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Abstract: This paper presents calibration methods for individual’s and household’s 

activity-travel scheduling models. Various model parameters are calibrated such as the 

parameters in marginal activity utility function and the coefficients of intra-household 

interactions. Numerical methods for solving the model calibration problem are optimized 

based on the mathematical property of the models. Hypothetical numerical experiments are 

conducted to generate time-series data for model calibration.  
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1. INTRODUCTION 

 

To model the dynamics in activity scheduling, the series of decisions made by the traveller 

can be formulated as a Markov decision process (MDP) (Eckstein and Wolpin, 1989; 

Aguirregabiria and Mira, 2010). Previous applications of MDP in activity scheduling 

behaviour can be found in Jonsson and Karlström (2005) and Xiong (2013). The dependency 

of travellers’ choices on their states can be investigated and the forward-looking behaviour in 

decision making can be considered by MDP model. 

In the literature, the MDP model is traditionally estimated using Nested Fixed-Point 

(NFXP) algorithm (Rust, 1987, 1988). The NFXP algorithm finds the estimates in a nested 

manner. An inner fixed-point algorithm computes the unknown endogenous variables for each 

value of model parameter. In activity-travel scheduling models, the endogenous variables are 

the travellers’ decisions over time. An outer hill climbing algorithm searches for the model 

parameter that maximizes the likelihood function. The NFXP algorithm is an intuitional and 

natural method of implementing the maximum likelihood method. The drawback is the 

computational burden of solving the dynamic programming problem thousands of times in the 

inner loop. Even though the original author implemented the algorithm in GAUSS 

programming language and the program is in the public domain, the code has not been 

updated for years. The researcher has to implement the algorithm from scratch if it is adopted 

to solve the calibration problem. 

The above method is computational demanding and is thought to be impractical in many 

contexts. Formulating the calibration problem as Mathematical Programming with 

Equilibrium Constraints (MPEC) greatly reduce the computational burden (Su and Judd, 

2012). Thus, MPEC approach is adopted in this study for solving the maximum likelihood 

problem.  

The MPEC approach aims to search the model parameters and endogenous variables to 

maximize the likelihood function subject to equilibrium constraints. The endogenous 

variables fulfil the equilibrium condition defined by the model parameters. The researcher can 
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simply write down the likelihood function and the equilibrium constraints in algebraic 

modelling languages. Then the model parameters are estimated with the state-of-the-art 

constrained nonlinear optimization solvers. The calibration of individual and household 

activity-travel scheduling models is implemented in A Mathematical Programming Language 

(AMPL) and solved with the software named KNITRO.  

The NFXP algorithm solves the dynamic programming problem with high accuracy for 

each guess of the model parameters. In contrast, most modern solvers of MPEC only need to 

solve the dynamic programming problem at the final iteration for calculating the estimates. 

The computational burden is greatly reduced by this strategy. Su and Judd (2012) showed that 

if MPEC and NFXP are used to solve the same calibration problem, the two methods yield the 

same calibration results. 

This study aims to use statistical methods for estimating the parameters of the 

individual’s activity-travel scheduling MDP model proposed by Xiong and Lam (2011) and an 

extended household’s MDP model. Time-series data are required for calibration of model 

parameters. The dataset should include travellers’ activity choices and geographic locations 

over time. Due to the cost of collecting time-series activity-travel data, hypothetical numerical 

experiments are conducted in this study to generate the dataset. 

The remainder of this paper is organized as follows. Section 2 illustrates the formulation 

of maximum likelihood method for the model calibration. Section 3 presents the data 

generated from numerical experiments and the calibration results of individual’s 

activity-travel scheduling model. Section 4 presents the calibration of the household’s 

activity-travel scheduling model. The final section summarizes the paper and concludes with a 

few suggestions for future research. 

 

 

2. MAXIMUM LIKELIHOOD METHOD 

 

MDP models can be categorized into two main groups based on how the time is modelled: the 

discrete-time MDP and the continuous-time MDP. In discrete-time MDP model, the planning 

horizon is divided into equal periods. It is reasonable to assume that the traveller takes 

activity-travel choices at discrete decision epochs and thus, discrete-time MDP model is 

adopted in this paper. 

