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Abstract. We investigate a server’s best queue disclosure strategy in a single-server service system
with an uncertain quality level (which is assumed to be binary). We consider this problem from the
perspective of a Bayesian persuasion game. The server first commits to a possibly mixed strategy
stating that given a realized quality level, whether or not the queue length will be revealed to cus-
tomers upon their arrival. The service quality level is then realized, and the server’s corresponding
queue-disclosure action is observed by customers, who then update their beliefs regarding service
quality and decide whether or not to join the service system. We then reformulate the server’s
decision problem as looking for the best Bayes-plausible distribution of posterior beliefs regarding
service quality. We demonstrate that the maximal expected effective arrival rate, as a function
of the prior belief, can be graphed as the upper envelope of all convex combinations of any two
arbitrary points on the two effective arrival rate functions of the revealed and concealed queues.
We show that when the market size is sufficiently small (large), the server always conceals (reveals)
the queue, regardless of the realized service quality. Numerically, we find that in a medium-sized
market, the server’s optimal commitment strategy is often hybrid or mixed, that is, randomizing
queue concealment and revelation. We also extend our analysis to a situation in which the server
aims to maximize social welfare. We show that under certain conditions, it is always beneficial for
the welfare-maximizing social planner to randomize queue concealment and revelation, regardless
of the market size.
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1 Introduction

Whether to provide queue length information to customers, who in turn decide whether or not to

join the queue, is a classic research topic. It is well documented in the queueing game literature

(e.g., Hassin and Haviv, 2003, p. 51) that there exists a threshold on the arrival rate, below which

the server prefers concealing the queue length and above which he prefers revealing it. This queue

disclosure strategy is based on a setting with a known service quality; however, in real practice, the

quality of provided service may be uncertain. For example, in a restaurant, the food quality may

vary due to factors such as the freshness of ingredients and skill of the chef. The quality of online

consulting services, such as online healthcare diagnosis platforms and telephone hotlines, heavily

relies on the skills and expertise levels of the consultants and agents, which represent a source of

uncertainty to customers, particularly at times of rotation in these professionals’ schedules. We

therefore have the following research question: in service systems with uncertain service quality,

how should the server select his queue disclosure strategy?

The server can choose to either reveal or conceal the queue, regardless of the realized service

quality. Under such a quality-independent queue-disclosure strategy, customers can choose to join

the queue or balk based on their prior beliefs about the service quality. We use the following

example to illustrate this strategy.

Example 1. (Quality-Independent Queue-Disclosure Strategy) A server (he) provides a

service with an uncertain quality level. Nature decides whether the service quality is high, with a

value of 2, or low, with a value of 1, according to a Bernoulli trial with respective probabilities

of 0.33 and 0.67. Customers’ service times follow an exponential distribution with a rate of 1.1.

Potential customers arrive according to a Poisson process with a rate of 0.5. The waiting cost per

unit time is 1. Both the server and the customers hold the same prior belief regarding the service

quality.

When the queue length is always revealed to the customers, the customers’ belief regarding service

quality is 1.33, the expected one. In this scenario, customers join the observable queue if and only

if the queue is empty, and the effective arrival rate can be calculated to be 0.3438. Similarly, when

the queue is always concealed from customers, the customers’ belief regarding service quality is still

1.33, the expected one. The effective arrival rate can be derived by setting the customer joining

utility to zero, as the potential arrival rate is sufficiently high, yielding an equilibrium arrival rate

of 0.3481. Hence, the server’s optimal quality-independent queue-disclosure strategy is concealing

the queue length.

The quality-independent queue-disclosure strategy, however, is not optimal from the perspective
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of arrival-rate maximization for the server. In reality, customers can tolerate a higher level of

congestion when expecting a higher level of service quality. Using this information, the server

can tailor his queue-disclosure strategy according to the realized service quality to attract more

customers to join the queue. Continuing with the above example, consider that the server adopts

a quality-dependent pure queue-disclosure strategy in which he conceals the queue when service

quality is high and reveals it otherwise, and assume that this strategy is announced to customers

ex ante. Then, the incoming customer can exactly infer the service quality by the visibility of the

queue and do not rely on the expected quality to inform queueing decisions. We can show that this

quality-dependent pure queue-disclosure strategy yields an increase in the expected effective arrival

rate to 0.3953, a 13.56% improvement over the rate when the server always conceals the queue.

Compared with the quality-independent queue-disclosure strategy, this quality-dependent queue-

disclosure strategy yields a better match between the realized quality level and the queue-disclosure

action, leading to a larger expected arrival rate. We name this outcome the differentiation effect

of a quality-dependent queue-disclosure strategy.

The above quality-dependent strategy requires quality information to be credibly conveyed to

customers via a pre-commitment mechanism. That is, the server must announce his queue disclosure

strategy before the service quality is realized; once the quality level is realized, the corresponding

queue-disclosure action must be performed without manipulation. Following this idea, we consider

a general version of a quality-dependent queue-disclosure strategy. This general strategy can be

characterized by two conditional queue-disclosure probabilities, π(·|high) and π(·|low), which cor-

respond to a high or low level of realized service quality, respectively. The server then commits to

this strategy before the service quality is realized. The foregoing quality-dependent pure queue-

disclosure strategy can be expressed as π(concealing|high) = 1 and π(revealing|low) = 1 and

clearly represents a special case of the general strategy. As we show in Section 4.1, the optimal

quality-dependent queue-disclosure strategy for Example 1 is a randomization strategy character-

ized by

π(revealing|high) = 0, π(revealing|low) = 0.7537;

π(concealing|high) = 1, π(concealing|low) = 0.2463.

That is, when the realized service quality is low, the server randomizes queue length revelation and

concealment, instead of fully disclosing the queue length (as discussed above), with the probability

of revealing the queue being 0.7537. At a probability of 0.5050 (0.4950), the queue is revealed (con-

cealed) to the customers. Thus, the posterior probability for the service quality to be high becomes

0 (0.6667), leading to an effective arrival rate of 0.3438 (0.5). Consequently, the effective arrival rate

associated with a concealed queue is still 0.5, but the probability of its occurrence increases from
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0.33 to 0.4950. The expected effective arrival rate is now 0.4211, a further improvement of 6.53%

over the rate achieved using the quality-dependent pure queue-disclosure strategy. This experi-

mental result is quite insightful, as it demonstrates that partial disclosure of quality via strategic

randomization can be beneficial to the server. It indicates that in addition to the differentiation

effect, another benefit is associated with the quality-dependent queue-disclosure strategy; we name

this the persuasion effect.

In this study, we aim to illustrate the mechanism explaining why a quality-dependent queue-

disclosure strategy (particularly the randomization strategy) can yield a larger effective arrival rate

for the server. We also aim to provide an approach to find such an optimal strategy. One way to

interpret pre-commitment to the randomized queue-disclosure strategy is to consider a “long-run”

server who aims to maximize his long-run average profit when facing “short-run” customers (see,

e.g., Rayo and Segal, 2010). Customers can then infer the server’s randomization strategy from

their long-term experiences with and observations of the server’s queue-disclosure actions. Note

that advances in information technology have made it relatively easy for service providers to change

the visibility status of a queue. Using phone-call systems as an example, servers can choose to play

music or provide queue-length information to waiting customers. Similarly, servers can also easily

control the provision of real-time queue information on online platforms and mobile apps. The

quality-dependent queue-disclosure strategy considered in our study can help service providers to

persuade more customers to join their system. When well-constructed, such a strategy can also

help a welfare-maximizing social planner to better regulate customer arrivals.

