that

our proposal can accelerate the candidate refinement time of kNN search by at least an order of magnitude.

Index Terms—High dimensional data, similarity search, histogram, caching

✦

1 INTRODUCTION

The k nearest neighbor (kNN) search takes a query point

q and a point set P as input, and returns k points of P
that are nearest to q. It has a wide range of applications

in multimedia information retrieval [8], where multimedia

objects (e.g., images, audio, video) are modeled as data

points with dimensionality in orders of hundreds [13], [29].

Due to the curse of dimensionality in the high dimen-

sional space [33], the query efficiency of exact indexing

methods degenerates to that of linear scan. Recent research,

in both computer vision [1], [5] and database [13], [14],

[29] communities, focus on finding approximate results for

the kNN query. Locality sensitive hashing (LSH) [7], [16],

[17] is an attractive approach as it offers c-approximate

kNN results1 at a sub-linear time complexity of |n|. It

reduces the dimensionality of data by hashing similar data

items into the same hash bucket with high probability.

Unlike conventional and cryptographic hash functions, LSH

aims to maximize the probability of a “collision” for similar

data items. The structure of LSH consists of a collection

of hash tables. Each hash bucket contains a list of object

identifiers (object IDs) rather than actual points. The actual

data points are often stored in another file. At the query

time, we process a query q in two phases:

1) the candidate generation phase: retrieve a candidate

set of object identifiers from hash tables,
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1. A point p is called a c-approximate NN of q if dist(q, p) ≤ c ·
dist(q, p∗), where c is the approximation ratio and p∗ is the exact NN
of q.
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2) the candidate refinement phase: for all object identi-

fiers in the candidate set, fetch their data points from

data point file in the hard disk, then compute their

distances to q and determine the k nearest results.

We mainly consider disk-based LSH [13], [29], which

is suitable for very large datasets that cannot fit into the

memory. Existing LSH methods require fetching a large

set of candidates (typically hundreds or thousands) from the

disk and thus incur significant disk I/O costs. Therefore, the

candidate refinement phase turns out to be the performance

bottleneck in recent LSH methods. To verify this, we

execute the state-of-the-art LSH method (C2LSH [13]) on

three real high-dimensional datasets stored on the disk

(used in the experimental study). Figure 1 depicts the

average running time (wall-clock time) per query of C2LSH

on these datasets. The candidate refinement stage is the

performance bottleneck and it motivates us to optimize the

candidate refinement time.

In this paper, we exploit a query log and devise caching

techniques to reduce the candidate refinement time of high-

dimensional kNN search. Caching can benefit from the

temporal locality of queries as observed in typical query

logs [25]. Similarly, we expect that the query logs in

multimedia retrieval systems exhibit temporal locality. For

example, In Flickr, a small fraction of photos receive most
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of the views (see Figure 2, adopted from [31]). Although

there exist caching techniques [11], [27] for kNN search

on distance-based indexing methods [6], [20], they are not

applicable to LSH methods. LSH methods require lookup

of objects by object identifiers; however, such lookup

operation cannot be supported by the caches in [11], [27].

In our caching problem, the main research question is:

how to exploit the limited memory size and query workload

to reduce the candidate refinement time. In order to boost

the cache hit ratio, we propose to cache conservative

approximations of data points (i.e., representing each point

in a few bits). Such conservative representation provides

lower and upper distance bounds, which can be used to

prune unpromising candidates and detect true kNN results

early.

1.1 Technical Challenges

(1) Given the query workload (and the number of bits for

encoding an approximated point), which scheme is the most

effective for encoding data points?

(2) Given a cache size, what is the optimal number of bits

for encoding a data point?

Interestingly, we discover that we can cast challenge

(1) as a histogram optimization problem. Traditional his-

tograms have been designed for the selectivity estimation

problem [19]; however, they are not effective with respect

to our optimization goal. This motivates us to find the most

effective histogram for our problem. Our method exploits

both the data distribution and the query workload to develop

compact approximations (of data points) that lead to tight

distance bounds.

For challenge (2), it is non-trivial to find the optimal

number of bits for encoding a data point in the cache.

If each point occupies too few bits, then the cache hit

ratio becomes high but those cached points lead to loose

distance bounds. If each point occupies too many bits, then

they provide tight distance bounds but the cache hit ratio

becomes low. In this paper, we will develop a cost model to

find the optimal number of bits for encoding a data point.

1.2 Novelties and Contributions

The novelties of this paper are: (i) we formulate a novel

histogram optimization problem for reducing the candidate

refinement cost in kNN search, (ii) our proposed solution

is generic; it is applicable to not only LSH methods, but

also to exact tree-based indexes.

Our technical contributions are summarized as follows.

• we formulate an appropriate histogram metric for our

problem, and design an algorithm to construct an

optimal histogram with respect to the novel histogram

metric for challenge (1) 〈Section 3〉;
• we extend our solution for exact tree-based indexes

(e.g., iDistance, VP-tree) 〈Section 3.6〉;
• we devise a cost model for estimating the performance

of our solution and for automatic tuning parameter in

our solution, to address challenge (2) 〈Section 4〉;

• we demonstrate the superiority of our caching solution

on three real datasets, in particular, the largest dataset

(SOGOU, 29.7 GB) has a real query log 〈Section 5〉.
The remainder of this paper is organized as follows. We

formulate our caching problem in Section 2 and present our

histogram-based caching method in Section 3, then provide

a cost model and the optimal parameter setting in Section 4.

We conduct our experimental study in Section 5. We discuss

related work in Section 6. Finally, we conclude this paper

in Section 7.

2 DEFINITION AND PROBLEM STATEMENT

2.1 Definitions

We represent points and the distance both in the point form

and the vector form interchangeably.

Definition 1 (Point). A point p is defined as a d-

dimensional tuple p = (p.1, p.2, ..., p.d). Its vector form

is defined as: −→p = [p.1, p.2, ..., p.d].

Definition 2 (Distance metric). The Euclidean distance

distq(c) of a data point c from a query point q is defined

as: distq(c) =
√

∑d

j=1(q.j − c.j)2 = ||−→q −−→c ||
Then we define the kNN search problem as:

Definition 3 (kNN search problem). Given a query point q
and a point set P , the kNN search returns a subset R ⊂ P
of k points such that distq(p) ≤ distq(p

′) for any p′ ∈
P −R.

In this paper, we just return the identifiers of points in R
but not the actual points. This is reasonable for multimedia

information retrieval applications.

As discussed in the introduction, we focus on accelerat-

ing disk-based LSH methods (e.g., C2LSH [13]) without

affecting their query results. These methods access (i)

a hash-based index I, whose hash buckets store point

identifiers, and (ii) a sequential file for the point set P ,

which supports direct access of data point by identifier2.

During query processing, we first retrieve a candidate set

C(q) from the index I as follows:

Definition 4 (Candidate set C(q)). Given a query point q,

the index I reports a set of identifiers for candidate points

C(q) = {idi}.

Then, we fetch the corresponding data points by identi-

fiers from the file of P .

2.2 Research objective

For typical disk-based LSH methods, the candidate refine-

ment time Trefine is usually much longer than candidate

generation time Tgen (see Figure 1). In this paper, we

aim to reduce Trefine significantly by caching points in

RAM. To boost the cache hit ratio, we propose to cache

compact approximate points (p′id), which will be elaborated

in Section 3.

