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Abstract: The Activity-based approach has been widely accepted as a more realistic alternative 

to conventional aggregated trip-based travel demand models with better capability to model 

individual activity-travel choice behaviors. Attention has recently been given to the relationship 

between home-work-home activity durations and workers’ travel times to develop activity-

based models to estimate their activity and travel choices for long-term transport planning. The 

traditional household interview survey data from the Travel Characteristics Survey (TCS) 

conducted in Hong Kong in 2011 is used in this paper. With this, we assess the effects of travel 

times (including departure times to and from work) on the activity durations of workers in Hong 

Kong. On the basis of these findings, an activity-based model is calibrated to quantify the 

temporal utility functions of the home-work-home activities of workers. Finally, insightful 

findings on the data analysis and model results are given in conclusions together with 

recommendations for further study. 

Keywords: activity-based model, activity duration, marginal utility function. 

1 INTRODUCTION 

Decades have passed since the development and evolution of transportation planning models 

since the pioneering research in the early 1950s (Mitchell and Rapkin, 1954). As the first 

generation of transportation planning models, the aggregated trip-based models were adopted 

and implemented by some transportation departments for travel demand prediction at early 

stages. These models attempt to represent the aggregated behavior of a group of travelers 

instead of the behavior of a single individual. Although the aggregated approach can show an 

entire profile travel behavior at the traffic zone/district level, such models have been severely 

criticized for their inflexibility and inaccuracy. To meet the need to present detailed 

individual/household travel behavior, disaggregated approaches have evolved from aggregated 

approaches, such as VISUM and TRANSIMS. However, despite this movement, trip-based 
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models are still criticized for their limitations: (1) the models ignore that the demand for travel 

is derived from the demand for activity participation; (2) they focus on individual trips (or tours) 

and ignore the spatial and temporal relationships between all trips and activities completed by 

an individual; and (3) they view an individual as a decision maker isolated from the household 

context. 

 In response to the need for more realistic models, the activity-based model was proposed 

to account for travel demands being derived from the desire for activity participation 

(Hagerstrand, 1970; Kitamura, 1988; Axhausen and Gärling, 1992). Compared with 

conventional trip-based models, activity-based models have the following advantages: (1) they 

consider the effects of interactions with household members on the individuals’ decision 

making and (2) travel is no longer considered as isolated trips but as part of an activity pattern 

with realistic rules and constraints, including activity sequences, the durations of the activities, 

and the mode contexts. 

Although the concept of the activity-based model was proposed not long after the prior 

research on transport systems, there has been a boom of activity-based models since the 1980s. 

In the past four decades, various activity-based models have been proposed and implemented 

(Bowman, 1998, 2000; Recker, 1995; Bhat, 2003; Li et al. 2013). The activity-based approach 

has been widely accepted as a better alternative to overcome the limitations of conventional 

models because it is better able to model the individual activity-travel choice behaviors in reality. 

Due to the variety of implemented environments, different methods have been developed for 

different cities for these models (Rasouli et al., 2014; Li et al., 2013). 

In this paper, the activity-based model belongs to the group of economic models. The 

theoretical foundation of economic models for the activity-based approach is based on the 

theory of random utility maximization (Ben-Akiva and Lerman, 1985; Adler and Ben-Akiva, 

1979). These models assume that each activity is associated with a specific utility perceived by 

its participants. Individuals are assumed to be rational. They choose the activities for 

participation to maximize the total utility he or she gains (Xiong and Lam, 2011). 

Various utility functions have been studied and are assumed to be related to activity types 

and the characteristics of both related activities and individuals (Joh et al., 2002; Ettema et al., 

2003; Fu et al., 2014, 2015). Individuals adjust their decisions regarding activity participation 

according to the utility they perceive. Therefore, the definitions and calibration results of the 

utility functions for activity-based models play important roles in long-term transport planning. 

