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Abstract

The regularized least squares for sparse reconstruction is gaining popularity as

it has the ability to reconstruct speech signal from a noisy observation. The re-

construction relies on the sparsity of speech, which provides the demarcation from

noise. However, there is no measure incorporated in the sparse reconstruction to

optimize on the overall speech quality. This paper proposes a two-level optimi-

zation strategy to incorporate the quality design attributes in the sparse solution

in compressive speech enhancement by hyper-parameterizing the tuning parame-

ter. The first level involves the compression of the big data and the second level

optimizes the tuning parameter by using different optimization criteria (such as

Gini index, the Akaike information criterion (AIC) and Bayesian information cri-

terion (BIC)). The set of solutions can then be measured against the desired design

attributes to achieve the best trade-off between suppression and distortion. Nu-

merical results show the proposed approach can effectively fuse the trade-offs in

the solutions for different noise profile in a wide range of signal to noise ratios

(SNR).
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1 Introduction

The ever growing demand for mobile electronic devices, e.g., smart phones, has made

voice interfaces ubiquitous. Given the mobility of these electronic devices, the input

speech signal will suffer from the various environmental noise. Clearly, delivering a

clean speech signal in the communication system is an important aspect of the product

requirement. The objective of speech enhancement is to estimate the desired speech

signal from the noisy observation, which consists of both speech and noise signals [1, 2].

The two key performance measures for speech enhancement are usually measured in

terms of noise suppression and speech distortion [3, 4]. Interestingly, these two measures

can be viewed as engineering design and quality design requirements, respectively [5, 6,

7]. In terms of engineering design, the enhancement must yield the highest signal to

noise ratio (SNR) possible, which translates to noise suppression capability. In order to

satisfy its quality design, the enhancement process must also maintain the perceptual

features, i.e., minimizes speech quality degradation. Indeed, it is a challenge to optimize

the overall noisy speech as the engineering and quality requirements [5] are at times

conflicting as maximizing SNR tend to result in speech degradation [8], resulting in a

natural trade-off.

Given its volume, speech signal is considered to be a big data. Additionally, speech is

highly non-stationarity across the time and frequency domains. The varying nature of

speech adds to the challenge as the data is not just ’big’ but also changing as a function

of time and frequency. There is a wealth of literature examining the characteristics

of speech to reveal its patterns and trends, which are useful in application such as

speech recognition, speech enhancement and computational auditory scene analysis. Of

late, one important characteristics of speech is its sparsity. Speech sparsity has gained

popularity as it may hold the key to making the ’big’ speech data, ’small’. Whilst speech

is fairly compact and dense in the time domain, speech signals are in fact sparse in the

time-frequency representations [9, 10]. This is because speech is highly non-stationary

and there will be lapses of time-frequency periods where the speech power is negligible

compared to the average power. On average, a speech signal consists of approximately

ten to fifteen phonemes per second and each of these phonemes has a varying spectral

rate [11].
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The notion of sparsity has led to sparse reconstruction methods such as compressed

sensing (CS) [12, 13]. CS theory states that sparse signals with a small set of linear me-

asurements can be reconstructed with an overwhelming probability [14, 15]. Potentially,

CS has the capability to compress big data such as speech signal. In speech enhance-

ment, CS exploits the sparsity of speech and non-sparse nature of environmental noise

in its reconstruction. Low et al. [16] demonstrated the use of CS as a speech enhancer

by relying upon the strength of CS to maintain only the sparse components (speech)

and its weakness in preserving the non-sparse components (noise). Various CS based

methods with favorable results have been reported [16, 17, 18], demonstrating its efficacy

for speech enhancement applications. A very popular technique for sparse signal recon-

struction is the regularized `1-norm least squares [19]. This is because `1 regularized

least squares yields a sparser solution since the solution tends to have a fewer nonzero

coefficients compared to the `2 based Tikhonov regularization [19]. One important pa-

rameter in solving the regularized sparse solution is the tuning parameter or the penalty

constant, λ. The regularization parameter, λ holds significance as a heavier weighting

would penalize the Tikhonov regularization. In other words, the tuning parameter holds

the key in determining how sparse a solution is reconstructed.

