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Abstract 

The development of advanced data-driven approaches for building energy 

management is becoming increasingly essential in the era of big data. Machine 

learning techniques have gained great popularity in predictive modeling due to their 

excellence in capturing nonlinear and complicated relationships. However, it is a big 

challenge for building professionals to fully understand the inference mechanism 

learnt and put trust into the prediction made, as the models developed are typically of 

high complexity and low interpretability. To enhance the practical value of advanced 

machine learning techniques in the building field, this study proposes a 

comprehensive methodology to explain and evaluate data-driven building energy 

performance models. The methodology is developed based on the framework of 

interpretable machine learning. It can help building professionals to understand the 

inference mechanism learnt, e.g., why a certain prediction is made and what are the 

supporting and conflicting evidences towards the prediction. A novel metric, i.e., trust, 

is proposed as an alternative approach other than conventional accuracy metrics to 

evaluate model performance. The methodology has been validated based on actual 

building operational data. The results obtained are valuable for the development of 
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intelligent and user-friendly building management systems.  

Keywords: Building energy management; Interpretable machine learning; 

Data-driven models; Building operational performance; Big data analytics. 

 

1. Introduction 

Building operations account for approximately 80-90% of the total energy 

consumption throughout the whole building life-cycle [1]. The energy saving potential 

in building operations is typically large due to the wide existence of improper control 

strategies and operating faults [2]. Conventional approaches to building energy saving 

rely heavily on domain expertise and engineering experience, which may not be 

efficient and flexible for generalization. The recent development of Building 

Automation Systems (BASs) has enabled the real-time monitoring and controls over 

building operations. As a result, massive amounts of building operational data are 

being collected and stored in BASs. It is desired to utilize big data-driven methods to 

discover useful knowledge from building operational data, based on which semi- or 

fully-automated energy conservation measures are developed. 

The unique characteristics of building operational data have imposed great challenges 

for efficient and effective knowledge extraction. Firstly, building operational data are 

large-scale and high-dimensional. Secondly, the underlying relationships among 

building variables are typically nonlinear and have temporal dependencies. Therefore, 

advanced data analytics are needed to ensure the validity and reliability of data 

analysis results. In the past few years, researchers and building professionals have 

made substantial efforts in bridging the knowledge gap between advanced data 

analytics and building energy management [3, 4]. Big data analytics can be generally 

classified into two categories, i.e., supervised and unsupervised learning [5, 6]. 

Supervised learning focuses on developing prediction models, either for regression or 

classification tasks. By contrast, unsupervised learning explores the intrinsic data 

structures, associations and correlations. Previous studies mainly investigated the 

potential of supervised learning in analyzing building operational data [7, 8]. Machine 

learning techniques have been used as the main tools to develop prediction models of 



building cooling or heating load [9, 10], building energy consumption [11, 12], indoor 

environment [13, 14], and system performance indices [15, 16]. To accurately capture 

the complicated relationships between input and output variables, the supervised 

learning techniques adopted are typically of high complexity, such as artificial neural 

networks [17, 18], support vector machines [19, 20] and decision-tree based 

ensembles [21, 22].  

Compared with statistical methods (e.g., multiple linear regression), machine learning 

techniques generally lead to more accurate predictions. Nevertheless, there is an 

intrinsic trade-off between model interpretability and model complexity, e.g., machine 

learning models are “black-boxes” to the users and it is very difficult to understand 

the inference mechanism learnt. Previous studies in the building field mainly focused 

on developing accurate models, while overlooking the model interpretability. It should 

be noted that model interpretability can significantly influence the model applicability 

in practice. Firstly, prediction accuracy alone is not enough to fully justify the validity 

of prediction models. For example, a classification task is to be performed to classify 

the building energy consumption into two levels, i.e., High and Low. If the relative 

frequencies of data at High and Low levels are 95% and 5% respectively, a seemingly 

satisfactory classification accuracy of 95% can be achieved by simply predicting all 

cases as High. However, such model does not present any practical value. Secondly, 

building professionals are typically suspicious towards the prediction results unless 

they can fully understand the model’s inference mechanism. More importantly, what 

building professionals need in practice is not only a single prediction, but also 

explanations on the decision-making process, e.g., why a certain prediction is made 

and what are the supporting and conflicting evidences towards it. Therefore, to fully 

realize the value of advanced machine learning techniques in the building field, it is 

essential to break the trade-off between model complexity and model interpretability.  

