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Abstract

Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation
demands from mobile applications. By offloading the computationally intensive workloads to the MEC
server, the quality of computation experience, e.g., the execution latency, could be greatly improved.
Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when
the battery energy runs out. To provide satisfactory computation performance as well as achieving green
computing, it is of significant importance to seek renewable energy sources to power mobile devices via
energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH
devices and develop an effective computation offloading strategyeXéeution costwhich addresses
both the execution latency and task failure, is adopted as the performance metric. A low-complexity
online algorithm, namely, theyapunov optimization-based dynamic computation offloa@i@DPCO)
algorithm is proposed, which jointly decides the offloading decision, the CPU-cycle frequencies for
mobile execution, and the transmit power for computation offloading. A unique advantage of this
algorithm is that the decisions depend only on the instantaneous side information without requiring
distribution information of the computation task request, the wireless channel, and EH processes. The
implementation of the algorithm only requires to solve a deterministic problem in each time slot, for
which the optimal solution can be obtained either in closed form or by bisection search. Moreover,
the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation
results shall be presented to verify the theoretical analysis as well as validate the effectiveness of the

proposed algorithm.
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I. INTRODUCTION

The growing popularity of mobile devices, such as smart peptablet computers and wear-
able devices, is accelerating the advent of the Internehafgs (IoT) and triggering a revolution
of mobile applications[]1]. With the support of on-devicereas and embedded sensors, new
applications with advanced features, e.g., navigatiooe feecognition and interactive online
gaming, have been created. Nevertheless, the tension detvasource-limited devices and
computation-intensive applications becomes the bottlerier providing satisfactory quality of
experience (QoE) and hence may defer the advent of a maturdenapplication market [2].

Mobile-edge computing (MEC), which provides cloud compgtcapabilities within the radio
access networks (RAN), offers a new paradigm to liberate miobile devices from heavy
computation workloads [3]. In conventional cloud compgtisystems, remote public clouds,
e.g., Amazon Web Services, Google Cloud Platform and Maftoszure, are leveraged, and
thus long latency may be incurred due to data exchange in atda networks (WANS). In
contrast, MEC has the potential to significantly reducenieyeavoid congestion and prolong the
battery lifetime of mobile devices by offloading the compiata tasks from the mobile devices
to a physically proximal MEC server [4].[[5]. Thus, lots ofcemnt efforts have been attracted
from both industry[[3] and academial [6].

Unfortunately, although computation offloading is effeetin exploiting the powerful com-
putation resources at cloud servers, for conventionakbatiowered devices, the computation
performance may be compromised due to insufficient battegrgy for task offloading, i.e.,
mobile applications will be terminated and mobile devicel e out of service when the
battery energy is exhausted. This can possibly be overcgmsihg larger batteries or recharging
the batteries regularly. However, using larger batterteth@ mobile devices implies increased
hardware cost, which is not desirable. On the other handjargmg batteries frequently is
reported as the most unfavorable characteristic of molitenps, and it may even be impossible
in certain application scenarios, e.g., in the wirelesssemetworks (WSNs) and the loT for
surveillance where the nodes are typically hard-to-reddbanwhile, the rapidly increasing
energy consumption of the information and communicatichnelogy (ICT) sector also brings a
strong need for green computing [7]. Energy harvesting (iSl)promising technology to resolve

these issues, which can capture ambient recyclable eneyding solar radiation, wind, as

1CNN.com, “Battery life concerns mobile users,” available fatp://edition.cnn.com/2005/TECH/ptech/09/22/phensly] .
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well as human motion energy![8], and thus it facilitates-sel§tainability and perpetual operation
[9].

By integrating EH techniques into MEC, satisfactory anda&ungd computation performance
can be achieved. While MEC with EH devices open new posséslifor cloud computing, it
also brings new design challenges. In particular, the caatiom offloading strategies dedicated
for MEC systems with battery-powered devices cannot takdo&mefits of the renewable energy
sources. In this paper, we will develop new design methagetofor MEC systems with EH

devices.

A. Related Works

Computation offloading for mobile cloud computing systeras httracted significant attention
in recent years. To increase the batteries’ lifetime andavg@the computation performance, var-
ious code offloading frameworks, e.g., MAULJ10] and Think411], were proposed. However,
the efficiency of computation offloading highly depends omthreless channel condition, as the
implementation of computation offloading requires datagmaission. This calls for computation
offloading policies that incorporate the characteristitsvioeless channels [12]-[14]. In [12], a
stochastic control algorithm adapted to the time-varyingeless channel was proposed, which
determines the offloaded software components. For the felatal computing systems, where
the cloud server is formed by a set of femto access pointsirémsmit power, precoder and
computation load distribution were jointly optimized i8]1In addition, a game-theoretic decen-
tralized computation offloading algorithm was proposedrfaiti-user mobile cloud computing
systems[[14]. Nevertheless, these works assume non-ablgigbrocessing capabilities of the
central processing units (CPUs) at the mobile devices,wisioot energy-efficient since the CPU
energy consumption increases super-linearly with the Cfatle frequency([15]. With dynamic
voltage and frequency scaling (DVFS) techniques, the l@acution energy consumption
for applications with strict deadline constraints is mimded by controlling the CPU-cycle
frequencies[[16]. Besides, a joint allocation of commutiicaand computation resources for
multi-cell MIMO cloud computing systems was proposed [in][IMost recently, the energy-
delay tradeoff of mobile cloud systems with heterogenegped of computation tasks were
investigated by a Lyapunov optimization algorithm, whichciles the offloading policy, task
allocation, CPU clock speeds and selected network intesfats].



Energy harvesting was introduced to communication systemgs potential to realize self-
sustainable and green communications [19]] [20]. With oausal side information (%) in-
cluding the channel side information (CSI) and energy sidermation (ESI), the maximum
throughput of point-to-point EH fading channels can be aaki by the directional water-
filling algorithm [21]. The study was later extended to EHwetks with causal SI[[22].
Cellular networks with renewable energy supplies have laésn widely investigated. Resources
allocation policies that maximize the energy efficiency IRIMA systems with hybrid energy
supplies (HES), i.e., both grid and harvested energy aresadue to base stations, were proposed
in [23]. To save the grid energy consumption, a sleep costbeme for cellular networks with
HES was developed in_[24], and a low-complexity online bas¢ian assignment and power
control algorithm based on Lyapunov optimization was pegubin [25].

The design principles for MEC systems with EH devices aréeiht from those for EH
communication systems or MEC systems with battery-powdesices. On one hand, compared
to EH communication systems, computation offloading pe$iciequire a joint design of the
offloading decision, i.e., whether to offload a task, the Giytle frequencies for mobile execu-
tiorH, and the transmission policy for task offloading, which neakemuch more challenging.
On the other hand, compared to MEC systems with battery-pamveevices, the design objec-
tive is shifted from minimizing the battery energy consuimptto optimizing the computation
performance as the harvested energy comes for free. In@udiaking care of the ESI is a new
design consideration, and the time-correlated batteryggngynamics poses another challenge.

B. Contributions

In this paper, we will investigate MEC systems with EH desi@nd develop an effective

dynamic computation offloading algorithm. Our major cdmitions are summarized as follows:

« We consider an EH device served by an MEC server, where theuation tasks can
be executed locally at the device or be offloaded to the ME@esdor cloud executi

2Causal SI' refers to the case that, at any time instant, oinéy past and current Sl is known, while non-causal SI means
that the future Sl is also available.

3We use “local execution” and “mobile execution” interchaagly in this paper.

41t is worthwhile to point out that powering mobile devicesNIEC systems with wireless energy harvesting was proposed in
[26], where the harvested energy is radiated from a hybrigss point and fully controllable. This is different fronmethystem

considered in this paper where the EH process is random atahtrollable.



