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Abstract— This paper presents a theoretical time-domain 
analysis of lightning surge propagation on a multi-stage and 
multi-conductor tower. An extended traveling wave theory 
using electric scalar potential is introduced. The non-TEM wave 
propagation in the tower is characterized by time/positon-
variant transient impedance. The analytical formulas of the 
transient impedance are presented for any position/time in the 
tower, as well as those of the reflection coefficient at a 
discontinuity. The concept of primary and secondary waves is 
introduced to depict the multiple reflections in the tower. It is 
found that the primary current wave attenuates during its 
propagation in the tower, and is corrected by a factor when 
crossing over the discontinuity. A pair of secondary waves are 
generated at the discontinuity, similar to a center-fed dipole. The 
proposed method is applied to evaluate the lightning current in 
a two-stage tower. The result of the proposed method is of high 
consistency with the FDTD result. It is also observed that the 
secondary waves could be neglected if the reflection coefficient 
is small. The traditional transmission line theory could lead to a 
significant error of the current in the tower. 
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I. INTRODUCTION

Transmission towers are of great significance in lightning 
research, as they are the essential part in the analysis of 
lightning surges on overhead power lines [1]-[3]. 
Inappropriate tower modeling may fail to predict the 
flashover rate [4], and lead to incorrect assessment of hazards 
to sensitive loads. On the other hand, the resultant current 
propagating on a tower could be a significant source in the 
evaluation of lightning-induced electromagnetic pulses 
(LEMP) [5]-[6]. The correct current distribution along a 
tower, therefore, is indispensable in lightning transient 
analysis.   

Research work has been carried out extensively to reveal 
the lightning current in the tower using lumped 
representations. Several models has been proposed, including 
the single-line model [4], [7-9], multi-conductor model [10]-
[12], multi-story model [13]-[14]. The simplest 
representation probably is the one with constant surge 
impedance and travel time based on the transmission line (TL) 
theory [4]. Note that, the TL theory introduces forward and 
backward waves along a line as well as the reflection at the 
boundary, which is of great convenience in its application. 
Nevertheless, the TL theory is based on the TEM-mode 
assumption and both the impedance and reflection 
coefficients are constant. This is not in incoincidence with the 

observation results of lightning surges along vertical 
structures. Several expressions of time-variant surge 
impedance at the tower tip have been proposed [33-34]. For 
example, authors in [34] proposed the method for computing 
the time-variant surge impedance for a transmission tower by 
using the vector potential. However, the current is assumed 
uniform along the tower, this is still a TL theory 
approximation. Other authors give both the theoretical and 
experimental studies on the reflection coefficient at the tower 
tip and tower base [17]. It is found that the reflection 
coefficient in a tower is time-variant and dependent on the 
current waveform. However, the analysis method is again 
based on the TL theory.  

In [18] the phenomenon of non-TEM wave propagation in 
a vertical conductor has been reported.  Unlike the TEM wave, 
this wave is described using the electric scalar potential and 
current in the vertical structure, because the definition of 
quasi-static transverse voltage does not guarantee a unique 
value of the voltage on the tower [19]. It also is found that 
both the surge impedance [20] and corresponding current 
attenuation [21]-[22] are time/position-variant. These studies, 
however, could not fully explain and formulate the varying 
surge impedance of a non-TEM wave [19]-[20]. The closed-
form expression of the reflection coefficient and the dynamic 
behavior of a non-TEM wave in the tower with a 
discontinuity remain unknown. Meanwhile, the well known 
Bewley traveling-wave lattice diagram [3] is used to describe 
the complicated multiple reflections in a multi-stage structure 
based on the TL theory. However, it cannot be directly 
applied for the non-TEM wave propagation.  

It has been pointed out in [23]-[25] that theoretical studies 
are very useful in understanding the phenomena of transients 
in the tower. In this paper, a time-domain traveling wave 
theory is introduced for the transient analysis on a multi-stage 
and multi-conductor tower. This theory can be used to 
describe the propagation of a non-TEM wave along a multi-
stage tower structure above the ground. In Section II, a 
generic configuration of the tower and its model are described. 
The wave propagation equations are presented in Section III 
for multiple lines in parallel, and in Section IV for the lines 
with a discontinuity. Closed-form formulas are provided for 
both the transient impedance and reflection coefficient. In 
Section V, a convolution technique is presented to determine 
the tower current under a source with an arbitrary waveform. 
Finally, the proposed theory is applied to evaluate lightning 
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transients in a two-stage tower on the ground. The 
comparison results using the FDTD method and the TL model 
are given in Section VI finally. 

 
II. MULTIPLE-DIPOLE MODLE OF A TOWER STRUCTURE 
Shown in Fig. 1(a) is a multi-stage tower subject to a 

lightning stroke at its top end. It is known that the lightning 
return stroke generates two current pulses propagating 
upwards in the channel, and downwards in the tower. These 
pulses may be viewed as the incident currents in the channel 
and tower resulting from a voltage source at the attachment 
point. With this model, the wave reflection at the channel base 
can then be fully taken into account during a lightning return 
stroke. This configuration is similar to a dipole fed by a delta-
gap voltage source, as shown in Fig. 1. In this paper all the 
wires in the tower are assumed to be lossless, and the 
contribution of horizontal wires is neglected. 

In the evaluation of lightning transients, a specific 
waveform is normally assigned to the incident current. In this 
paper, the incident current 𝐼𝐼𝑠𝑠,0  with a ramp waveform is 
considered first. The transients in the tower with an arbitrary 
current waveform are obtained by using a convolution 
technique presented in Section V.  