Whilst a sparse solution indicates the existence of a sparse component such as speech,

there is no measure incorporated in the CS reconstruction to optimize on the overall

speech quality. The idea is to establish the relationships between sparsity and quality.

Since the tuning parameter has influence over the sparsity of the solution, then a quality

measure should be factored in to link the two. More specifically, this paper sets out

to find the tuning parameter that best suits the sparsity profile of the corresponding

frequency data in question. This paper proposes to formulate the solution in compressive

speech enhancement by hyper-parameterizing the tuning parameter.

For the sparsity model to hold for sparse reconstruction, the data is decomposed in the

frequency domain. As mentioned, the focus here is to ascertain if properly optimized

tuning parameter would increase the overall PESQ. Since the PESQ is formulated in ful-

lband, each combination of the tuning parameter in each frequency point would need to

be computed and then reconstructed into fullband representation for PESQ evaluation.

Thus, optimizing λ(ω) directly based on PESQ would be computationally prohibitive as

the number of combinations would be to the order of the number of frequency points.
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To bypass that, the tuning parameter is then optimized in each frequency bin by using

a different optimization criterion (such as Gini index, the Akaike information criterion

(AIC) and Bayesian information criterion (BIC)) to achieve the sparsest set of soluti-

ons. The set of sparsest solutions is then evaluated against the perceptual evaluation

speech quality (PESQ) improvement as a quality measure for speech [21]. Experimental

results show that both the Gini index and the model selectors help to select the tuning

parameters, which improve the PESQ, thus directly parameterizing the performance of

compressive speech enhancement with the tuning parameter.

2 Signal Model

Let the noisy signal be

x(n) = s(n) + v(n) (1)

where s(n) and v(n) are the speech and noise signals, respectively. Its corresponding

L-point STFT is given as

X(ω, k) =
L−1∑
n=0

x(n)w(n− kR)e−jωn = S(ω, k) + V (ω, k) (2)

where w(n − kR) is a time-limited window function with a hop size of R and length

L, ω ∈ ω0, · · · , ωL−1 and k is the time index. The k-th instant data envelope of (2) is

|X(ω, k)|, where | · | denotes the absolute value operator.

Consider a N ×N matrix Ψ whose columns form an orthonormal basis. The K-sparse

signal, x(ω, k) ∈ RN can then be given as

x(ω, k) = Ψ(ω)θ(ω, k) (3)

where the N -length envelope vector x(ω, k) = [|X(ω, k)|, |X(ω, k−1)|, · · · , |X(ω, k−N+

2)|, |X(ω, k −N + 1)| ]T , the symbol [·]T is the transposition operator and θ(ω, k) ∈ RN

has K non-zero entries. The compressed measurement vector is given as

y(ω, k) = Φ(ω)x(ω, k) (4)

where Φ(ω) is a M × N sensing matrix/linear mapping matrix. In this instant, the

sensing matrix compresses the signal’s envelope for each frequency ω. Since M � N ,
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this means that the dimension of y(ω, k) is considerably smaller than x(ω, k), hence the

term “compressed”. Equation (4) represents an alternative sampling procedure, which

samples sparse signals close to their intrinsic information rate rather than their Nyquist

rate. It has been shown that the tractable recovery of K-sparse signal, x(ω, k) from the

measurements, y(ω, k) requires the sensing matrix, Φ(ω) to obey the restricted isometry

property (RIP) [15]. Here, a sensing matrix, Φ(ω) is said to satisfy RIP of order K for

all K-sparse signal, x(ω, k), if there exists a constant, δK ∈ (0, 1) such that

(1− δK) ‖ x(ω, k) ‖2
2≤ ||Φ(ω)x(ω, k)||22 ≤ (1− δK) ‖ x(ω, k) ‖2

2 (5)

where ‖ · ‖2 denotes `2 norm.

