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Abstract

Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation

demands from mobile applications. By offloading the computationally intensive workloads to the MEC

server, the quality of computation experience, e.g., the execution latency, could be greatly improved.

Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when

the battery energy runs out. To provide satisfactory computation performance as well as achieving green

computing, it is of significant importance to seek renewable energy sources to power mobile devices via

energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH

devices and develop an effective computation offloading strategy. Theexecution cost, which addresses

both the execution latency and task failure, is adopted as the performance metric. A low-complexity

online algorithm, namely, theLyapunov optimization-based dynamic computation offloading(LODCO)

algorithm is proposed, which jointly decides the offloading decision, the CPU-cycle frequencies for

mobile execution, and the transmit power for computation offloading. A unique advantage of this

algorithm is that the decisions depend only on the instantaneous side information without requiring

distribution information of the computation task request, the wireless channel, and EH processes. The

implementation of the algorithm only requires to solve a deterministic problem in each time slot, for

which the optimal solution can be obtained either in closed form or by bisection search. Moreover,

the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation

results shall be presented to verify the theoretical analysis as well as validate the effectiveness of the

proposed algorithm.
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I. INTRODUCTION

The growing popularity of mobile devices, such as smart phones, tablet computers and wear-

able devices, is accelerating the advent of the Internet of Things (IoT) and triggering a revolution

of mobile applications [1]. With the support of on-device cameras and embedded sensors, new

applications with advanced features, e.g., navigation, face recognition and interactive online

gaming, have been created. Nevertheless, the tension between resource-limited devices and

computation-intensive applications becomes the bottleneck for providing satisfactory quality of

experience (QoE) and hence may defer the advent of a mature mobile application market [2].

Mobile-edge computing (MEC), which provides cloud computing capabilities within the radio

access networks (RAN), offers a new paradigm to liberate themobile devices from heavy

computation workloads [3]. In conventional cloud computing systems, remote public clouds,

e.g., Amazon Web Services, Google Cloud Platform and Microsoft Azure, are leveraged, and

thus long latency may be incurred due to data exchange in widearea networks (WANs). In

contrast, MEC has the potential to significantly reduce latency, avoid congestion and prolong the

battery lifetime of mobile devices by offloading the computation tasks from the mobile devices

to a physically proximal MEC server [4], [5]. Thus, lots of recent efforts have been attracted

from both industry [3] and academia [6].

Unfortunately, although computation offloading is effective in exploiting the powerful com-

putation resources at cloud servers, for conventional battery-powered devices, the computation

performance may be compromised due to insufficient battery energy for task offloading, i.e.,

mobile applications will be terminated and mobile devices will be out of service when the

battery energy is exhausted. This can possibly be overcome by using larger batteries or recharging

the batteries regularly. However, using larger batteries at the mobile devices implies increased

hardware cost, which is not desirable. On the other hand, recharging batteries frequently is

reported as the most unfavorable characteristic of mobile phones1, and it may even be impossible

in certain application scenarios, e.g., in the wireless sensor networks (WSNs) and the IoT for

surveillance where the nodes are typically hard-to-reach.Meanwhile, the rapidly increasing

energy consumption of the information and communication technology (ICT) sector also brings a

strong need for green computing [7]. Energy harvesting (EH)is a promising technology to resolve

these issues, which can capture ambient recyclable energy,including solar radiation, wind, as

1CNN.com, “Battery life concerns mobile users,” available on http://edition.cnn.com/2005/TECH/ptech/09/22/phone.study/.

http://edition.cnn.com/2005/TECH/ptech/09/22/phone.study/
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well as human motion energy [8], and thus it facilitates self-sustainability and perpetual operation

[9].

By integrating EH techniques into MEC, satisfactory and sustained computation performance

can be achieved. While MEC with EH devices open new possibilities for cloud computing, it

also brings new design challenges. In particular, the computation offloading strategies dedicated

for MEC systems with battery-powered devices cannot take full benefits of the renewable energy

sources. In this paper, we will develop new design methodologies for MEC systems with EH

devices.

A. Related Works

Computation offloading for mobile cloud computing systems has attracted significant attention

in recent years. To increase the batteries’ lifetime and improve the computation performance, var-

ious code offloading frameworks, e.g., MAUI [10] and ThinkAir [11], were proposed. However,

the efficiency of computation offloading highly depends on the wireless channel condition, as the

implementation of computation offloading requires data transmission. This calls for computation

offloading policies that incorporate the characteristics of wireless channels [12]–[14]. In [12], a

stochastic control algorithm adapted to the time-varying wireless channel was proposed, which

determines the offloaded software components. For the femto-cloud computing systems, where

the cloud server is formed by a set of femto access points, thetransmit power, precoder and

computation load distribution were jointly optimized in [13]. In addition, a game-theoretic decen-

tralized computation offloading algorithm was proposed formulti-user mobile cloud computing

systems [14]. Nevertheless, these works assume non-adjustable processing capabilities of the

central processing units (CPUs) at the mobile devices, which is not energy-efficient since the CPU

energy consumption increases super-linearly with the CPU-cycle frequency [15]. With dynamic

voltage and frequency scaling (DVFS) techniques, the localexecution energy consumption

for applications with strict deadline constraints is minimized by controlling the CPU-cycle

frequencies [16]. Besides, a joint allocation of communication and computation resources for

multi-cell MIMO cloud computing systems was proposed in [17]. Most recently, the energy-

delay tradeoff of mobile cloud systems with heterogeneous types of computation tasks were

investigated by a Lyapunov optimization algorithm, which decides the offloading policy, task

allocation, CPU clock speeds and selected network interfaces [18].
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Energy harvesting was introduced to communication systemsfor its potential to realize self-

sustainable and green communications [19], [20]. With non-causal side information (SI)2, in-

cluding the channel side information (CSI) and energy side information (ESI), the maximum

throughput of point-to-point EH fading channels can be achieved by the directional water-

filling algorithm [21]. The study was later extended to EH networks with causal SI [22].

Cellular networks with renewable energy supplies have alsobeen widely investigated. Resources

allocation policies that maximize the energy efficiency in OFDMA systems with hybrid energy

supplies (HES), i.e., both grid and harvested energy are accessible to base stations, were proposed

in [23]. To save the grid energy consumption, a sleep controlscheme for cellular networks with

HES was developed in [24], and a low-complexity online base station assignment and power

control algorithm based on Lyapunov optimization was proposed in [25].

The design principles for MEC systems with EH devices are different from those for EH

communication systems or MEC systems with battery-powereddevices. On one hand, compared

to EH communication systems, computation offloading policies require a joint design of the

offloading decision, i.e., whether to offload a task, the CPU-cycle frequencies for mobile execu-

tion3, and the transmission policy for task offloading, which makes it much more challenging.

On the other hand, compared to MEC systems with battery-powered devices, the design objec-

tive is shifted from minimizing the battery energy consumption to optimizing the computation

performance as the harvested energy comes for free. In addition, taking care of the ESI is a new

design consideration, and the time-correlated battery energy dynamics poses another challenge.

B. Contributions

In this paper, we will investigate MEC systems with EH devices and develop an effective

dynamic computation offloading algorithm. Our major contributions are summarized as follows:

• We consider an EH device served by an MEC server, where the computation tasks can

be executed locally at the device or be offloaded to the MEC server for cloud execution4.

2‘Causal SI’ refers to the case that, at any time instant, onlythe past and current SI is known, while non-causal SI means

that the future SI is also available.

3We use “local execution” and “mobile execution” interchangeably in this paper.

4It is worthwhile to point out that powering mobile devices inMEC systems with wireless energy harvesting was proposed in

[26], where the harvested energy is radiated from a hybrid access point and fully controllable. This is different from the system

considered in this paper where the EH process is random and uncontrollable.
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An execution cost that incorporates the execution delay andtask failure is adopted as the

performance metric, while DVFS and power control are adopted to optimize the mobile

execution process and data transmission for computation offloading, respectively.

• The execution cost minimization(ECM) problem, which is an intractable high-dimensional

Markov decision problem, is formulated assuming causal SI,and a low-complexity online

Lyapunovoptimization-baseddynamiccomputationoffloading (LODCO) algorithm is pro-

posed. In each time slot, the system operation, including the offloading decision, the CPU-

cycle frequencies for mobile execution, and the transmit power for computation offloading,

only depends on the optimal solution of a deterministic optimization problem, which can

be obtained either in closed form or by bisection search.

