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Abstract 

Building operations have evolved to be not only energy-intensive, but also information-

intensive. Advanced data-driven methodologies are urgently needed to facilitate the 

tasks in building energy management. Currently, there are two main bottlenecks in 

analyzing building operational data. Firstly, few methodologies are available to 

represent and analyze data with complicated structures. Conventional data analytics are 

capable of analyzing information stored in a single two-dimensional data table, while 

lacking the ability to handle multi-relational databases. Secondly, it is still challenging 

to visualize the analysis results in a generic and flexible fashion, making it ineffective 

for knowledge interpretations and applications. As a promising solution, graphs can 

integrate and represent various types of information, providing promising approaches 

for the knowledge discovery from massive building operational data. This study 

proposes a novel graph-based methodology to analyze building operational data. The 

methodology consists of various stages and provides solutions for data exploration, 

graph generations, knowledge discovery and post-mining. It has been applied to 

analyze the actual building operational data of a public building in Hong Kong. The 

research results validate the potential of the graph-based methodology in characterizing 

high-level building operation patterns and atypical operations. 
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1. Introduction 

Building operation has two prominent characteristics, i.e., energy-intensive and 

information-intensive. On the one hand, it accounts for 80-90% of the total energy 

consumption across the building life cycle, out of which 20-30% can be saved by 

applying advanced building automation technologies [1, 2]. On the other hand, the wide 

adoption of building automation systems has collected massive amounts of building 

operational data, making it feasible to develop data-driven approaches for building 

energy management. To fully embrace the power of information technologies, 

advanced data-driven methodologies are urgently needed to facilitate the decision-

making during building operations.  

To enhance the efficiency and effectiveness in utilizing massive amounts of building 

operational data, researchers have adopted various data mining techniques as the 

analysis tools. Relevant studies can be broadly classified into two types, i.e., supervised 

and unsupervised data mining-based studies. The first adopts supervised data mining to 

discover predictive knowledge, which describe the underlying relationships between 

input and output variables, are used as knowledge [3, 4]. The output variables were 

typically set as the building cooling or heating loads [5], electricity power 

consumptions [6], system performance indices [7, 8] and indoor environments [9, 10]. 

Existing studies in the building field mainly applied single model-based methods for 

model development [11]. The most widely used supervised learning techniques include 

artificial neural networks [12] and support vector machines [13]. Ensemble learning, 

which generates predictions based on a set of base models, has been utilized to further 

enhance the prediction performance [14]. The tree-based ensemble learning techniques, 

such as gradient boosting trees and random forests, have proved to be very useful for 

improving prediction accuracies [15]. Considering that building operational data are in 

essence time series data with high complexity, emerging data analytics, such as deep 
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autoencoders [16], deep recurrent networks [17] and generative adversarial networks 

[16, 18], have been used to optimize the overall process of predictive modelling. The 

predictive knowledge discovered is represented as predictive models, which serve as 

the basis for model-based fault detection and control optimization [19, 20]. The second 

adopts unsupervised data mining techniques to discover descriptive knowledge from 

building operational data [21, 22]. Clustering analysis has been widely applied to 

identify the intrinsic data structures or clusters [23, 24]. It has been typically used as a 

data pre-processing tool, as the clustering results are helpful to divide the operational 

data into different groups for separate analyses [25]. Association rule mining has gained 

its popularity in discovering associations among building variables [26, 27]. 

Conventional association rule mining algorithms, such as Apriori and FP-growth, are 

only capable of discovering static associations among categorical variables [28]. To 

overcome these limitations, researchers have explored the use of quantitative 

association rule mining [29], sequential pattern mining [30, 31] and gradual rule mining 

[32] in analyzing building operational data. The descriptive knowledge discovered can 

be used to describe the dynamic associations among building variables and has been 

successfully used to develop energy conservation measures [21, 22].  

Despite encouraging results obtained, there are two bottlenecks in analyzing massive 

building operational data. Firstly, the above-mentioned data mining techniques are only 

compatible with building information stored in a single two-dimensional data table. 