Specifically, we consider a stylized single-server service system in which customers arrive ac-

cording to a Poisson process, and service times are exponentially distributed. However, the service

quality provided by the server is random and takes the value of being either high (labeled as h) or

low (labeled as l). The realized quality level is available to the server but not the customers. The

probability of the service quality being high is common knowledge and hence forms customers’ prior

belief regarding service quality. Customers are homogeneous: they have the same prior knowledge,

receive the same service rewards, and incur the same unit-time delay cost. Before realizing the

service quality level, the server announces and commits to his queue disclosure strategy, which is

characterized by two conditional probabilities of revealing the queue length at two possible levels

of realized service quality. Once the service quality is realized, he then performs the corresponding

queue-disclosure action. Based on the visibility of the queue, customers update their beliefs about

the service quality according to Bayes’ rule and decide to join the queue or balk accordingly to

maximize the expected utility.

Directly maximizing the server’s expected effective arrival rate does not yield a closed-form
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solution. Inspired by Kamenica and Gentzkow (2011), we use a geometric approach to derive the

optimal disclosure strategy. We first plot the effective arrival rates of the revealed and concealed

queues as two functions of the probability of the service quality being high. We then demonstrate

that any convex combination of two points from these two functions can be generated through a

properly designed queue disclosure strategy. We further show that any point on the upper envelope

of all convex combinations represents the maximal effective arrival rate under the corresponding

prior belief. Graphically, we can then determine whether the server benefits from the randomized

queue-disclosure strategy by simply checking whether the upper envelope is located strictly above

the two effective arrival rate functions.

After deriving the optimal disclosure strategy, we examine the effect of market size (i.e., the

potential arrival rate) on the optimal disclosure strategy. We show that when the market size is

sufficiently small, the server always conceals the queue length information, regardless of the level

of realized service quality. In contrast, when the market size is very large, the server always reveals

the queue. These two results are consistent with those identified in studies involving a known level

of service quality (e.g., Hassin and Haviv, 2003, p. 51). However, when the market is medium-

sized, numerically we find that it is often optimal for the server to adopt a quality-dependent

queue-disclosure strategy, as this can help to increase the server’s effective arrival rate. Moreover,

such a strategy is often hybrid or mixed, that is, queue concealment and revelation actions are

randomized.

We further extend our analysis to a setting in which the server acts as a social planner and aims

to maximize social welfare. We show that we can still apply our geometric approach to determine

the best queue disclosure strategy in this setting. In contrast to the classic finding that revealing

the queue length is always socially optimal (e.g., Hassin and Haviv, 2003; Hassin and Roet-Green,

2017), we find that when service quality is uncertain, a randomized queue-disclosure strategy can

benefit the social planner.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

The formal model is presented in Section 3. We investigate the optimal queue disclosure strategy in

Section 4. In Section 5, we examine a situation in which the server acts as a social planner. Finally,

we provide our concluding remarks in Section 6. All of the proofs are relegated to the Appendix.

2 Literature Review

Our work is closely related to studies on quality disclosure. In economics, Grossman (1981) in-

vestigates product quality disclosure problems via ex post verifiable disclosures and warranties,

showing that the seller voluntarily discloses private information in equilibrium if the disclosure is
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costless and information is verifiable. Milgrom (1981) characterizes the favorableness of news and

introduces the novel persuasion game, showing that in a sales encounter model, a salesman always

reports the most favorable data about his product. In operations management, there are many

studies on quality signaling games involving queues. Veeraraghavan and Debo (2009, 2011) con-

sider the quality issue in a two-parallel-observable-queue setting and show that in equilibrium, it

might be optimal for customers to join a longer queue. Debo et al. (2012) consider both informed

and uninformed customers under an observable queue setting. Since the customers are heteroge-

neous in terms of possessing information about service quality, the queue length serves as a quality

signal to uninformed customers. Some recent works consider other quality signals, such as service

or waiting times (Debo and Veeraraghavan, 2014; Kremer and Debo, 2016), information generated

by customers (Yu et al., 2016), and price and wait lines (Debo et al., 2020). Guo et al. (2020) con-

sider a situation in which the queue-disclosure behavior can serve as a signaling device, and derive

pooling and separating equilibria in this setting. In particular, they find that if the system only has

uninformed customers, only the pooling equilibria exist, and thus queue disclosure cannot convey

quality information to customers. We note some differences between a quality-signaling game and

our queue-disclosure game. A signaling game considers a server with a fixed level of service quality,

whereas our setting contains a server with an uncertain level of service quality. These games also

differ in terms of timing: in a signaling game, the server has a given quality type, which he signals

to customers. However, in our persuasion game, the server commits to a queue disclosure strategy

before his quality type is realized and must remain committed to this strategy once the quality is

realized; a signaling game has no such requirement.

The solution technique we use in this study is closely related to that used in Bayesian persuasion

games as introduced by Kamenica and Gentzkow (2011), who study how a sender designs a signaling

system and commits to it to induce preferred actions from an information receiver. Kamenica and

Gentzkow (2011) demonstrate that concavification of the value function identifies whether the

sender benefits from persuasion but observe that the structure of the optimal signal can be difficult

to derive when the state space is large. Gentzkow and Kamenica (2016) show the optimal signal

structure of a particular class of Bayesian persuasion games in which the receiver’s optimal action

depends only on expectation of the unknown state and the sender’s payoff is independent of the

state. Lingenbrink and Iyer (2019) first introduce the Bayesian persuasion game into a queueing

setting in which the only unknown state of the world is the queue length, and prove that the

optimal signaling mechanism is a queue-length-dependent binary threshold signal. Different from

Lingenbrink and Iyer (2019), in which the level of service quality is given, we consider a queueing

setting with uncertain service quality. This uncertainty leads to both a differentiation effect and
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persuasion effect associated with the queue disclosure strategy. The former effect concerns a better

match between the realized quality and queue-disclosure action, and the latter effect is related to

the partial disclosure of quality information to customers. Our methodology and focus are also

different from those of Lingenbrink and Iyer (2019), who use a linear programming model to find

the best signal. In contrast, by restricting the signals to queue concealment and revelation, we use

a geometric approach to intuitively illustrate the benefits of a quality-dependent queue-disclosure

strategy.

Our work is also related to studies on information provision and purchase in queues. Hassin

and Haviv (1994) consider a case in which customers arriving at two parallel queues can choose to

purchase information about queue length to enable them to join the shorter queue. Hassin (2007)

examines a scenario in which service quality and some other system parameters are known to the

server but not to the customers, and the server can choose a profit-maximizing price and also can

determine whether or not to disclose his private information to the customers. The paper shows that

informing customers about the realized system parameters does not necessarily benefit the server

or the social planner. Hassin and Roet-Green (2017) study information purchase in a one-server

queue setting in which incoming customers can purchase information about the queue length. Later,

Hassin and Roet-Green (2018) consider a setting in which customers arriving at parallel servers

use the queue length of one server to deduce whether to join the queue or inspect another queue.