2. An alternative is to store P based on the distribution of clusters in data [20].

We will test its effect in experiments.
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Fig. 3: Framework of caching on a high-dimensional

dataset

Figure 3 illustrates the framework of our caching prob-

lem for kNN search on a high dimensional dataset. Our

kNN search procedure (cf. Section 3) consists of three

phases: (1) candidate generation, (2) candidate reduction,

(3) candidate refinement. Both Phases 1 and 3 apply

existing work directly and they incur I/O. In Phase 1,

we apply an existing index I. In Phase 3, we apply a

multi-step kNN search method [22], [26], which will be

elaborated in Section 2.3. Phase 2 incurs no I/O and it runs

our proposed technique to reduce the number of candidates

before entering Phase 3.

Since the candidate refinement time Trefine is dominated

by the I/O cost, we express it as: Trefine ≈ Tio · Crefine,

where Tio is the disk I/O cost for fetching a data point and

Crefine is the remaining candidate size for the refinement

phase. In general, Crefine is the sum of (i) the number of

candidates not in the cache, or (ii) the number of candidates

in the cache but they cannot be pruned:

Crefine =(1− ρhit) · |C(q)|+ ρhit · (1− ρprune) · |C(q)|
=(1− ρhit · ρprune) · |C(q)| (1)

where ρhit is the cache hit ratio, and ρprune is the ratio of

the number of pruned candidates to the number of cache

hits.

The scope of our problem: Our goal is to minimize

the value of Crefine before candidate refinement (and

thus minimize Trefine). We can reduce Crefine by two

orthogonal aspects: (i) a caching policy that offers high

hit ratio, and (ii) compact approximation of points that

provides tight distance bounds for pruning.

The study of (i) caching policies is orthogonal to our

problem. In fact, our proposed solution can be applied with

existing web caching policies [25], e.g., Least-Recently-

Used (LRU) and Highest-frequency-first (HFF). LRU is a

dynamic caching policy, whereas HFF is a static caching

policy that requires a query workload WL3 to decide the

initial cache content. We will elaborate HFF in Section 4.

Our focus is issue (ii), which will be discussed in

Section 3. Formally, we define our problem as:

3. It is usually the historical query log.

Definition 5 (Caching problem). Given a cache size CS , a

workload of queries WL, and a point set P , determine the

cache content such that it minimizes
∑

q∈WL Crefine(q).

Besides LSH methods, we will discuss how to adapt our

proposed solution for tree-based indexes (e.g., R-tree, X-

tree, SR-tree) [3] in Section 3.6.

Note that our solution offers speedup without affecting

the quality of query results. If an exact tree-based index is

used, the query results remain exact. If an LSH method is

used, the quality of its query results is preserved.

2.3 Multi-step kNN Search

We illustrate multi-step kNN search methods [22], [26]

in this section. Kriegel et al. [22] present an efficient

method that requires both lower and upper distance bounds

functions. For example, suppose the candidate set of q is

C(q) = {p1, p2, p3, p4}. Figure 4 depicts the lower and

upper distance bounds of these candidates as intervals.

Their exact distances (from q) are shown as gray dots;

However, they can be obtained only after fetching the

exact points from the disk. First, it calculates the k-th

smallest lower distance bound lbk and the k-th smallest

upper distance bound ubk, among the candidates, the values

of lb2 and ub2 are shown in Figure 4. Since the upper

distance bound of p1 is less than lb2, lb3 and lb4, p1 must

be a result so we need not fetch p1 from the disk. The lower

distance of p4 is larger than ub2, p4 cannot be a result so

we also need not fetch p4. It suffices to fetch p2 and p3
from the disk.

p1 

distance from q 

0 1 2 3 4 5 6 

p2 

p3 

p4 

lb2 
ub2 

min2 

Fig. 4: Multi-step kNN methods, k = 2

3 HISTOGRAM-BASED CACHING FOR kNN
SEARCH

Histograms, generally, are designed to provide selectivity

estimates on a single column attribute of a relational table.

In this section, we utilize a histogram to define compact

approximate representations of points. Then, we present a

kNN search algorithm with our proposed histogram-based

cache. Finally, we formulate the novel metric to build an

effective histogram for kNN search.

3.1 Histogram and Approximate Points

We first define a histogram as follows:

Definition 6 (Histogram). A histogram H is defined as

an array of buckets which cover a domain interval (e.g.,
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[0,..,Ndom])4. Let B be the number of buckets in H. Each

bucket (say, the i-th bucket) stores: (i) an interval [li..ui] of

values, and (ii) the total frequency freqi of values in the

interval.

Figure 5b shows an example histogram. In our problem,

we only care about the bucket position i and its interval

[li..ui], but not its frequency freqi. Each bucket position

can be represented by a binary code. In general, for a his-

togram with B buckets, the code length is: τ = ⌈log2(B)⌉.

We will examine histogram construction methods in Sec-

tion 3.3 and discuss the tuning of τ in Section 4.

With a histogram H, we can convert an exact point p
into an approximate point p′ as follows:

Definition 7 (Bucket lookup). Given a value v, we define

the function H(v) = i, such that v is covered by the interval

of the bucket i, i.e., li ≤ v ≤ ui.

Definition 8 (Approximate point p′). Given a d-

dimensional point p = (p.1, p.2, · · · , p.d), we define an

approximate point p′ with respect to the global histogram

H as:

p′ = ( H(p.1),H(p.2), · · · ,H(p.d) ) .

Specifically, we approximate each dimension value by a

τ -bit code. In general, if the dataset has different domain

sizes for different dimensions, then we may apply normal-

ization to scale each dimension.

For example, consider the point p1 = (2, 20) in Fig-

ure 5a. According to the example histogram in Figure 5b,

the values 2 and 20 are mapped to the codes 00 and 10

respectively. Thus, we can represent p1 by a bit-string p′1 :
“ 00 10 ”. Figure 5c shows the cache content which stores

the approximate points p′1, p
′
2, p

′
3, p

′
4.

To achieve a compact cache, we pack the bit-string

encoding of each point into one or multiple consecutive

words in memory.5

In subsequent discussion, we use a global histogram H
to define all dimensions of an approximate point p′. We

will discuss alternative histograms in Section 3.6.

3.2 kNN Search Algorithm

Algorithm 1 elaborates the framework of kNN search

with histogram-based caching. The corresponding steps in

Figure 3 are also labeled in this algorithm.

First, we retrieve a set C(q) of candidates from the index

I (Line 2), and then check whether they are in the cache.

For each candidate ci found in the cache (Lines 5–6), we

compute its lower/upper distance bounds to q as follows.

4. Ndom is the largest dimension value of all points in all dataset

5. With this implementation, an approximate point occupies d·τ
Lword

words,

where Lword is the memory word size (in bits). The value of Lword (typically

32, 64) is fixed by the CPU. During kNN search, we can extract these cache items

by performing bitwise operations on these words.
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dist
+
q (p

′) =

√

√

√

√

d
∑

j=1

max{|q.j − pl.j|, |q.j − pu.j|}2

dist
−
q (p

′) =

√

√

√

√

d
∑

j=1

{

0 if pl.j ≤ q.j ≤ pu.j

min{|q.j − pl.j|, |q.j − pu.j|}2 otherwise

where pl.j = lH(p′.j) and pu.j = uH(p′.j). For those

candidates missing in the cache, we will fetch their points

from the disk (in the final phase).6

The next phase (Lines 7–13) focuses on reducing the

candidate size (which do not incur disk accesses). Among

all candidates C(q), we derive the k-th minimum lower

bound distance lbk, the k-th minimum upper bound distance

ubk (Lines 7–8). First, we prune candidates having ci.lb
larger than ubk (Lines 10–11), as they cannot be among k
nearest neighbors. Second, we identify candidates having

ci.ub less than lbk (Lines 12–13), as they must be results

and moved to the result set R. Obviously, the effectiveness

of this phase depends on the tightness of distance bounds

(and the histogram H). We will explore this issue in the

remaining subsections.