A brief overview of the historical development of the travel demand models in this section is 

given in Table 1. 
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Table 1. Summary of travel demand models conducted 

Travel demand 

models 

Trip-based models Activity-based models 

Aggregated 

approach 

Lowry et al. (1964); 

MUSSA (Martinez, 1996); 

EMME/2  

Li et al. (2010);  

Xiong and Lam (2013); 

Fu and Lam (2014, 2015) 

Disaggregated 

approach 

TRANSIMS; 

VISUM; 

Antoniou et al. (1997) 

 

BB System (Bowman and Ben-Akiva, 

2000); 

ALBATROSS model (Arentze and 

Timmermans, 2004); 

TASHA (Miller and Roorda, 2003) 

  

In this study, in order to examine the profiles of the mechanism by which the utilities of 

activities affect individuals’ activity participation by time of day, we adopted the bell-shaped 

marginal utility function used in the ALBATROSS model (Joh et al., 2002) to calibrate the 

proposed home-work-home activity model. Using household interview survey data from Hong 

Kong collected in 2011, this paper aims to calibrate the activity utility functions by time of day 

for long-term travel demand forecasting, particularly for activity-travel choice behaviors. The 

estimation performance of the proposed activity-based model is assessed and discussed along 

with the calibration. 

The model calibrated in our paper has the marginal utility functions of home/work activities. 

It can be used to model the total daily activity-travel utility when disutility of travel from trips 

are to be incorporated in the activity-based network equilibrium model (Lam and Yin, 2001). 

With this activity-based approach, changes in activity-travel choice behavior in responds to the 

transport policies (e.g., reduction or increment in travel times) can then be evaluated using the 

calibrated function of our paper. People may change their decisions about the duration of 

activities (longer/shorter), alter the departure times, or even add or cancel the activities to or 

from their original schedule subject to time availability as a result of transport policy change 

(Fu and Lam, 2014). 

 The remainder of the paper is organized as follows. Section 2 introduces the Travel 

Characteristics Survey (TCS) database and shows the key travel characteristics in Hong Kong 

with some analytical results from the TCS data. Section 3 gives the formulation of the activity-

based model and calibration method. Section 4 presents the numerical calibration results for the 

utility functions of the proposed home-work-home activity models. Finally, Section 5 concludes 

the research findings and gives suggestions for further study. 

 

 

2 PROFILE OF TRAVEL CHARACTERISTICS SURVEY 2011 IN HONG KONG 

 

The dataset we used for transportation analysis and calibration of the activity utility function is 

taken from a household interview survey of the Travel Characteristics Survey conducted in 

Hong Kong in 2011. Hong Kong is a metropolitan city with a population of 6.88 million at the 

time of the TCS survey (late 2011 to early 2012). With an area of 1,106 km2, Hong Kong is 
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mostly covered by mountains. As a result, Hong Kong is a highly dense city because only 

around 24% of the land is used for urban development, with up to 50,000 persons per square 

kilometer in most urban areas. 

 Such a high-density development environment with limited land makes the development 

of transportation a challenge, but it is important to develop better transportation systems in 

Hong Kong. To approach this purpose, a comprehensive analysis of the travel characteristics of 

Hong Kong residents is needed. The Travel Characteristics Survey 2011 aimed to collect up-to-

date data on travel characteristics and to develop a database for long-term planning and 

development. The survey is conducted every 10 years, with the last survey conducted in 2002. 

The data used for this paper come mainly from one of the three main sub-surveys of TCS 

Household Interview Survey (HIS). This sub-survey included households’ social information, 

personal and trip data, and information on vehicle availability. Of the 2.36 million households 

in Hong Kong, 35,401 households responded to the HIS (1.5% sample size).  

 The remainder of this section includes some statistical analysis of the characteristics of 

home-work-home workers from the household interview survey. First, an overall profile of 

these workers’ activity participation is presented in Section 2.1. Section 2.2 gives a detailed 

analysis of the workers’ departure time to and from work, and Section 2.3 presents the patterns 

of work durations by departure time. 

 

2.1 Overall Profile of Daily Activity Patterns for Workers  

 

Among the sampling data, 39,420 residents were reported as workers in the 35,401 households. 