Interpretable machine learning is an emerging subject in the field of big data analytics 

[23, 24]. It aims to provide methods and tools to enhance the model interpretability 

without sacrificing the model complexity. Considering the practical difficulties faced 

by building professionals in utilized advanced supervised learning techniques, 



interpretable machine learning is very promising for the development of smart and 

user-friendly building energy management systems. To the best of the authors’ 

knowledge, there is no such methodology available to address the interpretability of 

complicated prediction models in the building industry. In this study, a novel 

methodology is proposed to explain and evaluate data-driven building energy 

performance models. It serves as a solid solution to break the trade-off between model 

complexity and model interpretability. The paper is organized as follows: Section 2 

provides a brief introduction on interpretable machine learning. The research 

methodology is described in Section 3. Research results are presented and analyzed in 

Section 4 and Conclusions are drawn in Section 5.  

 

2. Basics of interpretable machine learning  

2.1 Typical approaches to enhancing model interpretability 

Interpretability refers to the ability to explain in understandable terms to a human [25]. 

The core idea is to provide explanations to the inference mechanisms or the logic of 

the prediction model.  

In general, there are two approaches to enhancing model interpretability [25]. The 

first is to use algorithms with high transparency to create prediction models, e.g., 

linear regression models and decision trees. These models are relatively easy for 

human to interpret. For instance, the coefficient of linear regression models can be 

interpreted as the influence of a certain input variable to the output variable. In terms 

of decision tree models, the variables and their values used for node splitting can well 

describe the inference process. The main drawback of this approach is that the models 

developed are rather simple and hence, the resulting prediction accuracy may not be 

satisfactory.  

The second is to adopt model-agnostic methods to gain insights into the inference 

mechanism learnt for predictions [25]. Model-agnostic interpretability methods can be 

applied to any prediction model, i.e., the explanation process is independent of the 

supervised learning algorithms used. The main advantage is that the users are free to 

use any supervised learning algorithms for predictive modeling. As a result, the data 



mining process is less affected by the trade-off between model accuracy and 

interpretability. As indicated in [26], a desirable model-agnostic interpretability 

system should have three key features: (1) the system is compatible with any 

supervised learning algorithm; (2) the system should not be tied with a certain type of 

explanations, such as linear formulas or rules; (3) the system has the ability to work 

with features in different representations than that used in the model to be explained.  

 

2.2 Global and local model interpretations 

A model can be explained at two levels, i.e., global and local levels. At the global 

level, interpretation is made based on a holistic view of the model architecture and 

parameters. In practice, it is very challenging to achieve accurate global model 

interpretations, especially when there are many correlated input variables [27]. In 

addition, global interpretations cannot explain why a certain prediction is made and 

therefore, they cannot fully justify the practical applicability of prediction models. 

Representative techniques for achieving global interpretations include partial 

dependency test, individual conditional expectations and feature importance [25]. 

Such techniques can be used to describe the influence of an input variable on the 

overall prediction accuracy. By contrast, local interpretations focus on each individual 

observation and investigate why a certain prediction is made for that observation. The 

underlying inference mechanism can be better explained by presenting the supporting 

and conflicting evidences towards a certain prediction. In such a case, domain 

expertise can be used to examine the inference mechanism learnt, which enables an 

alternative way to evaluate the model validity. The general approach to local 

interpretability is to build local surrogate models, where high-transparency algorithms 

are used to simulate the local relationships around that observation [25]. The 

state-of-the-art technique in this field is local interpretable model-agnostic 

explanations [26] and the details are described in the next subsection. 

 

2.3 Local interpretable model-agnostic explanations (LIME) 

LIME aims to explain why a certain prediction is made for an observation and what 



are the supports and conflicts towards the prediction. It is compatible with any 

supervised learning algorithms. The general idea is to develop a surrogate model 

based on interpretable representations. The local surrogate model is locally faithful to 

the complicated model developed. The surrogate models are interpretable models, 

such as linear regression models and decision trees. Previous studies have shown the 

power of LIME in explaining highly complicated black-box models and different data 

types, e.g., text and image data [25, 26]. It is adopted as the basis for this study.  

The general steps of LIME are summarized as follows: (1) A set of permutated 

samples is generated and used to get predictions from the black-box model; (2) For a 

given observation, its proximity to permutated samples are calculated and used as 

weights to represent the relative importance of each permutated sample; (3) The 

permutated data are transformed into interpretable representations, e.g., transforming 

numeric values into categorical values; (4) The interpretable representations are 

recoded and used to reveal the locally stable relationship with prediction outcomes; (5) 

Explanations are obtained by interpreting the local surrogate model developed, e.g., 

the coefficients of linear regression models. A detailed description on LIME can be 

found in [27, 28]. 