It is known that a tower structure does not support TEM 
wave propagation [18-22]. Electric scalar potential 𝜙𝜙 
together with current I then is used to describe the wave 
propagation in the tower. Note that the tower structure is 
rotationally symmetric, as seen in Fig. 1(a). All branch 
currents and scalar potentials are identical at the same height 
in a stage. The tower structure can then be represented by a 
set of identical dipole lines running in parallel. Each line has 
a feed current (𝐼𝐼𝑠𝑠1,0) at 𝑧𝑧 = 0 and a discontinuity between 
two stages. Fig. 1(b) shows the configuration of one 
representative dipole line, which is deformed at 𝑧𝑧 = 0 and 
𝑧𝑧 = 𝑧𝑧0 . Note that 𝐼𝐼𝑠𝑠1,0 = 𝐼𝐼𝑠𝑠,0/𝑛𝑛  where n is the number of 
branches in the stage.  

𝐼𝐼𝑠𝑠,0(𝑡𝑡) 

 

𝐼𝐼𝑐𝑐1 

𝐼𝐼𝑎𝑎1 

𝐼𝐼𝑏𝑏1  

 
𝑧𝑧0 

𝑧𝑧 

𝐼𝐼𝑠𝑠1,0(𝑡𝑡)  

 
(a) Tower configuration  (b) one dipole line 

Fig. 1 Tower structure and its dipole line model 

III. WAVE PROPAGATION ON A TOWER MODEL WITH 
CONSTANT WIRE SPACING 

Consider a standalone center-fed dipole with two 
perfectly conducting thin wires, which is excited by a delta-

gap voltage source. With a ramp incident current from the 
source, current 𝐼𝐼 propagates with attenuation along the dipole, 
while scalar potential 𝜙𝜙 propagates without attenuation [26]. 
These parameters are uniquely determined by transient 
impedance 𝑍𝑍 of the dipole. Assume that the dipole wire has a 
radius of of 𝑟𝑟𝑥𝑥 in one of its two arms or stage x. In stage x of 
a standalone dipole, they are described with the following 
characteristic equations, 
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where c is the speed of light, and 𝛼𝛼𝑥𝑥  is the attenuation 
coefficient of current given by 𝑍𝑍𝑥𝑥(0, 𝑡𝑡 − 𝑧𝑧 𝑐𝑐⁄ ) 𝑍𝑍𝑥𝑥(𝑧𝑧, 𝑡𝑡)⁄ . 
𝐼𝐼𝑠𝑠,0(𝑡𝑡) is the ramp incident current at the feed point (𝑧𝑧 = 0). 
𝑍𝑍𝑥𝑥(𝑧𝑧, 𝑡𝑡)  can be either evaluated numerically [26],  or 
analytically [28] with (B6) in Appendix B. 

Now consider a rotationally-symmetric model of n 
parallel dipole lines, which is fed separately by n voltage 
sources with the ramp current 𝐼𝐼𝑠𝑠,0 ( 𝐼𝐼𝑠𝑠1,0 = 𝐼𝐼𝑠𝑠,0/𝑛𝑛) from the 
source. These dipole lines have a constant spacing of 𝐷𝐷𝑥𝑥,𝑖𝑖𝑖𝑖 
between lines i and j, and a radius of 𝑟𝑟𝑥𝑥 in stage x (𝑥𝑥 = 𝑎𝑎 or 
b). Fig, 2(a) illustrates the configuration of two dipole lines 1 
and i of this model. In the model, the total stage current 𝐼𝐼𝑥𝑥𝑥𝑥 
is equal to 𝑛𝑛𝑛𝑛𝑥𝑥1, where 𝐼𝐼𝑥𝑥1 is the current of one dipole line in 
stage x.  

(a) (b) (c)
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 Fig.2 Multi-dipole model with constant wire spacing (a) original model, (b) 

one pair of dipole lines carrying balanced currents (c) single dipole line 
It is known in Appendix A that electric potential 𝜙𝜙𝑥𝑥𝑥𝑥 

propagates without attenuation in the model. According to 
Appendix B, 𝜙𝜙𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑥𝑥𝑥𝑥in this n-diploe line model can be 
expressed using tower transient impedance 𝑍𝑍𝑥𝑥𝑥𝑥, as follows: 
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where 𝛼𝛼𝑥𝑥𝑥𝑥 is the attenuation coefficient of current in the n-
dipole line model. Both  𝛼𝛼𝑥𝑥𝑥𝑥 and 𝑍𝑍𝑥𝑥𝑥𝑥 are given by 

 
0

,12

( , ) (0, ) ( , )

( , ) ( , ) ln( )
2

xM xM xM

n
xM x x i xi

z t Z t z c Z z t
c

Z z t Z z t D r
n

α
µ
π =

= −

= − ∑
          (3) 



3 
 

𝑍𝑍𝑥𝑥(𝑧𝑧, 𝑡𝑡)  is the transient impedance of a standalone dipole 
made of wire b.  Note that both (1) and (3) are similar. An 
additional quasi-static transmission line impedance is added 
for this multi-dipole line structure. 

IV.  WAVE PROPAGATION OVER THE MULTI-DIPOLE LINE 
MODEL WITH A DISCONTINUITY 

A. Waves at the discontinuity of a dipole line model 
Consider the n-dipole line model with a sudden change of 

wire spacing, as illustrated in Fig. 3(a). This dipole line model 
has the spacing of 𝐷𝐷𝑏𝑏,𝑖𝑖𝑖𝑖 in stage b, and  𝐷𝐷𝑐𝑐,𝑖𝑖𝑖𝑖 in stage c. The 
change of wire spacing is made at 𝑧𝑧 = 𝑧𝑧0. 