An average of just more than one person per household worked to provide household financial 

support. Most of these workers’ out-of-home activities consisted of work. Without loss of 

generality, in this paper, we focus only on workers with a home-work-home activity pattern, 

which takes up more than 90% of the total activities in the sampling data. Overall, 30,247 

workers (77% of the total sample, including full-time and regular part-time workers) had a 

home-work-home activity pattern. An overall profile of this activity pattern is given in Figure 

1. 
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Figure 1. Proportion of activity status for workers. 

  

Under this studied pattern, the daily time allocated to workers can be divided into five 

components with the following equation: 

 𝑡 = 𝑡ℎ𝑜𝑚𝑒1 + 𝑡ℎ−𝑤 + 𝑡𝑤 + 𝑡𝑤−ℎ + 𝑡ℎ𝑜𝑚𝑒2 (1) 

   where 𝑡ℎ𝑜𝑚𝑒1, 𝑡𝑤, and  𝑡ℎ𝑜𝑚𝑒2 stand for the time spent at home in the morning, the time 

spent at work, and the time spent back home after work, respectively, and 𝑡ℎ−𝑤 and 𝑡𝑤−ℎ 

represent the travel time from home to work and from work to home, respectively. 

 From Figure 1, we can see that in the early morning, most workers are still at home. From 

around 06:00, the proportion of workers at work begins to increase and the proportion at home 

begins to decrease. The proportions of those at home and those at work become equal at around 

08:30. The proportion of workers at work then continues to increase and reaches a high level at 

around 10:00, which implies that most workers are required to be at work by 10:00. Little 

difference is seen in the aggregated status until late afternoon, around 17:00. Most workers 

reported leaving work and going home by 17:00. 

 The proportions of workers at work and those who have returned home in the afternoon 

become equal again around 2 hours later, at 19:00. The same time window in the morning is 

only around 1.5 hours from around 6:00 to the equal point at 08:30. The time window is longer 

for most workers’ travel to leave work and return home. To some extent, the length of the time 

window reflects the pressure workers feel from going to work and going home. The narrow 

time window for going to work implies that some workers may need to hurry to get to work on 

time due to the constraints of their start time for work. As for going home, the longer time 

window implies that workers have greater flexibility in their departure times from work to home. 

 

2.2 Departure Time Analysis  
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An overview of the workers’ daily activity pattern is displayed via a profile of activity status in 

Section 2.1. However, for a more comprehensive understanding of the activity pattern, such as 

the peak hours for commuting to and from work, more analysis was done regarding the 

departure times to and from work and is displayed in this section. 

 In this section, to obtain a more comprehensive distribution of departure times to work, we 

extend the length of the departure time window from 05:00 to 12:00. The pattern of distribution 

is displayed in Figure 2. 

 

Figure 2. Distribution of departure time to work. 

 

From the result, it is obvious that the peak hour for the home-to-work commute was from 

08:00 to 09:00, taking up to 37.5%. It is followed by the hour from 07:00 to 08:00; 50% of trips 

were made before 08:00, and up to 90% of workers departed from home before 10:00. The 

departure time from work back home is analyzed in a similar manner in Figure 3. 
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Figure 3. Distribution of departure time from work. 

 

Figure 3 implies that the peak hour for work-to-home travel was 18:00 to 19:00, during 

which approximately 37.1% of workers left their work for home. Only around 17.5% of workers 

left for home after 20:00. 

When compared with the distribution of the departure time to work in the morning, obvious 

differences can be found in travel behavior after the peak hours. In Figure 2, the percentages of 

workers departing for work drops rapidly from nearly 40% to slightly over 10%. However, in 

Figure 3, the drop is only from 37.1% to 20%. This indicates that unlike hurrying to work in 

the morning, workers had more freedom to go home from work and showed a tendency to leave 

later than the scheduled time. The departure time analysis from Figures 2 and 3 is consistent 

with the result of the profile of the activity status of time spent at home and at work in Figure 

1. Workers had greater time elasticity in their choice of departure time from work to home. 

 

2.3 Activity Pattern of Work Duration 

 

Because activity duration is an important characteristic of the activity pattern, in addition to the 

proportions of activity status and the departure time information, the duration of the activity 

should be analyzed. The result is presented in Figure 4. 
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Figure 4. Distribution of work duration. 