 

3. Research methodology 

3.1 Research outline 

This paper aims to develop a unified and data-driven methodology to explain and 

evaluate building energy performance models. As shown in Fig. 1, the methodology 

contains three key steps, covering the topics on developing prediction models, local 

model-agnostic explainers, and knowledge post-mining. The first step is prediction 

model development. Several state-of-the-art supervised learning algorithms are used 

for constructing black-box models. The second step is to develop local 

model-agnostic explainers based on the concept of LIME. The third step is knowledge 

post-mining. It contains three sub-tasks: (1) Perform local explanations; (2) Develop a 

trust metric to automatically evaluate the reliability of individual predictions; (3) 

Apply the trust metric to evaluate the overall model performance. 



 
Fig. 1 Research outline 

 

3.2 Prediction model development 

In this study, five supervised learning techniques are selected for prediction model 

development, i.e., generalized linear models, artificial neural networks, support vector 

machines, random forests and extreme gradient boosting trees. These techniques have 

been widely used for developing prediction models in the building field [29-31].  

Generalized linear models (i.e., denoted as GLM) are developed as the performance 

benchmark, as they are primarily used to capture linear relationships [32]. The other 

four techniques are capable of modeling nonlinear and complicated relationships. The 

multi-layer perceptron (i.e., denoted as MLP) is selected as the architecture for 

developing artificial neural network models. In this study, the activation function and 

the number of hidden neurons at the hidden layers are optimized during model 

training. Support vector machine (i.e., denoted as SVM) is a classic and popular 

machine learning techniques developed in 1995 [33]. It can efficiently solve nonlinear 

problems by using kernel functions. In this study, the C-type support vector machine 

with a Gaussian radial basis kernel function is adopted for model training. The 

complexity parameter C is optimized through cross-validation. A larger C typically 

leads to more accurate predictions, yet with an increasing risk of over-fitting. The 

latter two techniques can be regarded as tree-based ensembles. Random forests (i.e., 



denoted as RF) adopt a parallel way to grow individual tree models and therefore, 

individual trees are independent from each other [34]. In this study, the total tree 

number is set as 500. The tree depth and the number of variables selected for node 

splitting are optimized during model training. The extreme gradient boosting trees 

(i.e., denoted as XGB) use a sequential approach to grow individual tree models. It is 

regarded as one of the most efficient and powerful boosting tree methods [35]. Similar 

to the development of random forests, the total tree number is set as 500. The tree 

depth and the learning rate are optimized during model development. 

 

3.3 Development of local model-agnostic explainer  

As introduced in Section 2.3, the LIME framework contains five main steps and the 

overall performance can be greatly affected by the methods used in each step. 

Considering the unique characteristics of building operational data, specific methods 

are developed to ensure the quality and reliability of local interpretations.  

The methods proposed is depicted in Fig. 2. Firstly, data permutation is performed 

according to a user-define parameter N, which specifies the number of artificial 

observations to be generated. The permutated data is denoted as 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Building 

operational data contain both numeric and categorical variables. In this study, if a 

variable is numeric, random sampling is performed based on the distribution 

identified using kernel density estimation. If a variable is categorical, the relative 

frequency of each possible level in the training data is calculated and used for random 

sampling. The data permutated are then used as inputs for the black-box model to be 

explained. The predictions obtained (i.e., denoted as 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) are used for local 

surrogate model development. 



 

Fig. 2 Key steps in developing local model-agnostic explainers 

 

Secondly, the similarities between permutated data and each observation in the testing 

data are calculated. These similarities are used as weights for developing local 

surrogate models. The rationale behind is that the more similar a permutated sample is 

to a testing observation, the more useful it is in deriving local explanations. In this 

study, the Gower’s dissimilarity coefficient is used as it is compatible with mixed-type 

data. The Gower’s distance is calculated as 𝑑𝑑𝑖𝑖,𝑗𝑗 = 1
𝑝𝑝
∑ 𝑑𝑑𝑖𝑖,𝑗𝑗

𝑓𝑓𝑝𝑝
𝑓𝑓=1 , where 𝑑𝑑𝑖𝑖,𝑗𝑗  is the 

dissimilarity coefficient between the ith and jth observations, p is the total variable 

number, and 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑓𝑓  is the dissimilarity coefficient between the ith and jth observation in 

