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ABSTRACT: Herein we report a metal-free photocatalytic coupling reaction for the synthesis of structurally and functionally diverse 
N-alkyl hydrazones from α-diazoacetates and N-alkyl hydroxyphthalimide esters. Employing Rose Bengal as photocatalyst with
yellow LEDs irradiation, over 60 N-alkyl hydrazones were synthesized. Fluorescence quenching analysis and deuterium incorporation 
experiments reveal that Hantzsch ester serves as both electron donor and proton source for the reaction. This strategy offers a simple
retrosynthetic disconnection for conventionally inaccessible C(sp3)–rich N-alkyl hydrazones.

The hydrazone (C=N–NH) functional group has found exten-
sive applications in various disciplines including organic syn-
thesis,1 medicinal chemistry2 and supramolecular chemistry.3 
The unique azomethine motif containing a nucleophilic imine / 
amino group and an electrophilic imine carbon center has en-
dowed distinctive physical and chemical properties crucial for 
designing new materials such as covalent organic frameworks,4 
hole-transporting materials5 and molecular switches6. Notably, 
most studies were limited to libraries of (hetero)aryl-substituted 
hydrazones; few studies were designed to examine libraries of 
C(sp3)-rich N-alkyl hydrazones.7 The current lack of synthetic 
routes to access functionally and structurally diverse N-alkyl 
hydrazones severely limits the realization of the full potential 
of this class of molecules. 

While diazo compounds are versatile reagents for metal-car-
bene mediated C–C bond formations,8 we are attracted to some 
studies one the use of diazo compounds for selective C–N bonds 
coupling reactions to afford hydrazones.9 A classic example is 
the Japp-Klingemann reaction, in which aryldiazonium salts re-
act with β-ketoesters or acids to form hydrazones.10 The re-
search groups of Takamura11a,b and Zhao11c independently re-
ported nucleophilic N-alkylation of diazoesters by organolith-
ium and Grignard reagents to afford N-alkyl hydrazones 
(Scheme 1a). Notably, Feng and co-workers developed the cat-
alytic asymmetric α-hydrazonation of ketones with diazoesters 
(Scheme 1b).12 In 2016, Cui and co-workers reported a Fe-cat-
alyzed alkene hydroamination with diazo esters to furnish N-
alkyl hydrazones (Scheme 1c).13 Likewise, Wang and co-work-
ers developed a Cu(I)-catalyzed aminoborylation of alkenes  

Scheme 1. N-Alkyl Hydrazones Synthesis by N-Alkylation 
of Diazo Compounds 
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with diazo esters to produce borylated hydrazones (Scheme 
1d).14 Recently, Nikolaev and co-workers reported 
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photoactivated coupling of 2-diazocyclopentane-1,3-diones 
with THF to form N-alkyl hydrazones (Scheme 1e).15 Despite 
these earlier achievements, direct N-alkylation of diazo com-
pounds are largely limited in its scope. 

Pioneered by Baran’s group,16 alkyl N-hydroxyphthalimide 
esters (NHPI esters) are superior surrogates of carboradicals for 
decarboxylative C–C17 and C–heteroatom18–23 cross coupling 
reactions. NHPI Esters would undergo single-electron reduc-
tion to form radical anions under thermal or photochemical con-
ditions, followed by decarboxylative fragmentation to generate 
alkyl radicals.24 Here we describe a photocatalytic decarboxy-
lative radical cross coupling of alkyl N-hydroxyphthalimide es-
ter with diazoacetates for the synthesis of skeletal and function-
ally diverse N-alkyl hydrazones (Scheme 1f). This photoredox 
cross coupling reaction is highly modular by independently var-
ying the diazo esters and the NHPI ester structures under metal-
free conditions. 
Table 1. Optimization of Reaction: Catalysts, Solvents and 
Additivesa-b  
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N2
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O

+
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DBU (2.3 equiv), CH2Cl2
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entry variation from standard conditions yieldb 

1 none 99 
2 Eosin Y instead of RB 82 
3 Fluorescein instead of RB 88 
4 [Ru(bpy)3]Cl2 instead of RB 99 
5 [Ir(bpy)(ppy)2]PF6 instead of RB 95 
6 CH3OH instead of CH2Cl2 22 
7 DMF instead of CH2Cl2 36 
8 toluene instead of CH2Cl2 <5 
9 iPrNEt2 instead of DBU 88 
10 K2CO3 instead of DBU <5 
11 without base <5 
12 0.1 equiv DBU <5 
13 1.0 equiv DBU 22 
14 0.1 equiv HE 13 
15 1.2 equiv HE 99 
16 22 W yellow LED (585 nm) for 6 h 99 

aReaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), catalyst 
(5.0 mol %), solvent (1.0 mL), additives (2.3 equiv), and 
Hantzsch ester, N2 under 22 W blue (450 nm) at room temper-
ature for 12 h unless otherwise specified. bNMR yield. 