 

Figure 4 gives an overall profile of the work duration for Hong Kong workers. The mean 

work duration was 9.48 hours, and more than 50% of the workers worked for more than 9 hours. 

This workday is longer than the 8 hours typically required in most places in the world. This 

finding shows that activity patterns may differ between Hong Kong and other places as a result 

of longer work hours. A set of utility functions of activity participation for long-term 

transportation planning should thus be calibrated with the use of the latest travel survey data. 

Generally speaking, workers in Hong Kong have longer work durations. To determine whether 

a relationship exists between work duration and departure time, we analyzed the work duration 

by departure time. 

 

 
Figure 5. Work duration by departure time. 
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 From the cumulative frequency of work duration by departure time in Figure 5, it is obvious 

that the earlier the worker departed from home to work, the longer they worked. For example, 

more than 80% of workers who departed between 06:00 and 07:00 worked for more than 9 

hours. The same numbers were around 75%, 60%, and 55% for the departure time periods of 

07:00-08:00, 08:00-09:00, and 09:00-10:00, respectively. 

 

2.4 Activity Pattern of Travel Time 

 

Sections 2.1-2.3 display an overview of the daily activity status, the distribution of departure 

times to and from work, and work duration. Workers reported different patterns of home-to-

work travel and work-to-home travel. In this section, we analyze the travel times of the trips 

under the pattern of home-work-home activities. The results are displayed in Table 2. 

 

Table 2. Travel time and work duration by departure times for workers. 

 Travel time Work duration 

Overall  

Car 

Owning  

Non-car 

Owning 

 

Overall 

Car 

Owning  

Non-car 

Owning  

Departure 

time to 

work 

06:00-07:00 53.5 

(24.2)*  

51.6 

(26.4)  

53.8 

(25.90)  

10.5 

(0.97) 

10.5 

(0.98) 

10.5 

(0.83) 

07:00-08:00 53.6 

(21.6) 

50.4 

(21.6)  

54.3 

(22.78)  

9.9 

(0.84) 

10.0 

(0.84) 

9.9 

(0.72) 

08:00-09:00 43.4 

(16.9)  

40.9 

(17.2)  

44.0 

(18.24)  

9.4 

(0.73) 

9.5 

(0.76) 

9.4 

(0.68) 

09:00-10:00 38.5 

(16.3) 

35.0 

(16.22) 

39.6 

(17.86) 

8.8 

(0.79) 

8.8 

(0.8) 

8.8 

(0.78) 

Average 47.2 

(20.3)  

43.8 

(20.0)  

48.0 

(21.33)  

9.6 

(0.91) 

9.6 

(0.93) 

9.6 

(0.91) 

Departure 

time from 

work 

16:00-17:00 47.3 

(22.0) 

45.7 

(23.6) 

47.7 

(22.0) 

8.4 

(0.86) 

8.2 

(0.98) 

8.4 

(0.83) 

17:00-18:00 50.7 

(21.9) 

46.6 

(21.8) 

51.6 

(21.85) 

8.9 

(0.72) 

8.6 

(0.71) 

8.9 

(0.72) 

18:00-19:00 51.4 

(21.7) 

47.7 

(21.4) 

52.3 

(21.65) 

9.5 

(0.68) 

9.5 

(0.67) 

9.5 

(0.68) 

19:00-20:00 47.6 

(19.9)  

43.9 

(19.6)  

48.5 

(19.92)  

10.4 

(0.77) 

10.5 

(0.72) 

10.4 

(0.78) 

Average 50.2 

(21.3) 

46.3 

(21.1) 

51.1 

(21.30) 

9.6 

(0.91) 

9.6 

(0.93) 

9.6 

(0.91) 

*Standard deviation in parentheses. 

 

Travel time analysis shows that the more travel time needed, the earlier the workers 

departed from home to work. However, the travel time of workers who depart to work between 

07:00 and 08:00 defies this tendency, perhaps due to heavy traffic conditions during the peak 

hour of home-work travel. However, travel time increases as the workers put off their departure 
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time until the peak hour. The standard deviations show clear regularity. The larger standard 

deviations decrease as the departure time to work is postponed. The same thing happens to that 

of the departure time from work.  

