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ABSTRACT
Consider the joint beamforming and quantization problem in the

cooperative cellular network, where multiple relay-like base stations
(BSs) connected to the central processor (CP) via rate-limited fron-
thaul links cooperatively serve the users. This problem can be for-
mulated as the minimization of the total transmit power, subject to all
users’ signal-to-interference-plus-noise-ratio (SINR) constraints and
all relay-like BSs’ fronthaul rate constraints. In this paper, we first
show that there is no duality gap between the considered problem
and its Lagrangian dual by showing the tightness of the semidefinite
relaxation (SDR) of the considered problem. Then we propose an
efficient algorithm based on Lagrangian duality for solving the con-
sidered problem. The proposed algorithm judiciously exploits the
special structure of the Karush-Kuhn-Tucker (KKT) conditions of
the considered problem and finds the solution that satisfies the KKT
conditions via two fixed-point iterations. The proposed algorithm is
highly efficient (as evaluating the functions in both fixed-point itera-
tions are computationally cheap) and is guaranteed to find the global
solution of the problem. Simulation results show the efficiency and
the correctness of the proposed algorithm.

Index Terms— Cooperative cellular network, fixed-point itera-
tion, KKT condition, Lagrangian duality, tightness of SDR

1. INTRODUCTION

Lagrangian duality [1, 2], a principle that (convex) optimization
problems can be viewed from either primal or dual perspective, is
a powerful and vital tool in revealing the special structures of the
optimization problems arising from engineering and further better
solving the problems. Celebrated uplink-downlink duality [3, 4]
in wireless communications is an engineering interpretation of La-
grangian duality. Usually, the uplink problems, e.g., the transmit
power minimization problems subject to quality-of-service (QoS)
constraints, can be solved efficiently and globally via the fixed-point
iteration algorithm. The uplink-downlink duality result thus enables
efficient algorithms for solving the downlink problems via solving
the relatively easy uplink problems. In the literature, Lagrangian
duality and uplink-downlink duality results have been proved in
various ways and applied to solve different downlink problems;
see [3–20] and the references therein.

Different from the above works, this paper considers the joint
beamforming and quantization problem in the cooperative cellular
network, where multiple relay-like base stations (BSs) are connected
to the central processor (CP) via rate-limited fronthaul links to coop-
eratively serve the users for effectively mitigating multiuser intercell

interference. Such network includes coordinated multipoint [21],
cloud radio access network [22], and cell-free massive multi-input
multi-output [23] as special cases. Recently, Refs. [24, 25] have es-
tablished an interesting uplink-downlink duality for such network
when relay-like BS compression optimization is considered. Specif-
ically, given the same beamforming vectors in the uplink and down-
link, it has been shown there that when Wyner-Ziv compression and
multivariate compression are adopted in the uplink and the downlink,
respectively, the transmit power minimization problem in the uplink
subject to individual signal-to-interference-plus-noise-ratio (SINR)
constraints and fronthaul capacity constraints is equivalent to that
in the downlink. Furthermore, [25] has designed an algorithm for
solving the joint beamforming and quantization problem based on
the established duality result. The algorithm in [25] first solves the
uplink problem via fixed-point iteration and then solves the down-
link problem with fixed beamformers (which is a convex problem)
obtained by solving the uplink problem by calling a solver.

In this paper, we consider the same joint beamforming and quan-
tization problem as in [25] but make further progress in the duality
result and the algorithm. The main contributions of this paper are as
follows. (1) New Duality Result. We establish the tightness of the
semidefinite relaxation (SDR) of the considered problem and thus
the equivalence of the two problems. This result further implies
that the dual problems of the considered problem and its SDR are
the same. Note that the Lagrangian dual of the original problem is
studied in this paper, which differs from the Lagrangian dual of the
problem with fixed beamformers in [25]. (2) Efficient Fixed-Point
Iteration Algorithm. Based on the established duality result, we pro-
pose an efficient algorithm for solving the considered problem. The
proposed algorithm first solves the dual problem via fixed-point it-
eration and then solves the primal problem via another fixed-point
iteration. The proposed algorithm is highly efficient (as each update
of variables in fixed-point iterations is computationally cheap) and
is guaranteed to find the global solution of the problem. The pro-
posed algorithm exploits more special structures of the solution of
the considered problem than the algorithm in [25] and thus signifi-
cantly outperforms it in terms of the computational efficiency.