Finally, in the refinement phase, we apply a multi-step

kNN search method [22], [26] (which incurs disk I/O), as

described in Section 2.3, with the remaining candidate set

C(q). This search would fetch data points from P when

necessary. The update of the cache Ψ is optional; it is

only required when a dynamic caching policy (e.g., LRU)

is used.

Example: Assume k = 1 and consider the query q
and dataset P in Figure 5a. We show the running steps

of kNN search (Algorithm 1) in Table 1. Suppose that

the index I reports the candidate set for q as: C(q) =

6. An optimization is to fetch those points from disk immediately, in order to

tighten the bounds lbk and ubk to be mentioned soon. However, this optimization

is not effective when the hit ratio is low (as few candidates can be pruned) or high

(as lbk and ubk are tight already).
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Algorithm 1 kNN Search ( Query q, Result size k )

Disk data: Index I, Dataset file P

Memory data: Cache Ψ, histogram H
• Phase 1: candidate generation

1: Result set R := ∅
2: retrieve the candidate set C(q) from I

• Phase 2: candidate reduction
3: for each ci ∈ C(q) do ⊲ part 2.1: cache lookup
4: ci.lb := 0; ci.ub := +∞
5: if Ψ contains p′ci then ⊲ cache hit

6: ci.lb := dist−q (p′ci ); ci.ub := dist+q (p′ci )

7: lbk := the k-th minimum of {ci.lb : ci ∈ C(q)}
8: ubk := the k-th minimum of {ci.ub : ci ∈ C(q)}
9: for each ci ∈ C(q) do ⊲ part 2.2

10: if ci.lb > ubk then ⊲ early pruning
11: remove ci from C(q)
12: else if ci.ub < lbk then ⊲ true result detection
13: move ci from C(q) to R

• Phase 3: candidate refinement
14: if |R| < k then

15: Multi-step-kNN( C(q),P,R ) ⊲ Ref. [22], [26]

16: return R

{p1, p2, p3, p4, p5, p6}. Since the candidates p5 and p6 are

missing in the cache, we must access their points from

the disk. The cache is used to retrieve approximate points

(p′1, p
′
2, p

′
3, p

′
4) of four candidates, as shown in Figure 5c.

Then, we compute their lower/upper distance bounds from

q, and obtain the distance threshold ubk = dist+q (p2) =
√

max{(9− 8), (9− 15)}2 +max{(11− 16), (11− 23)}2 =√
62 + 122 = 13.42. We can prune p3 and p4 as their lower

bound distances are above 13.42. Finally, we apply multi-

step kNN search [22], [26] on the remaining candidates

p1, p2, which costs at most 2 disk accesses. In summary,

this example incurs at most 4 disk accesses: 2 for p5, p6,

and at most 2 for p1, p2.

TABLE 1: kNN search on the cache, k = 1

cache rectangle [lbi..ubi] pruned ?
(code array)

p1 : |00|10| ([0..7],[16..23]) [5.39..15]
p2 : |01|10| ⇒ ([8..15],[16..23]) [5.00..13.42]
p3 : |10|11| ([16..23],[24..31]) [14.76..24.41] yes
p4 : |11|00| ([24..31],[0..7]) [15.52..24.60] yes

3.3 Histogram Solutions for kNN Algorithm

In relational databases, histograms are used to summarize

the data distribution and provide result size estimations for

selection queries [19]. However, they have not been used for

supporting kNN search. This raises interesting questions:

3.3.1 Are existing histograms effective for kNN

search?

(1) Heuristic histograms (e.g., equi-width, equi-depth) [18].

In order to describe them, we use the notations in Defini-

tion 6, and denote F [x] as the frequency of value x (in a

table column). For equi-width histogram, all buckets have

the same width (ui− li); whereas for equi-depth histogram,

all buckets have approximately the same sum of frequencies

(
∑ui

x=li
F [x]).

(2) V-optimal histogram [19], which minimizes the

average estimation error of selection queries according to

the sum squared error (SSE) metric [19]:

MSSE(H) =
B
∑

i=1

ui
∑

x=li

(F [x]−AV G([li, ui]))
2

where AV G([li, ui]) =
∑ui

x=li
F [x]

ui−li+1 is the average frequency

of values in bucket i.
We illustrate the effectiveness of these histograms on

kNN search by an example in Figure 6. We will evaluate its

effectiveness on real datasets in the experimental section.

For ease of illustration, we consider a 1-dimensional dataset

{3, 4, 10, 12, 22, 24, 30, 31} and each value x in it has

frequency F [x] = 1. Suppose that q = 17 is the only query

in the query workload WL. Assume that the cache can

hold all approximate points and the code length is τ = 2.

Thus, each histogram has B = 2τ = 4 buckets. Figure 6

depicts the buckets (intervals) of equi-width, equi-depth,

and V-optimal histograms. Both equi-depth and V-optimal

histograms are the same in this example.

For each histogram, we run the kNN algorithm (in

Section 3.2) to find 2NN (k = 2) at q = 17, and show the

running steps in the figure. Histogram buckets are shown in

the first column. By using distance bounds (lbk, ubk) in the

second column, we can prune unpromising candidates and

detect true result early in order to reduce the remaining

candidate size. In this example, the ideal histogram for

our problem has zero remaining candidates (see the last

column). On the other hand, equi-width has 6 remaining

candidates (in buckets 2©, 3©, 4©), and equi-depth (and V-

optimal) has 4 remaining candidates (in buckets 2©, 3©).

These histograms would incur higher cost than the ideal

histogram in the candidate refinement phase.

Differences from traditional histograms: Traditional his-

tograms are designed for the selectivity estimation problem.

For example, a traditional histogram metric like MSSE(H)
[19]internal minimize the average estimation error over all

histogram buckets. It is fine to have a bucket with large

width (ui − li), as long as the values within the bucket

have similar frequencies. However, for the kNN problem,

such a bucket causes loose distance bounds and thus

not effective in shrinking the candidate set. Furthermore,

MSSE(H) does not exploit query workload information,

which is important for deriving an effective histogram for

our problem.

In Section 3.4.1, we will formulate a new histogram

metric for building an effective histogram for kNN search.

Experiments show that our novel histogram incurs lower

I/O cost than existing histograms (e.g., equi-width, equi-

depth, V-optimal) on kNN search by at least 50%.

3.3.2 What is the optimal histogram for kNN search?

We demonstrate an example of the optimal histogram for

kNN search in the last row in Figure 6. Interestingly, in

this histogram, the buckets close to q are tight, and other

buckets can be loose. It allows us to derive tighter bounds
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(lbk, ubk), prune candidates in buckets 1, 4, and detect the

candidates in buckets 2, 3 as true results. Since there are

no candidates in the refinement step, it incurs zero I/O cost

in this example.