 The most significant finding in Table 2 is the work duration of workers by two groups of 

departure times. The results show that the earlier they departed to work, the longer they stayed. 

In contrast, the workers worked longer if they left work later. This tendency approximately 

follows the patterns of travel time spent for home-work-home trips. 

  In summary, this section makes use of the TCS data to give a comprehensive profile of the 

relationships between activity duration, travel time, and departure time for workers in Hong 

Kong. Several insightful findings are noted: (1) the time window of travel time to work is longer 

than that of from work, (2) the peak hours to and from work are compared, (3) the relationship 

between work duration and departure times to and from work is displayed, and (4) the tendency 

of travel time to vary by departure time is shown. These findings form the foundation for 

calibrating activity utility functions under the framework of activity-based models in the next 

section. 

 

 

3 METHOD OF MODELING AND CALIBRATION OF THE ACTIVITY UTILITY 

FUNCTION 

 

3.1 Activity-Based Modeling 

 

As time allocation for activity participation varies by time of day, a temporal utility function 

would be a better option to model the marginal utility by time of day (Lam and Yin, 2001; Fu 

and Lam, 2014). The bell-shaped marginal utility function has widely been used in previous 

papers due to its promising performance for modeling daily activity patterns (Ettema et al., 

2003, 2004; Li et al., 2010; Xiong and Lam, 2011; Fu, 2014, 2015). As such, it is adopted in 

this paper for calibrating the parameters for utility function. The formulation of a bell-shape 

utility function is given by: 

 
max

1
( )

exp( ( )) (1 exp( ( ))) i

i i i
i

i i i i

u
u t

t t


 

    

 


      
 (2) 

i stands for the index of activity. γ, α, β, and umax are the parameters of the function. Parameter 

α affects the position of time 𝑡 so that the marginal function reaches its maximum value. The 

value of parameter 𝛽 represents the rate of increasing to the maximum function value and 

decreasing from that. Parameter 𝛾 affects the symmetry of the curve of the utility function. 

The utility function is symmetric when 𝛾  equals 1, whereas the increasing part before the 

maximum value is greater than the decreasing part when 𝛾 is less than 1. umax is the maximum 

utility of the target activity. γ, α, β, and umax are the parameters needed to be calibrated. 

Following Ettema et al. (2003), the calibration of 𝛾 does not result in stable results for the 

parameters. Therefore, γ is fixed as 1 for better convergence. With the utilities specified for 

each activity, the daily utility can be calculated with the following equation: 

 U = ∑ ∫ 𝑢𝑖(𝑡)
𝑡𝑖

𝑒

𝑡𝑖
𝑠𝑖  (3) 
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   where 𝑡𝑖
𝑠 and 𝑡𝑖

𝑒 are the start and end times, respectively, of participating in activity i . 

For individual traveler, constant travel times were used for the model development (Ettema 

et al. 2003) and therefore for the simplicity of computation (the choice probability does not 

change over the alternatives under such simplicity), only the utilities of activities were 

conducted for calculation. However, further study will consider the utility function of both 

activities and trips for the evaluation of transport policy. 

Based on the findings from the TCS data, the activity duration varies with the departure 

times. Also, the activity duration differs with different start and end times. Therefore, three 

models with different considerations of start times and end times into the marginal utility 

functions are specified and calibrated in this paper. 

(1) Model 1: Eq. (2) is set as the marginal utility functions in this model. It is the base 

model for comparison of the improved models, namely, models 2 and 3. 