Notations. For any matrix A, A† and AT denote the conjugate
transpose and transpose of A, respectively; A(m,n) denotes the en-
try on the m-th row and the n-th column of A; and A(m1:m2,n1:n2)

denotes a submatrix of A defined byA(m1,n1) · · · A(m1,n2)

...
. . .

...
A(m2,n1) · · · A(m2,n2)

 .
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For two matrices A1 and A2 of appropriate sizes , A1 •A2 denotes
the trace of A1A2. We use CN (0,Q) to denote the complex Gaus-
sian distribution with zero mean and covariance Q. Finally, we use
I to denote the identity matrix of an appropriate size, 0 to denote an
all-zero matrix of an appropriate size, and Em to denote the square
all-zero matrix except its m-th diagonal entry being one.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. System Model

Consider a cooperative cellular network consisting of one CP andM
single-antenna relay-like BSs (will be called relays for short later),
which cooperatively serve K single-antenna users. In such network,
all users and relays are connected by noisy wireless channels and
all relays and the CP are connected by noiseless fronhaul links of
finite rate. LetM and K denote the sets of the relays and the users,
respectively.

We first introduce the compression model from the CP to the re-
lays. The transmitted signal at the CP is x̃ =

∑K
k=1 vksk, where

vk = [vk,1, . . . , vk,M ]T is an M × 1 beamforming vector and sk ∼
CN (0, 1) is the information signal for user k. Because of the lim-
ited capacities of the fronthaul links, the signal from the CP to the
relays need to be first compressed before transmitted. Let the com-
pression error be e = [e1, . . . , em]T ∼ CN (0,Q), where Q is the
covariance matrix to be designed. Then the received signal at relay
m is xm =

∑K
k=1 vk,msk+em. The channel model from the relays

to the users is yk =
∑M
m=1 hk,mxm + zk, where yk is the signal

received by user k, xm is the signal transmitted by relay m, hk,m
is the channel coefficient from relay m to user k, and {zk} are in-
dependent and identically distributed (i.i.d.) additive Gaussian noise
distributed as CN (0, σ2).

Under the above model, the received signal at user k is

yk = h†k

(
K∑
i=1

visi

)
+ h†ke+ zk, (1)

where hk = [hk,1, . . . , hk,M ]† is the channel vector of user k. Then
the total transmit power of all the relays is

∑K
k=1 ‖vk‖

2+Q• I; the
SINR of user k is

|h†kvk|
2∑

j 6=k |h
†
kvj |2 + h

†
kQhk + σ2

, ∀ k ∈ K; (2)

and the compression rate of relaym under the multivariate compres-
sion strategy [26] is

log2

∑K
k=1 |vk,m|

2 + Q(m,m)

Q(m:M,m:M)/Q(m+1:M,m+1:M)
, ∀m ∈M. (3)

In the above, Q(m:M,m:M)/Q(m+1:M,m+1:M) is the Schur com-
plement of the block Q(m+1:M,m+1:M) of Q(m:M,m:M), which is
equal to Q(m,m)−Q(m,m+1:M)(Q(m+1:M,m+1:M))−1Q(m+1:M,m).

2.2. Problem Formulation

Now we are ready to present the problem formulation. Given a
set of SINR targets {γk} and a set of fronthaul capacities {Cm},
the interested optimal joint beamforming and compression problem,
which minimizes the total transmit power subject to all users’ SINR

constraints and all relays’ fronthaul capacity constraints, is as fol-
lows [25]:

min
{vk},Q

K∑
k=1

‖vk‖2 + Q • I

s.t.
|h†kvk|

2∑
j 6=k |h

†
kvj |2 + h†kQhk + σ2

≥ γk, ∀ k ∈ K,

log2

∑K
k=1 |vk,m|

2 + Q(m,m)

Q(m:M,m:M)/Q(m+1:M,m+1:M)
≤ Cm, ∀m ∈M,

Q � 0.
(4)

Let Hk = hkh
†
k for all k and ηm = 2Cm for all m. By [25, Pro-

postion 4], problem (4) is equivalent to the following problem:

min
{vk},Q

K∑
k=1

‖vk‖2 + Q • I

s.t. v
†
kHkvk − γk

∑
j 6=k

v
†
jHkvj + Q •Hk + σ

2

 ≥ 0, ∀ k ∈ K,

ηm

[
0 0

0 Q(m:M,m:M)

]
− E

†
m

(
K∑

k=1

vkv
†
k + Q

)
Em � 0,

∀m ∈ M,

Q � 0.

(P)
In the following section, we shall focus on problem (P) and de-

sign an efficient algorithm for solving it.