terms of the fth variable [36]. The 𝑑𝑑𝑖𝑖,𝑗𝑗 ranges from 0 to 1 and can be converted into a 

similarity coefficient by using 1-𝑑𝑑𝑖𝑖,𝑗𝑗. If the fth variable is categorical, then 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑓𝑓  equals 

to 0 if 𝑋𝑋𝑖𝑖
𝑓𝑓 = 𝑋𝑋𝑗𝑗

𝑓𝑓 and 1 otherwise, where X is the data input. If the fth variable is 

numeric, then 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑓𝑓 =

|𝑋𝑋𝑖𝑖
𝑓𝑓−𝑋𝑋𝑗𝑗

𝑓𝑓|

𝑅𝑅𝑓𝑓
 where 𝑅𝑅𝑓𝑓 is the range of the fth variable. 



Thirdly, the data permutated are transformed into interpretable representations and the 

resulting data is denoted as 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 . This step is typically needed for numeric 

variables, as categorical variables can be directly used for interpretation. A 

straightforward approach to numeric data transformation is to discretize the numeric 

data using equal-width or equal-frequency methods. Such approaches are easy to 

implement, yet the resulting representations may have little practical value. In this 

study, a clustering-based method is adopted for data discretization. The k-means 

algorithm is applied to identify the intrinsic clusters in univariate numeric data. The 

data in each cluster are represented as the cluster centroid. The representation errors 

can be calculated based on the total residual sum of squares, i.e., 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖 = ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑘𝑘
𝑖𝑖=1  

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = ∑ (𝑋𝑋𝑝𝑝 − 𝑋𝑋𝚤𝚤� )2𝑖𝑖𝑖𝑖
𝑝𝑝=1 , where 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  is the representation error in the ith 

cluster, 𝑛𝑛𝑖𝑖 is the number of observations in the ith cluster, and 𝑋𝑋𝚤𝚤�  is the cluster 

centroid for the ith cluster. The optimal cluster number is identified by minimizing the 

total representation errors while limiting the cluster complexity, i.e., the number of 

clusters. It can be identified by finding the turning point where the decrease in 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖 

is not significant by adding a new cluster. 

Fourthly, a new data matrix 𝑋𝑋𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟𝑝𝑝  is created by recoding the interpretable 

representations regarding each testing observation. The recoding is performed by 

comparing the interpretable representations in the permutated data and each testing 

observation. Fig. 3 presents an example for the recoding process. In this case, N=3, X1 

and X2 are numeric variables, X3 is categorical and there are two observations in the 

testing data. Numeric variables X1 and X2 are transformed into interpretable 

representations based on the breakpoints of {0,10,20} and {0,25,100} respectively. 

Considering that there are two observations in the testing data, there will be two 

recoded data sets and the values are either 0 or 1. 

Finally, a local surrogate model is developed to describe the locally stable relationship 

between the recoded input data 𝑋𝑋𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑟𝑟𝑝𝑝 and prediction results 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. In this study, 

the elastic net technique is used for linear model development. Elastic net can 

effectively perform feature selection and reduce the negative effect of 



multi-collinearity. To ensure the model performance, the parameter α, which specifies 

the combination of Lasso and Ridge regression, is optimized through cross-validation.  

 

Fig. 3 An example of data transformation and recoding 

 

3.4 Post-mining methods 

The post-mining step contains three sub-tasks. The first is to gain local explanations 

based on local surrogate models. Visualization techniques are used to present the top-k 

model coefficients with the largest absolute values, which represent the primary 

evidences for each prediction. Such visualizations help to provide a straightforward 

impression of the major inference mechanisms used for individual predictions. 

Secondly, a novel metric, i.e., trust, is developed to evaluate the reliability of each 

prediction. It is formulated with the following two considerations: (1) among the top-k 

model coefficients, the larger the number of positive coefficients, the more reliable the 

prediction is; (2) the larger the absolute values of the positive coefficients, the more 

reliable the prediction is, as they represent the strengths of supporting evidences. To 

summarize, the trust value for each prediction is calculated as 𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟 = (1 − 𝑒𝑒−
𝑁𝑁𝑠𝑠+1
𝑁𝑁𝑐𝑐+1) ×