Fig. 6: Effectiveness of histograms, with B = 4 buckets,

on 2NN search, WL = { q }

3.4 Effective Histogram Metric

3.4.1 Histogram Metric for kNN Search

This section formulates a histogram metric that captures the

effectiveness of a histogram for kNN search. In the follow-

ing discussion, we associate notations with the superscript

q if they depend on q (e.g., Cq
refine, lb

q
k, ub

q
k).

Our goal is to minimize the remaining candidate size

Cq
refine (cf. Eqn. 1) before the candidate refinement phase

in Algorithm 1. Note that Cq
refine is influenced by the

distance bounds lbqk, ub
q
k (obtained at Lines 7–8), which are

derived from the content of H. For each candidate c that

hits in the cache Ψ, we can skip it in candidate refinement

in two cases:

• (i) if dist+q (c) ≤ lbqk, then it must be a true result

• (ii) if dist−q (c) ≥ ubqk, then it cannot be a result

Otherwise, the candidate requires refinement.

With the above observation, we proceed to define our

histogram construction problem as follows.

Definition 9 (Optimal kNN histogram problem). Let V =
{v1, · · · , vn} be the set of distinct dimensional values of

data points in P .

Given the code length τ , the query workload WL, and

the cache Ψ (i.e., a set of points), the problem is to build

a histogram H with B = 2τ buckets such that (i) it covers

all values in V , and (ii) it minimizes the following metric:

MWL
kNN (H) =

∑

q∈WL

∑

c∈C(q)∧Ψ

refineH(c) (M1)

where refineH(c) =











0 if dist−q (c) ≥ ubqk
0 if dist+q (c) ≤ lbqk
1 otherwise

This optimal histogram construction problem is challeng-

ing as the number of combinations of buckets lead to a huge

search space O
(

n
B−1

)

, which is O(nB) when B ≪ n. Thus,

we propose an approximate solution below.

3.4.2 Approximate Histogram Metric

Besides the huge search space O(nB), the above metric

does not use histogram bucket intervals explicitly, thus

rendering it inconvenient to develop a solution.

To tackle these issues, we propose to approximate the

metric (M1), MWL
kNN (H), in a form that can be ef-

ficiently solved. In order to minimize MWL
kNN (H), we

should maximize the number of candidates that can satisfy

refineH(c) = 0 for a given query q. Note that there are two

cases for refineH(c) = 0: (Case i) the lower bound of c is

larger than the k-th upper bound (i.e., dist−q (c) ≥ ubqk), so

c is not a result point and, (Case ii) the upper bound of c
is smaller than the k-th lower bound (i.e., dist+q (c) ≤ lbqk),

so c must be a result point.

Observe that at most |C(q)| − k candidates can satisfy

dist−q (c) ≥ ubqk in (Case i), but at most k candidates can

satisfy dist+q (c) ≤ lbqk in (Case ii). Since |C(q)| − k ≫ k,

we focus on (Case i) and plan to minimize ubqk.

Recall that ubqk = kth minc∈C(q)∧Ψ dist+q (c) is con-

tributed by k points in C(q)∧Ψ. By denoting these k points

as bq1, b
q
2, · · · , bqk, we have ubqk = max1≤r≤k dist

+
q (b

q
r). We

then define the error vector of a candidate in Def. 10.

Definition 10 (Error vector). Given a histogram H and

a candidate c, we define the error vector of c as
−−→
ǫ(c) =

[ǫ(c).1, ǫ(c).2, ..., ǫ(c).d] where ǫ(c).j = uH(c.j) − lH(c.j).

By using Lemma 1 (stated below), we derive: ubqk ≤
max1≤r≤k ||ǫ(bqr)|| + distq(b

q
r). Note that each term

distq(b
q
r) is a constant value (depending on q) that cannot

be optimized. As a heuristic, we approximate the minimiza-

tion of ubqk by minimizing the following Metric (M2):

M2WL
kNN (H) =

∑

q∈WL

k
∑

r=1

||−−→ǫ(bqr)||2 (M2)

Next, for convenience, we define a multi-set QR to store

all bqr for queries in the workload WL:

QR = {bqr : q ∈ WL, dist(q, bqr) ≤ ubqk, r ∈ [1, k]} (2)

Then, we define F ′[x] as the frequency of x in coordinates

of candidates in QR, where x ∈ [0, Ndom]:

F ′[x] = COUNT {bqr.j = x : bqr ∈ QR, j ∈ [1, d]} (3)

By Lemma 2 (stated below), we express Metric (M2) into

the following form using histogram bucket information.

M2WL
kNN (H) =

B
∑

i=1

ui
∑

x=li

F ′[x] · (ui − li)
2 (M3)

Lemma 1 (Distance inequality). Any candidate c satisfies

dist+q (c)− distq(c) ≤ ||−−→ǫ(c)||
Proof: in Appendix A.

Lemma 2 (Metric transformation).

∑

q∈WL

k
∑

r=1

||−−→ǫ(bqr)||2 =

B
∑

i=1

ui
∑

x=li

F ′[x] · (ui − li)
2

where ui − li denotes the width of bucket i.

Proof: in Appendix A.
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3.5 Efficient Solution

We proceed to present an efficient solution for the simpli-

fied histogram metric M2WL
kNN (H)(M3). First, we repre-

sent the inner sum in Eqn. 4 as follows:

Υ([li, ui]) =

ui
∑

x=li

F ′[x] · (ui − li)
2

(4)

Then, we propose an efficient algorithm to construct his-

togram H that minimizes the metric M2WL
kNN (H).

We assume that the value domain is: 1..Ndom.7 Let

OPT (n,m) be the minimum M2WL
kNN (H) value for the

histogram covering the interval [1..n] with at most m buck-

ets. If t is the optimal splitting position for the last bucket,

then we have: OPT (n,m) = OPT (t,m−1)+Υ([t+1, n]),
where Υ([t + 1, n]) is the metric value contributed by the

last bucket ([t+1, n]), and OPT (t,m−1) is the minimum

metric value for the histogram covering [1..t] with at most

m − 1 buckets. By considering all splitting positions, we

take OPT (n,m) as the minimum sum as follows:

OPT (n,m) = min
1≤t<n

{OPT (t,m− 1) + Υ([t+ 1, n])}
(5)

With Eqn. 5, we apply the dynamic programming approach

to calculate OPT (n,m) and the split positions, for all 1 ≤
n ≤ Ndom and 1 ≤ m ≤ B. Finally, we obtain the optimal

histogram H through these split positions.

Lemma 3 (Monotonicity of Υ). if l1 ≤ l2, Then

Υ([l1, ui]) ≥ Υ([l2, ui]).

Proof: According to Eqn. 3, then F ′[x] ≥ 0. Since

l1 ≤ l2, then,
∑ui

x=l1
F ′[x] ≥

∑ui

x=l2
F ′[x] and (ui − l1)

2 ≥
(ui− l2)

2. Consider Υ([li, ui]) =
∑ui

x=li
F ′[x] · (ui− li)

2 then

we can conclude Υ([l1, ui]) ≥ Υ([l2, ui]).

Through Lemma 3, our algorithm can terminate when

Υ([t+1, n]) ≥ OPT (n,m). This technique can significantly

reduce the running time when n is very large. The details

are presented in Algorithm 2.