Such data format typically uses columns to represent variables and rows to represent 

time steps. In such a case, the knowledge discovered cannot represent multi-level 

information, e.g., the spatial correlation and hierarchical structures among different 

building services components. Secondly, it is still challenging to visualize the data 

analysis results in a generic and flexible fashion. For the ease of human interpretation, 

specific post-mining and visualization methods are urgently needed to transform the 

raw data analysis results into interpretable insights. It can be foreseen that building 

operational data will become more diverse and complex due to the enrichment in the 
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types of information that can be collected, e.g., temporal and spatial information. 

Advanced data analytics are therefore needed to ensure the mining efficiency and 

effectiveness, while providing generic and flexible solutions for insight interpretations 

and applications. 

To tackle the above-mentioned bottlenecks, this study proposes a novel graph-based 

methodology to analyze building operational data. Graphs can represent a broad 

spectrum of information which takes various formats ranging from traditional vectors 

to time-series, spatial information, hierarchical structures and etc. It has the ability to 

integrate and represent complicated interactions among building variables and therefore, 

providing a promising approach for insight extractions. This study attempts to 

investigate the potential of graph data and graph mining techniques in the building field. 

A graph-based methodology is proposed to analyze building operational data. It consists 

of various stages and provides solutions for data exploration, graph generations, 

knowledge discovery and post-mining. The paper is organized as follows. Section 2 

provides the theoretical background. Section 3 describes the research methodology. The 

case study is shown in Section 4 and conclusions are drawn in Section 5. 

2. Theoretical background 

2.1 Basics on graph data 

Graph is one of the most generic, natural and interpretable formats for information 

representations. It is regarded as one of the most widely used formats for representing 

complicated and multi-relational data [33]. A graph G consists of a set of vertices (or 

nodes) denoted as V(G) and a set of edges (or links) denoted as E(G). A graph S is a 

subgraph of graph G if V(S)⊆V(G) and E(S)⊆E(G). A vertex usually represents an entity, 

while the edges describe the relationships among vertices. Graphs can be either directed 

or undirected, depending on whether the edges have directions or not. Graphs can 

provide great flexibility for knowledge discovery as users can readily design and 

manipulate graph layouts for integrating and representing various types of information, 

ranging from vector data to time series, spatial information and hierarchical structures. 
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An example is given to illustrate the potential of graphs for information integrations 

and representations. Table-1 presents the power consumptions of a chiller and a cooling 

tower at time T1 and T2. Table-2 records the spatial location of these two components, 

i.e., one in basement and the other on rooftop. It is not easy to integrate these two tables 

into one without information loss, as there are two types of information, e.g., temporal 

and spatial information. By contrast, a graph can be readily designed for information 

integrations as shown in Fig. 1. The top 2 vertices represent the temporal information 

and are labelled as “T1” and “T2” respectively. The edge connecting these two vertices 

are labelled as “dT=1”, which indicates the temporal difference. Each of the top 2 

vertices is connected with two vertices labelled as “Chiller” and “CT”. The power 

consumptions are encoded as edge labels. The bottom two vertices stand for the spatial 

information. It should be noted that graphs are highly flexible and different graph 

layouts can be used to represent the same piece of information. 

Table-1 The chiller and cooling tower power consumptions 

Time/Power Chiller Cooling tower 

T1 Low Low 

T2 High High 

 

Table-2 The chiller and cooling tower locations 

Component Location 

Chiller Basement 

Cooling tower Rooftop 
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Fig. 1 The graph for information integration and representation 

2.2 A brief overview of graph mining techniques  

Graph mining aims to extract insightful and actionable knowledge from graphs. It can 

be regarded as a specialization of data mining, where specific techniques are needed to 

handle graph data other than tabular data [34]. Various graph mining techniques have 

been proposed to extract predictive and descriptive knowledge from graphs. In terms 

of graph-based predictive modelling, there are two main tasks, i.e., link prediction and 

graph classification. Link prediction aims to predict whether there will be a link 

between two vertices or not [35]. It has been widely used in the field of social network 

analyses to infer the relationships among people. The main idea is to develop a logistic 

model based on the proximities of different vertices, which are calculated based on the 

graph topology [35]. The second is graph classification, which aims to predict a label 

to a graph based on its structures. For instance, the molecular structure of various 

chemical compounds can be naturally represented as graphs and a graph-based 

classification model can be developed to predict if the chemical compound is toxic or 

not [36]. The main technical challenge is to accurately evaluate proximities among 

graphs, which also serves as the basis for graph-based descriptive knowledge discovery, 

e.g., graph clustering and graph-based anomaly detection [36]. 