The state of individual i  at time t , its , includes a set of variables that provide all the 

information for making decision at time t . From a researcher’s point of view, we can 

partition the state into two subvectors: ( , )it its x  , where itx  is the observable part of the 

state, and the unobservable state ε is the source of variations in the MDP model.  

Rust (1994) proposed a unified framework for structural estimation of MDP model. The 

contribution of individual i  to the log-likelihood function is expressed as follows:  

       
1

1 1

, 1 1log log | , log | , , log |
ii

it it i t it it

T T

i

t t

il P d s p s d x P s   


 

                   (1) 

where   represents the vector of model parameters; itd  denotes the observed decision of 

individual i  at time t ;  , 1 | , ,i t it itp s d x 
 is the state transition probability function 

conditional on ,it itd x  and  .  

Assuming that   is normally distributed with N×M-variate probability density 

function  G  , the probability of observing choice id  can be calculated by integrating over 
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all possible values of  :  

   |itP d G d                                                   (2) 

If the choice is independent over individuals, the likelihood of all individuals’ activity 

choices can be expressed as the product of each individual’s activity choice probability:  

   1

1

,, |
I

I i

i

dL d l 


                                                  (3) 

As the choice probability involves multi-dimensional integral, Equation (3) is evaluated 

using the GHK simulator. Consistent estimates can be obtained by the simulated likelihood 

method. 

 

 

3. CALIBRATING INDIVIDUAL’S ACTIVITY-TRAVEL SCHEDULING MODEL 

 

The calibration of the parameters in individual’s activity-travel scheduling MDP model (refer 

to (Xiong and Lam, 2011)) is presented in this section. With a given set of parameters, Monte 

Carlo experiments were conducted to generate time-series data. Based on the generated data, 

MPEC approach was employed to calibrate the model parameters. The difference of the actual 

parameters and the estimated parameters was used to evaluate the accuracy of the calibration 

method. 

 

3.1 Marginal Utility Functions 

 

It is believed that various activity participations have different preferred times. Activity 

participation usually starts with a warming up phase in which the marginal activity utility 

increases. After reaching a maximum point, the marginal utility decreases. Two marginal 

utility functions are introduced in this paper. The first one is a bell-shaped function proposed 

by Ettema and Timmermans (2003): 

 
    

max

1

exp 1 exp
a

a a a

a a a a

ag t
t t
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   



       

                           

(4) 

where  ag t
 
denotes the marginal utility of performing activity a  at time t ;  max

aU  is the 

maximum marginal utility; ,  ,a a   and a  are parameters to be calibrated.  

The second marginal utility function is based on a scaled probability density function of 

the scaled Cauchy distribution (Ettema et al., 2004):  
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
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(5) 

where  max

aU  is the maximum marginal utility; ab  is the time at which the marginal utility 

reaches the maximum value and ac  determines the period in which a satisfactory marginal 

utility can be obtained.  

Figure 1 depicts the temporal profiles of the two marginal utility functions. The peak of 

each curve shows the time at which the marginal utility reaches the maximum value. Both 

functions are unimodal (having a single local maximum) and ensure that the marginal activity 
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utility increases in the warm-up period and decreases in the saturated period. Although the 

shapes of the two curves are similar, the scaled Cauchy distribution has a sharp peak and a 

long tail. Essentially, either marginal utility function can be adopted for empirical analysis. 

However, the scaled Cauchy distribution has fewer parameters and a simpler functional form. 

Thus, the scaled Cauchy distribution has fewer problems on identifiability and it is employed 

in the following numerical experiments. 

 

00:00 04:00 08:00 12:00 16:00 20:00 00:00
0

1

2

3

4

5

6

Time of the day

M
ar

g
in

al
 u

ti
li

ty

 

 
Ettema and Timmermans (2003)

Scaled Cauchy Distribution

 
Figure 1. Temporal profiles of two types of marginal utility function 

 

 

3.2 Activity-Travel Data Generation 

 

Figure 2 shows a transport network with 3 nodes. Each node represents an activity location. 

The free flow travel time of each link is given in the figure. The travel time considering 

congestion effect is captured by a BPR function:  
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 (6) 

where 0

lt  is the free flow travel time and  lf t  is the flow on link l  at time t . 