3 CS Recovery

One solution to ensure sparse recovery is to solve the following:

x̂(ω, k) = arg min
x(ω,k)

‖x(ω, k)‖0 s.t. y(ω, k) = Φ(ω)x(ω, k) (6)

where ‖x(ω, k)‖0 is the number of non-zero components of x(ω, k). However, solving

(6) requires a combinatorial search, which is NP-hard [23]. A computational tractable

solution to (6) is the widely known basis pursuit method as follows

x̂(ω, k) = arg min
x(ω,k)

‖x(ω, k)‖1 s.t. y(ω, k) = Φ(ω)x(ω, k) (7)

where ‖·‖1 is the `1 norm. Whilst the basis pursuit is a weaker formulation compared to

(6), it allows efficient solution via linear programming techniques [23, 19]. A more flexible

formulation, which allows for a trade-off between the exact congruence of y(ω, k) =

Φ(ω)x(ω, k) and a sparser x(ω, k) is the popular basis pursuit denoising [19] given as

x̂(ω, k) = arg min
x(ω,k)

‖y(ω, k)−Φ(ω)x(ω, k)‖2
2 + λ(ω)‖x(ω, k)‖1 (8)

where ‖ · ‖2 is the L2-norm and λ(ω) is the regularization parameter. The formulation

in (6) is a simple least-squares minimization process with a L1-norm penalizer and the

dictionary matrix Φ(ω). It is worth noting that since L1-norm is non-differentiable,

the optimization then leads to a decomposition which is sparser [24]. Simply, the first
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term in Eqn. (8) is to reduce the mean square area whilst the regulator seeks a sparser

solution.

Note that the optimal solution tends to trivial as λ(ω) → ∞ [19]. A higher value of

λ(ω) would generally result in a sparser solution since the `1-norm is being penalized

more heavily. This means that the regularizer, λ(ω), penalizes the sum of the observed

signal. In other words, the solution to (8) is indeed a function of λ(ω), i.e., fixing λ(ω)

is equivalent to setting it to a particular subset of sparse solution for the least squares

to be performed on [25]. Simply, the optimization problem is a trade-off between a

quadratic misfit error (mean square error) against the sparsity of the data, i.e., `1-norm

[26]. Clearly, if the incoming signal is already sparse, then λ(ω) can be relaxed and vice

versa. Since the sparsity of the signal varies as a function of frequency, the regularizer

should ideally vary according to the signal’s profile.

A good choice of λ(ω) should provide a reasonable trade-off between the smoothness

of the reconstructed signal and similarity to the original signal [16]. Nevertheless, it

remains not so straightforward to set the regularization parameter λ(ω) and thus far,

λ(ω) has been empirically determined. In practice, λ(ω), should be set according to the

sparsity of the actual signal as λ(ω) controls the amount of regularization that can be

imposed. It is precisely this quality control that this paper seeks to establish, i.e., by

linking sparsity to quality. Since a larger value of λ(ω) yields a sparser solution, then

more noise would be suppressed. However, how much can λ(ω) be set before the signal

quality is compromised.

4 Quality Measures

4.1 Background

In a big data setting such as speech signals, this paper seeks to subsume the affective

design by hyper-parameterizing λ via the Gini index and the model selectors, Akaike

information criterion (AIC) and Bayesian information criterion (BIC). The set of so-

lutions is then evaluated with respect to PESQ. In particular, λ is to be optimized in

such a way that the sparsest solution yields the one with the best quality in terms of
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noise suppression and target distortion. In this case, the noise suppression and speech

distortion can be viewed as the engineering requirement and the affective design attri-

bute, respectively. The idea is to incorporate affective design via the influence of the key

design parameter on the aforementioned PESQ measure. By doing so, the parameter

can be translated to consumer reactions (via the PESQ measure).

We propose a two-level optimization strategy to optimize λ(ω) to affective measure. In

the inner level, the big data is first compressed via the sensing matrix, Φ(ω). In the

outer level or the sparse reconstruction stage, the hyperparameter is optimally chosen

to incorporate the overall signal quality. Quality measures such as the AIC, BIC and

Gini index are used to optimize the value of the hyperparameter. These measures are

explicitly used to determine the relationship between key design parameters with the

consumer reactions from the processed signal. The following sections explain each of

the chosen optimization criteria, namely Gini index, the AIC and BIC model selection

methods.