Conventional data representations usually use a feature vector to describe an 

observation and therefore, the proximities between two observations can be calculated 

using distance measures, e.g., the Euclidean distance. Due to the intrinsic structures of 

graph data, specific measures are needed for proximity evaluation. There are two 
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general approaches for graph-based proximity evaluation. The first is to calculate 

graph-level indices as features for each graph and conventional distance measures can 

then be applied for proximity evaluation. The most commonly used graph-level indices 

include the total number of vertices and edges, the mean degree of graph vertices, the 

graph density and graph diameter [37]. Graph-level indices are easy for implementation, 

yet they cannot accurately describe the graph structures and are not applicable for 

labelled graphs. The other approach is based on the concept of subgraph mining [38]. 

In such a case, the proximity between two graphs is evaluated based on their common 

subgraphs or substructures. Such approach is compatible with labeled graphs and can 

better preserve the topological characteristics of graphs. Similar to frequent itemset 

mining in analyzing tabular data, frequent subgraph mining is the essence for most 

graph data analytics [39]. The concept of frequent subgraph mining is introduced in the 

following section. 

2.3 Frequent subgraph mining  

Frequent subgraph mining (FSM) aims to discover frequent subgraphs whose 

occurrences or frequencies exceed a minimum threshold (i.e., minimum support 

threshold). FSM typically works with undirected and labelled graphs. The frequent 

subgraphs discovered can be directly used to represent the frequent patterns, e.g., 

finding the common substructures of chemical compounds and identifying frequent 

behavioral patterns of terrorist attacks [39]. They can also be used as the basis for other 

graph mining tasks, such as graph classification and graph clustering [40]. 

In general, FSM algorithms, which take a set of graphs as input, can be classified using 

two criteria, i.e., (1) whether it adopts an exact or inexact search strategy; (2) whether 

the search strategy is breadth-first or depth-first [39]. Inexact search FSM algorithms, 

such as SUBDUE [41] and CREW [42], adopt approximated measures to compare two 

graphs. The mining efficiency is typically higher at the expense of not finding all 

frequent subgraphs. Exact FSM algorithms are more commonly used as they can 

discover all frequent subgraphs. Such algorithms can be further classified based on 
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whether the search strategies is breadth-first or depth-first. The depth-first search 

strategy is typically more computationally efficient, such as MoFa [43], gSpan [44], 

FFSM [45] and GASTON [46]. A recent study compared the performance of these four 

algorithms, indicating that gSpan is better in terms of computation time and memory 

usage [47].  

It should be noted that the number of frequent subgraphs discovered can be very large 

while the majority of them are redundant. A subgraph is redundant if there is a 

supergraph with the same or larger number of appearances (i.e., the support). To 

overcome this challenge, Yan and Han proposed an algorithm called CloseGraph to 

mine closed frequent graphs based on the gSpan algorithm [48]. A subgraph is closed 

if there exists no supergraph with the same or larger supports. It was shown that 

CloseGraph could dramatically reduce the number of redundant subgraphs and enhance 

the mining efficiency. In this study, the CloseGraph is adopted for frequent subgraph 

mining. The algorithm takes a set of graphs as input. A minimum support threshold, 

which is used to evaluate whether a subgraph is frequent or not, should be pre-defined 

for implementations. 

3. Research Methodology 

3.1 Research outline  

The research methodology is developed to tackle challenges associated in analyzing 

massive building operational data. As shown in Fig. 2, it consists of four phases, i.e., 

data exploration, graph generation, knowledge discovery and knowledge post-mining. 

The first phase, i.e., data exploration, aims to reveal the general building operational 

patterns and data structures through data-driven approaches. The insights obtained are 

used as the basis for further analyses. At the second phase, graph generation methods 

are developed to transform relational building operational data into graphs. Compared 

with conventional data formats, graphs are suitable for integrating and representing 

different types of information and therefore, are more promising for high-level 

knowledge discovery and visualization. At the third phase, frequent subgraph mining is 
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adopted to extract statistically significant subgraphs from the graph data set. Post-

mining methods are then developed to transform raw data analysis results into 

applicable insights for building energy management.  