• We identify a non-decreasing property of the scheduled CPU-cycle frequencies (the transmit

power) with respect to the battery energy level, which showsthat a larger amount of available

energy leads to a shorter execution delay for mobile execution (MEC server execution).

Performance analysis for the LODCO algorithm is also conducted. It is shown that the

proposed algorithm can achieve asymptotically optimal performance of the ECM problem

by tuning a two-tuple control parameters. Moreover, it doesnot require statistical information

of the involved stochastic processes, including the computation task request, the wireless

channel, and EH processes, which makes it applicable even inunpredictable environments.

• Simulation results are provided to verify the theoretical analysis, especially the asymptotic

optimality of the LODCO algorithm. Moreover, the effectiveness of the proposed policy is

demonstrated by comparisons with three benchmark polices with greedy harvested energy

allocation. It is shown that the LODCO algorithm not only achieves significant performance

improvement in terms of execution cost, but also effectively reduces task failure.

The organization of this paper is as follows. In Section II, we introduce the system model.

The ECM problem is formulated in Section III. The LODCO algorithm for the ECM problem

is proposed in Section IV and its performance analysis is conducted in Section V. We show the

simulation results in Section VI and conclude this paper in Section VII.

II. SYSTEM MODEL

In this section, we will introduce the system model studied in this paper, i.e., a mobile-edge

computing (MEC) system with an EH device. Both the computation model and energy harvesting

model will be discussed.
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A. Mobile-edge Computing Systems with EH Devices

Fig. 1. A mobile-edge computing system with an EH mobile device.

We consider an MEC system consisting of a mobile device and anMEC server as shown in

Fig. 1. In particular, the mobile device is equipped with an EH component and powered purely

by the harvested renewable energy. The MEC server, which could be a small data center managed

by the telecom operator, is located at a distance ofd meters away and can be accessed by the

mobile device through the wireless channel. The mobile device is associated with a system-level

clone at the MEC server, namely, the cloud clone, which runs avirtual machine and can execute

the computation tasks on behalf of the mobile device [16]. Byoffloading the computation tasks

for MEC, the computation experience can be improved significantly [4]–[6].

We assume that time is slotted, and denote the time slot length and the time slot index set

by τ andT , {0, 1, · · · }, respectively. The wireless channel is assumed to be independent and

identically distributed (i.i.d.) block fading, i.e., the channel remains static within each time slot,

but varies among different time slots. Denote the channel power gain at thetth time slot asht,

andht ∼ FH (x) , t ∈ T , whereFH (x) is the cumulative distribution function (CDF) ofht. For

ease of reference, we list the key notations of our system model in Table I.

B. Computation Model

We useA (L, τd) to represent a computation task, whereL (in bits) is the input size of the

task, andτd is the execution deadline, i.e., if it is decided that taskA (L, τd) is to be executed, it

should be completed within timeτd. The computation tasks requested by the applications running

at the mobile device are modeled as an i.i.d. Bernoulli process. Specifically, at the beginning of

each time slot, a computation taskA (L, τd) is requested with probabilityρ, and with probability
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TABLE I

SUMMARY OF KEY NOTATIONS

Notation Description

d Distance between the mobile device and the MEC server

T Index set of the time slots

ht Channel power gain from the mobile device to the MEC server intime slot t

A (L, τd) Computation task withL bits input and deadlineτd

{Itj} Computation mode indicators at time slott

ζt Task arrival indicator at time slott

X (W ) Number of CPU cycles required to process one bit task input (A (L, τd))

{f t
w} Scheduled CPU-cycle frequencies for local execution at time slot t

pt Transmit power for computation offloading at time slott

fmax

CPU (pmax
tx ) Maximum allowable CPU-cycle frequency (transmit power)

Dt
mobile (Dt

server) Execution delay of local execution (MEC server execution)at time slott

Et
mobile (Et

server) Energy consumption of local execution (MEC server execution) at time slott

et (Et
H) Harvested (harvestable) energy at time slott

Emax

H Maximum value ofEt
H

Bt Battery energy level at the beginning of time slott

φ The weight of the task dropping cost

1− ρ, there is no request. Denoteζ t = 1 if a computation task is requested at thetth time slot

andζ t = 0 if otherwise, i.e.,P (ζ t = 1) = 1−P (ζ t = 0) = ρ, t ∈ T . We focus on delay-sensitive

applications with execution deadline less than the time slot length, i.e.,τd ≤ τ [12]–[14], [17],

[27], and assume no buffer is available for queueing the computation requests.

Each computation task can either be executed locally at the mobile device, or be offloaded to

and executed by the MEC server. It may also happen that neither of these two computation modes

is feasible, e.g., when energy is insufficient at the mobile device, and hence the computation

task will be dropped. DenoteI tj ∈ {0, 1} with j = {m, s, d} as the computation mode indicators,

where I tm = 1 and I ts = 1 indicate that the computation task requested in thetth time slot

is executed at the mobile device and offloaded to the MEC server, respectively, whileI td = 1

means the computation task is dropped. Thus, the computation mode indicators should satisfy

the following operation constraint:

I tm + I ts + I td = 1, t ∈ T . (1)

Local Executing Model: The number of CPU cycles required to process one bit input is

denoted asX, which varies from different applications and can be obtained through off-line
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measurement [28]. In other words,W = LX CPU cycles are needed in order to successfully

execute taskA (L, τd). The frequencies scheduled for theW CPU cycles in thetth time slot are

denoted asf t
w, w = 1, · · · ,W , which can be implemented by adjusting the chip voltage with

DVFS techniques [29]. As a result, the delay for executing the computation task requested in

the tth time slot locally at the mobile device can be expressed as

Dt
mobile =

W
∑

w=1

(

f t
w

)−1
. (2)

Accordingly, the energy consumption for local execution bythe mobile device is given by

Et
mobile = κ

W
∑

w=1

(

f t
w

)2
, (3)

whereκ is the effective switched capacitance that depends on the chip architecture [15]. More-

over, we assume the CPU-cycle frequencies are constrained by fmax
CPU, i.e., f t

w ≤ fmax
CPU, ∀w.

Mobile-edge Executing Model:In order to offload the computation task for MEC, the input

bits of A (L, τd) should be transmitted to the MEC server. We assume sufficientcomputation

resource, e.g., a high-speed multi-core CPU, is available at the MEC server, and thus ignore its

execution delay [16], [18], [26]. It is further assumed thatthe output of the computation is of

small size so the transmission delay for feedback is negligible. Denote the transmit power as

pt, which should be less than the maximum transmit powerpmax
tx . According to the Shannon-

Hartley formula, the achievable rate in thetth time slot is given byr (ht, pt) = ω log2

(

1 + htpt

σ

)

,

whereω is the system bandwidth andσ is the noise power at the receiver. Consequently, if the

computation task is executed by the MEC server, the execution delay equals the transmission

delay for the input bits, i.e.,

Dt
server =

L

r (ht, pt)
, (4)

and5 the energy consumed by the mobile device is given by

Et
server = pt ·Dt

server = pt ·
L

r (ht, pt)
. (5)

5When the execution delay in the MEC server is non-negligible, the proposed algorithm can still be applied by modifying the

expression ofDt
server in (4) asDt

server = L/r
(

ht, pt
)

+ τserver, whereτserver denotes the execution delay in the MEC server.
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C. Energy Harvesting Model

The EH process is modeled as successive energy packet arrivals, i.e.,Et
H units of energy arrive

at the mobile device at the beginning of thetth time slot. We assumeEt
H ’s are i.i.d. among

different time slots with the maximum value ofEmax
H . Although the i.i.d. model is simple, it

captures the stochastic and intermittent nature of the renewable energy processes [22], [25], [30].