To begin, we treated α-(4-bromophenyl)diazoacetate 1a (0.1 
mmol) with N-cyclopentyl NHPI ester 2a (0.15 mmol), 
Hantzsch ester (1.2 equiv), 1,8-diazabicyclo(5.4.0)undec-7-ene 
(DBU, 2.3 equiv) with Rose Bengal in CH2Cl2 (1.0 mL) at room 
temperature under illumination by 22 W blue LEDs (450 nm) 
for 12 h, and N-cyclopentyl hydrazone 3a was obtained in 99% 
yield (Table 1, entry 1). Performing the reaction using Fluores-
cein and Eosin Y were found to promote the hydrazone for-
mation in 82 – 88% yields (entries 2–3). The analogous reac-
tions employing [Ru(bpy)3]Cl2 and [Ir(ppy)(bpy)2]PF6 as pho-
tocatalysts also gave the desired N-cyclopentyl hydrazone 3a in 
95 – 99% yield (entry 4–5). For the solvent effect, common or-
ganic solvents such as CH3CN, DMF and toluene gave poor 

results (entries 6–8). Evidently, organic bases are critical for ef-
fective hydrazone formation, and DBU (2.3 equiv) 25 seems to 
furnish the best results (3a in 99% yield) compared to those us-
ing iPrNEt2 and K2CO3 as bases (entries 9–10). No 3a formation 
was formed in the absence of bases (entry 11). Regarding to the 
use of DBU; less effective coupling reactions (<5 – 22% prod-
uct yield) were observed when DBU (0.1 and 1.0 equiv) were 
used (entries 12–13). It was found that a stoichiometric amount 
of Hantzsch ester is necessary for complete reaction (entries 14–
15). To our delight, employing a 22 W yellow LEDs produced 
the best results with 99% of 3a formation being achieved in 6 h 
(see Supporting Information for details). 
Table 2. Substrate Scope Study on Diazo Compoundsa-d 

R1 R2

N2

+

R1 R2

N
NH
R3

1
3 − 4

NHPI R3

O

2a

Rose Bengal (5 mol %),
Hantzsch ester (1.2 equiv)

DBU (2.3 equiv),  CH2Cl2, 
22 W yellow LEDs, 6 h

R3 =

O

O

S

iPr

Ph

iPr

Ph CF3

N
NH
R3

S

NBoc

3a, 99%
3b, 98%
3c, 99%
3d, 78%

3g, 87%

3f, 62%
3e, 88%

3l, 86%

3m, 82%

3n, 84%

3o, 70% 3s, 62%

4a, 52% 4b, 85% 4c, 76% 4d, 72% 4e, 69%

4g, 42%c

4h, 33%c

4j, 49%c
4i, 47%c

4f, 42%

A. Variation of Aryl Diazoacetate

CO2Et

N
NH
R3 FG = 4-Br,

FG = 4-F,
FG = 4-CF3

,

FG = 4-NH2
,

FG = 4-H,
FG = 4-OMe,

FG = 4-Me,

FG

3h, 87%FG = 3-Me,
3i, 75%FG = 2-Me,
3j, 71%FG = 2-OMe,

Ph

N
NH
R3

O

O

R4

R4 = Ph

R4 =

R4 =

R4 =

iPr 3p, 69%R4 =

3k, 62%cFG = 2-Cl,6-F,

3q, 78%R4 =

3r, 79%dR4 =

R4 = Et

B. Heterocycles and Alkyl Diazo

R4 CO2R5

N
NH
R3 R4 = Me, R5 = Et,

R4 = Et, R5 = Me,

R4 = C
3H7, R5 = Me,

R4 = Me, R4 = 
tBu,

Ar CO2Me

N
NH
R3

Ar =

 
aReaction conditions: 1 (0.1 mmol), 2 (0.15 mmol), Rose Ben-
gal (5.0 mol %), Hantzsch ester (1.2 equiv) and DBU (2.3 
equiv), in CH2Cl2 (1.0 mL) under 22 W yellow LEDs (585 nm) 
at room temperature for 6 h. bIsolated yield. cNMR yields. d4-
MeOC6H4 instead of Ph on diazo. 