In this setting, those who have inspected other queues act as informed customers, and the fraction

of informed customers is not predetermined but is rather an artifact of the customers’ strategy

choices.

The research on the effects of delay announcements on queues is also related. Allon et al. (2011)

consider a cheap talk game between the server and customers in which the server knows the state

of the system and sends a related signal, and the customers use this signal to update their belief

regarding the expected waiting time. Our work differs from Allon et al. (2011) in two ways: the

sender does not commit to a signaling rule under a cheap talk game while our ex-ante commitment

approach does. Besides, in Allon et al. (2011), they do not consider quality issues while we do.

Yu et al. (2018) further study a cheap talk game in a setting with heterogeneous customers and

show that customers’ responses to a delay announcement can be used to elicit information on

customer type. Other related studies in this stream include Hassin (1986), Whitt (1999), Armony

and Maglaras (2004a, 2004b), Burnetas and Economou (2007), Guo and Zipkin (2007), Armony et

al. (2009), Guo and Hassin (2011), Yu et al. (2016), Yu et al. (2017), Hu et al. (2018) and Yu

et al. (2021). We further refer interested readers to two survey books, Hassin and Haviv (2003)

and Hassin (2016), and survey papers by Aksin et al. (2007) and Ibrahim (2018) for more studies

in this research stream. In a recent study, Li et al. (2020) explore an optimal queue disclosure
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strategy with a known level of service quality and demonstrate that it is socially optimal to disclose

the queue length only if the queue is either very short or very long. In contrast, we consider

the server’s optimal queue disclosure strategy when service quality is uncertain, and our queue

disclosure strategy is quality-dependent.

Interestingly, our conclusion on the optimal queue disclosure strategy with respect to market

size is similar to the findings of Hassin and Roet-Green (2017) and Hu et al. (2018). We all

find that to maximize the effective arrival rate, the queue length should be concealed in a small-

sized market and revealed in a large-sized market, whereas partial queue disclosure is optimal

in a medium-sized market. However, the settings and driving forces behind our conclusions are

quite different. In Hassin and Roet-Green (2017), partial information disclosure is achieved by

imposing an inspection cost, whereas in Hu et al. (2018), it is achieved by informing only some

customers. In contrast, in our setting, partial queue disclosure is scenario-based: according to the

realized service quality, incoming customers are either all informed or all uninformed about the

queue length according to the server’s pre-determined probabilities. In Hassin and Roet-Green

(2017) and Hu et al. (2018), customer-based information disclosure helps the server to extract the

surplus of customers in certain conditions by exploiting heterogeneity in the customer group. In

our work, scenario-based information disclosure has two effects: the differentiation effect achieved

by better matching the realized quality level with the queue-disclosure action, and the persuasion

effect achieved by manipulating customers’ posterior beliefs about the uncertain state (i.e., quality

level).

3 Model Description

Consider a single-server queueing system. Potential customers arrive according to a Poisson process

at a rate of λ. Their service times follow an exponential distribution with mean 1/µ. Let ρ := λ/µ.

The level of service quality can be high, Vh, with probability δ0 or low, Vl, with probability 1− δ0.

All customers, upon joining the queue, receive the same quality of service and incur a waiting cost

of θ per unit of time. We require Vh > Vl >
θ
µ to ensure that at least one customer joins the system.

Customers make their joining-or-balking decisions to maximize their own utility. Nature determines

the level of service quality, and the lottery is done once. All of the above information is known

to both the server and customers. Before the realization of service quality, the server decides his

queue length disclosure strategy by selecting two conditional probabilities, fh and fl, that represent

the probability that the queue length information is revealed to all incoming customers when the

realized service quality is high or low, respectively. Then, 1 − fh (1 − fl) is the corresponding

probability that the queue length information is concealed from customers when the realized service
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quality is high (low). The server then commits to this strategy and announces it to all of the

customers, with the goal of maximizing the expected effective arrival rate in his service system.

After the service quality is realized, the corresponding queue-disclosure action is implemented

following the pre-announced strategy. Upon observing the server’s queue-disclosure action, cus-

tomers update their beliefs about the service quality according to Bayes’ rule. Specifically, when

the queue length is revealed, customers assess the service quality to be high with a probability of

PH|R(fh, fl) = δ0fh
δ0fh+(1−δ0)fl

and to be low with the complementary probability 1 − PH|R(fh, fl).

Next, they decide whether to join the queue under the assumption that the expected service value

is VR(fh, fl) = PH|R(fh, fl)Vh + (1 − PH|R(fh, fl))Vl. According to Naor (1969), customers adopt

a threshold policy for joining: they join the queue if and only if the queue length is smaller than

some threshold ne(fh, fl) := ⌊VR(fh, fl)µ/θ⌋, where ⌊·⌋ is the floor function. Hence, the queue

in equilibrium becomes an M/M/1/ne(fh, fl) system, and the corresponding effective arrival rate,

denoted by λR
e (fh, fl), can be calculated as

λR
e (fh, fl) = λ

(
1− ρne(fh,fl)∑ne(fh,fl)

j=0 ρj

)
.

Similarly, define PH|C(fh, fl) and VC(fh, fl) for the case in which the server conceals his queue

length. When the queue is concealed, the customers’ equilibrium queueing strategy can be repre-

sented by the probability of joining the queue (see Edelson and Hildebrand, 1975). This is denoted

as pe(fh, fl) and equals 1 if λ < µ− θ/VC(fh, fl) and
µ−θ/VC(fh,fl)

λ otherwise. The effective arrival

rates, denoted as λC
e (fh, fl), are then calculated as λ and µ− θ/VC(fh, fl), respectively.

Given the pre-determined queue-disclosure strategy, the probability that the queue is revealed

(concealed) is δ0fh+(1−δ0)fl (δ0(1−fh)+(1−δ0)(1−fl)), and the posterior probability of service

quality being high is PH|R(fh, fl) (PH|C(fh, fl)). According to Bayes’ rule, the expected posterior

is equal to the prior, i.e.,

δ0 = [δ0fh + (1− δ0)fl]PH|R(fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]PH|C(fh, fl).

If a distribution of posterior probabilities satisfies this property, it is called Bayes-plausible (see

Kamenica and Gentzkow, 2011).

The sequence of events can be summarized as follows. First, the server chooses and commits

to a queue-disclosure strategy profile (fh, fl). After that, nature determines the service quality

and the server makes his queue-disclosure action based on (fh, fl). Upon observing the server’s

disclosure action, customers update their belief about the service quality to be high, represented

by PH|R(fh, fl) if the queue length is revealed or PH|C(fh, fl) if the queue length is concealed. Cus-

tomers then make their corresponding joining-or-balking decisions. See Figure 1 for an illustration.

Backward induction is adopted to derive the game outcome.
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Figure 1: Sequence of events

First, given the queue-disclosure strategy profile (fh, fl) and the server’s action, we can derive

the customers’ queueing strategy (ne(fh, fl), pe(fh, fl)). We then solve the optimization problem

for the server who aims to maximize the expected effective arrival rate:

λe(fh, fl) = [δ0fh + (1− δ0)fl]λ
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]λ

C
e (fh, fl).