 

 

 
Figure 2. A 3-node transport network 

 

Bell-shaped function (Ettema and Timmermans, 2003) 

Scaled Cauchy Distribution (Ettema et al., 2004) 
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The time is evenly divided into 5-minute intervals. The value of time is set to 60. The 

discount ratio of the future utility is set to 0.95. These two parameters are treated as fixed and 

known to maintain the identifiability.  

The marginal activity utility varies over time and is defined by marginal utility function 

Equation (5). Table 1 presents the actual values of the parameters in marginal utility function. 

The parameters are explained in Section 3.1. They are to be estimated. The estimated values 

will be compared with the actual values in the following.  

 

Table 1. Parameters in marginal utility function 

Activity types Parameters 

Home 
max

1U  3600 1b  0 1c  320 

Work 
max

2U  2500 2b  840 2c  180 

Shopping 
max

3U  2000 3b  1140 3c  210 

 

Figure 3 depicts the shape of the marginal utility function. There are two in-home 

activities: Home-AM and Home-PM. It is assumed that people receive maximum utility of 

Home activity at 00:00, so the parameters in the marginal utility functions of Home-AM and 

Home-PM are the same as shown in Table 1. Before noon, the utility of Home-AM gives the 

utility of Home. After noon, the utility of Home-PM gives the utility of Home. From Figure 3, 

it can be found that, from 00:00 to 08:00, Home-AM is the activity with the maximum 

marginal utility. From 08:00 to 17:00, Work dominates the other activities in terms of 

marginal utility. From 17:00 to 21:00, Shopping is the dominate activity. From 21:00 to 

midnight, Home-PM is the dominate activity.  

In this paper, the day-to-day dynamic is not considered. A potential extension of the 

individual and household MDP models is to consider day-to-day dynamic in activity-travel 

scheduling. The effect of certain activities can persist for multiple days and thus the activities 

participated in one particular day can influence the later activity-travel schedules (Arentze and 

Timmermans, 2009). For example, the goods purchased during a shopping trip can be 

adequate for a few days’ usage. The probability of making another shopping trip on the next 

day will be very low. Another point to note is that activity-travel schedules on weekdays and 

weekends differ significantly. Compulsory activities, such as work and school are regular 

occurrences on weekdays, while some non-compulsory activities, such as physical exercise, 

are usually performed at the weekend. 

 

 



Journal of the Eastern Asia Society for Transportation Studies, Vol.11, 2015 

 

645 
 

 
Figure 3. Temporal profile of the marginal utility function 

 

Travellers are assumed to choose the daily activity program, activity duration and 

departure time to maximize the overall utility of the entire day. Their utility maximization 

behaviours are described by the MDP model (Xiong and Lam, 2011). Under these 

assumptions, time-series data for 288 time intervals (24 hours) and 10,000 travellers were 

generated in the numerical experiment. The choice probability is assumed to follow Equation 

(21) in Xiong and Lam (2011) and the parameter   is 0.2. 

The Monte Carlo method was conducted as follows: (1) fix the model parameters at 

actual values and solve the Bellman equation (refer to Equation (17) in Xiong and Lam (2011)) 

to obtain the optimal value of   ,V s s S ; (2) use the actual values of the model parameters 

and  V s  to compute the conditional choice probability (refer to Equation (19) in Xiong and 

Lam (2011)); (3) generate choices and state transitions for 10,000 travellers in 288 periods 

based on the choice probability and the travel time. 

 

3.3 Calibration Results 

 

Before reporting the calibration results, the profile of log-likelihood function and the 

maximum values are illustrated and discussed. Given the activity-travel data, the 

log-likelihood function depends on a vector of parameters. It is difficult to visualize a 

multidimensional function. This section thus seeks to illustrate the impact of one or two 

parameters of interest on the log-likelihood function. 

The parameters of marginal utility function can be represented as a 

vector,  max , ,U b c  , where  max max max max

1 2 3, ,U U U U ,  1 2 3, ,b b b b ,  1 2 3, ,c c c c . 

Denote   as the overall maximum likelihood estimate of   and let  2b  be the vector of 

parameters with all the parameters except 2b  fixed at the maximum likelihood estimate of  . 

Then the log-likelihood function is defined by: 

    2 2i il b l b                                                       (7) 

Figure 4 illustrates the log-likelihood  2il b  as a function of 2b  with other parameters 

fixed at the estimated values. The log-likelihood function  2il b  is non-convex and has a 
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unique maximum value at 
2 841.4b  , which is very close the true value 840. If 

2b  is shifted 

a little from the optimal value, the value of the log-likelihood changes dramatically. Vector b  

determines the time at which the marginal utility function reaches the maximum value and 

thus, has a strong influence on the activity time choice.  