∑ 𝜃𝜃𝑁𝑁𝑠𝑠,𝑖𝑖
𝑁𝑁𝑠𝑠
𝑖𝑖=1

∑ 𝜃𝜃𝑁𝑁𝑠𝑠,𝑖𝑖
𝑁𝑁𝑠𝑠
𝑖𝑖=1 +∑ |𝜃𝜃𝑁𝑁𝑐𝑐,𝑖𝑖|

𝑁𝑁𝑐𝑐
𝑖𝑖=1

, where Ns and Nc represent the numbers of supports and conflicts 

for each prediction, 𝜃𝜃𝑁𝑁𝑠𝑠,𝑖𝑖 and 𝜃𝜃𝑁𝑁𝑐𝑐,𝑖𝑖 refer to the values of the ith positive and negative 

coefficients respectively. More specifically, the first part of the trust metric, i.e., 1 −

𝑒𝑒−
𝑁𝑁𝑠𝑠+1
𝑁𝑁𝑐𝑐+1 , represents the influence of the numbers of supporting and conflicting 

evidences on prediction reliability. The plus-one Laplace smoothing is used to prevent 

the denominator from being zero. This part ranges from 0 to 1, and is closer to 1 with 

the increase of the ratio between the numbers of supports and conflicts. The second 

part, i.e., 
∑ 𝜃𝜃𝑁𝑁𝑠𝑠,𝑖𝑖
𝑁𝑁𝑠𝑠
𝑖𝑖=1

∑ 𝜃𝜃𝑁𝑁𝑠𝑠,𝑖𝑖
𝑁𝑁𝑠𝑠
𝑖𝑖=1 +∑ |𝜃𝜃𝑁𝑁𝑐𝑐,𝑖𝑖|

𝑁𝑁𝑐𝑐
𝑖𝑖=1

, represents the relative strengths of supporting and 

conflicting evidences. It also ranges from 0 to 1, and is closer to 1 when the strengths 

of supporting evidences becomes larger. As a result, the whole trust metric for each 

individual prediction ranges from 0 to 1. The higher the trust value, the more 

trustworthy or reliable the prediction is. It should be mentioned that since 

multiplication operations are used for combining these two effects, the trust values 

calculated can be relatively low. The relative orders of the trust values, rather than 

their absolute values, are more useful for practical applications. For instance, a certain 

proportion can be manually specified as the threshold to automatically identify the 

most unreliable or untrustworthy predictions. 

Thirdly, given the same testing data set, the distributions or the summarizing statistics 

(e.g., mean and median) of trust values can be used to indicate the overall 

performance of different supervised learning algorithms. Similarly, the relative orders 

of the summarizing statistics, rather than their absolute values, should be used for 

performance comparison. 

 

4. Applications on real-world BAS data 

4.1 Description of the building and BAS data 

The data retrieved from an educational building in Hong Kong were adopted for 

analysis. It is a fourteen-story building and consists of classrooms for students, offices 

for university staffs, and a data center for computing devices. The gross floor area is 



around 11,000m2 and 8,500m2 are air-conditioned. The building cooling load is 

handled by a complicated central air conditioning system. Fig. 4 presents the 

schematic of the water-side HVAC system. The chiller plant has a total cooling 

capacity of 6,336 kW. It consists of four water-cooled chillers. Three of them have a 

cooling capacity of 1,932 kW and denoted as Type A, while the other one is denoted as 

Type B with a cooling capacity of 540 kW. The set-point of supplied chilled water 

temperature is 7oC, and the returned chilled water temperature typically ranges from 

11.5oC to 14.5oC according to different chiller sequencing control strategies. The heat 

rejection system contains four cooling towers, i.e., three identical cooling towers with 

two fans and one with a single fan. The supplied condenser water temperature ranges 

from 23oC to 25oC under different cooling tower sequencing control strategies. The 

chilled water is circulated using six constant-speed primary chilled water pumps and 

six variable-speed secondary pumps. The condensing water is circulated using six 

constant-speed water pumps.  

The whole year building operational data in 2015 were retrieved for analysis. The 

collection time interval was 30-minute. The variables can be divided into four general 

categories: (1) time variables (Month, Day, Hour, Minute and Day type); (2) outdoor 

variables (outdoor dry-bulb temperature and relative humidity); (3) operating 

parameters of the chiller plant (e.g., the temperatures and flow-rates of chilled water 

and condenser water, the on-off status of different components); (4) energy related 

variables, such as the total building cooling load (calculated from the chiller water 

flow rate and temperature difference) and the total electricity consumption of the 

chiller plant. The system coefficient of performance (COP) can be calculated based on 

the building cooling load and the total power consumption of the chiller plant. It 

should be mentioned that most of the operating parameters are numeric, while a set of 

variables are categorical variables, e.g., the on-off status of different equipment.  