 

Fig. 2 Research outline 

3.2 Data exploration  

Building operational data have two prominent features. Firstly, building operational 

data are in essence time series data. The periodicity is one of the most important 

characteristics of time series and can be used to determine the data formats for further 

analyses. Hence, the first task is to identify the intrinsic periodicities in building 

operational data. Secondly, building operational data are highly complex due to the 

existence of multiple operating modes and the dynamic interactions among various 
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building variables. To enhance the reliability and sensitivity of data analyses, it is 

necessarily to divide the whole data according to different operating modes for separate 

knowledge discovery. Hence, the second task in data exploration is to identify typical 

operating modes for data partitioning. 

More specifically, the spectral density estimation method is adopted to identify the 

intrinsic periodicities in building operational data. The building power consumption is 

selected for analysis as it is one of the major concerns of buildings and can reflect 

typical building operating patterns. The fast Fourier transformation is used to calculate 

the periodogram of the total building power consumption, based on which data 

smoothing is applied using a series of moving average smoothers. The intrinsic 

periodicities can then be discovered by identifying peaks in spectral densities. Once the 

most dominant periodicities in building operations are identified, the time series data 

can be divided into shorter subsequences for detailed analyses.  

The decision tree method is used to identify general building operating modes for data 

partitioning. It is selected due to the high interpretability of the resulting model. Time 

variables (e.g., Year, Month, Day Type and Hour) are selected as model inputs, while 

the total building power consumption is selected as the model output. The resulting 

model is able to describe the general operating modes in terms of time variables and 

the tree-splitting criteria are utilized for data partitioning. It is worth mentioning that 

the time variables are categorical variables with different numbers of possible values, 

e.g., Month has 12 unique values while Hour has 24 unique values. To avoid the 

selection bias during tree model development, the unconditional inference tree 

algorithm [49] is adopted in this study. 

3.3 Graph generation 

In this study, a variable-based method is proposed to transform relational building 

operational data into graphs. The method is developed with two considerations, i.e., to 

minimize the computational burdens of data analysis and ensure the compatibility with 

frequent subgraph mining algorithms. The former requires the number of vertices and 
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edges used for information representation is minimized, while the latter requires the 

graph to be labelled and interconnected (i.e., there is always a path from one vertex to 

another). To meet these requirements, a radiating graph layout and a unique edge 

labelling scheme is developed for graph generation.  

More specifically, a radiating graph layout is designed to preserve the hierarchical 

information among building variables. In this study, each building variable is denoted 

as a vertex. The radiating layout can be used to represent the hierarchical information 

in building services systems. The center vertex represents building-level variables, such 

as the total building cooling load or power consumption. The first outer layer of vertices 

denotes system-level or subsystem-level variables, such as the chiller plant or a space 

location. The second outer layer of vertices denotes the component-level variables, such 

as individual chillers and water pumps. A third outer layer can be developed to represent 

the physical operating parameters of each component, e.g., the supplied and returned 

chilled water temperatures of each individual chiller.  

To describe the interactions among building variables, a unique edge labelling scheme 

is proposed. An intuitive metric to describe the interaction between two variables is the 

pairwise correlation. However, it cannot reflect the absolute values of each variable. 

For instance, a high correlation between two components’ power consumptions cannot 

reflect their actual values, e.g., either Low or High. To tackle these limitations, a three-

step piecewise aggregation method is developed for edge labelling: (1) Transform 

numeric time series subsequences into categorical values using data discretization 

techniques, e.g., equal-width or equal-frequency binning; (2) Divide each subsequence 

into k non-overlapping temporal segments based on the periodicities discovered at the 

data exploration stage; (3) Extract the most frequent interaction modes between two 

variables in each temporal segment. An interaction mode is defined as a character string 

containing the categorical values of both variables. For instance, if variable A is Low 

and variable B is High, the interaction mode is defined as {Low, High}. The interaction 

mode can be further transformed into integers for the ease of notation. Fig. 3 and Table-
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3 present an illustration of edge labelling, assuming that each numeric subsequence is 

divided into three temporal segments and categorized into two levels, i.e., Low and 

High. The edge label is “1-2-1”, indicating that the most frequent interactions are {Low, 

Low}, {Low, High} and {Low, Low} in three temporal segments respectively.  