In each time slot, part of the arrived energy, denoted aset, satisfying

0 ≤ et ≤ Et
H , t ∈ T , (6)

will be harvested and stored in a battery, and it will be available for either local execution

or computation offloading starting from the next time slot. We start by assuming that the

battery capacity is sufficiently large. Later we will show that by picking the values ofet’s,

the battery energy level is deterministically upper-bounded under the proposed computation

offloading policy, and thus we only need a finite-capacity battery in actual implementation. More

importantly, includinget’s as optimization variables facilitates the derivation and performance

analysis of the proposed algorithm. Similar techniques were adopted in previous studies, such as

[22], [25] and [30]. Denote the battery energy level at the beginning of time slott asBt. Without

loss of generality, we assumeB0 = 0 andBt < +∞, t ∈ T . In this paper, energy consumed for

purposes other than local computation and transmission is ignored for simplicity, while more

general energy models can be handled by the proposed algorithm with minor modifications.6

Denote the energy consumed by the mobile device in time slott asE (I t, f t, pt), which depends

on the selected computation mode, scheduled CPU-cycle frequencies and transmit power, and

can be expressed as

E
(

I t, f t, pt
)

= I tmE
t
mobile + I tsE

t
server, (7)

subject to the following energy causality constraint:

E
(

I t, f t, pt
)

≤ Bt < +∞, t ∈ T . (8)

Thus, the battery energy level evolves according to the following equation:

Bt+1 = Bt − E
(

I t, f t, pt
)

+ et, t ∈ T . (9)

6We will demonstrate how to adapt the proposed algorithm to more general energy models of mobile devices, e.g., by taking

the power consumption of screens and operating systems intoaccount, in Section IV-A.
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With EH mobile devices, the computation offloading policy design for MEC systems becomes

much more complicated compared to that of conventional mobile cloud computing systems

with battery-powered devices. Specifically, both the ESI and CSI need to be handled, and the

temporally correlated battery energy level makes the system decision coupled in different time

slots. Consequently, an optimal computation offloading strategy should strike a good balance

between the computation performance of the current and future computation tasks.

III. PROBLEM FORMULATION

In this section, we will first introduce the performance metric, namely, the execution cost. The

execution cost minimization (ECM) problem will then be formulated and its unique technical

challenges will be identified.

A. Execution Cost Minimization Problem

Execution delay is one of the key measures for users’ QoE [12]–[14], [16]–[18], which will

be adopted to optimize the computation offloading policy forthe considered MEC system.

Nevertheless, due to the intermittent and sporadic nature of the harvested energy, some of the

requested computation tasks may not be able to be executed and have to be dropped, e.g., due

to lacking of energy for local computation, while the wireless channel from the mobile device

to the MEC server is in deep fading, i.e., the input of the tasks cannot be delivered. To take this

aspect into consideration, we penalize each dropped task bya unit of cost. Thus, we define the

execution cost as the weighted sum of the execution delay andthe task dropping cost, which

can be expressed by the following formula:

costt = D
(

I t, f t, pt
)

+ φ · 1
(

ζ t = 1, I td = 1
)

, (10)

whereφ (in second) is the weight of the task dropping cost,1 (·) is the indicator function, and

D (I t, f t, pt) is given by

D
(

I t, f t, pt
)

= 1
(

ζ t = 1
)

·
(

I tmD
t
mobile + I tsD

t
server

)

. (11)

Without loss of generality, we assume that executing a task successfully is preferred to dropping

a task, i.e.,τd ≤ φ.

If it is decided that a task is to be executed, i.e.,I tm = 1 or I ts = 1, it should be completed

before the deadlineτd. In other words, the following deadline constraint should be met:

D
(

I t, f t, pt
)

≤ τd, t ∈ T . (12)
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Consequently, the ECM problem can be formulated as:

P1 : min
It,f t,pt,et

lim
T→∞

1

T
E

[

T−1
∑

t=0

costt

]

s.t. (1), (6), (8), (12)

I tm + I ts ≤ ζ t, t ∈ T (13)

E
(

I t, f t, pt
)

≤ Emax, t ∈ T (14)

0 ≤ pt ≤ pmax
tx · 1

(

I ts = 1
)

, t ∈ T (15)

0 ≤ f t
w ≤ fCPU

max · 1
(

I tm = 1
)

, w = 1, · · · ,W, t ∈ T , (16)

I tm, I
t
s , I

t
d ∈ {0, 1}, t ∈ T , (17)

where (13) indicates that if there is no computation task requested, neither mobile execution nor

MEC server execution is feasible. (14) is the battery discharging constraint, i.e., the amount of

battery output energy cannot exceedEmax in each time slot, which is essential for preventing

the battery from over discharging [30], [31]. The maximum allowable transmit power and the

maximum CPU-cycle frequency constraints are imposed by (15) and (16), respectively, while

the zero-one indicator constraint for the computation modeindicators is represented by (17).

B. Problem Analysis

In the considered MEC system, the system state is composed ofthe task request, the har-

vestable energy, the battery energy level, as well as the channel state, and the action is the

energy harvesting and the computation offloading decision,including the scheduled CPU-cycle

frequencies and the allocated transmit power. It can be checked that the allowable action set

depends only on the current system state, and is irrelevant with the state and action history.

Besides, the objective is the long-term average execution cost. Thus,P1 is a Markov decision

process (MDP) problem. In principle,P1 can be solved optimally by standard MDP algorithms,

e.g., therelative value iteration algorithmand thelinear programming reformulation approach

[32]. Nevertheless, for both algorithms, we need to use finite states to characterize the system,

and discretize the feasible action set. For example, if we use K = 20 states to quantize the

wireless channel,M = 20 states to characterize the battery energy level,E = 5 states to

describe the harvestable energy, and admitsL = 10 transmit power levels andF = 10 CPU-

cycle frequencies, there are2KME = 4000 possible system states in total. For the relative
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value iteration algorithm, this will take a long time to converge as there will be as many as

L + 1 + FW feasible actions in some states. For the linear programming(LP) reformulation

approach, we need to solve an LP problem with2KME ×
(

L+ 1 + FW
)

variables, which will

be practically infeasible even for a small value ofW , e.g.,1000. In addition, it will be difficult

to obtain solution insights with the MDP algorithms as they are based on numerical iteration.

Moreover, quantizing the state and action may lead to severeperformance degradation, and the

memory requirement for storing the optimal policy will yet be another big challenge.

In the next section, we will propose aLyapunovoptimization-baseddynamic computation

offloading (LODCO) algorithm to solveP1, which enjoys the following favorable properties:

• There is no need to quantize the system state and feasible action set, and the decision of

the LODCO algorithm within each time slot is of low complexity. In addition, there is no

memory requirement for storing the optimal policy.

• The LODCO algorithm has no prior information requirement onthe channel statistics, the

distribution of the renewable energy process or the computation task request process.

• The performance of the LODCO algorithm is controlled by a two-tuple control parameters.

Theoretically, by adjusting these parameters, the proposed algorithm can behave arbitrarily

close to the optimal performance ofP1.

• An upper bound of the required battery capacity is obtained,which shall provide guidelines

for practical installation of the EH components and storageunits.

IV. DYNAMIC COMPUTATION OFFLOADING: THE LODCO ALGORITHM

In this section, we will develop the LODCO algorithm to solveP1. We will first show an

important property of the optimal CPU-cycle frequencies, which helps to simplifyP1. In order to

take advantages of Lyapunov optimization, we will introduce a modified ECM problem to assist

the algorithm design. The LODCO algorithm will be then proposed for the modified problem,

which also provides a feasible solution toP1. In Section V, we will show that this solution is

asymptotically optimal forP1.

A. The LODCO Algorithm

We first show that the optimal CPU-cycle frequencies of theW CPU cycles scheduled for a

single computation task should be the same, as stated in the following lemma.
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Lemma1: If a task requested at thetth time slot is being executed locally, the optimal

frequencies of theW CPU cycles should be the same, i.e.,f t
w = f t, w = 1, · · · ,W .

Proof: The proof can be obtained by contradiction, which is omittedfor brevity.

The property of the optimal CPU-cycle frequencies in Lemma 1indicates that we can optimize

a scalarf t instead of aW -dimensional vectorf t for each computation task, which helps to reduce

the number of optimization variables. However, due to the energy causality constraint (8), the

system’s decisions are coupled among different time slots,which makes the design challenging.