4.2 Gini Index

4.2.1 The Gini Coefficients - A Sparsity Measure

As mentioned, the actual sparsity of the signal affects the performance sparse recovery.

As an effective measure of sparsity, Zonoobi [28] concluded that the Gini index can

induce a significantly improved performance in reconstruction from compressive samples.

A signal is considered most sparse if a signal can be represented by only one non-zero

coefficient with the rest being zero [27]. Similarly, if a signal has only one high value

non-zero coefficient amidst a low non-zero coefficients, then the signal can be said to be

most sparse. In essence, sparsity is a measure of disparity, i.e., the relative distribution

of the coefficients of a signal is. A non-sparse signal on the other hand is described as

having a uniform non-zero coefficients throughout. Of the many sparsity measures, it

has been shown that Gini index remains the most consistent and fulfil all of the desirable

sparsity criteria [27, 28].

Consider a M long ordered vector, w = [w1, · · · , wM ] such that wM ≥ wM−1, · · · , w2 ≥
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Signal Gini coefficient SNR Speech + Babble Speech + White Speech + Destroyerops

Speech 0.9266 0 0.7522 0.7382 0.7372

Babble 0.6634 5 0.8302 0.8234 0.8239

White 0.6352 10 0.8848 0.8823 0.8828

Destroyerops 0.6243 15 0.9108 0.9099 0.9104

Table 1: The Gini coefficients for speech and different types of noise and at different

SNRs.

w1, then the Gini coefficient is defined as

GI(w) = 1− 2
M∑
m=1

wm
‖w‖1

(
M −m+ 0.5

M

)
. (9)

A zero-valued Gini represents perfect equality whilst a close to unity value shows the

opposite. In sparsity terms, a larger Gini coefficient shows a sparser signal. As such, Gini

coefficient can be used as a measure to ascertain if a signal is sparse. Table 1 tabulates

the Gini coefficients for three types of noise, speech and the noisy speech at different

SNR levels. The coefficients show speech indeed is the sparsest signal in comparison

with the other noise signals. Note that, of all the noise signals, babble noise has the

highest Gini coefficient, owing to its speech-like nature. For the case of noisy speech

signals, it can be seen that as the SNR increases, the Gini coefficient approaches unity.

As the SNR decreases, the value of the Gini coefficient drops accordingly. This simple

example demonstrates that a sparser signal tends to have a higher SNR and as the signal

becomes more noisy, sparsity reduces. Figure 1 shows that the sparsity of a speech signal

varies as a function of frequency. It can be seen that the mid to high frequency range of

a speech signal tend to be sparser compared to the low frequency components. Thus, by

properly optimizing λ(ω) based on the Gini coefficient, the sparse reconstruction could

potentially lead to better SNR improvement, as appropriate tuning parameter can be

set according to the sparsity of the signal in question.
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Figure 1: The Gini coefficients for different frequency bins.

4.2.2 Selection of λ(ω) based on Gini

Consider an N -length signal, x(ω, k), then from Eqn. (8), its sparse reconstruction is

given as

x̂(ω, k) = arg min
x(ω,k)

‖y(ω, k)−Φ(ω)x(ω, k)‖2
2 + λ(ω)‖x(ω, k)‖1. (10)

For each given value of λ(ω) value, an estimation of x̂(ω, k) is denoted as x̂λ(ω)(ω, k).

The Gini coefficient of x̂λ(ω)(ω, k) is then defined as

GI(x̂λ(ω, k)) = 1− 2
N∑
n=1

x̂λ(ω)(ω, k, n)

‖x̂λ(ω)(ω, k)‖1

(
N − n+ 0.5

N

)
. (11)

where x̂λ(ω)(ω, k, n) is the n-th ordered value of vector x̂λ(ω)(ω, k) in a descending order.