3. PROPOSED ALGORITHM VIA LAGRANGIAN
DUALITY

3.1. Tightness of SDR of (P)

Problem (P) is a separable homogeneous quadratically constrained
quadratic program. A well-known technique to tackle such problem
is the SDR [27]. Applying the SDR technique to (P), we obtain

min
{V

k
},Q

K∑
k=1

Vk • I + Q • I

s.t. ak({Vk} ,Q) ≥ 0, ∀ k ∈ K,
Bm({Vk} ,Q) � 0, ∀m ∈M,

Vk � 0, ∀ k ∈ K,
Q � 0,

(5)

where

ak({Vk} ,Q) = Vk •Hk − γk

∑
j 6=k

Vj •Hk + Q •Hk + σ2

 ,

Bm({Vk} ,Q) = ηm

[
0 0

0 Q(m:M,m:M)

]
−E†m

(
K∑
k=1

Vk + Q

)
Em.

The Lagrangian dual of problem (5) is

max
{βk},{Λm}

K∑
k=1

(γkσ
2)βk

s.t. Ck({βk} , {Λm})− βkHk � 0, ∀ k ∈ K,
D({βk} , {Λm}) � 0,

βk ≥ 0, ∀ k ∈ K,
Λm � 0, ∀m ∈M,

(6)



where βk is the dual variable associated with the k-th SINR con-
straint in (5), Λm is the dual variable associated with the m-th fron-
thaul capacity constraint in (5), and

Ck({βk} , {Λm}) = I +

M∑
m=1

E†mΛmEm +
∑
j 6=k

βjγjHj ,

D({βk} , {Λm}) = I−
M∑
m=1

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]

+

K∑
k=1

βkγkHk +

M∑
m=1

E†mΛmEm.

An important line of research on the SDR is to study its tightness
[27–29]. In the following theorem, we show that the SDR in (5) is
tight (if it is feasible), i.e., it always has a rank-one solution. This
shows that problem (P) admits a convex reformulation and answers
a question in [25, Section IX-B].

Theorem 1 Suppose that problem (5) is feasible. Then it always
has a rank-one solution.

Proof: Since the SDR is feasible, there must exist a primal-
dual pair {Vk},Q, {βk} , {Λm} such that the Karush-Kuhn-Tucker
(KKT) conditions of problem (5) hold. In particular, the complimen-
tary slackness condition Vk • (Ck({βk} , {Λm}) − βkHk) = 0
holds. Since Ck({βk} , {Λm}) is positive definite and Hk is rank-
one and positive semidefinite, it follows that

rank (Ck({βk} , {Λm})− βkHk) ≥M − 1,

which, together with the complimentary slackness condition and the
rank inequality, implies that rank(Vk) ≤ 1. �

3.2. Proposed Algorithm

It is well known that the KKT conditions are sufficient and necessary
for the global solution of problem (5). By further exploiting the
special strucrure of problem (5) and its KKT conditions, we get the
following conditions that the solution of problem (5) must satisfy:

D({βk} , {Λm}) = 0, (7)

rank(Λm) = 1, Λm � 0, ∀m ∈M,

Λ(1:m−1,1:m)
m = 0, Λ(m:M,1:m−1)

m = 0, ∀m ∈M,

}
(8)

rank(Ck({βk} , {Λm})− βkHk) =M − 1, ∀m ∈M,

Ck({βk} , {Λm})− βkHk � 0, ∀m ∈M,

}
(9)

βk ≥ 0, ∀ k ∈ K, (10)
Vk • (Ck({βk} , {Λm})− βkHk) = 0, ∀ k ∈ K, (11)
Vk � 0, rank(Vk) = 1, ∀ k ∈ K, (12)
ak({Vk} ,Q) = 0, ∀ k ∈ K, (13)
Bm({Vk} ,Q) � 0, ∀m ∈M, (14)
Λm •Bm({Vk} ,Q) = 0, ∀m ∈M, (15)
Q � 0. (16)

The above conditions are essentially the KKT conditions of problem
(5) except the one in (7), whose proof needs a judicious treatment of
the special structure and the KKT conditions of problem (5).

Next, we shall design an algorithm for solving the above equa-
tions by further carefully exploiting the special structures in the
equtions. The idea is to first find {βk} and {Λm} by solving
Eqs. (7)–(10) and then plug {βk} and {Λm} into Eqs. (11)–(16)
and solve for {Vk} and Q.