With the optimized conditions in hand, we turned to examine 
the scope of the diazo esters. Diazo esters with electron-donat-
ing (FG = 4-Me, -OMe, -NH2) and -withdrawing (FG = 4-F, -
CF3, -Cl) substituents on the para-position of the aryl groups are 
equally effective coupling partners, and the corresponding hy-
drazones 3a – 3f were obtained in 62 – 99% yields (Table 2A). 
Diazo esters bearing functional groups on other positions such 
as 2-Me (3i), 2-MeO (3j) and 2,6-disubstituted (FG = 2-Cl, 6-
F) (3k) diazo ester reacted successfully to give hydrazones in 
comparable yields (62 – 75%). A series of α-phenyldiazoace-
tates derived from simple aliphatic alcohols reacted with 2a to 
afford 3l – 3p in 69 – 86% yields. Notably, diazoesters bearing 
reactive C=C bonds are also compatible with this reaction fur-
nishing 3q (78%), 3r (79%) and 3s (62%) in good yields. 

Heteroaromatic functions such as thiophenyl (4c: 76%; 4d: 
72%) and indolyl groups (4e: 69%) are compatible with the 



 

coupling reaction (Table 2B). The diazo substrates with a CF3 
group was also found to be effective coupling partners, and the 
corresponding hydrazone 4f was formed in 42% yield. For al-
kyl-substituted diazo derivatives, the corresponding hydrazones 
4g – 4j were formed in ca. 45% yields based on NMR analysis 
of the crude reaction mixture. Attempt to isolate 4g –4j by col-
umn chromatography was futile as the isolated compound read-
ily decomposed.  
Table 3. Substrate Scope Study on NHPI Estersa-e 
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aReaction conditions: 1a (0.1 mmol), 2 (0.15 mmol), Rose Ben-
gal (5.0 mol %), Hantzsch ester (1.2 equiv) and DBU (2.3 
equiv), in CH2Cl2 (1.0 mL) under 22 W yellow LEDs (585 nm) 
at room temperature for 6 h. bIsolated yield. cGram scale: 83%, 
1.4 g. dNMR yield. eAr = Ph, E = CO2Me. 

The synthetic versatility of this reaction is further explored 
with the scope of the NHPI esters (Table 3). With 1a as sub-
strate, we first examined the reactivity of tertiary alkyl radicals 
(Table 3A). Trisubstituted carbon radicals such as tert-butyl and 
2-methylalkyl radicals are effectively coupled to the diazo, and 

the corresponding hydrazones 5a – 5d were furnished in 92 – 
99% yields. A gram-scale reaction has been performed with 1.4 
g of 5a being obtained in 83% yield. The coupling reactions 
with 1-methylcyclohexyl (5e) and 3-noradamantyl (5f) radicals 
are also achieved to afford the corresponding hydrazones in 
73% and 76% yield respectively. 

The coupling reactions employing secondary alkyl radicals 
involving 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, 2-heptyl, 3-pen-
tyl, 3-heptyl and 4-heptyl radicals gave excellent product yields 
(6a – 6h, 76 – 97%) (Table 3B). The desired cyclobutyl- (6i) 
and cyclohexyl- (6j) hydrazones were also formed in 63 – 76% 
yields. 4-Methyl- (6k) and 4-difluoro- (6l) substituents on the 
cyclohexyl- ring are excellent coupling partners for the trans-
formation, and up to 70% yields of the desired hydrazones were 
obtained. 1-Adamantyl- (6m), pyranyl- (6n) and piperidinyl- 
(6o) type radicals are effective for the hydrazones formation (63 
– 70% yields). It is well accepted that primary radicals are less 
accessible than those secondary and tertiary radicals. To our 
pleasure, successful coupling reactions were achieved for the 
primary alkyl radicals (7a – 7e) to give the corresponding hy-
drazones in 52 – 72% yields (Table 3C). 