An execution cost that incorporates the execution delaytaskl failure is adopted as the
performance metric, while DVFS and power control are adbpte optimize the mobile
execution process and data transmission for computatitoading, respectively.

« Theexecution cost minimizatiofeCM) problem, which is an intractable high-dimensional
Markov decision problem, is formulated assuming causabft, a low-complexity online
L yapunovoptimization-basedlynamic computationoffloading (LODCO) algorithm is pro-
posed. In each time slot, the system operation, includiegoffioading decision, the CPU-
cycle frequencies for mobile execution, and the transmitggdor computation offloading,
only depends on the optimal solution of a deterministic mation problem, which can
be obtained either in closed form or by bisection search.

« We identify a non-decreasing property of the scheduled Ctle frequencies (the transmit
power) with respect to the battery energy level, which shihatsa larger amount of available
energy leads to a shorter execution delay for mobile exacUtMEC server execution).
Performance analysis for the LODCO algorithm is also cotetliclt is shown that the
proposed algorithm can achieve asymptotically optimafgserance of the ECM problem
by tuning a two-tuple control parameters. Moreover, it do@sequire statistical information
of the involved stochastic processes, including the coatput task request, the wireless
channel, and EH processes, which makes it applicable evengredictable environments.

« Simulation results are provided to verify the theoretiaadlgsis, especially the asymptotic
optimality of the LODCO algorithm. Moreover, the effecthass of the proposed policy is
demonstrated by comparisons with three benchmark policggsgreedy harvested energy
allocation. It is shown that the LODCO algorithm not only estes significant performance
improvement in terms of execution cost, but also effecyivedduces task failure.

The organization of this paper is as follows. In Section Ig wtroduce the system model.
The ECM problem is formulated in Section Ill. The LODCO aligom for the ECM problem
is proposed in Section IV and its performance analysis iglgoted in Section V. We show the
simulation results in Section VI and conclude this paperegct®n VII.

II. SYSTEM MODEL

In this section, we will introduce the system model studiedhis paper, i.e., a mobile-edge
computing (MEC) system with an EH device. Both the compatathodel and energy harvesting
model will be discussed.



A. Mobile-edge Computing Systems with EH Devices

Computing task input

EH mobile device

Fig. 1. A mobile-edge computing system with an EH mobile devi

We consider an MEC system consisting of a mobile device anflB@ server as shown in
Fig.[. In particular, the mobile device is equipped with &h E&omponent and powered purely
by the harvested renewable energy. The MEC server, whicll &@ua small data center managed
by the telecom operator, is located at a distancéd aofeters away and can be accessed by the
mobile device through the wireless channel. The mobileadeid associated with a system-level
clone at the MEC server, namely, the cloud clone, which ruwistaal machine and can execute
the computation tasks on behalf of the mobile device [16].08ipading the computation tasks
for MEC, the computation experience can be improved signifly [4]—[6].

We assume that time is slotted, and denote the time slotHeaigdl the time slot index set
by 7 and7T £ {0, 1,---}, respectively. The wireless channel is assumed to be imdene and
identically distributed (i.i.d.) block fading, i.e., thdéa@nnel remains static within each time slot,
but varies among different time slots. Denote the channelepgain at theth time slot ash!,
andh! ~ Fy (z),t € T, where Fiy (z) is the cumulative distribution function (CDF) af. For
ease of reference, we list the key notations of our systemeiriadTable[].

B. Computation Model

We useA (L, ;) to represent a computation task, whergin bits) is the input size of the
task, andr, is the execution deadline, i.e., if it is decided that talsk, 7,;) is to be executed, it
should be completed within timg. The computation tasks requested by the applications mgnni
at the mobile device are modeled as an i.i.d. Bernoulli gsc8pecifically, at the beginning of

each time slot, a computation taslk(L, 7,;) is requested with probability, and with probability



TABLE |
SUMMARY OF KEY NOTATIONS

Notation Description

d Distance between the mobile device and the MEC server

T Index set of the time slots

ht Channel power gain from the mobile device to the MEC servamie slot¢
A(L,Tq) Computation task withl bits input and deadline,

{I}} Computation mode indicators at time skot

¢t Task arrival indicator at time slat

X (W) Number of CPU cycles required to process one bit task indut(, 7))
{fiy Scheduled CPU-cycle frequencies for local execution a¢ titot ¢

pt Transmit power for computation offloading at time siot

fEPU (™ Maximum allowable CPU-cycle frequency (transmit power)

D! e (Diever)  Execution delay of local execution (MEC server executiahjime slott

E! obie (Blover)  Energy consumption of local execution (MEC server exeritiat time slott

e’ (EY) Harvested (harvestable) energy at time glot
By Maximum value ofE%;

B! Battery energy level at the beginning of time siot
10} The weight of the task dropping cost

1 — p, there is no request. Denofé = 1 if a computation task is requested at ttie time slot
and¢’ = 0 if otherwise, i.e.P((* =1) =1-P (" =0) = p,t € T. We focus on delay-sensitive
applications with execution deadline less than the time Islogth, i.e.,7; < 7 [12]-[14], [17],
[27], and assume no buffer is available for queueing the caatjn requests.

Each computation task can either be executed locally at thglendevice, or be offloaded to
and executed by the MEC server. It may also happen that nethleese two computation modes
is feasible, e.g., when energy is insufficient at the mobéeiak, and hence the computation
task will be dropped. Denotg < {0, 1} with j = {m,s,d} as the computation mode indicators,
where I! = 1 and I! = 1 indicate that the computation task requested in tthetime slot
is executed at the mobile device and offloaded to the MEC serespectively, whilel} = 1
means the computation task is dropped. Thus, the compuatatmle indicators should satisfy

the following operation constraint:
L+l +Ii=1teT. (1)

Local Executing Model: The number of CPU cycles required to process one bit input is
denoted asX, which varies from different applications and can be oladithrough off-line



measurement_[28]. In other wordg/ = LX CPU cycles are needed in order to successfully
execute taski (L, ;). The frequencies scheduled for tHé CPU cycles in theth time slot are
denoted asf!,w = 1,---, W, which can be implemented by adjusting the chip voltage with
DVFS techniques [29]. As a result, the delay for executing ¢tbmputation task requested in

the tth time slot locally at the mobile device can be expressed as
w

Dinerie = 2 (fi) - 2)
w=1
Accordingly, the energy consumption for local executiontbg mobile device is given by
i 2
Efnobilc = ’%Z (ffu) ) (3)
w=1

whererx is the effective switched capacitance that depends on tipeacbhitecture([15]. More-
over, we assume the CPU-cycle frequencies are constraing@d, i.e., fL < fEgs, V.

Mobile-edge Executing Model:In order to offload the computation task for MEC, the input
bits of A (L, ;) should be transmitted to the MEC server. We assume sufficemputation
resource, e.g., a high-speed multi-core CPU, is availableeaMEC server, and thus ignore its
execution delay([16],.[18],[26]. It is further assumed thia¢ output of the computation is of
small size so the transmission delay for feedback is ndaigiDenote the transmit power as
p', which should be less than the maximum transmit pow&t. According to the Shannon-
Hartley formula, the achievable rate in ttth time slot is given by- (2!, p') = wlog, (1 + @)
wherew is the system bandwidth andis the noise power at the receiver. Consequently, if the
computation task is executed by the MEC server, the exatu@ay equals the transmission
delay for the input bits, i.e., .

Dirver = r () (4)

an@ the energy consumed by the mobile device is given by
. L

E' =pt.Df =pt.—
P P ph)

server server

(5)

*When the execution delay in the MEC server is non-negligitiie proposed algorithm can still be applied by modifying th
expression ofDf . ve; in @) asDiyer = L/7 (ht, pt) + Tserver, Wheretserver denotes the execution delay in the MEC server.