Similar to the wave propagation in the standalone dipole 
with a discontinuity [27], incident current  𝐼𝐼𝑏𝑏𝑏𝑏𝑖𝑖  propagates in 
stage b towards the discontinuity. It then generates reflected 
current 𝐼𝐼𝑏𝑏𝑏𝑏𝑟𝑟  in stage b, and transmitted current 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡 = 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡1 +
𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡2  in stage c. These currents are combined into two groups: 
(1) 𝐼𝐼𝑏𝑏𝑏𝑏𝑟𝑟  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡1  and (2) 𝐼𝐼𝑏𝑏𝑏𝑏𝑖𝑖  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡2 . Fig. 3(b) and 3(c) show 
the configurations for these two sets of the currents. By 
ignoring the effect of short wires connecting stages b and c at 
𝑧𝑧 = 𝑧𝑧0, the following boundary conditions are observed, 

0 0
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where ζ = 𝑧𝑧 − 𝑧𝑧0 , 𝜏𝜏 = 𝑡𝑡 − 𝑡𝑡0 and 𝑡𝑡0 = 𝑧𝑧0/𝑐𝑐.  
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Fig. 3 Multi-dipole line model with a change of wire spacing (a) original 
model, (b) config. of 𝐼𝐼𝑏𝑏𝑏𝑏𝑟𝑟  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡1 ,  and (c) config. of 𝐼𝐼𝑏𝑏𝑏𝑏𝑖𝑖  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡2 . 

In the configuration shown in Fig. 3(b), as indicated in 
Appendix C, both scalar potential 𝜙𝜙𝑏𝑏𝑏𝑏𝑖𝑖 (𝑧𝑧, 𝑡𝑡)  and 𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡1 (𝑧𝑧, 𝑡𝑡) 
are expressed respectively using corresponding branch 
currents 𝐼𝐼𝑏𝑏𝑏𝑏𝑖𝑖  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡1  in their stages, as follows:  
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where 𝑍𝑍𝑥𝑥𝑥𝑥(𝑧𝑧, 𝑡𝑡) is the transient impedance of a multi-diploe 
line model, shown in Section III, with the same geometry as 
the wires in stage x. This indicates that both potential and 
current in a tower stage can be evaluated using a multi-diploe 
line model with constant spacing. 

In Fig. 3(c), a set of voltage sources is inserted between 
stages b and c, the source current 𝐼𝐼𝑠𝑠,𝑧𝑧0(𝜏𝜏) from the virtual 

source is equal to 𝐼𝐼𝑏𝑏𝑏𝑏𝑟𝑟 (𝑧𝑧0, 𝜏𝜏) or 𝐼𝐼𝑏𝑏𝑏𝑏𝑡𝑡2 (𝑧𝑧0, 𝜏𝜏), and is activated 
after the wave arrives at  point 𝑧𝑧0 . This configuration is 
similar to the one shown in Section III. According to 
Appendix C, both  backward and forward waves 𝜙𝜙𝑏𝑏𝑏𝑏𝑟𝑟  and  
𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡2  are expressed with transient impedance 𝑍𝑍𝑥𝑥𝑥𝑥 as 
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where both 𝜁𝜁  and 𝜏𝜏  are respectively the position and time 
with respect to a local source at 𝑧𝑧 = 𝑧𝑧0. Note that 𝑍𝑍𝑏𝑏𝑏𝑏(−ζ , 𝑡𝑡) 
is evaluated with 𝑍𝑍𝑏𝑏𝑏𝑏(ζ , 𝑡𝑡) mathematically. 

B. Reflection coefficient at the discontinuity  
It is noteworthy that the potential at the discontinuity in 

this configuration is continuous, i.e., 𝜙𝜙𝑏𝑏𝑏𝑏𝑖𝑖 + 𝜙𝜙𝑏𝑏𝑏𝑏𝑟𝑟 = 𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡1 +
𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡2  at 𝑧𝑧 = 𝑧𝑧0. With (5) and (6), the following equation for 
the reflection coefficient 𝛾𝛾𝑧𝑧0(𝜏𝜏) is obtained, 
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Expression (7a) is similar to the reflection coefficient 
defined in the traditional traveling wave theory, in which the 
impedance is constant. With (C5) in Appendix C, the term of 
𝑍𝑍𝑏𝑏𝑏𝑏 − 𝑍𝑍𝑐𝑐𝑐𝑐 in (7a) can be further written as 
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Then the reflection coefficient in (7) is only determined by 
wire radius, wire spacing and input impedance at the point of 
discontinuity. This is in coincidence with the experiment 
reported in [17]. 

C.  Traveling wave theory for the multi-dipole line model with 
a discontinuity 
As seen in Appendix C, the propagation of scalar 

potentials in a set of perfectly conducting wires is lossless. It 
can then be stated that propagation of 𝜙𝜙𝑏𝑏𝑏𝑏𝑟𝑟  and  𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡2  in Fig. 
3(c) is lossless, as well as 𝜙𝜙𝑏𝑏𝑏𝑏𝑖𝑖  and 𝜙𝜙𝑐𝑐𝑐𝑐𝑡𝑡1  in Fig. 3(b). 
Therefore, both 𝐼𝐼𝑏𝑏𝑏𝑏𝑖𝑖   and  𝐼𝐼𝑐𝑐𝑐𝑐𝑡𝑡1  can be obtained with (5), and 
are expressed with the source current as 
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With (6) and 𝛼𝛼𝑥𝑥(−𝑧𝑧, 𝑡𝑡) = 𝛼𝛼𝑥𝑥(𝑧𝑧, 𝑡𝑡) the following is obtained, 
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Both (8) and (9) indicate that currents propagate with the 
attenuation coefficient 𝛼𝛼𝑥𝑥𝑥𝑥 in a stage from a (virtual) source, 
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just like the wave prorogation in an infinitely-long dipole line 
model shown in Section III. 
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Fig. 4 Traveling wave theory for the dipole line model with a discontinuity 