3.2.1. Solving Eqs. (7)–(10)

Suppose that {βk} are given, we first find {Λm} that satisfy Eqs. (7)
and (8). Define Γ = I+

∑K
k=1 βkγkHk. Then Eq. (7) is equivalent

to

M∑
m=1

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]
−

M∑
m=1

E†mΛmEm = Γ. (17)

We know from the special properties of {Λm} in (8) that only Λ1

affects the first row and column of matrix Γ. Therefore, the entries
in the first row of Λ1 should be

[
1

η1−1
Γ(1,1), 1

η1
Γ(1,2:M)

]
. Since

Λ1 is of rank one, we can further obtain all entries of Λ1 based on
its entries in the first row. After Λ1 is obtained, we can subtract all
terms related to Λ1 from both sides of (17) and the left-hand side of
(17) becomes

M∑
m=2

ηm

[
0 0

0 Λ
(m:M,m:M)
m

]
−

M∑
m=2

E†mΛmEm. (18)

Then we can do the same to find Λ2. We repeat the above procedure
until all {Λm} are obtained. It can be shown that {Λm} that satisfy
Eqs. (7)–(8) are unique, and such solution, depending on the given
{βk} , is denoted as {Λm ({βk})}.

To ease the presentation, define Ck , Ck({βk} , {Λm}). Since
Ck � 0 and Hk � 0 is of rank one, there exists a unique βk such
that one and only one eigenvalue of Ck − βkHk is equal to zero.
Such βk admits the following closed-form solution:

βk
(
{Λm} , {βj}j 6=k

)
=
(
h†kC

−1
k hk

)−1

.

From the above discussion, we know: if {Λm} are known, one

can get
{
βk
(
{Λm} , {βj}j 6=k

)}
such that (9) and (10) hold; if

{βk} are known, one can get {Λm ({βk})} such that (7) and (8)
hold. If one can find {βk} and {Λm ({βk})} that satisfy

βk = Ik ({βk}) , βk
(
{Λm ({βk})} , {βj}j 6=k

)
, ∀ k ∈ K,

(19)
then all Eqs. (7)–(10) are satisfied. Define β = [β1, . . . , βK ]T and
I(β) = [I1({βk}), . . . , IK({βk})]T, then (19) becomes

β = I(β). (20)

It is worth highlighting that the computational cost of evaluating the
function I(β) at any given positive β is quite cheap.

Lemma 1 The function I(·) defined in (20) is a standard interfer-
ence function.

From Lemma 1 and [30, Theorem 2], it follows that the following
fixed-point iteration β(i+1) = I(β(i)) will converge to the unique
solution of (20). Therefore, the above fixed-point iteration provides
an efficient way of solving Eqs. (7)–(10).

3.2.2. Solving Eqs. (11)–(16)

Suppose we already have {βk} and {Λm} that satisfy Eqs. (7)–(10).
We still need to find {Vk} and Q that satisfy Eqs. (11)–(16). By
Eq. (12), let Vk = pkvkv

†
k with ‖vk‖ = 1. Then Eq. (11) be-

comes v†k (Ck − βkHk)vk = 0. Combining this and Eq. (9) gives



(Ck − βkHk)vk = Ckvk − βkhk
(
h†kvk

)
= 0. Hence, vk can

be solved explicitly as follows:

vk =
C−1
k hk∥∥C−1
k hk

∥∥ . (21)

Let Uk = vkv
†
k. Substituting (21) into (13), one has

pkUk •Hk − γk

∑
j 6=k

pjUj •Hk + Q •Hk + σ2

 = 0.

Then one can solve for pk as follows:

pk
(
Q, {pj}j 6=k

)
=
γk
(∑

j 6=k pjUj •Hk + Q •Hk + σ2
)

Uk •Hk
.

(22)
Now suppose {pk} are known. By Eq. (8), one can decompose

Λm into Λm = λmλ
†
m,whereλm =

[
0, . . . , 0,λ

(m)
m , . . . ,λ

(M)
m

]T
.

This decomposition, together with Eqs. (14) and (15), implies

Bmλm = 0, ∀m ∈M. (23)

Next we solve (23) from m = M to m = 1 and can obtain the
desired Q. More specifically, when m = M , since λ(M)

M > 0, it
follows that

Q(M,M) =

∑K
k=1 V

(M,M)
k

ηm − 1
. (24)

When m = M − 1, we can substitute (24) into (23) to solve for
Q(M−1,M−1),Q(M,M−1), and Q(M−1,M). In particular, we can
obtain Q(M−1,M) by using the last equation of (23) with m =
M − 1; then we can further obtain Q(M−1,M−1) by using the sec-
ond last equation of (23) with m =M − 1. In fact, each step of the
above procedure admits a closed-form solution. We can do the same
sequentially to solve problem (23) with m =M − 2,M − 3, . . . , 1.
Denote the solution to (23) as Q({pk}).