 

Fig. 4 Schematic of the multi-chiller system 

 

4.2 Prediction models of COP and their accuracy 

In this study, the HVAC water-side system COP was set as the model output. It 

represents the ratio between total cooling load supplied and the total power 

consumption of chillers, water pumps and cooling towers. The prediction problem is 

formulated as a classification problem and the system COP was categorized into two 

levels, i.e., Low and High. A data-driven approach, which is based on the use of 

k-means clustering analysis, was adopted to determine the optimal cut-off value for 

COP discretization.  

To fully capture the variations in system COPs, three types of variables were adopted 

as model inputs. The first describes the outdoor environment and contains the outdoor 

dry-bulb temperature and relative humidity. The second describes the operating 

parameters of major components, e.g., the flow rates, supplied and returned 

temperatures of chilled and condenser water at the main pipe, the chilled water bypass 

flow rate, the supplied and returned temperatures of chilled and condenser water for 

each chiller, and the on-off status of different chillers and water pumps. In addition, 

indoor occupancy has profound influence on building energy performance [37, 38]. 

However, such data are typically not available in practice. Considering that indoor 

occupancy of large buildings is relatively fixed according to time, time variables have 



been successfully used as proxies for data analysis [39, 40]. Therefore, the third type 

of input variables are time variables, e.g., Month, Hour and Day type. 

The overall distribution of system COPs are shown in Fig. 5. The cut-off value, which 

is shown as the red dashed vertical line, was identified using the k-means clustering 

analysis and k was set as two. It should be mentioned that in practice, domain 

expertise can be used to determine the cut-off values. However, data-driven 

approaches are more flexible to use, especially when building operation staffs do not 

have in-depth understandings on the actual building operation conditions.  

In this study, the number of Low COPs is smaller than that of High COPs. The 

prediction task is therefore an imbalanced binary classification problem. In general, 

an imbalanced classification problem is more difficult to deal with, as the prediction 

models developed may lead to biased predictions towards the majority class and 

misleading accuracies [41]. One common practice is to apply special data treatments 

or techniques when the ratio between the majority and minority classes is larger than 

ten to one [42, 43]. There are two main approaches for handling severely imbalanced 

classification problems [44]. The first is the data-level approach, where over-sampling 

and under-sampling techniques are used to reorganize the data. The second is the 

algorithm-level approach, which adopts ensembling methods or cost-sensitive 

learning to avoid biased predictions.  

Considering that the imbalanced ratio in the case study is rather small, i.e., less than 

1.5 and hence, no special treatment is needed for model development [41, 44]. 

Random stratified sampling was used for data partitioning, which ensures similar 

proportions of Low and High COPs in both training and testing data sets. Five 

supervised learning algorithms were then utilized to develop prediction models based 

on training data. The 3-fold cross-validation was used to optimize model parameters. 

The performance in terms of accuracy metrics was evaluated based on the testing data 

set. Three accuracy metrics, i.e., classification accuracy, sensitivity (or true positive 

rate) and specificity (true negative rate), are used to reflect the prediction performance. 

It should be noted that the Low and High COPs are recoded as 0 and 1 for modeling. 

Therefore, the sensitivity refers to the proportion of actual High COPs being correctly 



classified as High, while the specificity refers to the proportion of correctly predicted 

Low COPs out of all actual Low cases. The testing data have 1644 Low and 3334 High 

COPs. The benchmark for classification accuracy is therefore 3334
3334+1644

= 67.0%. It 

can be used as an initial assessment of model performance in terms of classification 

accuracy. For instance, the model developed may not learn meaningful mathematical 

mapping functions if the classification accuracy is close to the benchmark.  

The resulting prediction accuracy are summarized in Table-2. The classification 

accuracies obtained range from 90.5% to 95.4%, which are significantly larger than 

the performance benchmark, i.e., 67.0%. It is observed that the classification accuracy, 

sensitivity and specificity are positively correlated. GLM model has the worst 

performance. This is expected due to its limitation in modeling nonlinear relationships. 

The tree-based ensembles result in the best classification accuracy. Based on the 

accuracy metrics, it is rather confident to conclude that all the models developed can 

well handle the imbalanced classification problem. Global explanation techniques, 

such as the variable importance for tree-based ensembles, can be used to identify the 

most significant input variables for prediction. Nevertheless, the insights obtained are 

rather constrained and they cannot assess the validity of individual predictions.  