Now introduce coefficients 𝛼𝛼𝑥𝑥∗(𝑧𝑧, 𝑡𝑡′)  and 𝛾𝛾𝑧𝑧𝑧𝑧∗ (𝑧𝑧, 𝑡𝑡′) 
expressed with time 𝑡𝑡′, given by a source at 𝑧𝑧 = 𝑧𝑧𝑧𝑧. 𝑡𝑡′ is the 
time counting after the wave arrives at point 𝑧𝑧, for example, 
𝛼𝛼𝑥𝑥∗(𝑧𝑧, 𝑡𝑡′) = 𝛼𝛼𝑥𝑥(𝑧𝑧, 𝑡𝑡)|𝑡𝑡=𝑡𝑡′+Δ𝑡𝑡, where ∆𝑡𝑡 is the travel time of a 
wave from the source point (𝑧𝑧𝑧𝑧) to the field point (𝑧𝑧). Both (8) 
and (9) then are revised to be 
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     (10) 

where correction factor 𝐶𝐶𝑏𝑏 𝑐𝑐⁄
∗ (𝑧𝑧0, 𝑡𝑡′)  is defined as  

𝛼𝛼𝑏𝑏∗(𝑧𝑧0, 𝑡𝑡′) 𝛼𝛼𝑐𝑐∗(𝑧𝑧0, 𝑡𝑡′)⁄ , arising at the discontinuity (𝑧𝑧0) for the 
source at 𝑧𝑧 = 0. All the currents in wires b and c in (10) are 
expressed with local time 𝑡𝑡′ accounting after the wave arrives 
at field point 𝑧𝑧. 

In [3] a lattice mesh was employed to describe the wave 
propagation on the line consisting of a set of equally time-
spaced segments. The generalized Lattice element was 
presented to illustrate the relationship among different wave 
components. By adopting this approach, wave propagation 
over a line discontinuity in the multi-dipole model can then 
be described graphically.  Fig. 4 depicts the traveling wave 
theory for wave propagation on the dipole line model. The 
incident current 𝐼𝐼𝑖𝑖  travels with attenuation towards the 
discontinuity. After the discontinuity, it continues to 
propagate as 𝐼𝐼𝑡𝑡1with a new attenuation coefficient multiplied 
by a correction factor. This wave is called the primary wave. 
A pair of secondary waves 𝐼𝐼𝑟𝑟  and 𝐼𝐼𝑡𝑡2  are generated at the 
discontinuity. This case is similar to a delta-gap dipole fed 
with the incident current 𝐼𝐼𝑠𝑠,𝑧𝑧0. Note that both the reflection 
coefficient and attenuation coefficient are time-variant and 
are affected by source position. The generalized Lattice 
element in [3] cannot be applied directly in this case. 

V. SIMULATION THE RESPONSE OF THE SOURCE CURRENT 
OR VOLTAGE WITH AN ARBITRARY WAVEFORM 

In the previous sections, the dipole is fed by a delta-gap 
voltage source with a ramp feed current. To find out the 
dipole response under an arbitrary-waveform current, a 
convolution technique is adopted. Assume that the dipole 

response under a ramp feed current is 𝑒𝑒𝑖𝑖(𝑡𝑡), which is obtained 
with the traveling wave theory. According to the convolution 
properties in a linear time-invariant system [32], the impulse 
response ℎ𝑖𝑖(𝑡𝑡) of the dipole is derived to be 

2

2

( )
( ) i

i
d e t

h t
dt

=       (11) 

Then, response 𝑦𝑦(𝑡𝑡)  of the dipole under an arbitrary-
waveform feed current 𝐼𝐼𝑠𝑠(𝑡𝑡) is written as: 

( ) ( ) ( )s iy t I t h t= ∗     (12) 

Note that the response of the current given by the step 
delta-gap voltage is presented in [27] 

1

2 2 2
0 0

( )( , ) tan ( )
2 ln

step
u t z cI z t

c t z r
π

µ ε
−−

=
−

    (13) 

Then, the impulse response ℎ𝑣𝑣(𝑧𝑧, 𝑡𝑡) of feed-point current in 
the dipole excited by a step voltage source can be expressed 
by the step response 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧, 𝑡𝑡) [32], as follows: 

0
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/ 2 ( )( ) tan
ln( ) ln( ) 4

steph t dI t dt

u tt
ct r t ct r
πδ

π
ε
µ

−

=

   
= −   +  

    (14) 

The dipole response y(𝑡𝑡) under the source voltage 𝑉𝑉𝑠𝑠(𝑡𝑡) then 
is expressed by  

0( ) [ ( ) ( )] ( )s iy t V t h t h t= ∗ ∗     (15) 
The evaluation of the dipole response is illustrated in Fig. 5. 

Feed-point voltage 

ℎ0(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = (𝑉𝑉𝑠𝑠 ∗ ℎ0) ∗ ℎ𝑖𝑖(𝑡𝑡) 
  

ℎ𝑖𝑖(𝑡𝑡) =
𝑑𝑑2𝑒𝑒𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡2  

𝐼𝐼𝑠𝑠(𝑡𝑡) 𝑉𝑉𝑠𝑠(𝑡𝑡) 

Fig. 5 Flowchart of dipole response evaluation given by the source voltage 

VI. SIMULATION RESULT AND COMPARISON OF WAVES IN A  
TOWER STRUCTURE 

A. Numerical Comparison with FDTD 
Lightning transient currents in a two-stage tower on the 

ground, as shown in Fig. 1, are simulated with the proposed 
approach. The tower is 240 m tall with 120 m height in each 
stage. The conductors have radii of 0.01 m and 0.03 m and 
wire spacing of 2.4 m and 4.8 m, respectively, in the upper 
and lower stages. The tower is connected to a grounding 
electrode with a resistance of 10 Ohm, simulating the effect 
of the lossy ground. It is found in [23,35] that the lossy ground 
behaves like a perfect ground to the tower conductors above 
ground. Therefore, the lossy ground is treated as a perfect 
ground, and is substituted with the tower image connected to 
the grounding resistance, as shown in Fig. 6.  