Similarly, we can define a fixed-point iteration to solve Eqs. (11)–
(16) for the desired {Vk} and Q and show that the fixed-point
iteration is a standard interference function and thus converges to
the unique solution. We omit the details due to the space reason.

3.2.3. Proposed Fixed-Point Iteration Algorithm

Now, we present the algorithm for solving problem (5) (equivalent to
problem (P)). The algorithm first finds {βk} and {Λm} that satisfy
Eqs. (7)–(10); with found {βk} and {Λm} fixed, the algorithm then
finds {Vk} and Q that satisfy Eqs. (11)–(16). Hence, {Vk}, Q,
{βk} , and {Λm} together satisfy Eqs. (7)–(16) and thus is a KKT
point of problem (5). Since rank (Vk) = 1 for all k, we can re-
cover the optimal solution for problem (P). The pseudocodes of the
proposed algorithm are given in Algorithm 1.

Algorithm 1 Proposed Algorithm for Solving Problem (P)

1: Find {βk} and {Λm} that satisfy Eqs. (7)–(10) by performing
the fixed-point iteration in (20) on {βk} until the desired error
bound is met.

2: Find {Vk} and Q that satisfy Eqs. (11)–(16) by performing an
appropriate fixed-point iteration on {pk} until the desired error
bound is met.

3: Find vk such that Vk = vkv
†
k, ∀ k ∈ K.

4: Output: {vk} and Q.
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Fig. 1: (a) Average sum power versus the user rate target; (b) Aver-
age CPU time versus the user rate target.

Theorem 2 If the SDR in (5) is feasible, then proposed Algorithm
1 returns the optimal solution of problem (P).

In addition to the global optimality, proposed Algorithm 1 is
also computationally efficient, as the evaluation of the functions in
fixed-point iterations is computationally cheap.

4. SIMULATION RESULTS

In this section, we present some simulation results to show the cor-
rectness and the efficiency of proposed Algorithm 1 for solving prob-
lem (P). We consider a network with M = 8 relays and K = 10
users, where the wireless channels between these relays and users
are generated based on the i.i.d. Rayleigh fading model following
CN (0, 1), and the fronthaul capacities between all relays and the
CP are set to be 3 bits per symbol (bps). Moreover, the noise powers
at the users are set to be σ2 = 1. The rate targets for all the users
are assumed to be identical. All simulation results are obtained by
averaging over 200 Monte-Carlo runs.

We compare the proposed algorithm with the following two
benchmarks. (i) Benchmark1 is to directly call CVX [31] to solve
the SDR in (5). This benchmark is helpful in verifying the tightness
of the corresponding SDR as well as the correctness of Theorem 2.
(ii) Benchmark2 is the proposed algorithm in [25]. This algorithm
first uses the fixed-point iteration to solve the dual uplink problem
and then calls CVX to solve the reduced primal downlink problem
with fixed beamforming vectors (which is a convex problem). The
key difference of the proposed algorithm and the algorithm in [25] is
that our proposed algorithm uses the fixed-point iteration algorithm
for solving the primal problem by exploiting more special structures
in the problem (after solving the dual problem).

Fig. 1 (a) plots the average sum power obtained by the proposed
algorithm and two benchmarks, where the user rate target ranges
from 0.2 to 1.2 bps. We can see from the figure that all the three
algorithms return the same solution. This verifies the tightness of
the SDR (i.e., Theorem 1) and the global optimality of the solution
returned by the proposed algorithm (i.e., Theorem 2). Fig. 1 (b)
plots the average CPU time taken by different algorithms. We can
observe from the figure that: Benchmark2 performs much efficient
than Benchmark1 and our proposed algorithm performs the most ef-
ficient. In particular, our proposed algorithm significantly outper-
forms Benchmark2 in terms of the CPU time and the CPU time gap
tends to become large as the user rate target becomes large (i.e., as
the corresponding problem becomes difficult). These preliminary re-
sults illustrate high efficiency and global optimality of our proposed
algorithm as well as the important role of Lagrangian duality in ex-
ploiting the special problem structure in the algorithmic design.
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