The corresponding optimization problem of maximizing the GI coefficients can be written

as

λmaxGini(ω) = arg max
λ(ω)

GI(x̂λ(ω)(ω, k)) (12)

where GI(x̂λ(ω)(ω, k)) is given in Eqn. (11). Equivalently, the optimization formulation

for finding λ(ω) for the minimum Gini index is

λminGini(ω) = arg min
λ(ω)

GI(x̂λ(ω)(ω, k)). (13)
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Eqns. (12) and (13) can be viewed as the extreme ends of compressive speech enhance-

ment, as Eqn. (12) recovers the sparsest signal it could possibly tuned and vice versa

for Eqn. (13). In the numerical experiments to follow, we will show that both the op-

timization above behaves very differently for the PESQ and segmental SNR measures,

with Eqn. (12) leaning towards noise suppression and Eqn. (13) acting towards more

on speech preservation.

4.3 Akaike Information Criterion (AIC) and Bayesian Infor-

mation Criterion (BIC)

Whilst the tuning parameter selection based on Gini criterion is intuitive, it is by no

means the only approach. For any regularization method, finding the best regularization

parameter is essential. As explained by Dicker et al. [29], the estimators are typically

found to correspond to a range of tuning parameter values, which is referred to as a

solution path. Subsequently, the preferred estimator is identified along the solution

path as the estimator, which fits the optimization criteria. In the same vein, this paper

considers the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) based approach for the selection of the tuning parameter, λ(ω) [30]. It is well

known that AIC and BIC are popular model selection criteria. As shown in Zou[31], AIC

and BIC possess different asymptotic optimality. AIC converges at the minimax optimal

rate to the true regression mode, whereas BIC is consistent in selecting the true model.

In this case, we ascertain the heuristics usefulness of both the AIC and BIC in tuning

λ(ω), for compressive speech enhancement. The major difference between AIC and BIC

is that they possess different asymptotic optimality [31]. For AIC(Akaike, 1973), it seeks

the model with the least average squared error irrespective of whether the true model

is in the candidate list. BIC, on the other hand, guarantees in selecting the true model,

should the true model be selectable. Readers may refer to [29, 31, 32] for in-depth view

of the two approaches.

Let us define the residual sum of squares (RSS) as

RSS = ‖y(ω, k)−Φ(ω)x(ω, k)‖2
2 . (14)

From [31], given an estimator x̂, the number of nonzero entries of an estimator x̂ is an
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unbiased estimate of the degree of freedom (df), that is

df = number of nonzero entries of x̂(ω, k). (15)

AIC and BIC are usually used to make model selection and predict models, both of

them could be represented as a combination of a likelihood term and a penalty term.

Thus from Eqn. (14) and (15), the corresponding AIC and BIC can be formulated as

AIC = ` log(RSS/`) + 2df, (16)

BIC = ` log(RSS/`) + df · log(`), (17)

where ` is the length of estimator x̂. The tuning parameter selection procedure can

be reduced to the minimization of AIC or BIC, and as discussed previously, AIC is

comparatively more conservative in its variable selection. Inserting Eqn. (14) into (16)

and (17), respectively, yields the λ(ω) selection as follows:

λAIC(ω) = arg min
λ(ω)

n log(‖y(ω, k)−Φ(ω)x̂λ(ω, k)‖2
2/n) + 2df, (18)

λBIC(ω) = arg min
λ(ω)

n log(‖y(ω, k)−Φ(ω)x̂λ(ω, k)‖2
2/n) + df log(n). (19)

5 Perceptual Evaluation of Speech Quality

Broadly, the assessment of speech quality can be classified as subjective and objective

evaluation. As the name implies, subjective evaluation involves subjective listening test

by some listeners. Objective evaluation on the hand, measures the numerical distance

between the reference signal and the processed signals [33]. One established method

of evaluating how good the enhancement process is via the use perceptual evaluation

of speech quality (PESQ). PESQ is an automated computation algorithm developed by

the International Telecommunications Union (ITU) to replace human subjects in the

evaluation of the mean opinion score (MOS). The PESQ model considers how human

perceive speech and it has been used widely in the evaluation of speech quality [34].

PESQ is defined mathematically as [35]

PESQ = a0 + a1dsym + a2dasym (20)

where a0 = 4.5, a1 = −0.1 and a2 = −0.0309. The variables dsym and dasym are the

average disturbance values for the symmetrical and asymmetrical components. The
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former measures the distortion due to noise and the latter describes the omission of the

actual speech.