Time Complexity: This algorithm is only executed once in

the offline phase. It has a total of O(Ndom ·B) calculations

for OPT (n, b). In the worst case, each calculation involves

O(Ndom) values of t (Eqn. 5). Thus, its time complexity

is O(N2
dom · B). It is independent of the dimensionality d

and the data size |P|.
Histogram maintenance: We expect that the distribution of

queries in the workload does not change rapidly. Following

the practice in search engines [25], we propose to perform

updates and rebuild the cache periodically (e.g., daily).

3.6 Extensions

3.6.1 Adaptation for tree-based indexes

The kNN search on tree-based indexes [4], [6], [20] exhibits

interleaving steps between candidate generation and candi-

date refinement. In this section, we discuss how to adapt

7. We can extend this method to handle other value domain, e.g., by applying

discretization on floating-point values.

Algorithm 2 Build-kNN-Histogram ( Bucket number B,

Value domain size Ndom, Frequency array F ′ )

1: let H be an empty histogram
2: OPT :=new 2D array(1..Ndom, 1..B) ⊲ for OPT values
3: pos :=new 2D array (1..Ndom, 1..B) ⊲ for split positions
4: for m from 1 to B do

5: for n from 1 to Ndom do

6: if m = 1 then

7: OPT (n, 1) := Υ([1, n])
8: else

9: OPT (n,m) = +∞
10: for each t from n− 1 to 1 do

11: if OPT (n,m) > OPT (t,m-1) + Υ([t+1, n]) then

12: OPT (n,m) := OPT (t,m− 1) + Υ([t+ 1, n])
13: pos(n,m) := t

14: else if Υ([t+ 1, n]) ≥ OPT (n,m) then

15: break ⊲ by Lemma 3

16: n := Ndom

17: for m from B to 1 do

18: if m = 1 then

19: l := 1, u := n

20: else

21: l := pos(n,m) + 1, u := n

22: n := pos(n,m)

23: insert the bucket [l..u] to H

24: Return H

our proposed solution to speedup kNN search on tree-based

indexes.

We illustrate a general tree structure in Figure 7. Each

node occupies a disk block. A leaf node stores data points,

whereas a non-leaf node stores branching information for

its children. Conceptually, we can divide the tree into two

parts: (i) the set of non-leaf nodes as the index I, and (ii)

the set of leaf nodes as the dataset P . The storage size of

P is generally much larger than that of I. We store the

exact I in memory.

In this scenario, we consider each cache item to be a leaf

node (i.e., approximate representations of all points in that

node), but not an individual point. We construct the cache

as follows. First, we run queries in the query workload WL
and collect the access frequency of each leaf node. Then, we

fill the cache with leaf nodes in descending order of access

frequency. Finally, with our technique in Section 3.5, we

can build the histogram H and determine the approximate

representations of data points (in leaf nodes).

Any tree-based kNN search solution A (e.g., [4], [20])

can utilize the above cache, with some slight modifications

described below. During kNN search, before we fetch a leaf

node (by its Block ID), we first lookup it in the cache. If the

leaf node is not in the cache, then we load it from the disk.

Otherwise, we retrieve the node from the cache, examine its

approximate points, and compute lower and upper bounds

for that node. In this implementation, our solution provides

tight lower and upper bounds for leaf nodes.

In addition, we can further optimize the algorithm as

follows. We first compute the lower and upper bound for

each point in that node. These bounds can be used to tighten

ubk and prune some unpromising nodes and approximate

points. Then, the multi-step kNN search method determines

which node should be examined next. As we will illustrate

in experiments (cf. Figures 16(a,c) in Section 5.4.5), the
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above approximate caching solution performs better than

exact caching.

Fig. 7: Tree-based kNN search with our cache

3.6.2 Alternative histogram categories

Besides the global histogram, we may use other histograms

to convert a point p into an approximate point p′.

Individual histogram: This approach employs a separate

histogram Hi for each dimension i = 1..d. It converts

an exact point p to an approximate point p′ as follows:

p′ = ( H1(p.1),H2(p.2), · · · ,Hd(p.d) ) .
We proceed to discuss how to build these d histograms.

Observe that our histogram metric M3 is defined by using

a frequency array: F ′[x] = COUNT {bqr.j = x : bqr ∈
QR, j ∈ [1, d]}. We can decompose this array into individ-

ual frequency arrays of the form: F ′
j [x] = COUNT {bqr.j =

x : bqr ∈ QR}. Then, we can express metric M3 as

follows:

B
∑

i=1

ui
∑

x=li

F ′[x] · (ui − li)
2 =

B
∑

i=1

ui
∑

x=li

(

d
∑

j=1

F ′
j [x]) · (ui − li)

2

=

d
∑

j=1

(

B
∑

i=1

ui
∑

x=li

F ′
j [x] · (ui − li)

2)

Finally, for each dimension j, we find a histogram Hj

that minimizes
∑B

i=1

∑ui

x=li
F ′
j [x] · (ui − li)

2 by applying

Algorithm 2.

Multi-dimensional histogram: A multi-dimensional his-

togram HMD partitions the space into buckets (i.e., bound-

ing rectangles). Given an exact point p, we compute its

approximate point as p′ = HMD(p), which denotes the

identifier of the bucket enclosing p.

Due to the curse of dimensionality, a multi-dimensional

histogram is not effective for approximation (cf. Ap-

pendix B). As such, we do not bother to extend our solution

for multi-dimensional histogram. Instead, we use an R-tree

based multi-dimensional histogram and test its effectiveness

in the experimental study.

4 COST ESTIMATION MODEL

Section 4.1 estimates the I/O cost of our proposed solution,

as a function of the cache size CS and the code length τ .

In Section 4.2, we derive the optimal code length τ (for a

given CS) such that it leads to the lowest I/O cost.

Our analysis is based on two assumptions: (i) the dis-

tribution of queries follows that of the historical query

workload WL, and (ii) the caching policy is HFF (highest-

frequency-first).

Specifically, Highest-frequency-first (HFF) [25] is a static

caching policy that creates the cache offline and fixes the

cache content at runtime. It places the most frequent items

into the cache, where the frequency of each cache item p
(i.e., candidate) is derived from the query workload WL
as: freq(p) = |{q ∈ WL : p ∈ C(q)}|.

4.1 I/O Cost Estimation

4.1.1 Cost Estimation model

The I/O cost in the candidate refinement phase is decided by

the remaining candidate size Crefine, which is proportional

to 1− ρhit · ρprune (by Eqn. 1).

For ρprune, we rewrite it as 1 − ρrefine where ρrefine
is the ratio that a (cache-hit) candidate requires refinement.

By using the query workload WL, we estimate ρrefine as

the average value
∑

q∈WL ρqrefine/|WL|, where ρqrefine is

the candidate refinement ratio for a specific query point q.

We aim to estimate the cache hit ratio ρhit in Section

4.1.2 and the candidate refinement ratio ρqrefine for a

specific query point q in Section 4.1.3.

4.1.2 Estimation of ρhit

Theorem 1 (Estimation of ρhit). Let ρhit and ρ∗hit be

the cache hit ratio in our proposed histogram based cache

method (with equi-width histogram) and in the exact cache

method, respectively. Let Nitem and N∗
item be the number

of cache items in our cache and in the exact cache,

respectively. Let |P| be the dataset cardinality, and Lvalue

be the number of bits for representing a data value.We have:

ρhit

{

≤ Lvalue

τ
· ρ∗hit (if Nitem < |P|)

= 1 (otherwise)

Proof: First, we have: Nitem · τ = Nitem
∗ · Lvalue.