This is a common difficulty for the design of EH systems. We findthat by introducing a non-zero

lower bound,Emin, on the battery output energy at each time slot, such coupling effect can be

eliminated and the system operations can be optimized by ignoring (8) at each time slot. Thus,

we first introduce a modified version ofP1 as

P2 : min
It,f t,pt,et

lim
T→∞

1

T
E

[

T−1
∑

t=0

costt

]

s.t. (1), (6), (8), (12)− (17)

E
(

I t, f t, pt
)

∈ {0}
⋃

[Emin, Emax] , t ∈ T , (18)

where0 < Emin ≤ Emax. Compared toP1, only a scalarf t needs to be determined for mobile

execution, which preserves optimality according to Lemma 1, and thusDt
mobile = W (f t)

−1 and

Et
mobile =Wκ (f t)

2. Besides, all constraints inP1 are retained inP2, and an additional constraint

on the battery output energy is imposed by (18). Hence,P2 is a tightened version ofP1. Denote

the optimal values ofP1 and P2 as EC∗
P1

and EC∗
P2

, respectively. The following proposition

reveals the relationship betweenEC∗
P1

and EC∗
P2

, which will later help show the asymptotic

optimality of the proposed algorithm.

Proposition1: The optimal value ofP2 is greater than that ofP1, but smaller than the

optimal value ofP1 plus a positive constantν (Emin), i.e., EC∗
P1

≤ EC∗
P2

≤ EC∗
P1

+ ν (Emin),

whereν (Emin) = ρ
[

φ (1− FH (η)) + 1Emin≥E
τd
min

· (φ− τEmin
)
]

. Here,η =
(

2
L

τdω − 1
)

στdE
−1
min,

Eτd
min = κW 3τ−2

d and τEmin
= κ

1

2W
3

2E
− 1

2

min.

Proof: Please refer to Appendix A.

In general, the upper bound in Proposition 1 is not tight. However, asEmin goes to zero,

ν (Emin) diminishes as shown in the following corollary.

Corollary 1: By letting Emin approach zero,EC∗
P2

can be made arbitrarily close toEC∗
P1

,

i.e., lim
Emin→0

ν (Emin) = 0.
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Proof: The proof is omitted due to space limitation.

Proposition 1 bounds the optimal performance ofP2 by that ofP1, while Corollary 1 shows

that the performance of both problems can be made arbitrarily close. Actually, Corollary 1 fits

our intuition, since whenEmin → 0, P2 reduces toP1. However, due to the temporally correlated

battery energy levels, the system’s decisions are time-dependent, and thus the vanilla version of

Lyapunov optimization techniques, where the allowable action sets are i.i.d., cannot be applied

directly. Fortunately, the weighted perturbation method offers an effective solution to circumvent

this issue [33]. In order to present the algorithm, we first define the perturbation parameter and

the virtual energy queue at the mobile device, which are two critical elements.

Definition 1: The perturbation parameterθ for the EH mobile device is a bounded constant

satisfying

θ ≥ Ẽmax + V φ · E−1
min, (19)

whereẼmax = min{max{κW (fmax
CPU)

2 , pmax
tx τ}, Emax}, and0 < V < +∞ is a control parameter

in the LODCO algorithm with unit asJ2 · second−1.7

Definition 2: The virtual energy queuẽBt is defined asB̃t = Bt − θ, which is a shifted

version of the actual battery energy level at the mobile device.

As will be elaborated later, the proposed algorithm minimizes the weighted sum of the net

harvested energy and the execution cost in each time slot, with weights of the virtual energy

queue length̃Bt, and the control parameterV , respectively, which tends to stabilizeBt aroundθ

and meanwhile minimize the execution cost. The LODCO algorithm is summarized in Algorithm

1. In each time slot, the system operation is determined by solving a deterministic per-time slot

problem, which is parameterized by the current system stateand with all constraints inP2 except

the energy causality constraint (8).

Remark1: When the power consumption for maintaining the basic operations at the mobile

device, denoted asPbasic, is considered, there will be four computation modes for thetime

slots with ζ t = 1, i.e., mobile execution (I tm = 1), MEC server execution (I ts = 1), dropping

the task while maintaining the basic operations (I td = 1), as well as dropping the task and

disabling the basic operations (I tf = 1); while for the time slots withζ t = 0, two modes exist,

i.e., the basic operations are maintained (I td = 1) or disabled (I tf = 1). As a result, the energy

7Since the right-hand side of (19) increases withφ (φ ∈ [τd,+∞)), a larger value ofφ will result in a large value ofθ, i.e.,

a higher perturbed energy level in the proposed algorithm.
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consumed by the mobile device at thetth time slot can be written asE (I t, f t, pt) = I tmE
t
mobile+

I tsE
t
server + (I tm + I ts + I td)Pbasicτ . We introduce a unit of cost to penalize the interruption of

basic operations, and thus the execution cost can be expressed ascostt = D (I t, f t, pt) + φ ·

1 (ζ t = 1, I td or I tf = 1) + ψ · 1 (I tf = 1), whereψ > 0 is the weight of the basic operations

interruption cost. It is worthwhile to note that the framework of the proposed LODCO algorithm

can be modified for this case, where the major changes lie on the selection of the perturbation

parameterθ and the solution for the per-time slot problem, and will not be detailed in this paper.

Algorithm 1 The LODCO Algorithm
1: At the beginning of time slott, obtain the task request indicatorζ t, virtual energy queue

length B̃t, harvestable energyEt
H , and channel gainht.

2: Decideet, I t, f t andpt by solving the following deterministic problem:

min
It,pt,f t,et

B̃t
[

et − E
(

I t, f t, pt
)]

+ V
[

D
(

I t, f t, pt
)

+ φ · 1
(

ζ t = 1, I td = 1
)]

s.t. (1), (6), (12)− (18).

3: Update the virtual energy queue according to (9) and Definition 2.

4: Set t = t+ 1.

B. Optimal Computation Offloading in Each Time Slot

In this subsection, we will develop the optimal solution forthe per-time slot problem, which

consists of two components: the optimal energy harvesting,i.e., to determineet, as well as the

optimal computation offloading decision, i.e., to determine I t, f t andpt. The results obtained in

this subsection are essential for feasibility verificationand performance analysis of the LODCO

algorithm in Section V.

Optimal Energy Harvesting: It is straightforward to show that the optimal amount of

harvested energyet∗ can be obtained by solving the following LP problem:

min
0≤et≤Et

H

B̃tet, (20)

and its optimal solution is given by

et∗ = Et
H · 1{B̃t ≤ 0}. (21)



16

Optimal Computation Offloading: After decouplinget from the objective function, we can

then simplify the per-time slot problem into the following optimization problemPCO:

PCO : min
It,f t,pt

−B̃t · E
(

I t, f t, pt
)

+ V
[

(D
(

I t, f t, pt
)

+ φ · 1
(

ζ t = 1, I td = 1
)]

s.t. (1), (12)− (18).

(22)

Denote the feasible action set and the objective function ofPCO asF t
CO and J t

CO (I t, f t, pt),

respectively. For the time slots without computation task request, i.e.,ζ t = 0, there is a single

feasible solution forPCO due to (13), which is given byI tm = I ts = 0, I td = 1, f t = 0, and

pt = 0. Thus, we will focus on the time slots with computation task requests in the following.

First, we obtain the optimal CPU-cycle frequency for a task being executed locally at the mobile

device by solving the following optimization problemPME:

PME : min
f t

−B̃t · κW
(

f t
)2

+ V ·
W

f t

s.t. 0 < f t ≤ fmax
CPU (23)

W

f t
≤ τd (24)

κW
(

f t
)2

∈ [Emin, Emax] , (25)

which is obtained by pluggingI tm = 1, I ts = I td = 0 andpt = 0 into PCO, and using the fact that

f t > 0 for local execution. (24) is the execution delay constraintfor mobile execution, and (25)

is the CPU energy consumption constraint obtained by combining (14) and (18). We denote the

objective function ofPME asJ t
m (f t). Note that mobile execution is not necessarily feasible due

to limited computation capability of the processing unit atthe mobile device as indicated by

(23). In the following proposition, we develop the feasibility condition and the optimal solution

for PME given it is feasible.

Proposition2: PME is feasible if and only iffL ≤ fU , wherefL = max{
√

Emin

κW
, W
τd
} and

fU = min{
√

Emax

κW
, fmax}. If PME is feasible, its optimal solution is given by:

f t∗ =























fU , B̃t ≥ 0 or B̃t < 0, f t
0 > fU

f t
0, B̃t < 0, fL ≤ f t

0 ≤ fU

fL, B̃t < 0, f t
0 < fL,

(26)

wheref t
0 =

(

V

−2B̃tκ

)
1

3

.
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Proof: We first show the feasibility condition. Due to (24),f t should be no less thanW/τd

in order to meet the delay constraint. Besides, since the CPUenergy consumption increases with

f t, the battery output energy constraint can be equivalently expressed as
√

Emin

κW
≤ f t ≤

√

Emax

κW
.