 

 
Figure 4. The log-likelihood function li (b2) 

 

Let  2 3,b b  be the vector of parameters with all the parameters except 2b  and 3b   

fixed at the maximum likelihood estimate of  . The log-likelihood function is defined as 

    23 32 ,,i il b b l b b                                               (8) 

Figure 5 depicts the log likelihood as a function of 
2b  and 

3b . The overall appearance 

of the log-likelihood function reveals a rather complicated relationship between the log 

likelihood and the model parameters 2b  and 3b . Multiple local optimal solutions can be 

found in the figure.  

 

 
Figure 5. Contour and 3-D plot of the log-likelihood function li (b2, b3) 

 

Table 2 presents the maximum likelihood estimates of the model parameters. In general, 

the relative errors of the estimates are within 10%. The estimate of maximum marginal utility 
maxU  is smaller than the actual value. The estimates of the location parameter b  are very 
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close to the actual values. The location parameter b  has a greater impact on the dominate 

period of each activity than maxU  and thus to a great extent determines the activity choice 

probability and the log-likelihood. This is the reason why the estimates of b  are more 

accurate than that of maxU . Similarly, the same argument applies to the estimates of c , 

which determines the width of the marginal utility curve.  

 

Table 2. The estimates of parameters in marginal utility function 

Parameters 
max

U  b  c  

Activity types Home Work Shopping Home Work Shopping Home Work Shopping 

Actual values 3600 2500 2000 0 840 1140 320 180 210 

Estimated values 3517 2481 2051 0 841 1140 305 168 219 

 

 

4. CALIBRATING HOUSEHOLD’S ACTIVITY-TRAVEL SCHEDULING MODEL 

 

This section presents the calibration of the household’s activity-travel scheduling MDP model 

(refer to (Xiong, 2013)). Two types of parameters are calibrated, i.e. the intra-household 

interaction coefficients and the parameters in marginal utility function. Household members 

have distinct preference over the timing of activities and thus, the parameters in marginal 

utility function for each member are estimated. 

 

4.1 Household Activity-Travel Data Generation 

 

Figure 6 shows a 4-node road network on which activity-travel decisions are made. There are 

10,000 behaviourally homogeneous households and each household is composed of two 

adults: Individual 1 and Individual 2. Node H represents the residential location. Node W1 

and W2 are the workplaces of the household members respectively. For simplicity, travel time 

is assumed deterministic and the congestion effect is captured by a BPR function,  

  
 0
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500
0.15

0
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l

ll l

t
f t

f
t

  
    
   




                                         (9) 

where  lf t  is the flow on link l  at time t . The equivalent disutility of travelling for one 

hour is 60  . The discount ratio of the future utility is set to 0.95  . The entire day (24 

hours) is divided into 288 periods with 5-minute per period. 
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Figure 6. A 4-node road network 

 

The scaled Cauchy distribution is adopted as the marginal utility function in this 

example. Three types of activity are considered in the example: Home, Work, and Shopping. 

The parameters of utility function for each activity are presented in Table 3. The two 

household members have distinct preferences for work and shopping activity. Individual 1 is 

more willing to go shopping than Individual 2, but receives less utility from work 

(represented by the bold values in Table 3). Figure 7 depicts the temporal profiles of the 

individual’s marginal activity utility functions.  

 

Table 3. Parameters of marginal utility functions for the household 

Activity 

Parameters of utility function 

Individual 1 Individual 2 

maxU  b   c  maxU  b  c  

Home 3600 0 320 3600 0 320 

Work 2500 840 180 3000 840 180 

Shopping 2000 1140 210 1500 1140 210 

 

  
Figure 7. Temporal profile of the marginal utility function 
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The marginal utility for a household is defined as  

1 1, 2 2, 1, 2,a a a a a ar r r r r                                                (10) 

where ,i ar  is the individual utility that household member i  can obtain when pursuing the 

activity a  independently. The welfare of the individuals in a household is treated equally 

important. The weight parameter 
i , representing the relative influence of household 

member i , is thus fixed at the same value, 1 2 1.0   . The interaction coefficient Work 

2  is set to zero. The interaction coefficients of Home and Shopping are set as 1 0.3   and 

3 0.2  .  