PESQ bypasses the need for human subjects to take part in the evaluation process and

can be used as part of the affective design process. Numerous studies have shown that

PESQ consistently rated to be the most reliable objective measure for speech quality

assessment [36, 37]. In fact, PESQ has also been shown to be consistent in measuring

speech intelligibility [38]. As PESQ gives the overall speech quality score, consequently,

it is regarded as an affective indicator as to how ’pleased’ the consumers are with the

processed speech.

6 Proposed Two-Level Optimization Process

This section details the proposed two-level optimization strategy to optimize λ(ω) with

respect to the quality measures. In the first level optimization, the big data is first

compressed via the sensing matrix, Φ(ω). The second level then optimizes the hyperpa-

rameter through the quality measures, which then improves the overall signal affective’s

quality.

6.1 First level optimization: Compressive Sensing

The first step entails the compressive sensing matrix selection. The data compression

from Equation (4) is reproduced here for convenience

y(ω, k) = Φ(ω)x(ω, k) (21)

where y(ω, k) ∈ RM ,x(ω, k) ∈ RN , and Φ(ω) ∈ RM×N is the compressive sensing

matrix, which compresses the signal dimension by projecting the signal from RN into

RM , where M � N . The sensing matrix is typically generated by using a random

Gaussian matrix or a partial DCT matrix [16].

Under the Restricted Isometry Property condition (5), the solution to (21) can be solved

by using the popular basis pursuit as follows [19]

x̂(ω, k) = arg min
x(ω,k)

‖x(ω, k)‖1 s.t. y(ω, k) = Φ(ω)x(ω, k). (22)
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Alternatively, Equation (22) can be viewed as a linear regression

y(ω, k) = Φ(ω)x(ω, k) + ε, s.t. ‖x(ω, k)‖1 ≤ ν, (23)

where ν is a constant relating to the sparsity constraint and ε ∈ RM is the intercept or

error. Thus Equation (22) can be reposed as the following

min
x(ω,k)

‖y(ω, k)−Φ(ω)x(ω, k)‖2
2 + λ(ω)‖x(ω, k)‖1 (24)

where λ(ω) is the tuning hyperparameter. The solution to Equation (24) is the key to

finding the best affective solution to the problem in question. Here, the λ(ω) plays a key

role in mapping the solution to the affective measures. The following section explains

how the solution to (24) is optimized with respect to the affective measures as discussed

in the previous section.

6.2 Second Level Optimization: Hyperparameter Selection

To solve model (24), we implement the interior point method for large-scale l1 regularized

least squares algorithm in [19] with the following properties:

(i) When λ(ω) → 0, the estimator has the limiting behavior with (24), satisfying

Φ(ω)T [Φ(ω)x(ω, k)− y(ω, k)] = 0.

(ii) As λ(ω) → ∞, the estimator shrinks to the zero vector, 0. The convergence

occurs for a finite value of λ(ω), i.e., λ(ω) ≥ λmax(ω) = ‖2Φ(ω)Ty(ω, k)‖∞, where

‖x‖∞ = maxi |xi| is the l∞ norm of vector x. However, for λ(ω) > λmax(ω), the

optimal solution of (24) is trivial, i.e., 0.

(iii) As λ varies across (0,∞), the solution path of x is piecewise linear. That is, with

tuning parameters satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λk = λmax, the regularization path

of x is a piecewise linear curve on RN :

x =
λi+1 − λ
λi+1 − λi

x(i) +
λ− λi
λi+1 − λi

x(i), λi ≤ λ ≤ λi+1, i = 1, 2, · · · , k − 1.

(iv) Clearly as a general rule, with properly chosen λ(ω), Equation (24) will result in

sparse solution.
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(v) The Computational complexity of this algorithm is determined by the product

of the total number of Preconditioned Conjugate Gradient(PCG) steps during all

iterations and the cost of a PCG step. As noted in [19], extensive testing suggest

that the total number of PCG steps vary from a few tens to several hundreds to

compute a solution. The computational complexity of a PCG step is O(NM),

where M,N are the dimensions of sensing matrix Φ(ω). Then the total computa-

tional complexity is at most O(cNM), where c is the number of iterations in the

order of hundreds.