The proof for the case Nitem ≥ |P| is trivial. We thus

focus on the case Nitem < |P|. Let fi be the query

frequency of data point i (according to the query log WL).

Without loss of generality, for the HFF caching policy, we

arrange the points in the cache in descending frequency

order, i.e., f1 ≥ f2 ≥ · · · ≥ fn.

According the definition of hit ratio in HFF, we obtain:

ρhit =
∑Nitem

i=1
fi

∑|P|
i=1

fi
and ρ∗hit =

∑N∗
item

i=1
fi

∑|P|
i=1

fi

Consider the ratio:

ρ∗hit
ρhit

=

∑N∗
item

i=1 fi
∑Nitem

i=1 fi
=

N∗
item ·

∑N∗
item

i=1
(fi)

N∗
item

Nitem ·
∑Nitem

i=1
(fi)

Nitem

≥ N∗
item

Nitem

· 1 (by Lemma 4) (6)

=
τ

Lvalue
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Thus, we obtain: ρhit ≤ Lvalue

τ
· ρ∗hit

Lemma 4 (Average weight monotone non-increasing).

∀N∗
item ≤ Nitem,

∑N∗
item

i=1 (fi)

N∗
item

≥
∑Nitem

i=1 (fi)

Nitem

Proof: Trivial.

4.1.3 Estimation of ρqrefine upper bound

Theorem 2 (Estimation of ρqrefine upper bound). Given

a query point q, let b be its k-th upper bound candidate,

let Dmax be the largest candidate distance from q, and

let gq(x) be the probability density function of candidate

distances from q. If gq(x) follows the uniform distribution,

then:

ρqrefine ≤ min{ ||
−−→
ǫ(bqk)||
Dmax

, 1}

Proof: First, we estimate ρqrefine as:

ρ
q

refine =

∫ ub
q
k

distq(b
q
k
)
gq(x)dx

∫ Dmax

0
gq(x)dx

=
distq(b

q

k)
+ − distq(b

q

k)

Dmax

According to dist+q (c) − distq(c) ≤ ||−−→ǫ(c)|| (proved in

Appendix A), we have:

ρqrefine ≤
||
−−→
ǫ(bqk)||
Dmax

In addition, since ρqrefine ≤ 1, we complete the proof.

Remark: Although we assume gq(x) to be uniform distri-

bution in the above equation, our estimation is still quite

accurate, as shown in our experimental study.

4.2 Determining the Optimal τ

For any histogram, we can apply the I/O cost estimation

equations in Section 4.1 for each τ (from 1 to 32) and then

choose the one that gives the lowest estimated I/O cost.

For the equi-width histogram, we provide a closed-form

equation to estimate the optimal τ in constant time.

4.2.1 ρqrefine upper bound, for equi-width

For equi-width histogram, we estimate ρqrefine by Theo-

rem 3. Since the terms in Theorem 3 are independent of

q, we can estimate ρqrefine for equi-width histogram in

constant time.

Theorem 3 (ρqrefine upper bound, for equi-width).

ρqrefine ≤ min{
√
d

Dmax

w, 1}

where w = 2Lvalue−τ is the bucket width of equi-width

histogram, and Dmax = cR is calculated by using the

(R, c)-guarantee in the LSH scheme [13], [29].

Proof: By Lemma 2, we have: ρqrefine ≤ ||
−−−→
ǫ(bq

k
)||

Dmax
=√

d
Dmax

w. In addition, since ρqrefine cannot be larger than 1,

we complete the proof.

4.2.2 Determining τ , for equi-width

In this section, we derive the optimal τ for the equi-

width histogram. Consider the ratio of ρhit · ρprune (for

our caching) to ρ∗hit (for exact caching). By Lemma 3, we

have:

ρhit · ρprune
ρ∗hit

≈
Lvalue

τ
· ρ∗hit · (1−

√
d

Dmax
w)

ρ∗hit

=
Lvalue

τ
· (1−

√
d

Dmax

(2Lvalue−τ ))

Observe that Lvalue, d are known for a given dataset, and

Dmax can be calculated by the LSH scheme and the query

workload.

To find the optimal τ , we simply iterate τ for each

value in the range [1..Lvalue], evaluate the ratio (ρhit ·
ρprune)/ρ

∗
hit, and then report the τ value leading to the

highest ratio.

5 EXPERIMENTAL STUDY

In this section, we experimentally evaluate the performance

of our proposed solutions and baseline solutions. Sec-

tion 5.1 introduces the experimental setting. Section 5.2

studies the sensitivity of solutions for different configu-

rations (e.g., ordering of the dataset file, caching policy,

categories of histograms). Section 5.3 demonstrates the

accuracy of our estimation equations. Section 5.4 compares

the performance of solutions with respect to various param-

eters.

All experiments are conducted on a PC with Intel i7-

4770 3.40GHz CPU, 16G RAM, and 64-bit Ubuntu 13.04

operating system. The page (block) size in this system

is 4KB(4,096 bytes). All algorithms were implemented in

C++, and compiled by g++ 4.7.3 with O3 optimization. All

datasets and indexes were stored in hard disk and the OS

cache was disabled, as in [36].

5.1 Experimental Setup

Datasets and queries: Table 2 summarizes the real datasets

to be used in our experimental study. They store the feature

vectors extracted from images.

SOGOU, with raw data size 635 GB, is extracted from

web images indexed by Sogou8 (an image search engine in

China). We followed [5] to extract a 960-dimensional GIST

descriptor from each image. Sogou also provides the query

log (of images) for this dataset.

We also use two datasets from [28]: NUS-WIDE (ex-

tracted from Flickr images), and IMGNET (extracted from

an online image database)9

Next, we split the query log into: (i) a query workload

WL, and (ii) a testing query set Qtest. A sufficiently large

8. http://www.sogou.com/labs/dl/p2.html

9. http://staff.itee.uq.edu.au/shenht/UQ IMH/index.htm. The feature vector of

them are 150 dimensions color histogram. However, they do not have real query

logs. Following [13], [29], we generate the query log by picking random points

from P , and then remove those points from P .
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TABLE 2: Dataset information

Dataset d # of P # of Qtest size per point file size

NUS-WIDE 150 267,415 50 600 bytes 136 MB

IMGNET 150 2,213,937 50 600 bytes 1.26 GB

SOGOU 960 8,304,965 50 3,840 bytes 29.7 GB

WL is used to populate the cache (in Section 2.1), and to

construct the histogram (in our solutions).

In each experiment, we execute the queries in Qtest and

measure the average query response time per query. We

follow [13], [29] and fix the size of Qtest to 50.

Methods for comparison: We consider three baseline

methods: NO-CACHE (not using cache), EXACT (caching

exact points), and C-VA (caching the whole VA-file)10. For

C-VA, we tune the number of bits per point so that the

VA-file fits into the cache. According to [32], the encoding

scheme of VA-file is the same as Equi-Depth.

Our proposed histogram-caching methods share the pre-

fix HC in their names, and apply the following histograms

as stated in Section 3.1.

• Global histogram: HC-W (equi-width), HC-D (Equi-

Depth), HC-V (V-Optimal), HC-O (our optimal his-

togram for kNN search).

• Individual-dimension histogram: iHC-*.

It uses d histograms. For each dimension j, it builds

a histogram Hj by the corresponding HC-* method.