 

4.2 Calibration Results 

 

The main focus of this section is to show how to estimate the intra-household interaction 

coefficient  . The log-likelihood function is a multidimensional function of a vector of 

parameters and hard to be visualized. Following the approach presented in Section 3.3, the 

impact of one or two parameters of interest, i.e., the interaction coefficients, on log-likelihood 

function is visualized and discussed.  

The parameters of the household’s MDP model can be represented as a vector, 

 max max

1 1 1 2 2 2, , , , , ,U b c U b c  , where max

iU , ib  and ic  are the vectors of parameters 

defined for household member i ’s marginal utility function, and   is the vector of 

intra-household interaction coefficients defined for Home, Work, and Shopping, 

 1 2 3, ,    .  

Denote by   the overall maximum likelihood estimate of   and let  3   be the 

vector of parameters with all the parameters except 3  fixed at the maximum likelihood 

estimate of  . Then the log-likelihood function is defined by: 

    3 3i il l                                                        (11) 

Figure 8 illustrates the log likelihood as a function of 3  with other parameters fixed at 

the estimated values. The only local maximum of log-likelihood function  3il   is also a 

global maximum.  3il   has the global maximum at 3 0.188  . The figure shows that 

log-likelihood function  3il   is concave in interval  0,1 . However, no formal proof is 

obtained to confirm this observation. 
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Figure 8. The log-likelihood function li (ρ3) 

 

Similarly, given the activity-travel data, the log-likelihood can be defined as a function 

of 
1  and 

3 , i.e.,  1 3,il   . Figure 9 shows that the log-likelihood function  1 3,il    is 

concave in the unit square  
2

0,1  and has a global maximum at point 

   1 3, 0.282,0.188   . 

 

 
Figure 9. Contour and 3-D plot of the log-likelihood function li (ρ1, ρ3) 

 

The true value of intra-household interaction coefficient   is  0.3,0.0,0.2  and the 

estimate of   is  0.282,0.011,0.188 . The accurate calibration of   can be contributed to 

the concaveness of the log-likelihood function over the unit cube  
3

0,1 . Table 4 presents the 

maximum likelihood estimates of the parameters in marginal utility functions.  

The household utility function (i.e. Equation (10)) is symmetric with respect to 

individual’s utilities 1,3r  and 2,3r . Therefore, the respective estimates of 
max

1,3U  and 

max

2,3U have little effect on the household utility as long as their product is comparable to that of 

the true values. As shown in Table 4, the estimates of 
max

1,3U  and 
max

2,3U  are 1791 and 1757, 
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and their product is 3,146,787. The true values of max

1,3U  and max

2,3U  are 2000 and 1500 and 

their product is 3,000,000. This explains the imprecise calibration of these two parameters. 

The relative errors of the other estimates are within 10%. 

 

Table 4. The estimates of parameters of the marginal utility functions for the household 

Household 

members 

Parameters 
max

U  b  c  

Activity types Home Work Shopping Home Work Shopping Home Work Shopping 

Individual 

1 

Actual values 3600 2500 2000 0 840 1140 320 180 210 

Estimated values 3654 2389 1791 1 828 1149 338 178 196 

Individual 

2 

Actual values 3600 3000 1500 0 840 1140 320 180 210 

Estimated values 3667 3114 1757 0 849 1128 305 182 226 

 

 

5. CONCLUSIONS 

 

In this study, maximum likelihood method is employed to calibrate the marginal activity 

utility function and intra-household interaction coefficient in activity-travel scheduling 

models. The calibration method requires observations of household members’ activity-travel 

decisions over time episodes. The activity-travel data required for calibration were generated 

from numerical experiments. The calibration method was tested and evaluated with these 

hypothetical data. 

Numerical methods were formulated and implemented to calibrate the activity-travel 

scheduling models. The calibration results were found satisfactory and the relative errors of 

most estimates were within 10%. Numerical experiments showed that the log-likelihood 

function was concave over the domain of intra-household interaction coefficient. This 

property enables efficient and accurate calibration of the interaction coefficient. In further 

research, travellers’ activity-travel choices and geographic locations in a period should be 

collected for calibrating the activity-travel scheduling models. 
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