We propose a grid search tuning parameter selection based on minimizing/maximizing

the AIC, the BIC and the Gini index. Here, a set of λ(ω) is set as in interval length of 0.01

as λ(ω) = {λ1(ω), λ2(ω), · · · , λ100(ω)} where λ1(ω) = 0.01, λ2(ω) = 0.02, · · · , λ100(ω) =

1. For each fixed λi(ω), we can obtain x̂λi(ω) by optimizing (24). Note that for a high-

dimensional least squares Lasso problem, it is computationally expensive to implement

through the Newton system. In order to balance between computation and convergence

rate we propose to use the iterative method to solve the Newton system by using the

truncated Newton method combined with interior point method [19]. From Equations

(11), (18) and (19), we have

AIC(λi(ω)) = ` log(‖y(ω, k)−Φ(ω)x̂λi(ω)(ω, k)‖2
2/`) + 2df (25)

BIC(λi(ω)) = ` log(‖y(ω, k)−Φ(ω)x̂λi(ω)(ω, k)‖2
2/`) + df · log(`) (26)

GI(λi(ω)) = 1− 2
N∑
n=1

x̂λi(ω)(ω, k, n)

‖x̂λi(ω)(ω, k)‖1

(
N − n+ 0.5

N

)
(27)

From the above, each optimized parameter can be found as λi(ω) ∈ λ(ω) as follows

λMinAIC = arg min
λ(ω)

AIC{λ(ω)} (28)

λMinBIC = arg min
λ(ω)

BIC{λ(ω)} (29)

λMinGI = arg min
λ(ω)

GI{λ(ω)} (30)

λMaxGI = arg max
λ(ω)

GI{λ(ω)} (31)

Finally, the corresponding optimal estimators are obtained as

x̂(λ(ω)MinAIC), x̂(λ(ω)MinBIC), x̂(λ(ω)MinGI), x̂(λ(ω)MaxGI). (32)
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Each optimal estimator is then evaluated against the affective measures, i.e., PESQ and

segSNR. As mentioned the proposed approach is a grid based ratio selection method to

optimize λ(ω). Here, the optimized λ(ω) is chosen based on the optimization of either on

the Gini index, AIC and BIC criterion as shown above. In the following numerical study,

we investigate the influence of hyperparameterizing λ(ω) on the results of compressive

speech enhancement in terms of perceptual evaluation of speech quality (PESQ) and the

segmental SNR (segSNR). Generally speaking, PESQ measures the overall improvement

in the perceptibility of the speech signal, whereas segmental SNR rests more heavily on

the suppression of noise in the observation.

7 Numerical Experiments

7.1 Experiment Settings

Four different types of noise sources from the NOISEX database, namely, babble, subway,

destroyer and car noise were tested over a wide range of SNR, from 0dB to 20 dB, with

similar SNR setting as in [16]. The noise types were chosen to represent the different

degree of non-stationarity noise encountered in the real world. Five female and five

male speech signals from the TIMIT database were used as stimuli. The performance

was evaluated by using the segmental SNR and the PESQ measure with a total of

five female and five male speech signals from the TIMIT database. As mentioned in the

introduction, PESQ measure is an automated evaluation process, which in this case a key

measure for the inclusion of affective design. The PESQ score reveals how good or bad

the perceptual quality of the audio signal to a human listener. This paper also includes

the objective measure segmental SNR as a comparison. The number of frequency points

was fixed at 256 with 50% oversampling and the compressive ratio, M/N was set to 0.9.

7.2 Hyperparameterizing λ based on Gini, AIC and BIC cri-

terion

Four criteria based on Equations (12), (13), (18) and (19) were used to examine the

influence of λ(ω) on compressive speech enhancement for a range of SNRs. In this case,
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each of the criteria is evaluated in each frequency band via grid search. We take fixed

λ(ω) = 0.1 for comparison purposes as the same implementation in [16]. Figures 2, 3,

4 and 5 show the PESQ and segmental SNR performance of the four model selection

criterion for babble noise, car noise, subway noise and destroyer noise, respectively.