C. Energy Harvesting Model

The EH process is modeled as successive energy packelsarmigaF?; units of energy arrive
at the mobile device at the beginning of tti& time slot. We assumé&’,’s are i.i.d. among
different time slots with the maximum value @}**. Although the i.i.d. model is simple, it
captures the stochastic and intermittent nature of thenrale energy processes [22], [25], [30].
In each time slot, part of the arrived energy, denoted’asatisfying

0<e'<EL teT, (6)

will be harvested and stored in a battery, and it will be aldé for either local execution
or computation offloading starting from the next time slote Wtart by assuming that the
battery capacity is sufficiently large. Later we will showathoy picking the values oé'’s,
the battery energy level is deterministically upper-baohdinder the proposed computation
offloading policy, and thus we only need a finite-capacitytdrgtin actual implementation. More
importantly, includinge'’s as optimization variables facilitates the derivatiord gserformance
analysis of the proposed algorithm. Similar techniqueseveetopted in previous studies, such as
[22], [25] and [30]. Denote the battery energy level at thgibeing of time slott as B*. Without
loss of generality, we assunig’ = 0 and B! < +oco,t € T. In this paper, energy consumed for
purposes other than local computation and transmissiognisred for simplicity, while more
general energy models can be handled by the proposed algowith minor modification.
Denote the energy consumed by the mobile device in timef de€ (I, f*, p'), which depends
on the selected computation mode, scheduled CPU-cycledreges and transmit power, and
can be expressed as

EI' f'p") = L Elagpite + 1L Elorvers (7)

subject to the following energy causality constraint:
E(I' f'.p') <B' < +oo,t € T. (8)
Thus, the battery energy level evolves according to theetg equation:

B*Y =B —&(I', f',p') + e teT. 9)

®We will demonstrate how to adapt the proposed algorithm teengeneral energy models of mobile devices, e.g., by taking

the power consumption of screens and operating systemsaumunt, in Section 1V-A.
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With EH mobile devices, the computation offloading policgide for MEC systems becomes
much more complicated compared to that of conventional laotloud computing systems
with battery-powered devices. Specifically, both the ESI &%l need to be handled, and the
temporally correlated battery energy level makes the systecision coupled in different time
slots. Consequently, an optimal computation offloadingtegy should strike a good balance
between the computation performance of the current andduwiamputation tasks.

[1l. PROBLEM FORMULATION

In this section, we will first introduce the performance nogtnamely, the execution cost. The
execution cost minimization (ECM) problem will then be farlated and its unique technical

challenges will be identified.

A. Execution Cost Minimization Problem

Execution delay is one of the key measures for users’ Qok=-{12], [16]-[18], which will
be adopted to optimize the computation offloading policy fioe considered MEC system.
Nevertheless, due to the intermittent and sporadic natfitkeoharvested energy, some of the
requested computation tasks may not be able to be executedaae to be dropped, e.g., due
to lacking of energy for local computation, while the wirgdechannel from the mobile device
to the MEC server is in deep fading, i.e., the input of the sasknnot be delivered. To take this
aspect into consideration, we penalize each dropped taskumt of cost. Thus, we define the
execution cost as the weighted sum of the execution delaytf@dask dropping cost, which

can be expressed by the following formula:
cost' =D (I', f'p") + -1 (" =1,15 =1), (10)
where¢ (in second) is the weight of the task dropping cdst;) is the indicator function, and
D (I, £, p') is given by
D (Ita ftapt) =1 (Ct = 1) ' (Irtannobilo + IgDscrvcr) . (11)
Without loss of generality, we assume that executing a taskessfully is preferred to dropping
a task, i.e.;y < ¢.

If it is decided that a task is to be executed, i&,,= 1 or I’ = 1, it should be completed
before the deadline;. In other words, the following deadline constraint shouédret:

D (Itv ftvpt) < Tdvt eT. (12)
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Consequently, the ECM problem can be formulated as:

1 T-1
Py: min lim —E cost!
It ftpt.et T—o0 T —
st (@, @, @), @2

I' v <CteT (13)
EI' f'p') < Bmat €T (14)
0<p <py™-1(L=1),teT (15)
ngi;gfgazyl(lézl)7w:177I/V7t€7-7 (16)
IL I T e {01, te T, (17)

where [I8) indicates that if there is no computation taskiested, neither mobile execution nor
MEC server execution is feasiblé. {14) is the battery disgihg constraint, i.e., the amount of
battery output energy cannot excegq., in each time slot, which is essential for preventing
the battery from over discharging [30], [31]. The maximurtowhble transmit power and the
maximum CPU-cycle frequency constraints are imposed by b8 [(16), respectively, while

the zero-one indicator constraint for the computation miodiécators is represented by (17).

B. Problem Analysis

In the considered MEC system, the system state is composé#ieabhsk request, the har-
vestable energy, the battery energy level, as well as thanghastate, and the action is the
energy harvesting and the computation offloading decisimiyding the scheduled CPU-cycle
frequencies and the allocated transmit power. It can bekelkethat the allowable action set
depends only on the current system state, and is irrelevihtthe state and action history.
Besides, the objective is the long-term average executisih dhus,P; is a Markov decision
process (MDP) problem. In principlé; can be solved optimally by standard MDP algorithms,
e.g., therelative value iteration algorithnand thelinear programming reformulation approach
[32]. Nevertheless, for both algorithms, we need to usesfistates to characterize the system,
and discretize the feasible action set. For example, if wee Kis= 20 states to quantize the
wireless channel)M = 20 states to characterize the battery energy le¥#l= 5 states to
describe the harvestable energy, and admits 10 transmit power levels and’ = 10 CPU-
cycle frequencies, there atd{ M E = 4000 possible system states in total. For the relative
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value iteration algorithm, this will take a long time to cenge as there will be as many as
L + 1+ F"W feasible actions in some states. For the linear programrfiify reformulation
approach, we need to solve an LP problem VaiftiM/ E x (L + 1+ F") variables, which will
be practically infeasible even for a small valuel®f, e.g.,1000. In addition, it will be difficult

to obtain solution insights with the MDP algorithms as theg based on numerical iteration.
Moreover, quantizing the state and action may lead to sqyefermance degradation, and the
memory requirement for storing the optimal policy will yez Bnother big challenge.

In the next section, we will propose layapunovoptimization-basedlynamic computation

offloading (LODCO) algorithm to solvé®;, which enjoys the following favorable properties:

« There is no need to quantize the system state and feasilbm aeit, and the decision of
the LODCO algorithm within each time slot is of low complgxitn addition, there is no
memory requirement for storing the optimal policy.

« The LODCO algorithm has no prior information requirementtbe channel statistics, the
distribution of the renewable energy process or the contiputéask request process.

« The performance of the LODCO algorithm is controlled by a-twple control parameters.
Theoretically, by adjusting these parameters, the prapafgorithm can behave arbitrarily
close to the optimal performance #%.

« An upper bound of the required battery capacity is obtaimdd¢ch shall provide guidelines

for practical installation of the EH components and storagis.

V. DYNAMIC COMPUTATION OFFLOADING: THE LODCO ALGORITHM

In this section, we will develop the LODCO algorithm to solf#. We will first show an
important property of the optimal CPU-cycle frequenciekjol helps to simplifyP;. In order to
take advantages of Lyapunov optimization, we will introeiicmodified ECM problem to assist
the algorithm design. The LODCO algorithm will be then pregd for the modified problem,
which also provides a feasible solution®. In Section V, we will show that this solution is

asymptotically optimal forP;.