By incorporating (23), we rewrite the feasible CPU-cycle frequency set asfL = max{
√

Emin

κW
,W/

τd} ≤ f t ≤ fU = min{
√

Emax

κW
, fmax}, i.e.,PME is feasible if and only iffL ≤ fU .

Next, we proceed to show the optimality of (26) whenPME is feasible. WheñBt ≥ 0, J t
m (f t)

decreases withf t, i.e., the minimum value is achieved byf t = fU . When B̃t < 0, J t
m (f t) is

convex with respect tof t as both−B̃tκW (f t)
2 and VW/f t are convex functions off t. By

taking the first-order derivative ofJ t
m (f t) and setting it to zero, we obtain a unique solution

f t
0 =

(

V

−2B̃tκ

)
1

3

> 0. If f t
0 < fL, J t

m (f t) is increasing in[fL, fU ], and thusf t∗ = fL; if f t
0 > fU ,

J t
m (f t) is decreasing in[fL, fU ], and thusf t∗ = fU ; otherwise, iffL ≤ f t

0 ≤ fU , J t
m (f t) is

decreasing in[fL, f t
0] and increasing in(f t

0, fU ], and we havef t∗ = f t
0.

It can be seen from Proposition 2 that the optimal CPU-cycle frequency is chosen by balancing

the cost of the harvested energy and the execution cost. Interestingly, we find that a higher CPU-

cycle frequency, i.e., lower execution delay, can be supported with a greater amount of available

harvested energy, which is because that the cost of renewable energy is reduced and more energy

can be used to enhance the user’s QoE, as demonstrated in Corollary 2.

Corollary 2: The optimal CPU-cycle frequency for local executionf t∗ is independent with

the channel gainht, and non-decreasing with the virtual energy queue lengthB̃t.

Proof: SincePME does not depend onht, the optimal CPU-cycle frequency is independent

with the channel state. AsfL andfU are constants independent with̃Bt, andf t
0 increases with

B̃t for B̃t < 0, we can conclude thatf t∗ is non-decreasing with̃Bt based on (26).

Next, we will consider the case that the task is executed by the MEC server, where the optimal

transmit power for computation offloading can be obtained bysolving the following optimization

problemPSE:

PSE : min
pt

−B̃t ·
ptL

r (ht, pt)
+ V ·

L

r (ht, pt)

s.t. 0 < pt ≤ pmax
tx (27)

L

r (ht, pt)
≤ τd (28)

ptL

r (ht, pt)
∈ [Emin, Emax] , (29)
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which is obtained by pluggingI ts = 1, I tm = I td = 0 andf t = 0 into PCO, and using the fact that

pt > 0 for computation offloading. (28) and (29) stand for the execution delay constraint and the

battery output energy constraint for MEC, respectively. Wedenote the objective function ofPSE

asJ t
s (p

t). Due to the wireless fading, it may happen that computation offloading is infeasible.

In order to derive the feasibility condition and the optimalsolution forPSE given it is feasible,

we first provide the following lemma to facilitate the analysis.

Lemma2: For h > 0, g1 (h, p) ,
p

r(h,p)
is an increasing function ofp (p > 0) that takes value

from
(

σ ln 2 (ωh)−1 ,+∞
)

.

Proof: The proof is omitted due to space limitation.

Based on Lemma 2, we combine constraints (27)-(29) into an inequality and obtain the

feasibility condition forPSE, as demonstrated in the following lemma.

Lemma3: PSE is feasible if and only ifptL ≤ ptU , whereptL andptU are defined as

ptL ,











ptL,τd ,
σL ln 2
ωht ≥ Emin

max{ptL,τd, p
t
Emin

}, σL ln 2
ωht < Emin

and ptU ,











min{pmax
tx , ptEmax

}, σL ln 2
ωht < Emax

0, σL ln 2
ωht ≥ Emax,

(30)

respectively. In (30),ptL,τd ,
(

2
L

ωτd − 1
)

σ/ht, ptEmin
is the unique solution forpL = r (ht, p)Emin

given σL ln 2 (ωht)
−1

< Emin, andptEmax
is the unique solution forpL = r (ht, p)Emax given

σL ln 2 (ωht)
−1
< Emax.

Proof: The proof can be obtained based on Lemma 2, which is omitted for brevity.

We now develop the optimal solution forPSE as specified in the following proposition.

Proposition3: If PSE is feasible, i.e.,ptL ≤ ptU , its optimal solution is given by

pt∗ =























ptU , B̃t ≥ 0 or B̃t < 0, ptU < pt0

ptL, B̃t < 0, ptL > pt0

pt0, B̃t < 0, ptL ≤ pt0 ≤ ptU ,

(31)

wherept0 is the unique solution for equationΞ
(

ht, p, B̃t
)

= 0 andΞ
(

h, p, B̃
)

, −B̃ log2
(

1 + hp

σ

)

−

h
(σ+hp) ln 2

(

V − B̃p
)

.

Proof: When B̃t ≥ 0, since both terms inJ t
s (p

t) are non-increasing withpt, we have

pt∗ = ptU . WhenB̃t < 0, we defineg2
(

h, p, B̃
)

, − B̃p

r(h,p)
+ V

r(h,p)
, and thus

dg2

(

ht, p, B̃t
)

dp
=

−B̃t log2

(

1 + htp

σ

)

− ht

(htp+σ) ln 2

(

−B̃tp+ V
)

ω log22

(

1 + htp

σ

) ,
Ξ
(

ht, p, B̃t
)

ω log22

(

1 + htp

σ

) . (32)
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Since
dΞ(ht,p,B̃t)

dp
> 0, Ξ

(

ht, p, B̃t
)

increases withp. In addition, asΞ
(

ht, 0, B̃t
)

= − htV
σ ln 2

< 0

and lim
p→+∞

Ξ
(

ht, p, B̃t
)

= +∞, there exists a uniquept0 ∈ (0,+∞) satisfyingΞ
(

ht, pt0, B̃
t
)

=

0, ∀ht > 0. Since the denominator of (32) is positive forht > 0 and p > 0,
dg2(ht,p,B̃t)

dp
< 0

for p ∈ (0, pt0), i.e., g2
(

ht, p, B̃t
)

is decreasing, and
dg2(ht,p,B̃t)

dp
≥ 0 for p ∈ [pt0,+∞), i.e.,

g2

(

ht, p, B̃t
)

is increasing. Consequently, wheñBt < 0 and ptL ≤ pt0 ≤ ptU , J t
s (p

t) is non-

increasing in[ptL, p
t
0) while non-decreasing in(pt0, p

t
U ], and thuspt∗ = pt0; when B̃t < 0 and

ptL > pt0, J
t
s (p

t) is non-decreasing in the feasible domain, and thuspt∗ = ptL; otherwise when

B̃t < 0 andptU < pt0, J
t
s (p

t) is non-increasing in the feasible domain, we havept∗ = ptU .

Similar to mobile execution, we find a monotonic behavior of the optimal transmit power for

computation offloading, as shown in the following corollary.

Corollary 3: For a givenht such thatPSE is feasible, the optimal transmit power for compu-

tation offloadingpt∗ is non-decreasing with̃Bt.

Proof: Please refer to Appendix B.

Remark2: We can see from (31) that the optimal transmit power for computation offloading

depends on both the battery energy level and the channel state. In Corollary 3, we show a higher

battery energy level awakes a higher transmit power, and thus incurs smaller execution latency.

However, the monotonicity ofpt∗ with respect toht does not hold. This is due to the battery

output energy constraint, which makes the feasible set ofpt change withht.

Based on Proposition 2 and 3, the optimal computation offloading decision can be obtained

by evaluating the optimal values ofPCO for the three computation modes, i.e., dropping the

task, mobile execution and MEC server execution, which can be explicitly expressed as

〈I t∗, f t∗, pt∗〉 = arg min
〈It,f t,pt〉∈Ft

CO

JCO

(

I t, f t, pt
)

, (33)

where JCO (I t, f t, pt) = 1Itm=1J
t
m (f t) + 1Its=1J

t
s (p

t) + 1It
d
=1,ζt=1 · V φ, and V φ is the value

of JCO (I t, f t, pt) when a computation task is dropped. Note that whenζ t = 1 and F t
CO =

{〈[I tm = 0, I ts = 0, I td = 1] , 0, 0〉}, the computation task has to be dropped, asPCO has only one

feasible solution. It is also worth mentioning that bisection search can be applied to obtainptL,

ptU andpt0, i.e., solvingPCO is of low complexity.