Evidently, the role of λ(ω) is crucial as its variation results in a very different performance

across the SNRs.

In terms of PESQ, the minimization of the Gini and AIC criterion provide a consistent

performance across the SNR range for the different types of noise. Both the criterion

achieves higher PESQ values over the performance of having a fixed value of λ(ω) e.g.,

λ(ω) = 0.1(see [16]) and the unprocessed observation. Note that minimization of the

Gini index results in the most non-sparse solution in the set of sparse solution. This

means that the recovery process emphasizes on maintaining the speech signal as opposed

to the reduction of noise (via a sparser solution). Interestingly, the minimization of BIC

does not provide much improvement when the SNR> 10dB. Also, when compared to

the AIC criterion, BIC obtains lower PESQ improvement but a higher segmental SNR

improvement. This corroborates with the fact that in general, BIC tends to choose a

parsimonious model compared to AIC. Hence for compressive speech enhancement, AIC

is more inclined to select a model with less sparsity. This explains why AIC criterion

results in a higher PESQ score but a lower segmental SNR compared to the BIC criterion.

In terms of segmental SNR improvement, the maximization of the Gini index gains the

highest improvement with an approximately 4dB gain over the range of SNRs and the

different types of noise. This is because the maximization of the Gini index results in the

sparsest representation, which as shown in Section 4.2 is often the ones with the highest

SNR. However, having an SNR improvement does not necessarily translate to overall

speech intelligibility improvement. This is shown by the corresponding results in terms of

the PESQ, where the maximization of Gini index attains the lowest PESQ improvement.

This indicates that maxGINI maximally suppresses noise at the expense of the perceptual

aspects of the output. This may be suitable for applications such as speech recognition

where noise is the main issue. However, for hearing instruments such as assistive listening

devices, SNR may not be the primary factor as improving SNR does not necessarily

improve the perceptual part of speech as measured by PESQ. The proposed method

allows such tuning by choosing the different criterion for the application in question. In
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a way it effectively parameterizes the sparse reconstruction through λ(ω) to allow for an

engineering trade-off between noise suppression and perceptual preservation. Informal

listening test confirms the improvement with respect to the different criteria used.
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Figure 2: The (a) PESQ and (b) segmental SNR of the different hyperparameter opti-

mization methods as a function of SNRs for babble noise.

8 Conclusions

This paper presents a two-level optimization approach to incorporate quality measures

in a speech application such as compressive speech enhancement. The results show that

quality measures can be factored in the solutions by hyperparameterizing the tuning
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Figure 3: The (a) PESQ and (b) segmental SNR of the different hyperparameter opti-

mization methods as a function of SNRs for car noise.

parameter in the sparse reconstruction. By doing so, the solutions are effectively tailored

to the desired design attributes by a single parameter. The two-level approach first

compresses the big data and subsequently optimizes the sparse the solution via the

AIC, BIC model selection and the Gini performance index. The set of solutions is

then measured against the quality measures for the desired solution. Comprehensive

numerical experiments in a range of real-world noise with varying SNRs show that

proper tuning of the hyperparameter can effectively trade-off between speech distortion

and noise suppression. For future work, the optimization of the tuning parameter will

be extended to the use of heuristics methods such as the particle swarm optimization

(PSO).
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Figure 4: The (a) PESQ and (b) segmental SNR of the different hyperparameter opti-

mization methods as a function of SNRs for subway noise.
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[7] J. J. Dahlgaard, S. Schütte, E. Ayas, and S. M. Dahlgaard?Park, “Kansei/affective

engineering design: A methodology for profound affection and attractive quality

creation,” The TQM Journal, vol. 20, no. 4, pp. 299–311, 2008.

[8] S. Y. Low, S. Nordholm, and K. L. Teo, “Use of efficient frontier in microphone

arrays electronics letters,” IEE Electronics Letters, vol. 20, no. 42, pp. 1186–1187,

2006.
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