Coupling reactions of 1a with NHPI esters derived from 
some natural products such as abietic acid (8a) and gemfibrozil 
(8b) gave the corresponding hydrazones in 65 – 69% yields (Ta-
ble 3D). Interestingly, the coupling reaction employing NHPI 
ester derived from citronellic acid produced 8c in 77% yield. 
Presumably, the primary radical (CA´) undergoes spontaneous 
radical addition to the C=C bond to generate a tertiary radical 
(CA´´) prior to the N-alkylation of the 1a. For the reactions with 
N-acetyl amino acids-derived NHPI esters, the expected hydra-
zone products were found to undergo further transformation to 
afford 1,2,4-triazoles 10a – 10d in 62 – 73 % (Table 3E). 1,2,4-
Triazoles are key skeletons of many applicational compounds,26 
which are conventionally prepared by intramolecular cycliza-
tion of N-acyl amidrazones and carboxylic acid derivatives. 
Several copper-catalyzed 1,2,4-triazoles synthesis are known in 
the literature.27 Our protocol offers an alternative approach for 
direct access to this class of molecules under mild conditions. 
Scheme 2. Radical Trap Experiments and Deuterium Iso-
tope Studiesa-b 
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Figure 1. (a) Excitation of the Rose Bengal at wavelength 565 nm resulted in an emission band at λmax = 575 nm. (b) The emission 
intensity of the 575 nm band is dependent only on the [Hantzsch Ester]. (c) The fluorescence quenching of RB by Hantzsch Ester 
display a linear Stern-Volmer plot.

Regarding the mechanism, addition of TEMPO suppressed 
the 3a formation in a concentration dependent manner con-
sistent with a radical-mediated transformation. For instance, 
when 1.5 equiv TEMPO was used, no 3a formation was de-
tected and the TEMPO-trapped radical 2a´ can be detected by 
GC-MS (Scheme 2a). The role of Hantzsch ester has been ex-
amined by deuterium incorporation experiments using a series 
of deuterated Hantzsch esters (Scheme 2b).28 Under the stand-
ard reaction conditions with the 1-d-Hantzsch ester (i.e. N–D 
labelled) as reagent, 24% (3a´) deuterium incorporation was ob-
served on the corresponding hydrazone product. When the 4,4-
d2 Hantzsch ester and 1-d, 4,4-d2 Hantzsch ester derivatives 
were employed, higher levels of deuteration of the hydrazones 
were observed [56% (for 4,4-d2 -HE); and 61% (for 1-d, 4,4-d2 
-HE)]. This result implies that the Hantzsch ester is involved in 
the N–H bond formation for product turnovers. 

Moreover, we performed luminescence quenching experi-
ments of Rose Bengal with NHPI ester 2a, DBU and Hantzsch 
ester. Upon excitation at λmax = 565 nm, the fluorescence inten-
sity at λmax = 575 nm was observed and monitored at various 
quencher concentrations (Figures 1a & 1b). Apparently, only 
Hantzsch ester showed effective luminescence quenching of the 
Rose Bengal in a concentration-dependent manner (Figure 1c). 
This result clearly suggests that the excited state of the Rose 
Bengal is quenched selectively by the Hantzsch ester. 
Scheme 3. Proposed Mechanism 
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Based on the above findings, a plausible mechanism is pro-

posed (Scheme 3). Photoexcitation of the Rose Bengal (RB) 
should generate an excited state RB* [E(RB*/RB-) = +0.81 V 

vs SCE]; and the RB* would react with Hantzsch ester 
[E(HE+/HE) = +0.89 V vs SCE] by single-electron transfer 
(SET) to afford the Rose Bengal radical anion (RB-). The RB- 
[E(RB/RB-) = -0.99 V vs SCE]29 should reduce the NHPI esters 
[E(NHPI/NHPI-) = -1.32 V vs SCE] by SET,30 followed by C–
C bond fragmentation to give alkyl radical R3. The alkyl 
radical would then couple to the terminal nitrogen of the diazo 
compound to give a C(sp3)–N bond. To furnish the hydrazone 
product, the nitrogen-centered radical should undergo 
hydrogen-atom abstraction from the cationic radical Hantzsch 
ester. 

In summary, we have developed a metal-free photocatalytic 
synthesis of structurally and functionally diverse N-alkyl 
hydrazones from α-diazoacetates and alkyl N-
hydroxyphthalimide esters. This photoredox strategy offers a 
simple retrosynthetic disconnection for conventionally 
inaccessible C(sp3)–rich N-alkyl hydrazones that may be of 
interest for designing advanced materials and drug discovery. 
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