 

Fig. 3 An illustration of edge labelling 

 

Table-3 An example notation scheme for interaction mode representation 

Inner variable A Outer variable B Interaction mode Notation 

Low Low {Low, Low} 1 

Low High {Low, High} 2 

High Low {High, Low} 3 

High High {High, High} 4 
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3.4 The knowledge post-mining methods 

Once the graph data set is constructed, the frequent subgraph mining is adopted to 

discover frequent subgraphs. The CloseGraph algorithm is selected as it can greatly 

reduce the number of redundant subgraphs. Two post-mining methods are developed to 

ensure the efficiency in knowledge summarization and application, i.e., maximal 

frequent subgraph identification and graph-based anomaly detection.  

Firstly, given a set of frequent subgraph F, a traversal operation is performed to find 

the set of maximal frequent subgraphs M. Each graph in M is then a maximal frequent 

subgraph with no supergraph identified as frequent. The maximal frequent subgraphs 

are used to represent typical operation patterns. 

Secondly, anomaly detection is performed based on the set of maximal frequent 

subgraphs. The general idea is that a graph is more likely to be an anomaly if it differs 

from the frequent subgraphs discovered. Assuming that Y frequent subgraphs are 

discovered based on X graphs, the anomaly detection method will output an anomaly 

score for each of the X graphs. For a given graph Gi, the anomaly score is defined as 

𝐴𝐴𝑖𝑖 = 1
𝑌𝑌
∑ 𝐷𝐷𝑖𝑖,𝑗𝑗

𝑁𝑁𝑠𝑠,𝑗𝑗

𝑌𝑌
𝑗𝑗=1 , where Di,j is the minimal number of differences in vertices and edges 

between Gi and the jth frequent subgraph, Ns,j is the total number of vertices and edges 

in the jth frequent subgraph. Fig. 4 presents an illustration of graph-based anomaly 

detection. The minimal number of differences is two, i.e., one in vertices and one in 

edge labels. Hence, the anomaly score is 2
7
, where 2 is the total number of differences 

and 7 is the total number of vertices and edges in the frequent subgraph.  

 
Fig. 4 An illustration of graph-based anomaly detection 
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4. Mining actual building operational data 

4.1 Building and data descriptions 

The building operational data used in this study were retrieved from a public exhibition 

building in Hong Kong. The building has a total site area of 14,700m2. The majority of 

the site is a landscaped area for public use. An eco-café and a small shop are located in 

the landscaped area. The main component in the site is a 3-storey building with a 

footprint of 1,400m2. It consists of an exhibition area, an eco-home, an eco-office and 

a multi-purpose hall. Several passive design features have been integrated for energy 

saving, such as cross-ventilated layout, high performance glazing, light pipes and earth 

cooling tube. The active systems integrated include high-volume-low-speed fans, high 

temperature cooling system, intelligent lighting management, absorption chiller, 

photovoltaic panels and bio-diesel tri-generation systems. Pre-defined control logics 

have been developed for managing renewable energy, e.g., utilizing daylighting during 

daily operations and controlling photovoltaic panels for electricity generation. The 

estimated energy use for the building and the landscape area is around 116MWh and 

15MWh per year respectively. The major energy generation components are the 

biodiesel tri-generator and PV panels and their estimated energy outputs are 143MWh 

and 87MWh per year respectively. 

A building automation system has been installed to monitor and control the building 

operational performance over various subsystems. A data set with one-year operational 

data was adopted for analysis. The data contain hourly cooling load demands and all 

the power measurements of major space areas or services components. The data set has 

8,304 observations and 38 variables, such as the Year, Month, Day, Hour, Day Type, 

the power consumptions of three water-cooled chillers (WCC-1 to 3), four chilled water 

pumps (CHWP-1 to 4), three condenser water pumps (CDWP-1 to 3), three cooling 

towers (CT-1 to 3), five air-handling units (AHU-1 to 5), one primary air-handling unit 

(PAU), the power consumptions of outdoor landscape lighting (LandLight), the normal 

power and lighting consumptions of the eco-areas (Eco-office and Eco-café), basement 
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area (Base), G/F common area (GF), multi-purpose room (MPR) and mezzanine area 

(Mezz). The open-source software R [50] and its associated packages igraph [51] and 

ggraph [52] were used for graph generations and data visualizations. The software 

ParSeMis was used for frequent subgraph mining [53]. 