The server’s optimal queue-disclosure strategy is denoted as (fe
h, f

e
l ).

Given the server’s queue-disclosure strategy profile, (fh, fl), the total utility of all customers

under a revealed queue can be derived as

uRe (fh, fl) = λ

ne(fh,fl)−1∑
j=0

p
ne(fh,fl)
j

(
VR(fh, fl)−

(j + 1)θ

µ

)
,

where pmj = ρj∑m
k=0 ρ

k (0 ≤ j ≤ m). Similarly, the total utility of all customers under a concealed

queue can be written as

uCe (fh, fl) = λpe(fh, fl)

(
VC(fh, fl)−

θ

µ− λpe(fh, fl)

)
.

Then, the expected total utility across customers can be expressed as

ue(fh, fl) = [δ0fh + (1− δ0)fl]u
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]u

C
e (fh, fl).

The optimal disclosure strategy may be a pure strategy, in which the server commits to fully

reveal or conceal his queue length regardless of the service quality level (i.e., fh and fl can only

be 0 or 1); a mixed strategy, in which the server randomizes queue revealing and concealing at

both quality levels (i.e., fh and fl are both larger than 0 and less than 1); or a hybrid strategy, in

which the server randomizes queue revealing and concealing at one quality level and fully reveals

or conceals the queue length at the other level (i.e., either fh or fl is either 0 or 1, and the other

is strictly between 0 and 1). We further call the queue disclosure strategy quality-independent if

the probability that the server reveals the queue length is the same for both high and low service

quality levels and quality-dependent if the probability differs by the service quality level. Clearly, the
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quality-independent disclosure strategy conveys no information about service quality, and hence the

posterior equals the prior. Only a quality-dependent disclosure strategy conveys some information

about service quality to customers.

4 Optimal Queue Disclosure Strategy

In this section, we analyze the server’s optimal queue disclosure strategy. First, we reformulate

the server’s decision problem as a nonlinear program, the optimal solution of which can be derived

geometrically through convex combination. We then investigate the effect of market size on system

performance.

4.1 Geometric Approach

We can directly maximize the server’s expected effective arrival rate by considering the disclosure

probabilities (fh, fl) as decision variables. However, this approach does not yield closed-form solu-

tions and thus cannot provide useful insights. Below, we consider the problem from another angle.

We first demonstrate a one-to-one correspondence between the server’s queue disclosure strategy

and the Bayes-plausible distribution of posteriors. We then transform the server’s optimization

problem into a new problem on finding the best Bayes-plausible distribution of posteriors. We then

provide a geometric approach to derive the optimal disclosure strategy.

In Section 3, we show that the server’s queue disclosure strategy yields a unique Bayes-plausible

distribution of posterior beliefs. Conversely, any Bayes-plausible distribution of posterior beliefs

corresponds to a unique queue disclosure strategy. The details are as follows. Suppose that cus-

tomers observe a revealed queue with a probability of pR and a concealed queue with a probability

of pC = 1 − pR. The posterior belief about the service quality to be high conditional on a re-

vealed queue is pH|R, and the effective arrival rate is a function of this posterior belief, denoted

by λR
e (pH|R). Similarly, the posterior belief about the service quality to be high conditional on a

concealed queue is pH|C , and the corresponding effective arrival rate is a function of this belief,

denoted by λC
e (pH|C). We then have the following proposition.

Proposition 1. Consider a prior δ0 and two posteriors, pH|R with probability pR when the queue

length is revealed and pH|C with probability pC when the queue length is concealed. If such a

distribution of posteriors is Bayes-plausible (i.e., δ0 = pRpH|R + pCpH|C), it can be induced by a

queue disclosure strategy with fh = pRpH|R/δ0 and fl = pR(1− pH|R)/(1− δ0).

Based on Proposition 1, we can transform our search for the optimal disclosure strategy into a

search for the best Bayes-plausible distribution of posterior beliefs. Mathematically, we can rewrite
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the server’s effective arrival rate maximization problem as follows:

λe(f
e
h, f

e
l ) = max

pR, pC , pH|R, pH|C
pRλR

e (pH|R) + pCλC
e (pH|C)

s.t. pR + pC = 1

δ0 = pRpH|R + pCpH|C (1)

0 ≤ pR, pC , pH|R, pH|C ≤ 1.

This optimization problem can be solved through a geometric approach, which we now describe in

detail. Let δ represent the parameter of the posterior belief (i.e., the probability of service quality

being high). The effective arrival rate, which is conditional on a revealed or a concealed queue, is

a function of the expected service quality, which is determined by the customers’ posterior belief

δ. Therefore, we can express the effective arrival rates as functions of the posterior belief δ. Now,

consider the two effective arrival rate functions, λR
e (δ) and λC

e (δ), in the domain δ ∈ [0, 1]. Recall

that pR+pC = 1. When pR changes from 0 to 1, the value of pRλR
e (pH|R)+pCλC

e (pH|C) lies on the

line segment connecting the two points (pH|R, λ
R
e (pH|R)) and (pH|C , λ

C
e (pH|C)). The point where

this line segment crosses the vertical line δ = δ0 satisfies the Bayes plausibility requirement (1).

Therefore, to find the optimal solution, we only need to consider all of the segments that connect

a point on the function curve of λR
e (δ) and a point on the function curve of λC

e (δ). The highest

crossing point of all possible line segments with the vertical line δ = δ0 represents the maximal

effective arrival rate that can be achieved through the server’s queue disclosure strategy.

To facilitate derivation of the structural properties of this reformulated optimization problem,

we first provide the following lemma on the shapes of the two effective arrival rate functions.

Lemma 1. The two effective arrival rate functions, λR
e (δ) and λC

e (δ), exhibit the following prop-

erties:

(i) λR
e (δ) is a piecewise constant function with some upward jumps as δ increases from 0 to 1;

(ii) λC
e (δ) is concave and nondecreasing in δ.

The shapes of the two effective arrival rate functions can be used to derive the optimal queue

disclosure strategy. For the sake of analysis, we further define the point set

co(λR
e (·), λC

e (·)) := {α(δ1, λR
e (δ1)) + (1− α)(δ2, λ

C
e (δ2))|0 ≤ α, δ1, δ2 ≤ 1},

which contains all the convex combinations of one point (δ1, λ
R
e (δ1)) on the function λR

e (·) and an-

other point (δ2, λ
C
e (δ2)) on the function λC

e (·), where 0 ≤ δ1, δ2 ≤ 1. The significance of constructing

co(λR
e (·), λC

e (·)) is demonstrated in the following proposition.

12



Proposition 2. Given a prior belief δ0, there exists a queue disclosure strategy (fh, fl) that results

in an expected effective arrival rate λe(fh, fl) if and only if (δ0, λe(fh, fl)) ∈ co(λR
e (·), λC

e (·)).

Proposition 2 ensures that the maximal effective arrival rate can be searched only in the set

co(λR
e (·), λC

e (·)). Define

Λe(δ) := max{Λ|(δ,Λ) ∈ co(λR
e (·), λC

e (·))}. (2)

Then, function Λe(δ) with δ ∈ [0, 1] is the upper envelope of the set co(λR
e (·), λC

e (·)).