The tower is struck by lightning at its tip. The lightning 
channel above the tower is represented by a vertical wire with 
a radius of 0.01m. The incident current 𝐼𝐼𝑠𝑠,0(𝑡𝑡) resulting from 
a lightning return stroke that has a magnitude of 10 kA and a 
waveform of 0.25/100 µs. It is expressed using the Heidler’s 
function [29]. In the simulation, the traveling wave theory is 
first employed to calculate the transient current 𝐼𝐼𝑟𝑟(𝑡𝑡) with a 
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ramp incident current. Lightning current 𝐼𝐼𝑝𝑝(𝑡𝑡)  at point p 
given by incident current 𝐼𝐼𝑠𝑠,0(𝑡𝑡) then is calculated using a 
convolution technique presented in section V, as follows: 

2
,0
2

( )
( ) ( )s

p r

d I t
I t I t

dt
= ∗         (16) 

As shown in Fig. 6, incident current 𝐼𝐼𝑖𝑖 as a primary wave 
propagates with attenuation towards the other end of the 
model. The wave is reflected with 𝛾𝛾0∗ at 𝑧𝑧 = 0 or  2𝐻𝐻. The 
subsequent propagation in the model can be viewed as a new 
primary wave arising from a brand-new source at 𝑧𝑧 = 0 or  
2𝐻𝐻. Fig. 7(a) shows a lattice diagram for the primary waves 
propagating along the model, which originate at one end of 
the model. The total attenuation for a wave propagating from 
one end towards another after three discontinuities including 
the reflection at one end is expressed by 

* * * *
0 0 0( , ) ( ) ( , ) ( , ) (3 , )b b c b cK z t t z t C z t C z tγ α′ ′ ′ ′ ′=  (17) 

where 𝑡𝑡′ is the time counting after the wave reaches point z.  
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Fig.6 Tower model struck by lightning (z0 = 120 m and H = 2z0; ra =
0.001 m, rb = 0.01 m and rc = 0.03 m; Da = 2.4 m and  Db = 4.8 m) 

Consider a primary wave arriving at point z in stage b in 
the nth one-way trip in the model. The primary wave 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝

(𝑛𝑛) can 
be expressed with (10) and (17) as 

* * 1
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(18) 

where 𝑖𝑖 = 0,1⋯ . 𝐾𝐾(2𝐻𝐻, 𝑡𝑡′)  is the totoal attenuation of 
current on a one-way trip including the reflection at one end. 
Both 𝛼𝛼𝑏𝑏∗(𝑧𝑧, 𝑡𝑡′)  and 𝐾𝐾(2𝐻𝐻 − 𝑧𝑧, 𝑡𝑡′)  are respectively the 
attenuations from two ends to point z on a one-way trip. 

The primary wave will generate a virtual source at each of 
discontinuities (𝑧𝑧 = 0, 𝑧𝑧0, 𝐻𝐻, 𝑧𝑧0 + 𝐻𝐻, 2𝐻𝐻) , which is 
determined by the reflection coefficient there. Fig. 8 shows 
the reflection coefficients of a current wave between stages b 
and c, and at the tower tip calculated with (7a). It is found that 
the reflection coefficients change dramatically at an early 
time, but tend to be constant after 0.2 µs. 

At each discontinuity, the virtual source generates a pair 
of secondary waves propagating in two opposite directions. 
Similar to the primary wave, these secondary waves will 

produce a next-level virtual source at each discontinuity they 
encounter. As the reflection coefficients are generally less 
than 0.1, as seen in Fig. 8, the next-level secondary waves 
could be neglected. The two secondary waves arriving at 
point 𝑧𝑧 in stage b after the (n-1)th full reflection, arising from 
the 1st virtual current source 𝑧𝑧 = 𝑧𝑧0, is expressed by 

( ) * *
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where 𝑖𝑖 = 0,1⋯. Fig. 7(b) shows a lattice diagram for the 
propagation of a pair of the secondary waves arising from a 
virtual source at 𝑧𝑧 =   𝑧𝑧0.   
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(a ) The primary current 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 
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(b ) The level 1 secondary waves generated by the primary wave (currents 
presented in the diagram are for the 1st sec. wave only) 

Fig.7 Illustration of traveling waves in a 2-stage tower, 𝐾𝐾∗ = 𝐾𝐾(2𝐻𝐻, 𝜏𝜏′) 

 
Fig.8 Reflection coefficient 𝛾𝛾𝑧𝑧0∗  between stages b and c and 𝛾𝛾2𝐻𝐻∗  at the tower 

tip calculated by the proposed method and FDTD method. 
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The tower current is simulated with the proposed method 
when the tower tip is struck by lightning. Fig. 9(a) illustrates 
both the primary and secondary waves arriving at 𝑧𝑧 = 50 𝑚𝑚 
up to the 3rd one-way trip on the structure. It is found that the 
1st-level secondary waves are relatively small due to the small 
reflection coefficient. Their subsequent secondary waves can, 
therefore, be ignored. Fig. 9(b) shows the curve of the 
resultant current at the observation point calculated using the 
traveling wave theory. 

 
(a) 

 
(b) 

Fig.9 Comparison of tower currents calculated with the extended traveling 
wave theory, the FDTD method and the traditional TL model 

Both reflection coefficients and the total current in the 
tower also are calculated by the FDTD method for 
comparison. In the FDTD simulation, the working space 
consists of 200, 200 and 500 FDTD steps in the x, y and z 
directions, respectively. A non-uniform mesh technique is 
adopted in the horizontal direction. The cell size near the 
tower is selected to be 0.6 m, and is increased to 54m 
gradually. A PEC layer covers the bottom boundary of the 
working space, and PML ABC layers cover the other 
boundaries. The conductors of the tower in the FDTD 
simulation are represented with the thin-wire model [30-31]. 
The lead wire is represented with the thin-wire mode as well, 

and is extended from the tower vertically to the absorbing 
boundary of the working domain. This arrangement mimics a 
semi-infinitely long wire for the lightning channel.  The time 
step in the simulation is set to be 1 ns.  