A. The LODCO Algorithm

We first show that the optimal CPU-cycle frequencies of tieCPU cycles scheduled for a

single computation task should be the same, as stated irollogving lemma.
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Lemmal: If a task requested at th&h time slot is being executed locally, the optimal

frequencies of thé) CPU cycles should be the same, i.£.,= ff,w=1,--- W.
Proof: The proof can be obtained by contradiction, which is omifdbrevity. [ |

The property of the optimal CPU-cycle frequencies in Lerhhadicates that we can optimize
a scalarf! instead of d¥-dimensional vectof! for each computation task, which helps to reduce
the number of optimization variables. However, due to thergy causality constraint](8), the
system’s decisions are coupled among different time skdtsch makes the design challenging.
This is a common difficulty for the design of EH systems. We timak by introducing a non-zero
lower bound,E,;,, on the battery output energy at each time slot, such coy@ffect can be
eliminated and the system operations can be optimized koriigg (8) at each time slot. Thus,

we first introduce a modified version &, as

T—1
: i lim = t!
s.t. mv(ﬂ)v@)v(m)_m
ET f1,p") € {0} [Bunin: Emax] £ € T, (18)
where0 < Ei, < En.. Compared tdP;, only a scalarf! needs to be determined for mobile
execution, which preserves optimality according to Leniinard thusD!. .. = W (f*)~' and
E! 0 = Wk (f1)?. Besides, all constraints iR, are retained irP,, and an additional constraint

on the battery output energy is imposed byl (18). Hefieis a tightened version gP,. Denote
the optimal values of?, and P, as EC}, and EC5,, respectively. The following proposition
reveals the relationship betweéiC;, and EC%,, which will later help show the asymptotic
optimality of the proposed algorithm.

Proposition1: The optimal value ofP, is greater than that of;, but smaller than the
optimal value ofP; plus a positive constant (., ), i.e., ECy < ECh, < ECh + v (Ein),
wherev (Ewin) = p [¢ (L=Fu )+ 1, sp - (0— rEmm)}. Here,n = <2m% — 1) oraEL,
B, — WEE]

min min*

= HWSTd_z and g
Proof: Please refer to Appendix A. [ ]
In general, the upper bound in Propositidn 1 is not tight. Eesv, asF.,;, goes to zero,
v (Ewnin) diminishes as shown in the following corollary.
Corollary 1: By letting E.,;, approach zeroEC,, can be made arbitrarily close t©C% ,
i.e., lim v(Eym) =0.

Emin_>0
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Proof: The proof is omitted due to space limitation. [ ]
Propositior L bounds the optimal performanceRafby that of P, while Corollary[1l shows
that the performance of both problems can be made arbjtreloke. Actually, Corollary]1 fits
our intuition, since whett,;;, — 0, P, reduces td?;. However, due to the temporally correlated
battery energy levels, the system’s decisions are timefudgnt, and thus the vanilla version of
Lyapunov optimization techniques, where the allowabléoacsets are i.i.d., cannot be applied
directly. Fortunately, the weighted perturbation methéfdrs an effective solution to circumvent
this issue([3B]. In order to present the algorithm, we firdtrdethe perturbation parameter and
the virtual energy queue at the mobile device, which are titecal elements.
Definition 1: The perturbation parametérfor the EH mobile device is a bounded constant
satisfying
0> Enax + V- Epf, (19)

tx

in the LODCO algorithm with unit ag? - second ™
Definition 2: The virtual energy queué is defined asB' = B! — 0, which is a shifted

whereF,.,. = min{max{xWW (fZ&5)*, prexr}, Emaﬁ, and0 < V < 40 is a control parameter

version of the actual battery energy level at the mobile avi

As will be elaborated later, the proposed algorithm minesizhe weighted sum of the net
harvested energy and the execution cost in each time sldt, weights of the virtual energy
queue lengthB?, and the control paramet&f, respectively, which tends to stabiliz# aroundd
and meanwhile minimize the execution cost. The LODCO alforiis summarized in Algorithm
. In each time slot, the system operation is determined byngpa deterministic per-time slot
problem, which is parameterized by the current system atadewith all constraints ifP, except
the energy causality constraifi (8).

Remark1l: When the power consumption for maintaining the basic opmratat the mobile
device, denoted a$..., IS considered, there will be four computation modes for tihge
slots with ¢* = 1, i.e., mobile executionI{, = 1), MEC server execution/{ = 1), dropping
the task while maintaining the basic operatiod$ € 1), as well as dropping the task and
disabling the basic operationg! (= 1); while for the time slots with(* = 0, two modes exist,

i.e., the basic operations are maintainéf € 1) or disabled {{ = 1). As a result, the energy

’Since the right-hand side df{[19) increases witlip € [r4, +00)), a larger value ofs will result in a large value o), i.e.,

a higher perturbed energy level in the proposed algorithm.
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consumed by the mobile device at ttik time slot can be written a8 (I*, f*, p') = I! E* +

m-~mobile
I'El or + (IL + It + IY) Phasic- We introduce a unit of cost to penalize the interruption of
basic operations, and thus the execution cost can be eggressost’! = D (I, fi,p') + ¢ -
1(¢'=1,I or If =1)+ 1 - 1(If =1), wherey > 0 is the weight of the basic operations
interruption cost. It is worthwhile to note that the frametvof the proposed LODCO algorithm
can be modified for this case, where the major changes lie ®sdalection of the perturbation

parameter) and the solution for the per-time slot problem, and will netdetailed in this paper.

Algorithm 1 The LODCO Algorithm
1: At the beginning of time slot, obtain the task request indicatot, virtual energy queue

length B!, harvestable energi’,, and channel gain’.

2: Decidee!, I', f* andp’ by solving the following deterministic problem:

win B~ E(I' )] 4V [P (I ff) 461 (¢ = 1,1 = 1)

It7pt7ft7et

st. (@), @), @ — [@=).

3: Update the virtual energy queue according[fo (9) and DedimiB.
4: Sett =t + 1.

B. Optimal Computation Offloading in Each Time Slot

In this subsection, we will develop the optimal solution the per-time slot problem, which
consists of two components: the optimal energy harvestiag,to determine!, as well as the
optimal computation offloading decision, i.e., to deterenliy, f* andpt. The results obtained in
this subsection are essential for feasibility verificateord performance analysis of the LODCO
algorithm in Section V.

Optimal Energy Harvesting: It is straightforward to show that the optimal amount of
harvested energy”* can be obtained by solving the following LP problem:

ogrgigr}g . B¢, (20)

and its optimal solution is given by

e = Et - 1{B' < 0}. (21)



16

Optimal Computation Offloading: After decouplinge’ from the objective function, we can

then simplify the per-time slot problem into the followingtomization problenPqg:
Pco Ig}i%t B E (I ) + V(DI fp) + 61 (¢h =1, =1)] o2
s.t. (@), (@) — ([I]).

Denote the feasible action set and the objective functio®@f as F¢, and J&, (I, f, p"),
respectively. For the time slots without computation tasguest, i.e.(’ = 0, there is a single
feasible solution forPco due to [IB), which is given by! = It =0, I} =1, f* = 0, and
p' = 0. Thus, we will focus on the time slots with computation taskuests in the following.
First, we obtain the optimal CPU-cycle frequency for a taskl executed locally at the mobile
device by solving the following optimization problefg:

PuE : H}ltn —Bt kW (ft)2 + V- %
st 0< f1< (23)
W
F <174 (24)
KW (F1)? € [Buins Bunax) + (25)

which is obtained by plugging’, = 1, I! = I} = 0 andp’ = 0 into Pco, and using the fact that
ft > 0 for local execution.[(24) is the execution delay constréantmobile execution, and(25)
is the CPU energy consumption constraint obtained by coimipif4) and[(IB). We denote the
objective function ofPy as Ji (f*). Note that mobile execution is not necessarily feasible due
to limited computation capability of the processing unittla¢ mobile device as indicated by
(23). In the following proposition, we develop the feastigilcondition and the optimal solution
for Pyg given it is feasible.