 

Table-1 Summary on the categorization of system COPs 

Cluster No. Numerical range Category No. of observations 

1 [0, 2.24) Low 5641 

2 [2.24, 9.8) High 10951 

 

Table-2 Prediction performance in terms of accuracy 

Models Accuracy Sensitivity Specificity 

GLM 0.905 0.922 0.871 

MLP 0.923 0.948 0.873 

SVM 0.930 0.943 0.905 

RF 0.954 0.972 0.916 



XGB 0.953 0.966 0.927 

 

 
Fig. 5 The overall distribution of system COPs 

 

4.3 Assessment of overall prediction model performance based on trust metrics  

As described in Section 3.3, local surrogate models were developed to explain the 

inference mechanism of individual predictions. The number of permutated 

observations, i.e., N, was set as 5,000 to ensure the reliability in developing local 

surrogate models. The k-means clustering algorithm was applied to transform 

numerical variables into categorical variables. The elastic net algorithm was then 

adopted to tackle the potential problems of variable selection and multi-collinearity. 

The number of variables used for interpretation was set as 10. The trust metrics 

proposed in Section 3.4 were calculated for performance evaluation. The summarizing 

statistics of trust values for each prediction model are shown in Table-3 and the 

distributions of trust values are presented in Fig. 6. As described in Section 3.4, the 

trust metric considers both the number of supporting evidences and their strengths. 

Since multiplication operations are used to combine these two effects, the final trust 

values can be relatively low even though each of the two parts has acceptable scores, 

e.g., a final trust value is only 0.49 when both parts have scores of 0.70. It should be 



mentioned that the relative orders of the final trust values, rather than their absolute 

values, are more useful for practical applications.  

In terms of the supervised learning algorithms, it is found out that the predictions 

generated by SVM and MLP models are more reliable in terms of trust metrics. By 

contrast, the trust values of tree-based ensembles are relatively low (especially the RF 

model), even though they have the best prediction performance in terms of accuracy 

metrics. It indicates that the tree-based models may have learnt either some local 

characteristics in the data sets or contradicting rules for inference, which may not be 

helpful for generalization. In such a case, building professionals should investigate the 

inference mechanism for each individual prediction, especially those with low trust 

values. 

Table-3 Prediction performance in terms of trust  

Models Minimum Median Mean Maximum 

GLM 0.079 0.379 0.408 0.965 

MLP 0.085 0.400 0.417 0.910 

SVM 0.076 0.427 0.440 0.916 

RF 0.004 0.338 0.374 0.967 

XGB 0.004 0.355 0.365 1.000 

 

 



Fig. 6 Distributions of trust values for different prediction models 

 

4.3 Evaluation and explanation of individual predictions 

The validity of individual predictions can be assessed based on the trust values. 

Visualization techniques were used to present the top supporting and contradicting 

evidences for each prediction. The supporting and conflicting evidences are shown in 

green and red bars respectively and their intensities are reflected by the bar height (i.e., 

the coefficients of local surrogate model developed). The variables are shown in their 

abbreviations, i.e., WCC refers to the water-cooled chiller, CHW and CDW refer to 

chilled water and condenser water, Main indicates the main pipe, CHWP and CDWP 

represent the chilled water and condenser water pumps, ST and RT represent the 

supplied and returned temperatures.  

Figs. 7 and 8 present the local explanations for the most trustworthy and 

untrustworthy predictions generated by the GLM model respectively. Fig. 7 shows 

that the 2980th testing observation has the most trustworthy prediction. The system 

COP is predicted as High with a trust value of 0.965. The top-5 supporting evidences 

are the returned chilled water temperature, the supplied chilled water temperature, the 

cooling load supplied, the total chilled water flow rate, and the on-off status of 

condenser water pump No. 5. The result meets domain expertise as the intervals 

identified for numerical variables indicate that the whole system was operating at 

relatively high part-load ratios, e.g., the cooling load is in the highest interval. By 

contrast, Fig. 8 shows the 4583th testing observation has the most untrustworthy 

prediction. The prediction made by the GLM model is Low, while there are three 

major contradicting evidences related to the returned chilled water temperature, the 

supplied chilled water temperature and the on-off status of condenser water pump No. 

6. Further investigations show that when the returned chilled water temperature is in 

[13.2oC, 24 oC), 68.5% of the testing observations have High COPs. Approximately 

67.4% of the testing observations have High COPs when the condenser water pump 

No.6 is switched off. 