The reflection coefficients calculated by the FDTD 
method are presented in Fig. 8. It is found that the results 
calculated by two methods generally match well. The 
difference is less than 2% in the middle of the tower, and 5% 
at the tower tip.  This difference may be introduced by 
neglecting the wave propagation effect along horizontal 
conductors. The resultant current calculated with the FDTD 
method is presented in Fig. 9(b). It is found that both curves 
match very well with a difference of 2%. The TEM solution 
based on the traditional TL is also calculated for comparison. 
The reflection coefficient at the tower tip is assumed to be -
0.7 and at the other discontinuities is zero. A significant 
difference between the traditional TL theory and the proposed 
traveling theory is observed.  

B. Experimental Comparison 
The measurement result for a tower under a lightning 

strikes with a vertical lead wire was presented in [36].  
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 (b) Simplified 3-stage configuration for simulation 

Fig.  10 The configuration for experimental validation 

Fig.10a shows the original configuration of the tower. 
Fig.10b shows the modified configuration by neglecting the 
horizontal wires for the simulation using the proposed method. 
The tower is represented by a three-stage structure with a 
horizontal wire spacing of 0.24 m in the top stage and 0.49 m 
in the bottom stage.  Stages 1, 2 nd 3 have the heights of 0.3 
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m, 1.2 m and 1.5 m, and the widths of 0.668 m, 1 m 
[(b+c+d)/3=1 m] and 0.49 m, respectively. Both Stages 1 and 
2 have 8 legs (4 for brace arms and 4 for tower legs), and 
Stage 3 has 4 legs only. The tower is connected to a grounding 
resistance of 30 Ohm, according to [36]. 

Fig. 11 shows the simulated step response obtained with 
the proposed method together with the measured result given 
in [36] for comparison. It is found, in the simulated response 
waveform, the clear wave reflections arising at joints between 
Stages 1 and 2, Stages 2 and 3, and at the ground. Because of 
these wave reflections, the waveform changes its slope, and 
matchs with the measured waveform well. The minor 
discrepancies between these two waveforms may be caused 
by replacing those horizontal arms with a set of vertical wires 
in Stages 1 and 2. 

 
Fig.11 comparison for measured and simulated results in a tower [36]                    

VII. CONCLUSIONS 
This paper presented a theoretical time-domain analysis 

of lightning transients in a vertical tower. The multiple-stage 
tower was represented with a model of multi-dipole lines with 
a discontinuity. A time-domain traveling wave theory was 
introduced to depict the non-TEM wave propagation on such 
a tower. The attenuated propagation of current waves in the 
tower is formulated. Analytical formulas are provided for 
time/position-variant characteristic impedance of the line at 
any position and any time, as well as the time-variant 
reflection coefficient at each discontinuity. 

In the traveling wave theory, both the primary waves and 
secondary waves are proposed to depict a complicated 
multiple reflection situation. The primary wave is the incident 
current wave attenuating in its propagation along the tower 
and is corrected with a factor when crossing over a 
discontinuity. A pair of secondary waves are generated at the 
discontinuity. All these waves are characterized by the unique 
transient impedance of a multi-dipole line model.   

The proposed time-domain traveling wave theory has 
been applied to evaluate lightning currents in a two-stage 
tower. It is found that the secondary waves could be neglected 

if the reflection coefficient at a discontinuity is small. This 
proposed method has been compared with the FDTD method 
and TL theory. A good agreement with the FDTD method is 
observed. A significant error is found if the traditional TL 
model is used. A comparsion with the experiment result 
reported in the literature is made, and a good agreement is 
observed. 
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Appendix A LOSSLESS PROPGATION OF POTNETIALS 

Note that the longitudinal E field is zero on a perfect 
conductor. In the n-dipole line model given in Fig. 1(a), both 
vector potential 𝐴𝐴𝑥𝑥𝑥𝑥 and scalar potential 𝜙𝜙𝑥𝑥𝑥𝑥 (𝑥𝑥 = 𝑎𝑎,𝑏𝑏 or 𝑏𝑏) 
on the line satisfy the following eqaution, 

( , ) ( , )xM xMz t z A z t tφ∂ ∂ = −∂ ∂                                   (A1)  

With Lorenz gauge, the following is obtained,   
2

2

( , ) ( , )

( , )
xM xM

xM

z t t c A z t

c A z t z

φ∂ ∂ = − ∇ ⋅

= − ∂ ∂
  (A2) 

Note that (A1) and (A2) formulate a pair of coupled 1st order 
differential equations similar to the well-known telegrapher’s 
equations. Then, the corresponding solution for the vector 
potential is given by [27]: 

  1 2( , ) ( ) ( )xMA z t f ct z f ct z= − + +  (A3) 

Under the zero initial condition, integrating (A3) along the 
time axis yields 

2

0

2
1 20

1 2

( , ) ( , )

[ ]

( ) ( )

t

xM xM

t

z t c A z t zdt

c f c t f c t dt

cf ct z cf ct z

φ = − ∂ ∂

= ∂ ∂ − ∂ ∂

= − − +

∫
∫  (A4) 

Thus, for a wave propagating in one direction, these vector 
potential and scalar potential satisfies: 

( , ) ( , )xM xMz t cA z tφ = ±   (A5) 

where the " + " sign is taken for the a wave propagating in the 
positive direction, and the "– " sign in the negative direction. 

APPENDIX B WAVE PROPAGATION IN A MULTIPLE DIPOLE 
LINE STRUCTURE 

To obtain characteristic equations for waves in a multiple 
dipole line structure shown in Fig. 2(a), the current in dipole 
line 1 is decomposed into two components, ie., −(𝑛𝑛 − 1)𝐼𝐼𝑏𝑏1 
and 𝑛𝑛𝐼𝐼𝑏𝑏1 as seen in Fig. 2(b) and (c). Therefore, there are n 
pairs of dipole lines or n transmission lines with dipole line 1 
being the reference, as illustrated in Fig. 2(b). Each pair of the 
dipole lines carries two equal but opposite currents. In Fig. 
2(c), there is one dipole line alone carrying the current of 𝑛𝑛𝐼𝐼𝑏𝑏1. 
Note that all these currents are characterized by the same 
attenuation coefficient 𝛼𝛼𝑏𝑏𝑏𝑏(𝑧𝑧, 𝑡𝑡). 