Proposition2: Py is feasible if and only iff, < fy, where f; = max{ i—W, %} and
fu = min{ ’-‘;—W;c, fmax }- If Pug is feasible, its optimal solution is given by:

fu, Bt200r3t<0,fé>ﬁ]
fr=Qf B <0, fL<fi<fu (26)

f[n Bt<07fé<fln

W=

where f¢ = (_2‘;%) :
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Proof: We first show the feasibility condition. Due to (24, should be no less thai /7,
in order to meet the delay constraint. Besides, since the &Rdgy consumption increases with
ft, the battery output energy constraint can be equivalemysssed a i—W < ft< ER—W
By incorporating[(2B), we rewrite the feasible CPU-cyclequency set ag;, = max{ \/% W/
Ta} < f1 < fu =min{/Bmax £, Be., Pyg is feasible if and only iff, < fy.
Next, we proceed to show the optimality 6{26) wheny, is feasible. WherB* > 0, J. (f*)
decreases withf*, i.e., the minimum value is achieved &y = f,. When B* < 0, J¢ (f*) is
convex with respect tg* as both—B!xIV (f*)* and VIV/f! are convex functions of’. By

taking the first-order derivative of’ (f*) and setting it to zero, we obtain a unique solution

fi= (_2‘;%)5 > 0. If fi < fr, JL (fY) is increasing infr, fu], and thusf®™* = f.; if fi > fu,
JL (f') is decreasing iff;, fu], and thusf™ = fy; otherwise, if f;, < f{ < fu, JL (f') is
decreasing irfif;, ft] and increasing ir{f¢, fu/], and we havef* = f{. u

It can be seen from Propositibh 2 that the optimal CPU-cyrelgifency is chosen by balancing
the cost of the harvested energy and the execution costestitggly, we find that a higher CPU-
cycle frequency, i.e., lower execution delay, can be suppowith a greater amount of available
harvested energy, which is because that the cost of renewaklgy is reduced and more energy
can be used to enhance the user's QoE, as demonstrated ittaGdb

Corollary 2: The optimal CPU-cycle frequency for local executigfi is independent with
the channel gaim!, and non-decreasing with the virtual energy queue lerjth

Proof: Since P\ does not depend olf, the optimal CPU-cycle frequency is independent
with the channel state. A§; and f;; are constants independent with, and /¢ increases with
B! for B* < 0, we can conclude that’* is non-decreasing witt* based on[{26). ]

Next, we will consider the case that the task is executed ®MEC server, where the optimal

transmit power for computation offloading can be obtaineddiying the following optimization

problemPgg:
~ tL L
- min —Bt - —2 Vie——
P H;n 7 (h',p') Ve (ht, pt)
st. 0<ph < phex (27)
L
< 28
) =™ (28)
t
L
b S [Emina Emax] ) (29)

r (ht,p')
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which is obtained by plugging’ = 1, I, = I} = 0 and f* = 0 into Pco, and using the fact that
pt > 0 for computation offloading[[(28) and (29) stand for the exiecudelay constraint and the
battery output energy constraint for MEC, respectively. d#aote the objective function sy
as J! (p'). Due to the wireless fading, it may happen that computatifinagling is infeasible.
In order to derive the feasibility condition and the optimnsalution for Psi given it is feasible,
we first provide the following lemma to facilitate the anadys

Lemma2: Forh >0, g; (h,p) = is an increasing function gf (p > 0) that takes value
from (oIn2 (wh)™", +00).

Proof: The proof is omitted due to space limitation. [ |
Based on Lemma&l2, we combine constrairits] (27)-(29) into aquality and obtain the

T(h p)

feasibility condition forPsg, as demonstrated in the following lemma.
Lemma3: Psg is feasible if and only ifp} < pi,, wherep’ andp}, are defined as

t oLIn2 : oL1In2
t A qu— ’ wht 2 Emin N mln{pgl(ax7pEmax} wWht < Emax
L= Lin2 and Po = Lin2
maX{pL Td) pEmm} Uwhlg < Emin 07 Uwhlg 2 Emax>
(30)

respectively. In[(30)!, . = (2ﬁ — 1) o/h', pl is the unique solution fosL = r (h', p) Ein
given oL1In?2 (u;ht)_1 < Eni, andpf, is the unique solution fopL = r (h',p) Enax given
oLIn?2 (u)ht)_1 < Eax.
Proof: The proof can be obtained based on Lenitha 2, which is omittetrvity. [
We now develop the optimal solution f@sg as specified in the following proposition.
Proposition3: If Pgg is feasible, i.e.p} < pi;, its optimal solution is given by
pl,, B'>0or B' <0,p, <
P = ph, B'<0,p, >l (31)

po, B <0,p1 <pj <1,

Wherepg is the unique solution for equati@(ht,p, Bt> = 0and= (h,p, B) 2 —Blog, (1 +2)-
(U+hp )In2 (V Bp>
Proof: When B* > 0, since both terms in/! (p') are non-increasing with', we have

* » ; R\ A& B
p™* = pk;. When B* < 0, we defineg, (h,p, B) = —r(h—f;) + T(hp and thus

dgs (ht,p, Bt>  —B'log, (1 n %) e (—Btp—i- v) . = (ht,p, Bt)

— t = ~—~. (32
dp wlog; <1 + %) wlog; <1 + %)
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Since% >0, 2 <ht,p, Bt) increases witlp. In addition, as= <ht, 0, Bt) =LV <
and lirll = (ht,p, Bt) = +oo, there exists a uniqug € (0, +o0) satisfying= (ht,pg, Bt> =
p——+o0

0,Vh! > 0. Since the denominator of (82) is positive fof > 0 andp > 0, dgz(}iif’y) <0

for p € (0,p)), i.e., g2 <ht,p, Bt> is decreasing, ané”<h;+ét) > 0 for p € [p}), +o0), i.e.,
7> (ht,p, Bt> is increasing. Consequently, whe® < 0 and p, < p} < p;, J'(p') is non-
increasing inp,, p},) while non-decreasing irp}, p};], and thusp’* = p!; when B* < 0 and
Pt > ph, JL(p') is non-decreasing in the feasible domain, and tpitis= p’ ; otherwise when

B < 0 andp!, < pl, Jt(p') is non-increasing in the feasible domain, we hate= p!,. [
Similar to mobile execution, we find a monotonic behaviorte bptimal transmit power for
computation offloading, as shown in the following corollary
Corollary 3: For a givenh! such thatPsg is feasible, the optimal transmit power for compu-
tation offloadingp’* is non-decreasing witti3".

Proof: Please refer to Appendix B. [ |
Remark2: We can see fron{(31) that the optimal transmit power for campan offloading
depends on both the battery energy level and the channel sta€orollany{3, we show a higher
battery energy level awakes a higher transmit power, ansl itieurs smaller execution latency.
However, the monotonicity of** with respect toh! does not hold. This is due to the battery

output energy constraint, which makes the feasible set ahange withh!.
Based on Proposition 2 and 3, the optimal computation offimpdecision can be obtained
by evaluating the optimal values @co for the three computation modes, i.e., dropping the

task, mobile execution and MEC server execution, which caexplicitly expressed as

<It*7 ft*7pt*> = arg min JCO (It7 ft7pt) ) (33)

(I, ftph)eFto
where Jeo (I', f,p") = Lrg=1Ji, (fY) + 1re=a s (PY) + 1oy o - Vo, and Vg is the value
of Joo (I', f*,p") when a computation task is dropped. Note that wigen= 1 and Ff, =
{([It, = 0,1t =0,I} =1],0,0)}, the computation task has to be droppedPas has only one
feasible solution. It is also worth mentioning that bisectsearch can be applied to obtaih,

pi; andpj, i.e., solvingPco is of low complexity.