V. PERFORMANCE ANALYSIS

In this section, we will first prove the feasibility of the LODCO algorithm forP2, and the

achievable performance of the proposed algorithm will thenbe analyzed.



20

A. Feasibility

We verify the feasibility of the LODCO algorithm by showing that under the optimal solution

for the per-time slot problem, the energy causality constraint in (8) is always satisfied, as

demonstrated in the following proposition.

Proposition4: Under the optimal solution for the per-time slot problem, whenBt < Ẽmax,

I td = 1, I tm = I ts = 0, f t = 0, andpt = 0, and the energy causality constraint in (8) will not be

violated, i.e., the LODCO algorithm is feasible forP2 (P1).

Proof: WhenBt < Ẽmax, we will show by contradiction that with the optimal computation

offloading decision,E (I t, f t, pt) = 0. Suppose there exists an optimal computation offloading

decision〈I t∗, f t∗, pt∗〉 with eitherI t∗m = 1 or I t∗s = 1. With this solution, due to the non-zero lower

bound of the battery output energy, i.e., (18), the value ofJCO (I t∗, f t∗, pt∗) will be no less than

−B̃tEmin, which is greater thanV φ as achieved by the solution withI td = 1, i.e.,〈I t∗, f t∗, pt∗〉 is

not optimal for the per-time slot problem. WhenBt ≥ Ẽmax, as max
〈It,f t,pt〉∈Ft

CO

E (I t, f t, pt) = Ẽmax,

E (I t, f t, pt) ≤ Bt, ∀〈I t, f t, pt〉 ∈ F t
CO. Thus, (8) holds under the LODCO algorithm.

Based on the optimal energy harvesting decision and Proposition 4, we show the battery

energy level is confined within an interval as shown in the following corollary.

Corollary 4: Under the LODCO algorithm, the battery energy level at the mobile deviceBt

is confined within[0, θ + Emax
H ] , ∀t ∈ T .

Proof: The lower bound ofBt is straightforward as the energy causality constraint is not

violated according to Proposition 4. The upper bound ofBt can be obtained based on the optimal

energy harvesting in (21): Supposeθ < Bt ≤ θ + Emax
H , sinceet∗ = 0, we haveBt+1 ≤ Bt ≤

θ+Emax
H ; otherwise, ifBt ≤ θ, sinceet∗ = Et

H , we haveBt+1 ≤ Bt+et∗ ≤ θ+et∗ ≤ θ+Emax
H .

Consequently, we haveBt ∈ [0, θ + Emax
H ] , ∀t ∈ T .

As will be seen in the next subsection, the bounds of the battery energy level are useful for

deriving the main result on the performance of the proposed algorithm. In addition, Corollary 4

indicates that, given the size of the available energy storageCB, we can determine the control

parameterV asφ−1 ·
(

CB − Emax
H − Ẽmax

)

Emin, whereCB should be greater thañEmax+E
max
H

in order to guaranteeV > 0. This is instructive for installation of EH and storage units at the

mobile devices.
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B. Asymptotic Optimality

In this subsection, we will analyze the performance of the LODOC algorithm, where an

auxiliary optimization problemP3 will be introduced to bridge the optimal performance ofP2

and the performance achieved by the proposed algorithm. This will demonstrate the asymptotic

optimality of the LODCO algorithm forP1 conjointly with Proposition 1.

Firstly, we define the Lyapunov function as

L
(

B̃t
)

=
1

2

(

B̃t
)2

=
1

2

(

Bt − θ
)2
. (34)

Accordingly, the Lyapunov drift function and the Lyapunov drift-plus-penalty function can be

expressed as

∆
(

B̃t
)

= E

[

L
(

B̃t+1
)

− L
(

B̃t
)

|B̃t
]

(35)

and

∆V

(

B̃t
)

= ∆
(

B̃t
)

+ V E
[

D
(

I t, f t, pt
)

+ φ · 1
(

ζ t = 1, I td = 1
)

|B̃t
]

, (36)

respectively.

In the following lemma, we derive an upper bound for∆V

(

B̃t
)

, which will play an important

part throughout the analysis of the LODCO algorithm.

Lemma4: For arbitrary feasible decision variableset, I t, f t andpt for P2, ∆V

(

B̃t
)

is upper

bounded by

∆V

(

B̃t
)

≤ E

[

Bt
[

et − E
(

I t, f t, pt
)]

+ V
[

D
(

I t, f t, pt
)

+ φ · 1
(

ζ t = 1, I td = 1
)]

|B̃t

]

+ C,

(37)

whereC =
(Emax

H )
2

+(Ẽmax)
2

2
.

Proof: Please refer to Appendix C.

Note that the terms inside the conditional expectation of the upper bound derived in Lemma

4 coincides with the objective function of the per-time slotproblem in the LODCO algorithm.

To facilitate the performance analysis, we define the following auxiliary problemP3:

P3 : min
It,f t,pt,et

lim
T→∞

1

T
E

[

T−1
∑

t=0

costt

]

s.t. (1), (6), (12)− (18)

lim
T→+∞

1

T

T−1
∑

t=0

E
[

E
(

I t, f t, pt
)

− et
]

= 0. (38)
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In P3, the average harvested energy consumption equals the average harvested energy, i.e., the

energy causality constraint inP2 is replaced by (38). Denote the optimal value ofP3 asEC∗
P3

.

In the following lemma, we will show thatP3 is a relaxation ofP2.

Lemma5: P3 is a relaxation ofP2, i.e.,EC∗
P3

≤ EC∗
P2

.

Proof: The proof can be obtained by showing any feasible solution for P2 is also feasible

for P3, which is omitted for brevity.

Besides, in the following lemma, we show the existence of a stationary and randomized policy

[34], where the decisions are i.i.d. among different time slots and depend only onEt
H , ζ t andht,

that behaves arbitrarily close to the optimal solution ofP3, meanwhile, the difference between

E [et] andE [E (I t, f t, pt)] is arbitrarily small.

Lemma6: For an arbitraryδ > 0, there exists a stationary and randomized policyΠ for P3,

which decidesetΠ, I tΠ, f tΠ and ptΠ, such that (1), (6), (12)-(18) are met, and the following

inequalities are satisfied:

E
[

D
(

I tΠ, f tΠ, ptΠ
)

+ φ · 1
(

ζ t = 1, I tΠd
)]

≤ EC∗
P3

+ δ, t ∈ T , (39)

∣

∣

∣

∣

E
[

E
(

I tΠ, f tΠ, ptΠ
)

− etΠ
]

∣

∣

∣

∣

≤ ̺δ, t ∈ T , (40)

where̺ is a scaling constant.

Proof: The proof can be obtained by Theorem 4.5 in [34], which is omitted for brevity.

In Section IV, we bounded the optimal performance of the modified ECM problemP2 with

that of the original ECM problemP1, while in Lemma 5, we showed the auxiliary problemP3

is a relaxation ofP2. With the assistance of these results, next, we will providethe main result

in this subsection, which characterizes the worst-case performance of the LODCO algorithm.

Theorem1: The execution cost achieved by the proposed LODCO algorithm, denoted as

ECLODCO, is upper bounded by

ECLODCO ≤ EC∗
P1

+ ν (Emin) + C · V −1. (41)

Proof: Please refer to Appendix D.

Remark3: Theorem 1 indicates that the execution cost upper bound can be made arbitrarily

tight by lettingV → +∞, Emin → 0, that is, the proposed algorithm asymptotically achieves the

optimal performance of the original design problemP1. However, the optimal performance ofP1

is achieved at the price of a higher battery capacity requirement and longer convergence time to
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the optimal performance. This is because that, the battery energy level will be stabilized around

θ under the LODCO algorithm. AsEmin decreases orV increases,θ increases accordingly, and

it will need a longer time to accumulate the harvested energy, which postpones the arrival of the

system stability and hence delays the convergence. Thus, byadjusting the control parameters,

we can balance the system performance and the battery capacity/convergence time. Similar

phenomenon was observed in our previous work [25].