(2) Model 2: departure time has an obvious effect on activity duration given the way it 

affects the activity start time. Therefore, in model 2, we explicitly consider the effects of the 

start time of the activity to the utility. Model 2 replaces the parameter α with α + 𝑡𝑠 ∙ τ𝑠. 𝑡𝑠 

stands for the start time of the activity, and τ𝑠 is an induced parameter to weight the effects of 

the start time of the activity to the profile of the utility function. The marginal utility function 

is updated by: 

 
max

1
( )

exp( ( ( ))) (1 exp( ( ( )))) i

i i i
i s s

i i s i i s

u
u t

t t t t


 

      

 


          
 (4) 

(3) Model 3: similar to Model 2, and corresponding to the analysis of the departure time 

from work, Model 3 considers the effects of the end time of the activity and replaces the 

parameter 𝛼 with α + 𝑡𝑒 ∙ 𝜏𝑒. 𝑡𝑒  represents the end time of the activity with 𝜏𝑒 as its impact 

weighting. The updated marginal utility function is: 

 
max

1
( )

exp( ( ( ))) (1 exp( ( ( )))) i

i i i
i e e

i i e i i e

u
u t

t t t t


 

      

 


          
 (5) 

 As the start time and end time of work activity for each individual worker were not 

available, average values were used in our paper. The start times and end times of the activities 

were approximated with the mean arrival and departure times of the home-work and work-

home travels respectively. 

 

3.2 Calibration Method 

 

Departure times are modeled to be discrete as the choices to maximize the daily utility. A set of 

departure times are defined. Because the home-work-home pattern is studied in this paper, only 

two departure times (departure times for home-work travel and work-home travel) are needed 

for every choice alternative. Based on our analysis of departure time, the departure time choices 

for home-work travel are 1-hour intervals between 06:00 and 10:00 and between 16:00 and 

21:00 for work-home travel. The alternative in the choice set is defined as a combination of two 

departure times (to and from work): one departure time alternative for home-work travel and 

another for work-home travel (e.g., 06:00-07:00 and 16:00-17:00 or 06:00-07:00 and 17:00-

18:00) were considered simultaneously and modeled as one alternative. The probabilities of 
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departure times follow the logit choice model as: 

 
,

exp( )

exp( )

k
k n

j

j C

U
P

U





  (6) 

where 𝑘  is the choice of the combination of departure times (departure from home and 

departure from work) from the choice set C, and n indicates the individual n. 𝑈𝑘 is the daily 

utility in Eq. (3) with the departure time choice 𝑘.  

The parameters are calibrated using the maximum likelihood estimation method: 

 ,log = log( )k n

n N

L P


   (7) 

As seen in Eqs. (2), (4), and (5), the utility functions for calibration are nonlinear, and a 

sequential quadratic programming method may be easily stuck in the local maxima. The genetic 

algorithm is better able to get out of the local maxima. Therefore, in this paper, the genetic 

algorithm is adopted to calibrate parameters in the marginal utility functions. The crossover 

method for applying the genetic algorithm is the scattered crossover method. The details of this 

method are described as follows. 

a). A binary random string is generated with the length of the population length. 

b). From the two Parents (i.e., Parents 1 and Parents 2) chosen for crossover, choose the 

value from Parent 1 if the binary string value is 1; otherwise choose the value from Parent 2 to 

generate the Children for the next generation.  

Further details about the key parameter settings are given in Table 3. 

 

Table 3. Parameter settings for genetic algorithm. 

Name of parameters Description Value for parameter 

setting 

Population size The number of sets of parameters in each iteration 200 

Generations The maximum number of iteration before 

algorithm stops 

100*No. of variables 

Elite-Count The number of best results that are guaranteed to 

survive in next iteration 

5% of the population 

size 

Crossover fraction The fraction of the population for crossover 

operation 

0.8 

Migration fraction The fraction of the population for migration 

operation 

0.2 

Convergence 

Torrance 

The threshold that the algorithm stops when the 

average change in the goodness-of-fit is less than 

that.  