• Multi-dimensional histogram: mHC-R.

First, we build an R-tree with 2τ leaf nodes (by using

a corresponding node fanout). Then, we map the MBR

of each leaf node to a bucket.

All methods use the same index I in the same experi-

ment. In most experiments, we employ C2LSH [13] as the

index I. We use the C2LSH implementation in [13] and its

parameter tuning functions. At the end of Section 5.4, we

employ exact kNN search indexes (iDistance and VA-file).

Parameters setting: Unless otherwise stated, we use the

following default parameter values. The default result size

is k = 10. The default cache size CS is set as 40 MB, 400

MB, 8192 MB for NUS-WIDE, IMGNET, SOGOU, less

than 30% of the size, respectively. The default code length,

τ = 10, is estimated by using our equations in Section 4.

We construct our HC-O histogram by Algorithm 2. By

default, we run each method by a single thread in each

experiment.

5.2 Effect of Configurations

Besides the above parameters, the configurations in our

solutions include: ordering of the dataset file P , caching

policy, and the categories of histograms. We proceed to

examine the sensitivity of these choices on our solutions.

We conduct experiments on the SOGOU dataset with the

default parameter setting. The experimental results on NUS-

WIDE and IMGNET are similar; we omit them due to space

reasons.

10. We use VA-file instead of VA+-file. VA+-file [12] requires Karhunen Loeve

Transform (KLT), which is not scalable for huge matrices on our datasets.

5.2.1 Effect of caching policy

The caching policy is an choice in our solution. We com-

pare the HFF and LRU policies as described in Section 2.2.

As shown in Figure 8, HFF performs better than LRU.

Hence, we set HFF as default caching policy in subsequent

experiments.
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Fig. 8: Effect of caching policy, EXACT caching

5.2.2 Effect of dataset file ordering

We investigate whether the physical ordering of the dataset

file P affects the candidate refinement time Trefine. We

compare three orderings: (i) the raw ordering in the dataset,

(ii) the clustered ordering, which uses the iDistance order-

ing [20]. (iii) the sorted key ordering, which uses the SK-

LSH ordering [35]. In this experiment, we use the EXACT

caching method on SOGOU; we obtained similar results

for other methods. Figure 9 reports the query refinement

time for these orderings. For caching policy HFF, different

orderings (Raw, Clustered and Sortedkey) have similar

performance. Thus, we use the raw ordering in subsequent

experiments.
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Fig. 9: Effect of dataset file ordering, EXACT caching

5.2.3 Effect of histogram categories

Next, we compare the global histograms (HC-W, HC-D,

HC-O) and the individual-dimension histograms (iHC-W,

iHC-D, iHC-O), and a multi-dimensional histogram (mHC-

R).

Table 3 shows the histogram space (KB), the histogram

construction time (s), and the average candidate refinement

time Trefine during kNN search. Due to the curse of

dimensionality, mHC-R is not effective. Global histograms

and individual-dimension histograms have similar Trefine.

However, individual-dimension histogram suffers from high
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construction time and occupies more space. For example, it

takes 23.8 days to construct iHC-O, but only 35.7 minutes

to construct HC-O. Thus, we only use global histograms

(HC-W,HC-D, HC-O) in following experiments.

TABLE 3: Effect of histogram categories, on SOGOU

HC-W iHC-W HC-D iHC-D HC-O iHC-O mHC-R

Space (KB) 8 1,200 8 1,200 8 1,200 1,204

Construction time (s) 0.000 0.004 300 2233 2,140 2.1e6 57.6

Average Trefine (s) 0.237 0.230 0.164 0.162 0.123 0.113 0.842

5.2.4 Effect of caching the whole VA-file

We compare methods C-VA and HC-D in Figure 10. While

the SOGOU dataset occupies 29.7 GB, we only vary the

cache size in the range 1024–6144 MB, which corresponds

to 3.4–20 % of the data. At small cache size, C-VA incurs

higher time than HC-D because C-VA caches all points but

with fewer bits per point. At large cache size, C-VA and

HC-D have similar performance since they maintain cache

histogram by equi-depth method. Hence, we ignore C-VA

in following experiments.
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Fig. 10: C-VA and HC-D comparison

5.3 Cost Estimation

Now we test the accuracy of cost estimation model devel-

oped in Section 5.3. Figure 12 shows the estimated and

the measured I/O cost of the method HC-W, as a function

of the code length τ . Observe that the estimated cost is

close to the measured cost. Also, the default code length

(τ = 10) derived from our cost model is close to the optimal

τ measured in the experiment. We also show the optimal

τ for each method on each dataset in Table 4.

5.4 Performance Improvement

In this section, we study the performance of our methods

with respect to different parameters.

5.4.1 The power of early pruning

Early pruning (including true hit detection) plays an impor-

tant role in our solution. In this experiment, we study the

effectiveness of different histograms for supporting early

pruning.

Figure 11 shows the remaining candidate size of the

methods with respect to the number of I/O accesses. The

performance of mHC-R (R-tree histogram) is bad due to

the curse of dimensionality. Observe that HC-O (using our

histogram metric) achieves the best performance. On the

other hand HC-V (using the SSE histogram metric [19])

does not minimize the I/O cost. In subsequent experiments,

we ignore mHC-R due to its bad performance.

Remark: HC-O incurs lower I/O cost than HC-D by 50%.
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Table 4 reports the average refinement time of the meth-

ods on all datasets with default parameter setting. First, our

method HC-O is faster than EXACT by an order of mag-

nitude. Second, although the default code length τ = 10
is not always the optimal (τ∗), our methods still perform

much better than EXACT. In subsequent experiments, we

ignore HC-V as its performance is unstable; it is worse than

HC-W on NUS-WIDE and better than HC-W on IMGNET

and SOGOU.

5.4.2 Effect of the cache size CS
Figure 13 plots the average query response time of different

methods for different cache size CS . Our caching methods

outperform the EXACT caching method. They achieve the

best performance when the cache size reaches only 1/3 of

the dataset file size. HC-O is the best among all methods.

We ignore the baseline methods (NO-CACHE and EXACT)

in the following experiments.

5.4.3 Effect of the result size k

Then we examine the effect of the result size k on our meth-

ods. For readability, we plot the average query response

time in log scale in Figure 14. The query response time of

all methods rises as k increases. HC-O is the best, followed

by HC-D, and then HC-W. This result also confirms the

effectiveness of our proposed histogram metric (used in

HC-O).

5.4.4 Effect of the code length τ

The next experiment investigates the effect of code length

τ on our methods. Figure 15 (a),(b),(c) show the average

values of ρhit · ρprune, query I/O cost, and refinement

time respectively. Due to the space limit, we only show

the experimental results on the largest dataset (SOGOU,

29.7G). Observe that different methods can have different

optimal values for τ . For example, the optimal τ for HC-W,

HC-D, HC-O are 10, 8, 8, respectively. Again, HC-O is the

best and its performance is more robust to τ (e.g., at small

τ ).
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TABLE 4: Avg. refinement time (s) at default τ = 10 and at optimal τ∗

Dataset EXACT
HC-W HC-V HC-D HC-O

Default Optimal τ∗ Default Optimal τ∗ Default Optimal τ∗ Default Optimal τ∗

NUS-WIDE 0.3115 0.0451 0.0451 10 0.0555 0.0555 10 0.0110 0.0110 10 0.0087 0.0087 10

IMGNET 0.3709 0.0672 0.0495 11 0.0203 0.0182 11 0.0129 0.0112 11 0.0086 0.0071 11

SOGOU 0.4803 0.2368 0.2368 10 0.2173 0.1864 8 0.1639 0.0839 8 0.1274 0.0468 8
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5.4.5 Experiments on exact kNN search indexes

Finally, we compare the performance of HC-O and EXACT

on three exact kNN search indexes: iDistance11, VA-file

[32] and VP-tree [4] on IMGNET. Figure 16 shows that

the query cost of HC-O is lower than EXACT caching by

at least an order of magnitude.
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Fig. 16: Exact kNN search indexes, on IMGNET

6 RELATED WORK

Indexing: In the high dimensional exact kNN search, tree-

based indexes (e.g., R-tree, X-tree, SR-tree) [3] suffer from

the curse of dimensionality [33], so their running time for

kNN search degenerates to that of linear scan.