VI. SIMULATION RESULTS

In this section, we will verify the theoretical results derived in Section V and evaluate the

performance of the proposed LODCO algorithm through simulations. In simulations,Et
H is uni-

formly distributed between 0 andEmax
H with the average EH power given byPH = Emax

H (2τ)−1,

and the channel power gains are exponentially distributed with meang0d−4, whereg0 = −40

dB is the path-loss constant. In addition,κ = 10−28, τ = φ = 2 ms,w = 1 MHz, σ = 10−13 W,

pmax
tx = 1 W, fmax

CPU = 1.5 GHz,Emax = 2 mJ, andL = 1000 bits. Besides,X = 5900 cycles per

byte, which corresponds to the workload of processing the English main page of Wikipedia [28].

Moreover,PH = 12 mW, d = 50 m andτd = 2 ms unless otherwise specified. For comparison,

we introduce three benchmark policies, namely,mobile execution with greedy energy allocation

(Mobile Execution (GD)),MEC server execution with greedy energy allocation(MEC Server

Execution (GD)) anddynamic offloading with greedy energy allocation(Dynamic offloading

(GD)), which minimize the execution cost at the current timeslot. They work as follows:

• Mobile Execution (GD): Compute the maximum feasible CPU-cycle frequency asf t
U =

min{fmax
CPU,

√

min{Bt,Emax}
κW

} when ζ t = 1. If W/f t
U ≤ τd, the computation task will be

executed locally with CPU-cycle frequencyf t
U ; otherwise, mobile execution is infeasible

and the task will be dropped. Note that computation offloading is disabled in this policy.

• MEC Server Execution (GD): When ζ t = 1, compute the maximum feasible trans-

mit power asptU = min{pmax
tx , ptmin{Bt,Emax}

} if σL ln 2 (ωht)
−1

< min{Bt, Emax}, where

ptmin{Bt,Emax}
is the unique solution ofpL = r (ht, p)min{Bt, Emax}. If L/r (ht, ptU) ≤ τd,

the computation task will be offloaded to the MEC server with transmit powerptU ; otherwise,

MEC server execution is infeasible and the computation taskwill be dropped. Note that the

computation tasks are always offloaded to the MEC server in this policy.

• Dynamic Offloading (GD): Whenζ t = 1, computef t
U andptU as in the Mobile Execution

(GD) and MEC Server Execution (GD) policies, respectively,and check if they can meet
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the delay requirement. Then the feasible computation mode that incurs smaller execution

delay will be chosen. If neither computation modes is feasible, the computation task will

be dropped.

A. Theoretical Results Verification
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Fig. 2. Battery energy level and average execution cost vs. time, ρ = 0.6.

In this subsection, we will verify the feasibility and asymptotic optimality of the LODCO

algorithm developed in Proposition 4, Corollary 4, and Theorem 1, respectively. The value of

θ is chosen as the value of the right-hand side of (19). In Fig. 2(a), the battery energy level is

depicted to demonstrate the feasibility of the LODOC algorithm for P2 (P1). First, we observe

that the harvested energy keeps accumulating at the beginning, and finally stabilizes around the

perturbed energy level. This is due to the fact that in the proposed algorithm the Lyapunov

drift-plus-penalty function is minimized at each time slot. From the curves, with a larger value

of V or a smaller value ofEmin, the stabilized energy level becomes higher, which agrees with

the definition of the perturbation parameter in (19). Also, we see that the energy level is confined

within [0, θ + Emax
H ], which verifies Corollary 4 and confirms that the energy causality constraint

is not violated, i.e., Proposition 4 holds. The evolution ofthe average execution cost with respect

to time is shown in Fig. 2(b). We see that, a larger value ofV or a smaller value ofEmin results in

a smaller long-term average execution cost. Nevertheless,the algorithm converges more slowly
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to the stable performance. Besides, if〈Emin, V 〉 are properly selected, the proposed algorithm

will achieve significant performance gain compared to the benchmark policies.
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Fig. 3. Average execution cost and required battery capacity vs. V , ρ = 0.6 andEmin = 0.02 mJ.

The relationship between the average execution cost/required battery capacity andV is shown

in Fig. 3. We see from Fig. 3(a) that the execution cost achieved by the proposed algorithm

decreases inversely proportional toV , and eventually it converges to the optimal value ofP2,

which verifies the asymptotic optimality developed in Theorem 1. However, as shown from Fig.

3(b), the required battery capacity grows linearly withV since the value ofθ is linearly increasing

with V . Thus,V should be chosen to balance the achievable performance, convergence time and

required battery capacity. For instance, if a battery with 18 mW capacity is available, we can

chooseV = 1.6 × 10−4 J2 · second−1 for the LODCO algorithm, and then 74.4%, 51.8% and

46.3% performance gain compared to the Mobile Execution (GD), MEC Server Execution (GD)

and Dynamic Offloading (GD) policies, respectively, will beobtained.

B. Performance Evaluation

We will show the effectiveness of the proposed algorithm anddemonstrate the impacts of

various system parameters in this subsection. First, the impacts of the task request probability

ρ on the system performance, including the execution cost, the average completion time of the

executed tasks and the task drop ratio, are illustrated in Fig. 4. We see in Fig. 4(a) that the
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(b) Average completion time/task drop ratio vs.ρ

Fig. 4. System performance vs. task arrival probability.

execution cost increases withρ, which is in accordance with our intuition. Besides, the LODCO

algorithm achieves significant execution cost reduction compared to the benchmark policies. In

Fig. 4(b), the average completion time of the executed tasksand the task drop ratio are shown,

We see that the LODCO algorithm achieves a near-zero task drop ratio, while those achieved

by the benchmark policies increase rapidly withρ. In terms of the average completion time, the

LODCO algorithm outperforms the benchmark policies whenρ is small. However, whenρ is

large, the average completion time achieved by the LODCO algorithm is slightly longer than

that achieved by the MEC Server Execution (GD) policy. The reason is, in order to minimize the

execution cost, the LODCO algorithm suppresses the task drop ratio at the expense of a minor

execution delay performance degradation.

The system performance versus the EH rate, i.e.,PH , is shown in Fig. 5, where the effectiveness

of the LODCO algorithm is again validated. In addition, we see the execution cost decreases

as the EH rate increases since consuming the renewable energy incurs no cost. Similar to the

execution cost, the task drop ratios achieved by different policies decrease with the EH rate.

Interestingly, under the LODCO algorithm, an increase of the EH rate does not necessarily

reduce the average completion time, e.g., whenρ = 0.6 and PH increases from6 to 7 mW,

the LODCO algorithm has introduced a0.1 ms extra average completion time, but secured a

10% task drop reduction. Since the optimization objective is the execution cost, eliminating task

drops brings more benefits in terms of system cost when the system resource is scarce, i.e., the
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Fig. 5. System performance vs. EH rate, the solid lines corresponds toρ = 0.6 and the dash-solid lines corresponds toρ = 0.4.

harvested energy is insufficient compared to the relativelyintense computation workload.
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Fig. 6. System performance vs. execution deadline, the solid lines corresponds toρ = 0.6 and the dash-solid lines corresponds

to ρ = 0.4.

In Fig. 6, we reveal the relationship of between the execution deadlineτd and the system

performance. Asτd decreases, i.e., the computation requirement becomes morestringent, the

execution cost, average completion time and task drop ratioachieved by all four policies increase.

It can be seen that whenτd ≤ 0.4 ms, the execution cost achieved by the Mobile Execution

(GD) policy becomes a constantρφ, and the task drop ratio is 100%. Meanwhile, the MEC
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Server Execution (GD) and the Dynamic Offloading (GD) policies converge. In these scenarios,

the mobile device is not able to conduct any computation because of hardware limitation, i.e.,

f t ≤ fmax
CPU = 1.5 GHz, and all the computation tasks have to be offloaded to the MEC server for

MEC. The results in Fig. 6(b) confirms the benefits of MEC as around 50% tasks are successfully

executed forτd = 0.2 ms even under the greedy offloading policy. Note that for a small value of

τd, e.g.,τd ≤ 0.8 ms, the average completion time achieved by the LODCO algorithm is slightly

longer than those of the other two policies with computationoffloading, but the task drop ratio

is reduced noticeably by more than 20%. This phenomenon is similar to what was observed in

Fig. 4(b), where the LODCO algorithm tends to avoid droppingtasks by prolonging the average

completion time in order to achieve a minimum execution cost.
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Fig. 7. System performance vs. distance, the solid lines corresponds toρ = 0.6 and the dash-solid lines corresponds toρ = 0.4.