4.2 Insights obtained by data exploration 

The non-parametric spectral density estimation method was used to identify intrinsic 

periodicities in total building power consumptions. As shown in Fig. 5, the frequency 

corresponding to the highest spectral density peak is 0.042, indicating a period of 23.8 

(i.e., 1
0.042

 ). Considering that the data were collected at hourly basis, it indicates a 

significant daily periodicity.  

The other task in data exploration is to extract insights for data partitioning, which 

ensures the sensitivity and reliability of in-depth analyses. As described in Section 3.2, 

the decision tree method was used to capture the relationship between the total building 

power consumption and time variables (i.e., Year, Month, Day, Hour, and Day Type). 

The resulting model is shown in Fig. 6. Three variables, i.e., Day Type, Hour and Month 

were automatically selected as the splitting variables. The root node selects the Hour 

as the splitting variable. The splitting criteria are {9 to 19} and the others. Such criteria 

are in accordance with domain expertise, as they correspond to office and non-office 

hours of this building. Node 3 selects the Day Type as the splitting variable. The data 

are partitioned based on whether they were collected on Wednesday and Sundays or 

not. It turns out that the building is closed for exhibition on Wednesday and Sundays 

and therefore, the splitting criteria are in accordance with working and non-working 

days. Nodes 4 and 7 both select the Month as the splitting variable and the splitting 

criteria are in accordance with the hot and cold seasons in Hong Kong.  

The insights obtained were used in three ways. Firstly, the spectral density analysis 

suggests a significant daily periodicity and hence, the building operational data were 

divided into daily subsequences. Secondly, as summarized in Table-4, daily 

subsequences were partitioned into four groups for separate knowledge discovery 
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according to the Month and Day Type. Thirdly, each daily subsequence was divided into 

three temporal segments according to Hour when generating edge labels for graphs, i.e., 

{0 to 8}, {9 to 19} and {20 to 23}. 

 

Fig. 5 Spectrum density estimation for the time series of building cooling load 

 

 
Fig. 6 The decision tree model developed for data exploration 
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Table-4 A summary on data partitioning 

Groups Month Day Type No. of subsequences 

1 {1,2,3,4,11,12} {Mon, Tue, Thu, Fri, Sat} 124 

2 {1,2,3,4,11,12} {Wed, Sun} 49 

3 {5,6,7,8,9,10} {Mon, Tue, Thu, Fri, Sat} 124 

4 {5,6,7,8,9,10} {Wed, Sun} 49 

4.3 Transforming building operational data into daily graphs 

The graph generation method proposed in Section 3.3 was used to transform building 

operational data into daily graphs. The power consumption data for different space 

areas and components were divided into daily subsequences, based on which the 

pairwise high-level temporal interaction modes were extracted for graph generation. 

The graph to be generated has a radiating layout to preserve the hierarchical information 

among building variables. In this study, the center vertex denotes the total building 

cooling load demand. It is connected with system-level vertices, which represent the 

power consumptions of different spaces and HVAC subsystems. The system-level 

vertices are connected with component-level vertices, which represent the power 

consumption of individual HVAC components.  

To create edge labels, the power consumption data were firstly preprocessed using the 

max-min normalization (𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

) and then discretized into three levels, i.e., 

Idle, Low and High. In this study, the power consumption data were categorized as Idle 

if their normalized values are smaller than a threshold, i.e., 0.05. The equal width 

binning method was then applied to generate Lows and Highs based on a cutoff value 

of 0.5. As indicated in Section 4.2, three dominant operation modes can be extracted 

for each daily subsequence according to three temporal segments, i.e., {0 to 8}, {9 to 

19} and {20 to 23}. The pairwise interaction modes between any pair of daily 

subsequences can be created according to the notation scheme shown in Table-5.  

Fig. 7 illustrates an example daily graph generated on July 15, 2013 (Tuesday). The 

center vertex, the system-level vertices and the component-level vertices are shown in 
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red, blue and green respectively. Each vertex represents a building variable and the 

edges are labelled accordingly. For instance, the edge label between the Load and 

Pwr_WCC is 1-5-1, which means that the dominant interaction modes across three 

temporal segments are {Idle, Idle}, {Low, Low} and {Idle, Idle} respectively. Such 

graph has the ability to integrate and represent hierarchical information and temporal 

interactions among building variables. It serves as a new type of information carrier, 

based on which useful insights can be discovered for building energy management.  