Now consider a pair of dipole lines 1 and i with spacing 
𝐷𝐷𝑏𝑏,1𝑖𝑖 , as shown in Fig.2(b). These dipole lines are closely 
spaced and carry equal but opposite currents. Assume that 
𝐴𝐴𝑏𝑏𝑏𝑏′ (𝑟𝑟, 𝑧𝑧, 𝑡𝑡) is the vector potential contributed by the current 
in line i. Note that 𝐴𝐴𝑏𝑏1′ �𝐷𝐷𝑏𝑏,1𝑖𝑖, 𝑧𝑧, 𝑡𝑡� = 𝐴𝐴𝑏𝑏𝑏𝑏′ (𝑟𝑟𝑏𝑏 , 𝑧𝑧, 𝑡𝑡) . With 
Ampere’s law, the vector potential resulting from a pair of 
dipole lines with the opposite currents is given by 
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,1

1 1 ,1

,10

( , , ) ( , , ) ( , , )

ln ( , )
2

b i

b

D

b b b b i r

b i
bM

b

A r z t A D z t B r z t dr

D
I z t

n r
µ
π

′ ′− =

 
≈  

 

∫
     (B1) 

where 𝐼𝐼𝑏𝑏𝑏𝑏 = 𝑛𝑛𝐼𝐼𝑏𝑏1 . Vector potential 𝐴𝐴𝑏𝑏1′′ in Fig. 2(c) is 
contributed by the current on a single dipole line with the 
radius 𝑟𝑟𝑏𝑏 . According to [26], it is expressed by 

( )/2
10

1 2 2
( ) 2

( ' , )
( , )

4 ( )

z ct
bM d

b
z ct b

I l t
A z t dl

l z r

µ
π

+

−

′′ ′=
′ − +

∫  (B2) 

where 𝑡𝑡𝑑𝑑1 = 𝑡𝑡 − |𝑙𝑙′ − 𝑧𝑧|/𝑐𝑐.  
Note that the current can be written, using the attenuation 

coefficient, as  𝐼𝐼𝑏𝑏𝑏𝑏(|𝑙𝑙′|, 𝑡𝑡𝑑𝑑1) = 𝐼𝐼𝑠𝑠(0, 𝑡𝑡𝑑𝑑2)𝛼𝛼𝑏𝑏𝑏𝑏(|𝑙𝑙′|, 𝑡𝑡𝑑𝑑1)  [26].  
Then, the total vector potential 𝐴𝐴𝑏𝑏𝑏𝑏  on an n-dipole line 
structure in Fig. 2(a) is obtained by summing both (B1) and 
(B2), as follows: 

1 1
( )/2

,0 1 10

2 2
( ) 2

0 1

1

( , ) ( , ) ( , )

( ) ( ' , )
4 ( )

( , ) ln( )
2

bM b b
z ct

s d bM d

z ct b

n
i

bM
i b

A z t A z t A z t
I t l t

dl
l z r

D
I z t

n r

αµ
π

µ
π

+

−

=

′ ′′= +

′= −
′ − +

∫

∑

 (B3) 

Now we replace 𝛼𝛼𝑏𝑏𝑏𝑏(|𝑙𝑙′|, 𝑡𝑡𝑑𝑑1) in the integral of (B3) with 
𝛼𝛼𝑏𝑏𝑏𝑏(𝑧𝑧, 𝑡𝑡) + [𝛼𝛼𝑏𝑏𝑏𝑏(|𝑙𝑙′|, 𝑡𝑡𝑑𝑑1) − 𝛼𝛼𝑏𝑏𝑏𝑏(𝑧𝑧, 𝑡𝑡)] . According to the 
Bogerd’s derivation for a finite antenna [33], the integral 
containing [𝛼𝛼𝑏𝑏𝑏𝑏(|𝑙𝑙′|, 𝑡𝑡𝑑𝑑1) − 𝛼𝛼𝑏𝑏𝑏𝑏(𝑧𝑧, 𝑡𝑡)]  is neglected. The 
remaining integral can be evaluated analytically under the 
assumption that  (𝑐𝑐𝑐𝑐 − 𝑧𝑧)2 ≫ 𝑟𝑟2. Thus, the final expression 
for the total vector potential in (B3) is given as, 

0 1

1

2 2 2
0

2 2

( , ) ( , ) ln( ) ( , )
2

ln ln 1
2

n
i

bM bM bM
i b

D
A z t I z t I z t

n r

z ct z c t z
ct z rz r z

µ
π

µ
π

=

= + ⋅

 + −
 + −
 − + + 

∑
(B4) 

Thus, the analytical expression for transient impedance 
can be obtained as 

0 1

1

( , ) ( , )
( , )

( , ) ( , )

( , ) ln( )
2

bM bM
bM

bM bM
n

i
b

i b

z t cA z t
Z z t

I z t I z t
c D

Z z t
n r

φ

µ
π =

= =

= − ∑
    (B5) 

and 
2 2 2

0

2 2
( , ) ln ln 1

2b
c z ct z c t zZ z t

ct z rz r z

µ
π

 + −
 = + −
 − + + 

 

 (B6) 
It is found that under the thin-wire approximation, the 

transient impedance of a multi-dipole line structure is not 
affected by the attenuation coefficient 𝛼𝛼𝑏𝑏𝑏𝑏  of current. It is 
fully determined by the geometry of a wire structure. This 
impedance can be viewed as the impedance of a standalone 
dipole minus a quasi-static transmission line impedance.  