Based on Proposition 2, we have the following conclusion on the optimal queue disclosure

strategy.

Proposition 3. Given the prior δ0, the maximal effective arrival rate under the optimal queue

disclosure strategy is Λe(δ0).

Proposition 3 indicates that a pre-committed queue-disclosure strategy benefits the server at

the given prior δ0 only if Λe(δ0) > max
{
λR
e (δ0), λ

C
e (δ0)

}
. A similar upper envelope is provided in

Kamenica and Gentzkow (2011). In that work, however, different signals correspond to the same

value function of the sender, and thus the upper envelope is formed through the concavification of

that value function. In contrast, in our work, the queue-disclosure actions– revealing and concealing

the queue length– are the signals. These two signals correspond to two different value functions.

Under the Bayes plausibility condition, the upper envelope is formed through the convex combina-

tion of these two value functions. We now illustrate the aforementioned geometric approach in the

following example.

Example 2. (Illustration of the Upper Envelope) Consider the parameter values to be Vh = 2,

Vl = 1, µ = 1.1, θ = 1 and λ = 0.6. The dashed curve in Figure 2 represents the effective arrival rate

function λC
e (δ), and the dotted piecewise flat line represents the effective arrival rate function λR

e (δ).

The solid line connecting the two points (0, λR
e (0)) and (1, λC

e (1)) is the upper envelope formed by

all of the segments connecting two arbitrary points on these two effective arrival rate functions.

The first point (0, λR
e (0)) represents the effective arrival rate of a revealed queue with a posterior

belief pH|R = 0, and the second point (1, λC
e (1)) represents the effective arrival rate of a concealed

queue with a posterior belief pH|C = 1. Given any prior belief δ0 (e.g., δ0 = 0.3), we can recover

the probability pR by solving the Bayes plausibility condition pR ∗ 0 + (1 − pR) ∗ 1 = 0.3, which

yields pR = 0.7. Then, according to Proposition 1, we can recover the optimal queue disclosure

strategy as follows: fh = pRpH|R/δ0 = 0 and fl = pR(1− pH|R)/(1− δ0) = 1. One can easily check

that for any prior belief δ0 ∈ (0, 1), the optimal queue disclosure strategy is to always conceal the

queue length when the realized service quality is high but to always reveal it when the realized service

13
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Figure 2: The upper envelope Λe: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 0.6

quality is low, i.e., (fe
h, f

e
l ) = (0, 1). That is, the server’s optimal queue-disclosure strategy is pure

and quality-dependent and thus fully conveys quality information to customers.

Example 2 shows that a pure disclosure strategy can be the server’s optimal strategy. Below,

we demonstrate that a hybrid disclosure strategy works best for the server under the setting given

in Example 1 (stated in the Introduction).

Example 3. (Illustration of Example 1 via Geometric Approach) The motivating Exam-

ple 1 is illustrated in Figure 3. In this example, the effective arrival rate function of the concealed

queue reaches a linear plateau at d12 = 0.6667. The solid line represents the upper envelope formed

by all of the segments connecting two arbitrary points of the two effective arrival rate functions.

Given the prior belief δ0 = 0.33, the maximal effective arrival rate is located on the segment con-

necting the two points (0, λR
e (0)) and (d12, λ

C
e (d12)). The first point, (0, λR

e (0)), represents the

effective arrival rate in a revealed queue with a posterior belief pH|R = 0, and the second point,

(d12, λ
C
e (d12)), represents the effective arrival rate in a concealed queue with a posterior belief

pH|C = 0.6667. Given δ0 = 0.33, we can recover the probability pR by solving the Bayes plau-

sibility condition pR ∗ 0 + (1 − pR) ∗ 0.6667 = 0.33, which yields pR = 0.5050. Then, according to

Proposition 1, we can recover the optimal queue disclosure strategy as follows: fh = pRpH|R/δ0 = 0

and fl = pR(1 − pH|R)/(1 − δ0) = 0.7537. This hybrid strategy conveys partial information about

service quality to customers. By checking the graph of the upper envelope, we can see that for any

prior belief δ0 ∈ (0, d12), Λe(δ0) is located above the two effective arrival rate functions, and the

corresponding hybrid queue-disclosure strategy is beneficial to the server.

14
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Figure 3: The upper envelope Λe: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 0.5

We note that although the maximal effective arrival rate is unique for a given prior belief δ0, the

corresponding optimal queue-disclosure strategy is not necessarily unique. A point on the upper

envelope may correspond to multiple pairs of posteriors whose distribution is Bayes-plausible. Let

us revisit Example 2 and the upper envelope plotted in Figure 2. We retain the parameter values

Vh = 2, Vl = 1, µ = 1.1 and θ = 1 but change the value of λ from 0.6 to 0.7160. In this setting,

the up-jumping point of λR
e (δ), (0.8182, 0.5698), is located on the upper envelope Λe(δ), a segment

connecting the two points (0, λR
e (0)) and (1, λC

e (1)), where λR
e (0) = 0.4337 and λC

e (1) = 0.6000.

When the prior is δ0 = 0.8182, we can obtain the following two optimal queue-disclosure strategies:

(fe
h, f

e
l ) = (0, 1) or (1, 1).

Based on the above geometric approach, we further obtain the following lemma.

Lemma 2. For any prior δ0, the optimal queue disclosure strategy is pure and quality-independent

in the following two situations:

(i) (fe
h, f

e
l ) = (0, 0) if λC

e (δ) > λR
e (δ) for all δ ∈ [0, 1].

(ii) (fe
h, f

e
l ) = (1, 1) if λR

e (δ) is a constant function (i.e., a horizontal line) and λR
e (δ) ≥ λC

e (δ)

for all δ ∈ [0, 1].

The first statement of Lemma 2 requires that the effective arrival rate function of a concealed

queue be located above that of a revealed queue. By considering its concavity property (see

Lemma 1), we conclude that the upper envelope function coincides with the effective arrival rate

15



function of a concealed queue. Hence, the optimal queue disclosure strategy is to always conceal

the queue, regardless of the realized service quality. The second statement of Lemma 2 provides a

sufficient condition under which the optimal queue disclosure strategy is to always reveal the queue,

regardless of the realized service quality. Note that this condition requires the effective arrival rate

function of a revealed queue not only to be located above that of a concealed queue but also to be

a constant function, such that no jumps in this function occur in the whole domain δ ∈ [0, 1].

4.2 Effect of Market Size

In this section, we set a fixed prior belief δ0 and explore the effect of market size (i.e., the potential

arrival rate) λ on the server’s optimal queue disclosure strategy.

When the service quality is certain, the effect of market size on the delay announcement strat-

egy is well studied in the literature. According to Hassin (1986) and Chen and Frank (2004), when

the market size λ is below a threshold value, concealing the queue benefits the server; otherwise,

revealing the queue is preferred. Moreover, when λ is very small, customers ‘all join’ in an unob-

servable queue setting while some balk in an observable queue setting. Hence, concealing queue

length information is the better option for servers when λ is very small. As λ becomes sufficiently

large, the effective arrival rate becomes constant for unobservable queues because customers’ join-

ing utility is now zero and no more customers want to join the queue. However, in an observable

queue setting, the queue becomes stochastically longer as λ increases, and the effective arrival rate

strictly increases because the number of customers who observe a short queue and join continues

to increase. Therefore, the server benefits more from revealing the queue when λ is very large. In

our work, the aforementioned results and insights still hold in sufficiently small- and large-sized

markets under certain conditions, as implied by Lemma 2. We now formally show that these results

also hold for our optimal queue disclosure strategy.