Table-5 The notation scheme used for interaction mode representation 

Variable A Variable B Interaction mode Notation 

Idle Idle {Idle, Idle} 1 

Idle Low {Idle, Low} 2 

Idle High {Idle, High} 3 

Low Idle {Low, Idle} 4 

Low Low {Low, Low} 5 

Low High {Low, High} 6 

High Idle {High, Idle} 7 

High Low {High, Low} 8 

High High {High, High} 9 
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Fig. 7 An example daily graph generated on July 16, 2013 (Tuesday) 

4.4 Discovering typical building operational patterns 

As described in Section 4.2, daily graphs were divided into four groups based on Month 

and Day Type for separate analysis. The frequent subgraph mining was applied with a 

minimal support threshold of 40%. As introduced in Section 3.4, a post-mining method 

has been developed to identify maximal frequent subgraphs with the aim of alleviating 

the burden of manual inspection. The numbers of maximal frequent subgraphs 

discovered for each data group are summarized in Table-6. It is observed that the 

numbers of maximal frequent subgraphs discovered are larger during hot seasons and 

working days, while smaller during cold seasons and non-working days. In addition, 

the relative sizes of maximal frequent subgraphs discovered in each data group are 

calculated and visualized in Fig. 8. The relative size is defined as the ratio between the 

size of frequent subgraphs and the complete daily graphs. It is shown that the relative 

sizes of frequent subgraphs in the cold seasons (i.e., Groups 1 and 2) are much larger 

than those in the hot seasons. This is expected as the smaller the cooling loads, the 

fewer variations in the operating conditions of the HVAC system and hence, the sizes 

of frequent subgraphs becomes larger.  

The maximal frequent subgraphs discovered can be used to describe the typical building 
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operational patterns and high-level interactions among building variables. To illustrate, 

Figs. 9 and 10 present examples of frequent subgraphs discovered in Groups 1 and 2. 

It is shown that the total building cooling load is Idle, and the HVAC system is 

completely switched off. The other building variables generally fall into the categories 

of Idle or Low. One noticeable difference is the edge label between Load and Eco-office, 

which is “2-2-2” on working days and “1-1-1” on non-working days in cold seasons. It 

indicates that the Eco-office is vacant during non-working days and hence, its normal 

power and lighting consumptions are categorized as Idle. Figs. 11 and 12 present 

examples of frequent subgraphs discovered in Groups 3 and 4. It is shown that the 

HVAC system is switch-on during office hours. Similarly, the interaction modes 

between Load and Eco-office are different during working and non-working days.  

Table-6 The number of maximal frequent subgraphs discovered 

Groups Month Day Type No. of maximal frequent subgraphs 

1 {1,2,3,4,11,12} {Mon, Tue, Thu, Fri, Sat} 11 

2 {1,2,3,4,11,12} {Wed, Sun} 10 

3 {5,6,7,8,9,10} {Mon, Tue, Thu, Fri, Sat} 23 

4 {5,6,7,8,9,10} {Wed, Sun} 16 

 

 
Fig. 8 The relative sizes of maximal frequent subgraphs in different data groups 
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Fig. 9 An example of maximal frequent subgraph discovered in Group 1 

 

 
Fig. 10 An example of maximal frequent subgraph discovered in Group 2 
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Fig. 11 An example of maximal frequent subgraph discovered in Group 3 

 

 
Fig. 12 An example of maximal frequent subgraph discovered in Group 4 

4.5 Discovering atypical building operational patterns 

As introduced in Section 3.4, a graph-based anomaly detection method has been 

developed for knowledge post-mining. For each daily graph, an anomaly score is 

calculated based on the maximal frequent subgraphs discovered. Such scores can be 
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used to facilitate building operation staffs to quickly identify potential anomalies, while 

atypical operational patterns can be readily presented as graphs for the ease of 

interpretations.  

An example of the anomaly detection results is shown in Fig. 13 and the maximal 

frequent subgraph used for comparison is shown in Fig. 14. The graph vertices and 

edges are colored in green and red, corresponding to matched and non-matched parts. 