An alternative expression of standalone dipole impedance 
under a step-function voltage source is presented by K. Chan 
in [37] and discussed by Y. baba in [18]. By using the 
proposed convolution in Section V, the ramp response current 
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑧𝑧, 𝑡𝑡) in the dipole can be obtained as follows 

/

0( , ) ( ) ( , )

( , ) ( )( ) ( , )

( , )

ramp

s

t

stepz c

tep
step

I z t r t h z t
dI z t dr tr t I z t

dt

I z t d

d

t

t
′ ′

∗

=

= ∗

= ∗ =

∫

       (B7) 

where 𝑟𝑟(𝑡𝑡) is the ramp waveform and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧, 𝑡𝑡) defined in 
(13). Note that potential 𝜙𝜙(𝑡𝑡) in this paper is defined with 
reference to infinity. As the dipole structure is symmetrical, 
𝜙𝜙(𝑡𝑡)  is half of the gap voltage 𝑢𝑢(𝑡𝑡) . Then the transient 
impedance of the dipole fed by a ramp source voltage is 
derived to be 

/

/

( / )( , )
( , )

( , ) 2 ( , )

t

ramp z c
t

ramp stepz c

u t z c dtz t
Z z t

I z t I z t dt

φ ′ ′−
= =

′ ′

∫
∫  (B8) 

It is known in [38] that the transient impedances of a dipole, 
fed by a ramp source current source and a ramp source voltage, 
are almost the same. Therefore, (B8) can be also applied to 
calculate the transient impedance of the dipole under a ramp-
wave source current.  

Both (B6) and (B8) can be applied to evaluate the 
impedance of a standalone dipole. The former one is based on 
Bogerd’s derivation and the later one is based on K. Chan’s 
derivation. 

APPENDIX C TRANSIENT IMPEDANCE OF WAVE 
PROPAGATION IN A MULTI-STAGE TOWER 

Consider an n-dipole line structure with a change of wire 
spacing at 𝑧𝑧 = 𝑧𝑧0, as illustrated in Fig. C1(a). With the same 
technique used in Appendix B, the current in dipole line 1 is 
substituted by −(𝑛𝑛 − 1)𝐼𝐼𝑥𝑥1 and 𝑛𝑛𝐼𝐼𝑥𝑥1 in Fig. C1(b) and 𝑛𝑛𝐼𝐼𝑥𝑥1 
in Fig. C1(c) (𝑥𝑥 = 𝑎𝑎, 𝑏𝑏 or , 𝑐𝑐). 

Similar to (B1) in Appendix B, vector potential in Stage 
𝑥𝑥 contributed by a pair of opposite currents shown in Fig. 
C1(b) is expressed by 

,1

,10
1

( , , ) ( , , )

ln ( , )
2

x i

x

D

DM x r

x i
x

x

A r z t B r z t dr

D
I z t

n r
µ
π

=

 
=  

 

∫
          (C1)    
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Fig. C1 Waves propagating in a multiple dipole line structure (a) original 
configuration (b) n pairs of dipole lines (c) a single dipole line 

Similar to (B2), the vector potential 𝐴𝐴𝑥𝑥1′′  on a single dipole 
line with the radius 𝑟𝑟𝑥𝑥  shown in Fig. 2(c) is given by: 

( )/2
10

2 2
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( )/2
20

2 2
( )/2

( ' , )
( , )
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( ' , )
4

z ct
xM d
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z ct x
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l D
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µ
π

+

−

+

−

′′ ′= +
′∆ +

′
′∆ +

∫

∫
 (C2) 

where y represents a stage other than stage x.  𝐷𝐷𝑥𝑥𝑥𝑥 is equal to 
(𝐷𝐷𝑦𝑦,𝑖𝑖𝑖𝑖 − 𝐷𝐷𝑥𝑥,𝑖𝑖𝑖𝑖) 2⁄ . The total current is composed up by 𝐼𝐼𝑥𝑥𝑥𝑥 
and 𝐼𝐼𝑦𝑦𝑦𝑦, where  𝐼𝐼𝑥𝑥𝑥𝑥 = 0 outside the stage x and 𝐼𝐼𝑦𝑦𝑦𝑦 = 0 at 
stage x. 
Note that (C2) can also be written as: 
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∫

∫
     (C3) 

Where, 𝑡𝑡𝑑𝑑2 = 𝑡𝑡 − �∆𝑙𝑙′2 + 𝐷𝐷𝑥𝑥𝑥𝑥2  𝑐𝑐�  is the retardation time 

over the spacing distance of dipole lines. 
The second term in the right-hand side of (C3) can be 

viewed as the differential-mode vector potential 
𝐴𝐴𝑥𝑥1′ �𝐷𝐷𝑥𝑥𝑥𝑥, 𝑧𝑧, 𝑡𝑡� − 𝐴𝐴𝑥𝑥1′ (𝑟𝑟𝑥𝑥 , 𝑧𝑧, 𝑡𝑡) contributed by the current 𝐼𝐼𝑦𝑦𝑦𝑦 
on a single dipole line. Similar as the derivation in appendix 
B, this vector potential difference can be evaluated by the 
integral of magnetic flux. Then, by approximated with the 
Ampere’s circuit law that 𝜇𝜇0𝐼𝐼 = ∮𝐵𝐵 𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝜋𝜋𝜋𝜋 for a single 
line, 
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≈  

 

∫
 (C4) 

As mentioned before, the observation point is at stage x, 
where 𝐼𝐼𝑦𝑦𝑦𝑦 = 0. Thus, (C4) is always zero. This means the 
second term in the right-hand side of (C3) can be removed. It 
is noted that the approximation in (C4) is based on the 

Ampere’s circuit law, this yields a quasi-static approximation 
on the differential-mode vector potential for a closely spaced 
dipole lines. 

The total vector potential can then be obtained by 
summing both (C1) and (C3). The total transient impedance 
of the n-dipole line structure in stage x is obtained as follows: 

0 1
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∑

 (C5) 

where 𝑍𝑍𝑥𝑥(𝑧𝑧, 𝑡𝑡)  can be calculated with (B6) or (B8). The 
transient impedance in stage x of the tower with a 
discontinuity is determined by the single dipole line 
impedance together with the quasi-static transmission line 
impedance. Note that (C5) is the same as (B5).  

 