Proposition 4. Given any prior δ0, the optimal queue disclosure strategy, (fe
h, f

e
l ), satisfies the

following two properties:

(i) If the potential arrival rate λ < µ − θ
δ0Vh+(1−δ0)Vl

, then the server’s optimal strategy is to

always conceal the queue; that is, (fe
h, f

e
l ) = (0, 0).

(ii) There exists a threshold, denoted by λ̄e (which is greater than µ− θ
δ0Vh+(1−δ0)Vl

), such that if

λ > λ̄e,1 the server’s optimal strategy is to always reveal the queue; that is, (fe
h, f

e
l ) = (1, 1).

Indeed, when the market size is very small, all customers join the concealed queue regardless of

the level of service quality, and thus concealing the queue is the server’s optimal strategy. Similarly,

1The definition of λ̄e can be found in the proof of Proposition 4.
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when the market size is very large, revealing the queue is the optimal strategy. However, when

the market size λ is medium, the situation becomes tricky, and the optimal disclosure strategy

depends on the tradeoff between the value of informing customers about the queue length and that

of providing partial quality information. We use the following numerical example to illustrate this

tradeoff.
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Figure 4: Effect of market size on the optimal queue disclosure strategy, maximal effective arrival
rate and customers’ total utility: Vh = 18, Vl = 3, µ = 3, θ = 8 and δ0 = 0.1

Example 4. (Sensitivity Analysis: Effect of Market Size λ on the Server’s Optimal

Queue Disclosure Strategy and System Performance) Consider the parameter values Vh =

18, Vl = 3, µ = 3, θ = 8 and δ0 = 0.1. There are three key market size thresholds, as shown

in Figure 4: λA3 = 1.2222, λB3 = 2.0621 and λC3 = 17.2492. In that figure, the bottom subplot

depicts the server’s optimal queue disclosure strategy (fe
h, f

e
l ) as a function of λ; the middle subplot

shows the customers’ total utility; and the upper subplot depicts the maximal effective arrival rate

that can be achieved by adopting the pre-committed optimal queue disclosure strategy (fe
h, f

e
l ).

Figure 4 shows that when the market size is small (λ < λA3), fully concealing the queue (i.e.,

(fe
h, f

e
l ) = (0, 0)) is the dominant strategy because in such a situation, all customers join the con-

cealed queue. When the market size reaches the threshold λA3, balking becomes possible because

customers’ expected joining utility is now reduced to zero. As the market size further increases and

becomes larger than λA3, the server continues to conceal the queue when the realized service quality

is high but begins to randomize actions to conceal and reveal the queue when the realized service
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quality is low; here, the probability of revealing the queue increases with the market size λ. On the

one hand, such randomization can strengthen customers’ belief that the service quality is high when

they observe that the queue length is concealed; on the other hand, this approach provides a chance

for the customers to see a revealed queue, from which they then infer that the service quality is low.

Still, the increase in the customers’ effective arrival rate in the concealed case surpasses the reduc-

tion in the customers’ effective arrival rate in the revealed case, thereby benefiting the server. When

the market size reaches and increases beyond λC3, it is no longer beneficial to conceal the queue

if the realized service quality is high, as a revealed queue induces more customers to join in this

condition. Accordingly, fully revealing the queue is the dominant strategy, that is, (fe
h, f

e
l ) = (1, 1).

Consequently, in a small-sized market (λ ∈ (0, λA3)), the maximal effective arrival rate coincides

with that of a fully concealed queue, whereas that in a large-sized market (λ ∈ (λC3,+∞)) coincides

with that of a fully revealed queue, as shown in the upper subplot of Figure 4. However, in a

medium-sized market (λ ∈ (λA3, λC3)), the maximal effective arrival rate is strictly larger than that

of either a fully revealed or fully concealed queue. The effective arrival rate difference between them

can be used to determine the value of using a quality-dependent disclosure strategy.

We also derive the optimal quality-independent queue disclosure strategy, denoted by (f̂e
h, f̂

e
l ),

and the corresponding total customer utility to understand the effect of the quality-dependent queue

disclosure strategy on customers. The middle subplot of Figure 4 shows that compared with the

quality-independent queue disclosure strategy, our quality-dependent queue disclosure strategy can

improve customers’ total utility only when the market size λ falls within a relatively small range:

(λA3, λB3). However, for a relatively large market size within the range of λ ∈ (λB3, λC3), cus-

tomers’ total utility is smaller under our optimal quality-dependent queue disclosure strategy than

under the optimal quality-independent queue disclosure strategy. Therefore, although the pre-

committed queue disclosure strategy can be used to attract more customers to join the service system,

it does not necessarily benefit them.

Note that in Example 4, when the market size λ falls within the range of (λA3, λC3), a hybrid

equilibrium is sustained in which the server randomizes concealing and revealing the queue only

when the realized service quality is low. We also conduct other numerical examples and find that

the equilibrium may also be fully mixed, such that the server randomizes queue concealment and

revelation at both high and low levels of service quality.

5 Social Planner

In the previous section, we consider a profit-maximizing server and study his optimal queue disclo-

sure strategy. In reality, however, servers can be social planners whose aim is to maximize overall
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social welfare. We now extend our commitment game to this setting and show that our geometric

approach is robust and provides new insights into the optimal queue-disclosure strategy.

In our setting, social welfare is defined as the sum of customers’ utilities, represented by

ue(fh, fl) = [δ0fh + (1− δ0)fl]u
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]u

C
e (fh, fl),

where detailed expressions of uRe (fh, fl) and uCe (fh, fl) are provided in Section 3. To analyze the

social planner’s optimal queue disclosure strategy, we first investigate the geometry underlying the

functions involved and obtain the following results regarding the shapes of two utility functions,

uRe (·) and uCe (·).

Lemma 3. The two utility functions, uRe (δ) and uCe (δ), exhibit the following properties:

(i) uRe (δ) is a piecewise increasing linear function with some downward jumps as δ increases from

0 to 1;

(ii) if λ ≥ µ − θ
Vh

, then uCe (δ) is equal to 0 for all δ ∈ [0, 1]; if λ ≤ µ − θ
Vl
, then uCe (δ) is linear

and increasing in δ for δ ∈ [0, 1]; otherwise, uCe (δ) is equal to 0 for δ ∈
[
0, θ/(µ−λ)−Vl

Vh−Vl

]
and

linear and increasing in δ for δ ∈
(
θ/(µ−λ)−Vl

Vh−Vl
, 1
]
;

(iii) uRe (δ) > uCe (δ) for all δ ∈ [0, 1].

The third statement of Lemma 3 shows that from the perspective of welfare maximization,

revealing the queue is always better than concealing it (see also Hassin and Haviv, 2003; and Hassin

and Roet-Green, 2017). This is intuitive, as revealing the queue can help customers to make an

informed decision. Considering the optimal queue disclosure strategy, however, this classical result

no longer holds. We show here that concealing the queue length with a strictly positive probability

is socially desirable under some situations.