V. PERFORMANCEANALYSIS

In this section, we will first prove the feasibility of the LAID algorithm forP,, and the
achievable performance of the proposed algorithm will theranalyzed.
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A. Feasibility

We verify the feasibility of the LODCO algorithm by showinigatt under the optimal solution
for the per-time slot problem, the energy causality comstran (8) is always satisfied, as
demonstrated in the following proposition.

Proposition4: Under the optimal solution for the per-time slot problem,entB! < E o
I'=1,I! =I'=0, f* =0, andp' = 0, and the energy causality constraint i (8) will not be
violated, i.e., the LODCO algorithm is feasible &% (P1).

Proof: When Bt < E,,..., we will show by contradiction that with the optimal comptina
offloading decision¢ (I', f*,p') = 0. Suppose there exists an optimal computation offloading
decision(I**, f**, p™) with either* = 1 or I®* = 1. With this solution, due to the non-zero lower
bound of the battery output energy, i.€.1(18), the valud®f (I'*, f**, p™*) will be no less than
— B! Ein, Which is greater thaiiy ¢ as achieved by the solution with = 1, i.e., (I**, f*, p™*) is
not optimal for the per-time slot problem. Whét > E,..., as L e EI', f',p") = Fuax
E (I, f,p") < BLV(IY, 1, p!) € Flp. Thus, [8) holds unde<r tj;lep i_EO(IjDOCO algorithm. [

Based on the optimal energy harvesting decision and Priopogl, we show the battery
energy level is confined within an interval as shown in théofeing corollary.

Corollary 4: Under the LODCO algorithm, the battery energy level at theévileodevice B!
is confined within[0, 0 + £33 ,Vt € T.

Proof: The lower bound ofB! is straightforward as the energy causality constraint iis no
violated according to Propositidh 4. The upper boundbtan be obtained based on the optimal
energy harvesting if(21): Suppoge< B! < 0 + E%*, sincee™ = 0, we haveB! < B! <
0+ Em>; otherwise, if B! < 6, sincee™ = EY,, we haveB'™! < B! +¢et* < 0+ e* < 0+ EBx,
Consequently, we havB’ € 0,60 + Ey™], vVt € T. |

As will be seen in the next subsection, the bounds of the tyaétieergy level are useful for
deriving the main result on the performance of the proposgarithm. In addition, Corollary14
indicates that, given the size of the available energy g®€s;, we can determine the control
parameteil’ as¢—!- <CB — B — Emax> E.in, WhereC's should be greater thaﬁmaerE};laX
in order to guarante®& > 0. This is instructive for installation of EH and storage srdit the

mobile devices.
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B. Asymptotic Optimality

In this subsection, we will analyze the performance of theDIGZ algorithm, where an
auxiliary optimization problen; will be introduced to bridge the optimal performance7af
and the performance achieved by the proposed algorithns. Wil demonstrate the asymptotic
optimality of the LODCO algorithm fofP; conjointly with Propositior 1.

Firstly, we define the Lyapunov function as

~ 1/7-N2 1 2
AN t _ = t
L(B)=5(B) =5 (B~0)" (34)
Accordingly, the Lyapunov drift function and the Lyapunoxféplus-penalty function can be
expressed as
A (Bt) —E [L (Btﬂ) .y (Bt> \Bt] (35)
and
Av (B') = A(B) +VE[D(I' f.0) +6-1 (¢ = 1,15 =1) |B], (36)
respectively.
In the following lemma, we derive an upper bound foy <Bt>, which will play an important
part throughout the analysis of the LODCO algorithm.

Lemmad4: For arbitrary feasible decision variables I, f* andp® for Py, Ay (Bt> is upper
bounded by

Ay (Bt) < E[Bt [ —& (I 1,0 + V [D (I f1.p") +6-1(¢" = 1,1} =1)] | B"| +C,

“H(Fme)’ (37)
whereC = (£5™) ;(Emax)
Proof: Please refer to Appendix C. .

Note that the terms inside the conditional expectation efupper bound derived in Lemma
[ coincides with the objective function of the per-time gbobblem in the LODCO algorithm.
To facilitate the performance analysis, we define the falhgnauxiliary problempP;:

T—1
Z costt]
t=0

. .1
Pz: min lim —=E
It?ftvptvet T—o0 T

st. ([0), @), (@2 - @S
: 1T_1 t gt |t t
TETOO?;E[E(I,f,p)—e]:O (38)
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In P53, the average harvested energy consumption equals thegavieaavested energy, i.e., the
energy causality constraint iR, is replaced by[(38). Denote the optimal valueTdf as ECY, .
In the following lemma, we will show thaP; is a relaxation ofP,.

Lemmas: Ps is a relaxation ofP,, i.e., EC,, < EC5,.

Proof: The proof can be obtained by showing any feasible solutiorois also feasible

for P3, which is omitted for brevity. [ ]

Besides, in the following lemma, we show the existence oatigtary and randomized policy
[34], where the decisions are i.i.d. among different timesshnd depend only oA, ¢* andh’,
that behaves arbitrarily close to the optimal solutiorRaf meanwhile, the difference between
E[e'] andE [€ (I, f*,p")] is arbitrarily small.

Lemma6: For an arbitraryd > 0, there exists a stationary and randomized policjor Ps,
which decidese™, 1!, 1 and p'™, such that[{1),[{6),[(12)-(18) are met, and the following

inequalities are satisfied:

E[D (I " ") + 0 1(¢' = LI SECH, 4ot eT. )

E [5 (Itl'I’ftH’ptH) _ 6tH] <obteT, (40)

wherep is a scaling constant.
Proof: The proof can be obtained by Theorem 4.5[inl [34], which is tedifor brevity. m
In Section IV, we bounded the optimal performance of the riediECM problemP, with
that of the original ECM problen®,;, while in Lemma.5, we showed the auxiliary problgpy
is a relaxation ofP,. With the assistance of these results, next, we will prodigemain result
in this subsection, which characterizes the worst-cas®mpeance of the LODCO algorithm.
Theoreml1: The execution cost achieved by the proposed LODCO algoritthenoted as
ECLobpco, is upper bounded by
ECropco < ECh + v (Epim) +C - V7L (41)

Proof: Please refer to Appendix D. [ ]
Remark3: Theoren{ll indicates that the execution cost upper bound eandule arbitrarily
tight by lettingl” — +o00, Fnin — 0, that is, the proposed algorithm asymptotically achiehes t

optimal performance of the original design problém However, the optimal performance Bf

is achieved at the price of a higher battery capacity requerg and longer convergence time to
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the optimal performance. This is because that, the battegygy level will be stabilized around
6 under the LODCO algorithm. A&,,;, decreases ov" increasesd increases accordingly, and
it will need a longer time to accumulate the harvested enevhich postpones the arrival of the
system stability and hence delays the convergence. Thuadjmgting the control parameters,
we can balance the system performance and the battery tdpanvergence time. Similar
phenomenon was observed in our previous work [25].