10^-6 

 

 

4 CALIBRATION RESULTS AND DISCUSSION 

 

The calibration results of the three models in Section 3 are displayed in this section. 
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Table 4. Calibration results.  
Model 1 t-test* Model 2 t-test Model 3 t-test 

𝛽ℎ𝑜𝑚𝑒1 0.61 

(0.003)** 

130 0.59 

(0.002) 

205 0.55 

(0.002) 

225 

𝛽𝑤𝑜𝑟𝑘 0.52

（0.003） 

160 0.59 

(0.003) 

137 0.72 

(0.001) 

280 

𝛽ℎ𝑜𝑚𝑒2 0.85 

(0.007) 

21.4 0.63 

(0.003) 

123 0.80 

(0.004) 

50 

𝛼ℎ𝑜𝑚𝑒1 4.43 

(0.005) 

886 3.69 

(0.003) 

1230 4.53 

(0.003) 

1510 

𝛼𝑤𝑜𝑟𝑘 13.52 

(0.004) 

3380 9.60 

(0.003) 

3200 9.34 

(0.002) 

4670 

𝛼ℎ𝑜𝑚𝑒2 22.14 

(0.011) 

2012 23.48 

(0.016) 

1467 22.75 

(0.007) 

3250 

𝑢ℎ𝑜𝑚𝑒1
𝑚𝑎𝑥  30.73 

(0.02) 

1486 51.44 

(0.016) 

3152 24.61 

(0.008) 

2951 

𝑢𝑤𝑜𝑟𝑘
𝑚𝑎𝑥  43.91 

(0.02) 

2146 59.99 

(0.026) 

2268 60.00 

(0.014) 

4214 

𝑢ℎ𝑜𝑚𝑒2
𝑚𝑎𝑥  20.25 

(0.04) 

481 32.08 

(0.025) 

1243 18.17 

(0.024) 

715 

𝛾ℎ𝑜𝑚𝑒1 (fixed)   1 - 1 - 1 - 

𝛾𝑤𝑜𝑟𝑘 (fixed)   1 - 1 - 1 - 

𝛾ℎ𝑜𝑚𝑒2 (fixed)   1 - 1 - 1 - 

𝜏𝑠 - - 0.40 

(0.001) 

400 - - 

𝜏𝑒 - - - - 0.23 

(0.0004) 

575 

Initial Log-likelihood -34174.90 -34174.90 -34174.90 

Final Log-likelihood -25682.01 -25455.73 -25484.62 

𝜌2 0.249 0.255 0.254 

* t-tests for 𝛼 and 𝜏 are against 0; others are against 1. 

** Standard deviation in parentheses. 

 

The calibration results are displayed in the following figures.  
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Figure 6. Calibrated marginal utility functions of Model 1. 

 

Figure 7. Calibrated marginal utility functions of Model 2 and Model 3 

 

The based model shows a reasonable description for the activity participation of workers 

under a home-work-home travel pattern. The three activities dominate during different periods. 

The parameters of α for the three activities indicate the times at which the activities have 

maximum utility. The maximum marginal utility occurs at 04:26 for home activity in the 

morning, at 13:32 for work activity, and at 22:08 for home activity in the evening. Without loss 

of generality, the maximum utility among the three activities belongs to work activity, followed 

by home activity in the morning. The marginal utilities equalize at around 08:30 and 19:00. To 

maximize daily activities, people made their trips around these timings for the next activity. 

These results are also verified by the mean departure times. The lower value of marginal utility 

for home activity in the afternoon than that in the morning also verifies workers’ greater 

elasticity to decide when to go home, unlike the rush to work in the morning. 

 Model 2 incorporates the activity start time into the model, and parameter τs indicates the 

effects of the activity start time on the position of the corresponding activity utility function. In 
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our study, the times that matched the maximum utilities of home activity in the morning shift 

to about 40 minutes earlier. The value of τs indicates that the position of the marginal utility 

curve shifts 0.4 minute in every minute with a change in work start time. The final log-

likelihood shows better consistency with the sampling data. 

 

 

5 CONCLUSIONS 

 

In this study, we used the 2011 Hong Kong TCS data to model home-work-home activity-travel 

choice patterns. In particular, the relationships between work durations and travel times 

between home and work were analyzed. Based on the traditional household interview survey 

TCS data, some statistical analysis is carried out to help us to gain insights from the principal 

patterns and characteristics of these home-work-home activities. We formulated the proposed 

activity-based model to quantify the utility functions of home-work-home activities of Hong 

Kong workers according to the time of day. The proposed model is calibrated with the TCS 

data, and some statistical tests are shown to report the goodness-of-fit to examine the validity 

of the calibrated model.  