Using the geometric approach, we construct the convex-combination point set as

co(uRe (·), uCe (·)) := {α(δ1, uRe (δ1)) + (1− α)(δ2, u
C
e (δ2))|0 ≤ α, δ1, δ2 ≤ 1},

and the upper envelope as

Ue(δ) := max{U |(δ, U) ∈ co(uRe (·), uCe (·))}.

The social planner’s optimal queue disclosure strategy, (f̃e
h, f̃

e
l ), can thus be derived accordingly.

Example 5. (Illustration of the Social Planner’s Optimal Queue Disclosure Strategy)

Consider a setting in which Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 10. The dotted piecewise
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Figure 5: The upper envelope Ue: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and λ = 10

increasing line in Figure 5 represents the utility function uRe (δ), the flat line represents the utility

function uCe (δ), and the solid line is the upper envelope formed by all segments connecting two

arbitrary points on these two utility functions. Given the prior belief δ0 = 0.83, the maximal effective

arrival rate is located on the segment connecting the two points (δ̂−, uRe (δ̂
−)) and (1, uCe (1)), where δ̂

is the down-jumping point of the utility function uRe (δ), δ̂
− = lim

δ→δ̂,δ<δ̂
δ and uRe (δ̂

−) is the left-hand

limit of uRe (·) at the point δ̂. The first point, (δ̂−, uRe (δ̂
−)), represents the effective arrival rate in a

revealed queue with a posterior belief pH|R = 0.8181, and the second point, (1, uCe (1)), represents the

effective arrival rate in a concealed queue with a posterior belief pH|C = 1. Given δ0 = 0.83, we can

recover the probability pR by solving the Bayes plausibility condition pR∗0.8181+(1−pR)∗1 = 0.83,

which yields pR = 0.9346. Then, according to Proposition 1, we can obtain the optimal queue

disclosure strategy as f̃e
h = pRpH|R/δ0 = 0.9212 and f̃e

l = pR(1− pH|R)/(1− δ0) = 1.0000. Clearly,

this optimal strategy is hybrid. Figure 5 indicates that under the prior δ0 = 0.83, the expected total

utility under the optimal queue disclosure strategy (i.e., Ue(δ0) = 0.8419) improves by 659% over

the one under the “always revealing” strategy (i.e., uRe (δ0) = 0.1109).

Let ∆̂ denote the set of values of δ where uRe (δ) jumps down (or specifically, the term µ[δVh +

(1− δ)Vl]/θ takes integer values). Noticing that δ ∈ [0, 1], we can formally define

∆̂ :=

{
δ|δ =

kθ − µVl

µ(Vh − Vl)
, k = ⌈µVl/θ⌉, · · · , ⌊µVh/θ⌋

}
,

where ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions, respectively. Then, consider any prior δ0 ∈
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[δ̂, δ̂ + ϵ), where δ̂ ∈ ∆̂, ϵ is sufficiently small and δ̂ + ϵ < 1. For the point (δ0, ū) on the segment

connecting two points (δ̂−, uRe (δ̂
−)) and (1, uCe (1)), ū is strictly larger than uRe (δ0), which implies

that a greater expected utility must be achieved with the optimal queue disclosure strategy than

with the “always revealing” strategy. Also, δ̂ is independent of the market size λ. In summary, we

reach the following conclusion.

Proposition 5. Given any prior δ0 ∈ [δ̂, δ̂ + ϵ) where δ̂ ∈ ∆̂, ϵ is sufficiently small and δ̂ + ϵ < 1,

the expected total utility is greater with the optimal queue disclosure strategy than with the “always

revealing” strategy on the whole range of market size; that is, Ue(δ0) > uRe (δ0) for all λ ∈ (0,+∞).

Proposition 5 implies that full disclosure is not necessarily socially desired. Combining it with

the third statement of Lemma 3, we can conclude that it can be optimal for the social planner

to randomize queue concealment and revelation, regardless of the market size. This conclusion

echoes those reached by Cui and Veeraraghavan (2016), Hu et al. (2018) and Li et al. (2020).

According to Naor (1969), tolls/taxes can be levied in queueing systems to control arrivals with

the intention of improving welfare. In Cui and Veeraraghavan (2016), the lack of information acts

as an information tax that deters admission, leading to improved welfare. A similar rationale holds

here.

In contrast to the profit-maximizing case in which the server’s optimal queue disclosure strategy

is “always concealing” (“always revealing”) when the market size λ is sufficiently small (large), a

social planner’s optimal queue disclosure strategy may be quality-dependent on the whole range of

λ, as illustrated in the following example.

Example 6. (Sensitivity Analysis: Effect of Market Size λ on Social Planner’s Optimal

Queue Disclosure Strategy and System Performance) Consider the setting in Example 5,

in which the prior belief δ0 is very close to the down-jumping point δ̂. Figure 6 indicates that across

the whole market size range (λ ∈ (0,+∞)), the optimal queue disclosure strategy, (f̃e
h, f̃

e
l ), achieves

a strictly larger expected total utility than the “always revealing” strategy, (f̃h, f̃l) = (1, 1).

In the profit-maximizing case, more arrivals are always preferred. In the welfare-maximization

case, however, it may be socially desirable to persuade fewer customers to join, as an overly crowded

system can reduce customers’ overall utility. To discourage some customers from joining, the social

planner should convince them that the service quality may be low. In Figure 6, for 0 < λ < λD(=

0.1000), the optimal queue disclosure strategy is pure, with (f̃e
h, f̃

e
l ) = (0, 1); this strategy indirectly

provides full information on the quality type. In this case, as the market size λ is very small, the

expected total utility from joining a concealed queue is strictly positive when the posterior belief pH|C

is 1, which is even larger than expected total utility from joining a revealed queue with the prior
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Figure 6: Effect of market size on a social planner’s optimal queue disclosure strategy and customers’
total utility: Vh = 2, Vl = 1, µ = 1.1, θ = 1 and δ0 = 0.83

belief δ0 = 0.83. This increase provides an incentive for the social planner to conceal the queue

when the service quality level is high. To achieve an increase in overall utility, the server should

reveal the queue when the service quality level is low. For λD ≤ λ < +∞, the customer utility in a

concealed queue becomes small, and the total utility from a revealed queue with the prior δ0 = 0.83 is

also relatively small. In this case, the social planner should randomize revealing and concealing the

queue to weaken customers’ belief regarding a high service quality level (i.e., pH|R). For example,

under the special case of λ = 10 in the previous Example 5, the optimal queue disclosure strategy

is (f̃e
h, f̃

e
l ) = (0.9212, 1.0000). Under such a strategy, customers’ belief about a high service quality

level after seeing a revealed queue reaches a value of 0.8181(< δ0), which decreases the maximal

queue length from 2 to 1 and achieves a higher expected total utility than that obtained with the

“always revealing” strategy.