VI. SIMULATION RESULTS

In this section, we will verify the theoretical results dexd in Section V and evaluate the
performance of the proposed LODCO algorithm through siteda. In simulationsF?, is uni-
formly distributed between 0 anBl;;** with the average EH power given i, = £ ()7,
and the channel power gains are exponentially distributiéd mean g,d—*, whereg, = —40
dB is the path-loss constant. In addition= 1072, 7 = ¢ =2 ms,w = 1 MHz, 0 = 10713 W,
P =1W, fE&5 = 1.5 GHz, E.x = 2 mJ, andL = 1000 bits. Besides,X = 5900 cycles per
byte, which corresponds to the workload of processing thgliEimmain page of Wikipedia [28].
Moreover, Py = 12 mW, d = 50 m andr; = 2 ms unless otherwise specified. For comparison,
we introduce three benchmark policies, nameigbile execution with greedy energy allocation
(Mobile Execution (GD)),MEC server execution with greedy energy allocat{MEC Server
Execution (GD)) anddynamic offloading with greedy energy allocati@ynamic offloading
(GD)), which minimize the execution cost at the current tishat. They work as follows:

« Mobile Execution (GD): Compute the maximum feasible CPU-cycle frequencyfjas=
min{f@ﬁﬁ,«/%} when ¢* = 1. If W/fl, < 7;, the computation task will be
executed locally with CPU-cycle frequengy;; otherwise, mobile execution is infeasible
and the task will be dropped. Note that computation offlogdendisabled in this policy.

« MEC Server Execution (GD): When ¢! = 1, compute the maximum feasible trans-
mit power aspy; = min{pi™, pinipe gt f oLIn2 (wh')™" < min{ B!, Epay}, where
Phoin{Bt Eney 1S the unique solution opL = r (h', p) min{B*, Eyax}. If L/r (I, p}y) < 74,
the computation task will be offloaded to the MEC server wimsmit powep!;; otherwise,
MEC server execution is infeasible and the computation vé@koe dropped. Note that the
computation tasks are always offloaded to the MEC serverignpblicy.

« Dynamic Offloading (GD): When(¢* = 1, computef/; andp}; as in the Mobile Execution
(GD) and MEC Server Execution (GD) policies, respectivalyd check if they can meet
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the delay requirement. Then the feasible computation mbdeihcurs smaller execution
delay will be chosen. If neither computation modes is fdasithe computation task will
be dropped.

A. Theoretical Results Verification

(@)

20

Battery energy level
= = = Perturbed energy level
V =16 x 107 J2 - second ™!, Epip, = 0.02 mJ

150

10

sl V =1.0x1077 J? - second?, FErin = 0.02 mJ
; V=10x 10— J7° second ", Epin = 0.04 mJ
0 0.5 1 15 2 25
Time (minutes)
x10™ (b)

T T T T T
= = = Dynamic Offloading (Greedy)
Dynamic Offloading (LODCO)

Battery energy level (mJ)

5

IS

_____________________________________

w

V =1.0x 107 J2 - second ™}, Epin = 0.04 mJ

Average execution cost

o T Se——— Vo= T1.0.x T0"7"J%second” -, Eqin. =.0.02 mJ
j j . V=16x10"%J? - second ', Epin = 0.02 mJ
0 0.5 1 15 2 25 3 35 4 4.5 5

Time (minutes)

Fig. 2. Battery energy level and average execution costive, p = 0.6.

In this subsection, we will verify the feasibility and asytofic optimality of the LODCO
algorithm developed in Propositidnd 4, Corolldry 4, and Theeo[1, respectively. The value of
6 is chosen as the value of the right-hand side[of (19). In [Hig),2he battery energy level is
depicted to demonstrate the feasibility of the LODOC alyoni for P, (P;). First, we observe
that the harvested energy keeps accumulating at the baginand finally stabilizes around the
perturbed energy level. This is due to the fact that in theppsed algorithm the Lyapunov
drift-plus-penalty function is minimized at each time slbtom the curves, with a larger value
of V' or a smaller value oF,,;,, the stabilized energy level becomes higher, which agretts w
the definition of the perturbation parameter[in](19). Alse, see that the energy level is confined
within [0, 0 + E%*¥], which verifies Corollary}4 and confirms that the energy chiyseonstraint
is not violated, i.e., Propositidd 4 holds. The evolutiortred average execution cost with respect
to time is shown in Fid.]12(b). We see that, a larger valu& afr a smaller value of7,;,, results in

a smaller long-term average execution cost. Neverthelbesalgorithm converges more slowly
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to the stable performance. Besides{H,,., V) are properly selected, the proposed algorithm
will achieve significant performance gain compared to thechenark policies.

x10™ (@ (b)
10 18 T T
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—6— Dynamic Offloading (LODCO)
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Fig. 3. Average execution cost and required battery capasitV, p = 0.6 and Emin = 0.02 mJ.

The relationship between the average execution costhejbattery capacity and is shown
in Fig.[3. We see from Fid.3(a) that the execution cost aguevy the proposed algorithm
decreases inversely proportional ¥g and eventually it converges to the optimal valueTf
which verifies the asymptotic optimality developed in Theaokl. However, as shown from Fig.
[B(b), the required battery capacity grows linearly wittsince the value of is linearly increasing
with V. Thus,V should be chosen to balance the achievable performancesrgaemce time and
required battery capacity. For instance, if a battery wiBhmiW capacity is available, we can
chooseV = 1.6 x 10~* J? - second ™! for the LODCO algorithm, and then 74.4%, 51.8% and
46.3% performance gain compared to the Mobile Execution)(MMEC Server Execution (GD)

and Dynamic Offloading (GD) policies, respectively, will bbtained.

B. Performance Evaluation

We will show the effectiveness of the proposed algorithm dedhonstrate the impacts of
various system parameters in this subsection. First, tipaats of the task request probability
p on the system performance, including the execution costatterage completion time of the
executed tasks and the task drop ratio, are illustrated gn[4i We see in Fig. 4(p) that the
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Fig. 4. System performance vs. task arrival probability.

execution cost increases with which is in accordance with our intuition. Besides, the LOD
algorithm achieves significant execution cost reductiomgared to the benchmark policies. In
Fig.[4(b), the average completion time of the executed taskisthe task drop ratio are shown,
We see that the LODCO algorithm achieves a near-zero tagk mtm, while those achieved
by the benchmark policies increase rapidly within terms of the average completion time, the
LODCO algorithm outperforms the benchmark policies wheis small. However, whem is
large, the average completion time achieved by the LODCOrikgn is slightly longer than
that achieved by the MEC Server Execution (GD) policy. Thesom is, in order to minimize the
execution cost, the LODCO algorithm suppresses the tagk iGiio at the expense of a minor
execution delay performance degradation.

The system performance versus the EH rate,Pg, is shown in Figl_b, where the effectiveness
of the LODCO algorithm is again validated. In addition, we ghe execution cost decreases
as the EH rate increases since consuming the renewableyenetgs no cost. Similar to the
execution cost, the task drop ratios achieved by differenlicies decrease with the EH rate.
Interestingly, under the LODCO algorithm, an increase & BH rate does not necessarily
reduce the average completion time, e.g., whesa 0.6 and Py increases front to 7 mW,
the LODCO algorithm has introduced(al ms extra average completion time, but secured a
10% task drop reduction. Since the optimization objectivthe execution cost, eliminating task

drops brings more benefits in terms of system cost when themy®esource is scarce, i.e., the
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Fig. 5. System performance vs. EH rate, the solid lines spoeds tqp = 0.6 and the dash-solid lines correspondgte: 0.4.

harvested energy is insufficient compared to the relatirglgnse computation workload.
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In Fig.[8, we reveal the relationship of between the exeautleadliner; and the system

performance. Asr, decreases, i.e., the computation requirement becomes stramgent, the

execution cost, average completion time and task drop aatieeved by all four policies increase.