Figs. 9 and 10 present the most trustworthy and untrustworthy predictions generated 



by the MLP model respectively. The 2614th testing observation is predicted to have a 

High COP with a trust of 0.91. All the top-five evidences are supporting this 

prediction. For instance, the temperature difference between the supplied and returned 

chilled water was larger than 5oC. The cooling load supplied and chilled water flow 

rate were in their largest categories, indicating that the system was operating at 

near-full capacity. By contrast, in Fig. 10, only one out of the top five evidences, i.e., 

the supplied chilled water temperature in [7.98oC, 10.2oC), is supporting the 

prediction of High COP. The cooling load supplied is in the lowest category. Since 

53.7% of the testing instances under this category have Low COPs, it should have 

negative impact in predicting High COP. Similarly, only 32.0% of the testing 

observations have High COPs when the returned condenser water temperature of the 

water-cooled chiller No.1 is between 13.5oC and 22.5oC. The chilled water flow rate 

is in the second lowest category and 60.7% of the testing observations have High 

COPs. Considering that the testing data are unbalanced and 67.0% of the labels are 

High, the chilled water flow rate in this category should has a negative impact on 

predicting High COPs.  

Figs. 11 and 12 describe the local explanations obtained for the most trustworthy and 

untrustworthy predictions generated by the RF model respectively. The cooling load 

has the largest impact in predicting the 514th testing observation to have a Low COP. It 

is in accordance with domain expertise as the cooling load was in its lowest category. 

By contrast, the 4638th testing observation is predicted to have a High COP, even 

though the cooling load was in the lowest category. Such prediction is very suspicious 

and domain expertise should be involved for further investigation. 

 



 

Fig. 7 The most trustworthy prediction generated by the GLM model 

 

 

Fig. 8 The most untrustworthy prediction generated by the GLM model 

 



 

Fig. 9 The most trustworthy prediction generated by the MLP model 

 

 

 

Fig. 10 The most untrustworthy prediction generated by the MLP model 

 



 

Fig. 11 The most trustworthy prediction generated by the RF model 

 

 

Fig. 12 The most untrustworthy prediction generated by the RF model 

 

5. Conclusions 

Predictive modeling is closely related to typical tasks in building energy management, 

such as building energy performance modeling and model-based anomaly detection. 

Conventional analytics, such as physical principle-based and statistical methods, are 

neither efficient nor effective in analyzing large building operational data. As a 

promising solution, advanced machine learning techniques can be used to develop 

more accurate and reliable prediction models. In practice, there are two main 



challenges in fully realizing the potential of advanced machine learning techniques in 

building energy performance modeling. Firstly, there is an intrinsic trade-off between 

model complexity and model interpretability. Machine learning models can provide 

more accurate predictions, yet the inference mechanisms learnt from big data are not 

easy for human interpretation. Secondly, existing studies mainly rely on accuracy 

metrics to evaluate prediction model performance. Such metrics are typically used to 

evaluate model performance from a holistic view. There is a lack of metrics to assess 

the reliability of each individual predictions.  

To tackle the abovementioned challenges, this study proposes a novel methodology to 

explain and evaluate building energy performance models. The methodology is 

developed based on the conceptual framework of local interpretable model-agnostic 

explanations. All the research work was performed using the open-source 

programming language R [45]. Various techniques, such as clustering analysis and 

Gower’s dissimilarity coefficients, are integrated to ensure the quality of data analysis 

results. Local interpretable models are developed to explain the inference mechanisms 

of individual predictions. A novel performance evaluation metric, i.e., trust, is 

developed to quantitively assess the validity of each prediction. 

The methodology has been applied to facilitate the prediction of HVAC system COP 

using real-world building operational data. The results obtained are promising from 

two perspectives. Firstly, the methodology proposed can be used to explain the local 

inference mechanisms on individual predictions, no matter how complicated the 

original prediction model is. It therefore helps to break the trade-off between model 

complexity and model interpretability. Secondly, the trust metric proposed in this 

study can be used as an alternative approach to model performance evaluation. As 

shown in the research results, models with higher prediction accuracies may result in 

less trustworthy predictions. Such kind of insights are especially useful for building 

professionals, as the desired outcomes from advanced analytics are not only a single 

prediction, but also the supporting and conflicting evidences towards the prediction. It 

can help users to better understand the intrinsic data characteristics and identify 

potential reasons for model failure. Future studies will be performed to improve the 



quality of local interpretable models, especially on how to devise interpretable and 

meaningful data representations based on the original data. 
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