 Overall, 30,247 workers, accounting for 77% of the sampled population of workers in the 

TCS, were found to have the daily home-work-home pattern only during the survey period. 

Figure 1 shows a significant bell-shape pattern for the daily home-work-home activities. This 

serves as a justification to choose the bell-shape marginal utility function, Eq. (1), as the 

decision-making rule for modeling the utility functions of the home-work-home activities of 

Hong Kong workers according to time of day. We assumed workers were homogenous in 

activity-travel choice behaviors so that Eq. (1) could be adopted to fit the curves in Figure 1. 

However, it could easily be extended to cases with heterogeneous workers with different 

activity-travel choice behaviors, such as workers in car-owning and non-car-owning households.  

 Second, the TCS data revealed that the departure time obviously affected the travel time 

between home and work and consequently affected the activity duration of time spent at home 

and work. In turn, the resultant utility of these two activities was affected. Therefore, the 

selection of departure time is explicitly modeled in this paper. We expected that workers needed 

to select departure times from home to work and from work to home and that. And their choices 

would then determine how much utility they could obtain from these work and home activities. 

This simplified the model calibration process, as workers made departure decisions rather than 

making decisions continuously at every time interval throughout the day, saving substantial 

computation time for model calibration (around 0.5 hour versus 5.3 hours). 

 Third, we explicitly modeled the start and end times of work activity, τs and τe, where these 

two variables determined the exact duration of work activity. The use of τs and τe involved 

shifting the position parameter α to infer whether the activity start and end times affected 

people’s activity-travel choice behavior and thus the performance of the transportation network. 

When the model is applied for transport policy evaluation, adjustment of activities’ start or end 

times, such as a flexible work-hour program, could be applied to evaluate the performance of 

the transportation network (level of service, such as travel time/congestion level; see Fu and 

Lam, 2014). 
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 The parameters of the proposed model were estimated using the Hong Kong TCS data. The 

results indicate that the model parameters are reasonable where the activity patterns are revealed. 

They illustrate that the marginal utility function of home-work-home activities by time of day 

can be calibrated satisfactorily with traditional household interview survey data. With these 

fine-tuned parameters, we could perform a more detailed analysis using activity-based network 

equilibrium models (e.g., Lam and Yin, 2001; Ouyang et al., 2011; Fu and Lam, 2014) for long-

term transportation planning. 

 We also observed that travel times differed significantly across various departure time slots 

for home-work-home activities. A monotonic trend of work duration was found: those who 

departed later from home to work had comparatively shorter work durations, whereas those 

who departed later from work to home had longer work durations. Those who have lower 

household incomes may live farther from work (e.g., CBD) and therefore need to depart earlier 

for travel, and those types of work are inclined to include longer work hours (e.g., lower income 

and longer work duration for labor-intensive job). 

For a more comprehensive study on the activity-travel choice behavior using the activity-

based approach, some issues remain for further studies. First, because Table 2 reveals 

differences between the household groups with and without car availability, it would be 

interesting to determine whether the factor of car ownership is important for activity-travel 

choice behavior. In fact, to better understand activity-travel choice behavior, further 

investigation of the effects of socioeconomic variables should be carried out to draw more 

insightful conclusions. Explicit investigation of these effects would give us more detailed 

insights into workers’ behavior for home-work-home activities, such as examining the effects 

of different workers (by their household incomes) on their choices of departure times for work 

and for home (after work) and characteristics such as household size.  

Second, although the model proposed in this paper considers the start and end times of 

activities, a combined model should be explored to analyze the effects of activity start and end 

times in one model. The proposed model enables us to include these parameters with a high 

degree of tractability.  

Finally, the calibrated model in the paper should be applied for long-term travel demand 

forecasting and transport policy evaluation using the activity-based network equilibrium 

approach. With this, we can investigate the change of activity-travel choice behaviors: 

earlier/later arrival/departure times, longer/shorter activity duration or even 

stimulating/prohibiting the demand for activities and thus the performance of the transportation 

networks. 
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