It can be seen that when, < 0.4 ms, the execution cost achieved by the Mobile Execution
(GD) policy becomes a constapt), and the task drop ratio is 100%. Meanwhile, the MEC
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Server Execution (GD) and the Dynamic Offloading (GD) pefcconverge. In these scenarios,
the mobile device is not able to conduct any computation leeaf hardware limitation, i.e.,
It < f&E% = 1.5 GHz, and all the computation tasks have to be offloaded to tBE€ Merver for
MEC. The results in Fid. 6(b) confirms the benefits of MEC asiado50% tasks are successfully
executed for; = 0.2 ms even under the greedy offloading policy. Note that for allsvafue of

T4, €.9.,7¢ < 0.8 ms, the average completion time achieved by the LODCO dlguris slightly
longer than those of the other two policies with computatdfioading, but the task drop ratio
is reduced noticeably by more than 20%. This phenomenonmigasito what was observed in
Fig.[4(b), where the LODCO algorithm tends to avoid droppieks by prolonging the average
completion time in order to achieve a minimum execution .cost
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Finally, we show the relationship between the system perdmice andl, i.e., the distance
from the mobile device to the MEC server, in Fid. 7. The perfance of the computation
offloading policies, including the MEC Server Execution (GDynamic offloading (GD) and
the LODCO algorithms, deteriorate @sbecomes large. As can be seen from Fig.]7(a), when
the mobile device is close to the MEC server, the three coatiout offloading policies converge
and greatly outperform the Mobile Execution (GD) policy.dach scenarios, the mobile device
is able to offload the computation tasks to the MEC server waitmall amount of harvested
energy due to small path loss. With a large valuedpk.g.,d = 80 m, offloading the tasks
greedily cannot bring any execution cost reduction conthb#ine Mobile Execution (GD) policy,
while the LODCO algorithm offers more than 40% performaneengFrom Fig[ 7(B), we see
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that although the MEC Server Execution (GD) policy incurs thast completion time for the

executed tasks, its task failure performance sharply degrdn contrast, the proposed LODCO
algorithm achieves a near-zero task drop ratio with an imgutiocompletion time performance

compared to the Mobile Execution (GD) and Dynamic Offloadi@dp) policies.

VIlI. CONCLUSIONS

In this paper, we investigated mobile-edge computing (ME@tems with EH mobile de-
vices. The execution cost, which addresses the executiay @ad task failure, was adopted
as the performance metric. A dynamic computation offloagigicy, namely, the Lyapunov
optimization-based dynamic computation offloading (LOD@@orithm, was then developed. It
is a low-complexity online algorithm and requires littlegagrknowledge. We found the monotonic
properties of the CPU-cycle frequencies (transmit power)rhobile execution (computation
offloading) with respect to the battery energy level, whictcavers the impact of EH to the
system operations. Performance analysis was conductethwduealed the asymptotic optimality
of the proposed algorithm. Simulation results showed thatgroposed LODCO algorithm not
only significantly outperforms the benchmark greedy pe8cin terms of execution cost, but
also reduces computation failures noticeably at an expefnsenor execution delay performance
degradation. Our study provides a viable approach to déstgne MEC systems with renewable
energy-powered devices. It would be interesting to extbegtoposed algorithm to more general
MEC systems with multiple mobile devices, as well as comnsidsource-limited MEC servers.
Another extension is to combine the concepts of wirelessggrteansfer and energy harvesting
by deploying a power beacon co-located with the MEC servehabthe energy deficit incurred

by the renewable energy sources can be compensated by tielledrte radio frequency energy.

APPENDIX
A. Proof for Propositiod 1L

SinceP;, is a tightened version dp;, we havelEC, < ECY, . The other side of the inequality
can be obtained by constructing a feasible solution 7or (denoted as(c’,, Iy, , f,, P'p,))
based on the optimal solution f@? (denoted asel, , It , fp . ph, ): i) If € Ik, fh,,Pb,) €

8For simplicity, we assume the optimal solution By satisfies the property of the optimal CPU-cycle frequeniidsemma

@
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(0, Emin), then the computation task will be dropped in the constdistdution and no harvested

energy will be consumed, i.ewpstl, = ¢; ii) If € (Ih,, fh . Dh,) € [Emin: Emax], the constructed

solution for thetth time slot will be the same as the optimal solution®¢ iii) The EH decision

e, is determined byl = max{BL — & (I, b, Db, ) + €, — Bh + & (I, f5,,p%,) . 0}.
Itis not difficult to showB}, < B}, < +o0, and thus the constructed solution is feasibl@to

If £, > E'

- min’

whereE%, = W37, is the minimum amount of energy required to meet the
deadline constraint for mobile execution, for a time slotwi!, , = 1 and€ (I}, f5 . ph,) €

(0, Emin), the constructed solution incu(® — 7z
A WAE?

min min

) units of extra execution cost in the worst

min

case. Hereyg is the execution delay corresponds AQ;, amount of energy

consumption for mobile execution; otherwisefif;, < E74,, I}, p, = 1 and& (I%l, ff;l,pgpl) €
(0, Emin) is infeasible as the deadline constraint cannot be met.dBssithe probability of
offloading a task to the MEC server successfully with energysamption less thah,,;, is no

greater thariP{wr,log, (1 + h;pt) > L} = 1— Fy (n), wheren £ <2ﬁ — 1) o E-L and the

min’

constructed solution will incur at most units of extra execution cost asst’, > 0. By further

incorporating the task request probabilitywe can obtain the desired result.

B. Proof for Corollary(3

For Bt < 0, since= (ht,pg,ét> — 0, with some manipulations, we have’ - k (h', pl) =
LY. wherek (h,p) = 2 — (hp+ o) log, (1+ 22), and 202 = —hlog, (1 +22) < 0, i.e,
k (h,p) decreases with for p > 0. Denote B! < Bﬁr < 0 and the corresponding solutions for
= <ht,p, Bt) =0 asp)_ andp},_, respectively. Sinc&' k (h',ph ) = Bk (h',ph_) > 0, we
havek (ht,ph ) < k (h',ph_) < 0, i.e., ph, > p,_. Sincep!, andp!, are invariant withB",
according to[(31)p"* is non-decreasing with* for B < 0. Besides, ag'* = pi, when B* > 0,

we can conclude that’* is non-decreasing wittB".

C. Proof for Lemma&l4
By subtractingd at both sides of[{9), we havB'™! = B + ¢! — £ (I*, f*,p'). Squaring both

sides of this equality, we have
~ 2 ~ 2
(Bt-i-l) _ <Bt L€ (Itjft7pt)>
< (Bt)2 +2B1 (e — € (I', ', 1)) + (¢)° + &2 (I, ', ) (42)

< <Bt)2 +2B" (" =& (I', /', 1")) + (EF™) + B
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Dividing both sides of[(42) by2, addingV [D (I, f',p") + ¢-1(¢" = 1,1} = 1)], as well as
taking the expectation conditioned @1, we can obtain the desired result.

D. Proof for Theoreni]l

Since the LODCO algorithm obtains the optimal solution of fier-time slot problem[_(43)
holds, where:ost'* andcost!™ are the execution cost at tih time slot undelI*, f*, p**) and
(rtt, ity respectively. f) is because that policyl is independent of the battery energy
level BY, and () is due to Corollary ¥4 and Lemnia 6.

Ay (Bt) < E{Bt [ —& (I, f*,p")] + V- Costt*|£~3t} +C

< E{Bt [ —& (I, M p™] + V- Costm|§t} +C

B (43)
Y pE [e™ =& (1™, fM p"™) ] + V- E [cost™] + C
(€3
<max{0, E5™} - 00 +V (ECp, + ) + C.
By letting 6 go to zero, we obtain
Av (B') < VEC, + C. (44)

Taking the expectation on both sides bfl(44), summing up tlegualities fort =0,---7 — 1,
dividing by 7" and lettingT" go to infinity, we haveCropco < ECp, + % By further utilizing
Propositior’ L and Lemnid 5, the theorem is proved.
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