We classify existing methods on approximate kNN

search into two types: (i) c-approximate methods [7], [10],

[13], [17], [23], [24], [29], [35] that provide theoretical

result quality guarantees. In particular, C2LSH [13] is the-

state-of-the-art disk-based LSH method for computing c-
approximate kNN results in sub-linear time, i.e., the result

distances are at most c times of the exact result distances,

and (ii) other approximate methods [1], [2], [5], [9], [14],

[34] that do not guarantee the quality of results.

Our proposed solution can be used on both types of

index structures. We provide tighter bounds for pruning

unpromising candidates and thus reduce costly I/O access

in fetching candidate points. SK-LSH [35] rearrange the

data file such that similar points are likely to be placed

on the same disk page. This would reduce the I/O cost in

the candidate refinement phase. Our work exploits caching

techniques to reduce the candidate refinement cost and it is

orthogonal to [35].

Vector approximation:

(i) The VA-file [33] and its variant VA+-file [12] provide

approximate representations of points in order to speedup

linear scan. However, they do not consider the cache and

the query workload as in our problem.

11. We use the implementation from:https://code.google.com/p/idistance/

(ii) Vector quantization [21], [30] aims to represent a

feature vector by a short code. These codes allow us to

derive approximate distances between points efficiently.

However, these methods do not guarantee that the approx-

imate distance is always the lower bound distance or the

upper bound distance. Thus, they cannot be applied in our

kNN search framework.

(iii) Histograms can be used to approximate data val-

ues, as we have illustrated in Section 3. In relational

databases, histograms are used to capture attribute value

distribution and provide selectivity estimation for the query

optimizer [18], [19]. The sum squared error (SSE) met-

ric [19] has been designed to formulate the selectively

estimation error of a histogram. However, this histogram

metric does not necessarily lead to effective candidate

pruning in our kNN search problem. In this paper, we

propose a suitable histogram metric for kNN search, and

construct a corresponding histogram in order to accelerate

the refinement phase in kNN search.

7 CONCLUSION

In high-dimensional kNN search, both exact and approx-

imate kNN solutions incur considerable time in the can-

didate refinement phase. In this paper, we investigate a

caching solution to reduce the candidate refinement time.

Our caching method HC-O is faster than EXACT caching

by at least an order of magnitude, on an approximate index

(C2LSH) and on exact indexes ( iDistance, VP-tree and

VA-file).

It is worth noting that our approach is general for any

index and achieves promising performance whenever the

candidate refinement phase incurs significant time, includ-

ing other kNN methods [1], [2], [5], [14], [34]. In future,

we plan to extend our caching techniques for advanced

operations (e.g., kNN join, density-based clustering) on

high-dimensional data.
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APPENDIX

A. PROOF OF LEMMAS

In the following analysis, we employ vectors to express

distance computations in a concise manner.

Definition 11 (Distance on vectors). Let q be a query
point and c be a candidate point. The Euclidean distance
is distq(c), and the upper distance bound dist+q (c) can be
expressed in terms of the dot product of vectors:

dist
+
q (c) = ||(−→q −

−→
c
u)||

where
−→
cu = [cu.1, cu.2, ..., cu.d] are defined by a histogram

H as follows:

c
u
.j =

{

lH(c.j) if |q.j − lH(c.j)| > |q.j − uH(c.j)|
uH(c.j) otherwise

Proof of Lemma 1: Let
−→
A = −→c − −→q and

−→
∆c =

[∆c.1,∆c.2, ...∆c.d]. Calculate ∆c.j as:

∆c.j =

{

ǫ(c).j if cu.j > cl.j

−ǫ(c).j otherwise

Since ||−→∆c|| = ||
−−→
ǫ(c)|| and distq(c) = ||−→A || always holds,

we have:

dist
+
q (c) = ||(cu −−→q )|| ≤ ||(−→∆c +

−→c −−→q )||2) 1
2

= (
−→
∆c ·

−→
∆c + 2

−→
∆c · (−→c −−→q ) + (−→c −−→q ) · (−→c −−→q ))

1
2

= (||−→∆c||2 + 2
−→
∆c ·

−→
A + ||−→A ||2) 1

2

≤ (||−→∆c||2 + 2||−→∆c|| · ||
−→
A ||+ ||−→A ||2) 1

2 (by Cauchy inequality [15])

= ||−→∆c||+ ||−→A || = ||−−→ǫ(c)||+ distq(c)

Then, we have: dist+q (c) − distq(c) ≤ ||
−−→
ǫ(c)||.

Proof of Lemma 2:

∑

q∈WL

k
∑

r=1

||
−−→
ǫ(bqr)||2 =

∑

b
q
r∈QR

||
−−→
ǫ(bqr)||2 by Eqn.2

=
∑

b
q
r∈QR

d
∑

j=1

(ǫ(bqr).j)
2

by Def. 10

=
∑

b
q
r∈QR

d
∑

j=1

(uH(ǫ(b
q
r).j)

− lH(ǫ(b
q
r).j)

)2

=

Ndom
∑

x=1

F
′[x] · (uH(x) − lH(x))

2
by Eqn.3

=

B
∑

i=1

ui
∑

x=li

F
′[x] · (ui − li)

2
group by bucket id

B. GLOBAL VS. MULTI-DIMENSIONAL HIS-
TOGRAM

Observe that each approximate point p′ is associated with

a bounding rectangle. Let wbr be the average width of

dimensions of a bounding rectangle. We proceed to com-

pare the value of wbr for the global histogram and the

multi-dimensional histogram. In the following discussion,

we assume that data points fall in the space [0, 1]d with

uniform distribution.

We take an equi-width histogram as a simple global

histogram. The number of buckets is 2τ , where τ is the

code length. Then we derive: wbr = 1
2τ . Note that this

value is independent of the dimensionality d.

Assume that a multi-dimensional histogram partitions the

d-dimensional space such that each rectangle contains at

least 2 points (out of n points in the dataset). The average

volume of each rectangle is at least 2
n

. Thus, we derive

wbr ≥ ( 2
n
)

1
d . Unfortunately, this value rises rapidly with

the dimensionality d.

As an example, we set the data size n = 1000000, the

dimensionality d = 100, and the code length τ = 8. For

the global histogram (equi-width), we have: wbr = 1
28 =

0.0039. For the multi-dimensional histogram, we have:

wbr ≥ ( 2
1000000 )

1
100 = 0.877. This example demonstrates

that the global histogram achieves a much smaller wbr than

the multi-dimensional histogram.