The other vertices and edges are colored in grey, indicating that they are not used for 

comparison with regard to the frequent subgraph considered. It is shown that the 

mismatches take place between Pwr_AHU, Pwr_AHU_1, 4 and 5. As shown in Fig. 14, 

the edge labels between the total power consumptions of AHU and power consumptions 

of AHU-1, 4 and 5 should be “1-5-1”, indicating that the dominant interaction modes 

should be {Idle, Idle} during 0 a.m. to 8 a.m., {Low, Low} during 9 a.m. to 7 p.m., and 

{Idle, Idle} during 8 p.m. to 11 p.m. However, as shown in Fig. 13, the interaction 

modes change to {Idle, Idle} during the office hours for AHU-4 and 5, while {Low, 

High} for AHU-1. In such a case, the atypical operation identified is an infrequent but 

normal operation, as it may due to the changes of equipment working schedules. 

 
Fig. 13 Case 1: The daily graph on October 14, 2013 (Monday) 
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Fig. 14 The reference frequent subgraph used for the anomaly detection in Case 1 

Figs. 15 and 16 present another anomaly detection example. It is observed that the 

anomaly comes from the interactions between total building cooling load and the power 

consumption of the basement. Conventionally, the interaction modes across three 

temporal segments should be {Idle, Low}. However, the interaction modes changed to 

{Idle, Idle} in the last temporal segments in Fig. 15. Further investigation reveals that 

the atypical graph represents the building operations on December 26, 2013, which is 

a public holiday in Hong Kong. After consulting with the operation staff, it is found out 

that normally, the lighting in basement should be switched on at non-office hours. It 

was manually switched off on that day as the next day is also a public holiday and there 

was no working plan in that area. 

As shown in Figs. 17 and 18, the daily graph on October 30, 2013 was identified as an 

anomaly due to interactions between Load and LandLight, Pwr_AHU and Pwr_AHU_2. 

More specifically, the normal interaction modes between the total building cooling load 

and landscape lighting should be “2-4-2”, representing {Idle, Low}, {Low, Low} and 

{Idle, Low} respectively. Nevertheless, the interaction mode between 0 a.m. to 8 a.m. 

changed to {Idle, Idle} on October 30, 2013, indicating that there is no landscape 
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lighting at all. After consulting with the building operation staff, it is found that the 

landscape lighting should be automatically switched on from 7 p.m. to 7 a.m. Therefore, 

the anomaly identified might be caused by manual faults or maintenance.  

 
Fig. 15 Case 2: The daily graph on December 26, 2013 (Thursday) 

 
Fig. 16 The reference frequent subgraph used for the anomaly detection in Case 2 
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Fig. 17 Case 3: The daily graph on October 30, 2013 (Wednesday) 

 
Fig. 18 The reference frequent subgraph used for the anomaly detection in Case 3 

5. Conclusions 

Building are becoming increasingly information-intensive. It can be foreseen that more 

types of information will be collected and available for data analysis. Therefore, 

advanced data analytics, which are capable of integrating and representing complicated 
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information, should be developed to fully embrace the era of big data. This study 

proposes a graph-based methodology to integrate, represent and discover high-level 

knowledge from original building operational data. The methodology is developed to 

maximize the data analysis efficiency while minimizing the computational burdens. To 

summarize, a variable-based method is proposed to transform relational building 

operational data into graphs. A radiating layout is adopted to preserve the hierarchical 

information among building variables. The temporal interactions among building 

variables are represented as edge labels. The frequent subgraph mining is adopted to 

discover statistically significant building operation patterns. Specific post-mining 

methods have been proposed for knowledge interpretation, summarization and 

applications. The methodology has been applied to analyze actual building operational 

data retrieved from a public building in Hong Kong. The research results validate the 

potential of graph-based methods in characterizing building operational patterns and 

identifying atypical operations.  

It should be noted that the building operational data analyzed were collected at hourly 

basis. As shown by the spectral density estimation results, such temporal resolution is 

capable of describing interactions with a daily periodicity. In-depth analyses can be 

performed if the data were collected at higher temporal resolutions, e.g., discovering 

the high-level temporal interactions among building variables during the chiller stage-

on or stage-off periods. In such a case, more detailed or accurate interactions among 

building variables can be captured, while at the cost of increasing computational 

burdens. Future studies will be carried out to develop advanced edge labelling schemes 

to balance the trade-off between information loss and computational burdens in 

analyzing building operational data with higher temporal resolutions. 
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