Finally, we show the relationship between the system performance andd, i.e., the distance

from the mobile device to the MEC server, in Fig. 7. The performance of the computation

offloading policies, including the MEC Server Execution (GD), Dynamic offloading (GD) and

the LODCO algorithms, deteriorate asd becomes large. As can be seen from Fig. 7(a), when

the mobile device is close to the MEC server, the three computation offloading policies converge

and greatly outperform the Mobile Execution (GD) policy. Insuch scenarios, the mobile device

is able to offload the computation tasks to the MEC server witha small amount of harvested

energy due to small path loss. With a large value ofd, e.g.,d = 80 m, offloading the tasks

greedily cannot bring any execution cost reduction compared the Mobile Execution (GD) policy,

while the LODCO algorithm offers more than 40% performance gain. From Fig. 7(b), we see
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that although the MEC Server Execution (GD) policy incurs the least completion time for the

executed tasks, its task failure performance sharply degrades. In contrast, the proposed LODCO

algorithm achieves a near-zero task drop ratio with an improved completion time performance

compared to the Mobile Execution (GD) and Dynamic Offloading(GD) policies.

VII. CONCLUSIONS

In this paper, we investigated mobile-edge computing (MEC)systems with EH mobile de-

vices. The execution cost, which addresses the execution delay and task failure, was adopted

as the performance metric. A dynamic computation offloadingpolicy, namely, the Lyapunov

optimization-based dynamic computation offloading (LODCO) algorithm, was then developed. It

is a low-complexity online algorithm and requires little prior knowledge. We found the monotonic

properties of the CPU-cycle frequencies (transmit power) for mobile execution (computation

offloading) with respect to the battery energy level, which uncovers the impact of EH to the

system operations. Performance analysis was conducted which revealed the asymptotic optimality

of the proposed algorithm. Simulation results showed that the proposed LODCO algorithm not

only significantly outperforms the benchmark greedy policies in terms of execution cost, but

also reduces computation failures noticeably at an expenseof minor execution delay performance

degradation. Our study provides a viable approach to designfuture MEC systems with renewable

energy-powered devices. It would be interesting to extend the proposed algorithm to more general

MEC systems with multiple mobile devices, as well as consider resource-limited MEC servers.

Another extension is to combine the concepts of wireless energy transfer and energy harvesting

by deploying a power beacon co-located with the MEC server sothat the energy deficit incurred

by the renewable energy sources can be compensated by the controllable radio frequency energy.

APPENDIX

A. Proof for Proposition 1

SinceP2 is a tightened version ofP1, we haveEC∗
P1

≤ EC∗
P2

. The other side of the inequality

can be obtained by constructing a feasible solution forP2 (denoted as〈etP2
, I t

P2
, f t

P2
, ptP2

〉)

based on the optimal solution forP1 (denoted as〈etP1
, I t

P1
, f t

P1
, ptP1

〉8): i) If E
(

I t
P1
, f t

P1
, ptP1

)

∈

8For simplicity, we assume the optimal solution forP1 satisfies the property of the optimal CPU-cycle frequenciesin Lemma

1.



30

(0, Emin), then the computation task will be dropped in the constructed solution and no harvested

energy will be consumed, i.e.,costtP2
= φ; ii) If E

(

I t
P1
, f t

P1
, ptP1

)

∈ [Emin, Emax], the constructed

solution for thetth time slot will be the same as the optimal solution forP1; iii) The EH decision

etP2
is determined byetP2

= max{Bt
P1

− E
(

I t
P1
, f t

P1
, ptP1

)

+ etP1
−Bt

P2
+ E

(

I t
P2
, f t

P2
, ptP2

)

, 0}.

It is not difficult to showBt
P1

≤ Bt
P2
< +∞, and thus the constructed solution is feasible toP2.

If Emin ≥ Eτd
min, whereEτ

min = κW 3τ−2
d is the minimum amount of energy required to meet the

deadline constraint for mobile execution, for a time slot with I tm,P1
= 1 andE

(

I t
P1
, f t

P1
, ptP1

)

∈

(0, Emin), the constructed solution incurs(φ− τEmin
) units of extra execution cost in the worst

case. Here,τEmin
= κ

1

2W
3

2E
− 1

2

min is the execution delay corresponds toEmin amount of energy

consumption for mobile execution; otherwise, ifEmin < Eτd
min, I tm,P1

= 1 andE
(

I t
P1
, f t

P1
, ptP1

)

∈

(0, Emin) is infeasible as the deadline constraint cannot be met. Besides, the probability of

offloading a task to the MEC server successfully with energy consumption less thanEmin is no

greater thanP{ωτd log2
(

1 + htpt

σ

)

≥ L} = 1−FH (η), whereη ,

(

2
L

ωτd − 1
)

τdσE
−1
min, and the

constructed solution will incur at mostφ units of extra execution cost ascosttP1
> 0. By further

incorporating the task request probabilityρ, we can obtain the desired result.

B. Proof for Corollary 3

For B̃t < 0, sinceΞ
(

ht, pt0, B̃
t
)

= 0, with some manipulations, we havẽBt · k (ht, pt0) =

htV
ln 2

, wherek (h, p) = hp

ln 2
− (hp + σ) log2

(

1 + hp

σ

)

, and ∂k(h,p)
∂p

= −h log2
(

1 + hp

σ

)

< 0, i.e.,

k (h, p) decreases withp for p > 0. DenoteB̃t
− < B̃t

+ < 0 and the corresponding solutions for

Ξ
(

ht, p, B̃t
)

= 0 aspt0,− andpt0,+, respectively. SincẽBt
+k

(

ht, pt0,+
)

= B̃t
−k

(

ht, pt0,−
)

> 0, we

havek
(

ht, pt0,+
)

< k
(

ht, pt0,−
)

< 0, i.e., pt0,+ > pt0,−. SinceptL and ptU are invariant withB̃t,

according to (31),pt∗ is non-decreasing with̃Bt for B̃t < 0. Besides, aspt∗ = ptU whenB̃t > 0,

we can conclude thatpt∗ is non-decreasing with̃Bt.

C. Proof for Lemma 4

By subtractingθ at both sides of (9), we havẽBt+1 = B̃t + et − E (I t, f t, pt). Squaring both

sides of this equality, we have
(

B̃t+1
)2

=
(

B̃t + et − E
(

I t, f t, pt
)

)2

≤
(

B̃t
)2

+ 2B̃t
(

et − E
(

I t, f t, pt
))

+
(

et
)2

+ E2
(

I t, f t, pt
)

≤
(

B̃t
)2

+ 2B̃t
(

et − E
(

I t, f t, pt
))

+ (Emax
H )2 + Ẽ2

max.

(42)
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Dividing both sides of (42) by2, addingV [D (I t, f t, pt) + φ · 1 (ζ t = 1, I td = 1)], as well as

taking the expectation conditioned oñBt, we can obtain the desired result.

D. Proof for Theorem 1

Since the LODCO algorithm obtains the optimal solution of the per-time slot problem, (43)

holds, wherecostt∗ andcosttΠ are the execution cost at thetth time slot under〈I t∗, f t∗, pt∗〉 and

〈I tΠ, f tΠ, ptΠ〉, respectively. (†) is because that policyΠ is independent of the battery energy

level Bt, and (‡) is due to Corollary 4 and Lemma 6.

∆V

(

B̃t
)

≤ E

[

B̃t
[

et∗ − E
(

I t∗, f t∗, pt∗
)]

+ V · costt∗|B̃t

]

+ C

≤ E

[

B̃t
[

etΠ − E
(

I tΠ, f tΠ, ptΠ
)]

+ V · costtΠ|B̃t

]

+ C

(†)
= B̃t

E
[

etΠ − E
(

I tΠ, f tΠ, ptΠ
)]

+ V · E
[

costtΠ
]

+ C

(‡)

≤max{θ, Emax
H } · ̺δ + V (ECP3

+ δ) + C.

(43)

By letting δ go to zero, we obtain

∆V

(

B̃t
)

≤ V EC∗
P3

+ C. (44)

Taking the expectation on both sides of (44), summing up the inequalities fort = 0, · · ·T − 1,

dividing by T and lettingT go to infinity, we haveECLODCO ≤ EC∗
P3

+ C
V

. By further utilizing

Proposition 1 and Lemma 5, the theorem is proved.
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