6 Concluding Remarks

The service quality provided in some systems is generally uncertain. In this work, we examine a

situation in which the server can design a queue-disclosure strategy that links queue concealment

and revelation with the realized level of service quality and commits to it before the service quality

is realized. We demonstrate that the commitment to such a disclosure strategy increases the server’s

ability to attract more customers to join the service system.
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We transfer our search for the optimal queue disclosure strategy to an equivalent search for the

optimal Bayes-plausible distribution of posterior beliefs. Based on our reformulated optimization

problem, we then provide a geometric approach to obtain this optimal strategy. We show that as

long as the upper envelope of all convex combinations of one point from the effective arrival rate

function of a concealed queue and another point from that of a revealed queue is located above these

two functions, a properly designed queue disclosure strategy (which might involve randomization)

can be implemented to help attract more customers to join the service system. We also investigate

the effect of market size on the server’s optimal queue disclosure strategy. We show that it is always

in the server’s best interest to conceal the queue in a very small-sized market and reveal it in a

very large-sized market. Through the numerical study, we find that in a medium-sized market, it is

often optimal for the server to adopt a quality-dependent queue-disclosure strategy to either fully

or partially convey the service quality information to customers. We then extend our analysis to

a setting in which the server is a welfare-maximizing social planner. We show that the geometric

approach can still be easily applied to this situation and that it may be beneficial for the social

planner to randomize revealing and concealing the queue, regardless of market size. This result

is in sharp contrast to the classical literature (see, e.g., Hassin and Haviv, 2003; and Hassin and

Roet-Green, 2017), which states that it is always socially optimal to reveal the queue.

Our work demonstrates that our quality-dependent queue-disclosure strategy can be used to

better match the realized quality level with queue-disclosure actions and fully or partially con-

vey quality information to customers. We further present an intuitive geometric approach to the

identification of such an optimal strategy with the objective of arrival-rate maximization or welfare

maximization. Admittedly, our model has some limitations. First, we restrict the signal to a binary

choice of concealing or revealing the queue. Under this assumption of a binary choice, the effective

arrival rates can be easily calculated. It would be interesting to extend our approach to other types

of delay announcements, such as informing customers of the exact waiting time (Guo and Zipkin,

2007) or announcing the waiting time of the last customer to enter service (Ibrahim et al., 2017).

Second, our information disclosure scheme is designed based on a one-dimension uncertain state

(i.e., quality type). It would be interesting to determine the optimal persuasion mechanism based

on two-dimensional uncertain states (i.e., quality type and queue length). Third, we assume that

customers cannot obtain quality information from the customers who have been served. Nowadays,

with advanced information technology, it is quite convenient for customers to share the information

about the realized service quality through online reviews or social networks. It would be interest-

ing to incorporate consumer-generated quality information (e.g., Yu et al., 2016) into our model

setting. Despite such limitations, we hope that our work can serve as a stepping stone for further

studies on the combination of information disclosure and Bayesian persuasion in queueing systems.
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Finally, our model does not fit a setting in which the server does not pre-commit to any strategy

and decides to reveal or conceal the queue after the service quality is realized. In such a setting,

the server might communicate vague signals about the realized quality type to customers, and the

equilibrium between the server and customers could thus be modeled as a cheap talk game. It would

be interesting to study the equilibrium of such a game and compare the corresponding equilibrium

behaviors with our results from this work.
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Appendix: Proofs

Proof of Proposition 1. If a queue disclosure strategy (fh, fl) can induce the Bayes-plausible

distribution of posteriors as presented in Proposition 1, it should satisfy that pR = δ0fh+(1− δ0)fl

and pH|R = PH|R(fh, fl) =
δ0fh

δ0fh+(1−δ0)fl
. From these two equations, we obtain that fh = pRpH|R/δ0

and fl = pR(1− pH|R)/(1− δ0).

Proof of Lemma 1. First, λR
e (δ) = λ

(
1− ρn(δ)∑n(δ)

i=0 ρi

)
= µ − µ∑n(δ)

k=0 ρk
, where n(δ) = ⌊[δVh +

(1 − δ)Vl)]µ/θ⌋. So, λR
e (δ) increases in n(δ). Second, as δ increases from 0 to 1, n(δ) repeats the

following pattern: it first remains unchanged for a while, then increases by 1, and then remains

unchanged, etc. The change of λR
e (δ) in δ is a consequence of this change pattern of n(δ) in δ.

Note that when λ ≥ µ− θ/Vh, λ
C
e (δ) = µ− θ

δVh+(1−δ)Vl
for all 0 ≤ δ ≤ 1, which is concave and

increasing in δ. When λ < µ − θ/Vh, λ
C
e (δ) consists of two pieces, first an increasing and concave

function µ− θ
δVh+(1−δ)Vl

on the domain δ ∈
[
0, θ−(µ−λ)Vl

(µ−λ)(Vh−Vl)

]
and then a constant λ on the domain

δ ∈
[

θ−(µ−λ)Vl

(µ−λ)(Vh−Vl)
, 1
]
. The overall function is still concave.

Proof of Proposition 2. As shown in Section 3, any queue disclosure strategy (fh, fl) yields a

Bayes-plausible distribution of posteriors (i.e., δ0 = [δ0fh + (1 − δ0)fl]PH|R(fh, fl) + [δ0(1 − fh) +

(1 − δ0)(1 − fl)]PH|C(fh, fl)), and an objective value λe(fh, fl) = [δ0fh + (1 − δ0)fl]λ
R
e (fh, fl) +

[δ0(1− fh) + (1− δ0)(1− fl)]λ
C
e (fh, fl). It is straightforward to show that the point (δ0, λe(fh, fl))

can be regarded as the convex combination of two points (PH|R(fh, fl), λ
R
e (PH|R(fh, fl))) and

(PH|C(fh, fl), λ
C
e (PH|C(fh, fl))), which implies that (δ0, λe(fh, fl)) ∈ co(λR

e , λ
C
e ). On the other

hand, given (δ0,Λ) ∈ co(λR
e , λ

C
e ), there exist δ1, δ2 and α̂ such that α̂δ1 + (1 − α̂)d2 = δ0 and

α̂λR
e (δ1)+ (1− α̂)λC

e (δ2) = Λ (0 ≤ δ1, δ2, α̂ ≤ 1). This indicates that when the prior probability for

the service quality to be high is δ0, we can always identify a queue disclosure strategy that yields

the corresponding effective arrival rate Λ for the server according to Proposition 1.
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Proof of Proposition 3. According to Proposition 2, under the given prior δ0, all effective arrival

rates that can be induced by feasible queue disclosure strategies constitute the set {Λ|(δ0,Λ) ∈

co(λR
e (·), λC

e (·))}. The conclusion then follows by the definition of Λe(δ0).

Proof of Lemma 2. Since λC
e (δ) > λR

e (δ) for all δ ∈ [0, 1] and λC
e (δ) is concave in δ, all convex

combinations between a point on λR
e (·) and a point on λC

e (·) fall on or below the function curve

λC
e (·). Therefore, Λe(δ) = λC

e (δ) and (fe
h, f

e
l ) = (0, 0). Similarly, when λR

e (δ) is a horizontal line

and λR
e (δ) ≥ λC

e (δ) for all δ ∈ [0, 1], these convex combinations fall on or below the flat line λR
e (·).

Therefore, Λe(δ) = λR
e (δ), and (fe

h, f
e
l ) = (1, 1).

Proof of Proposition 4. Part (i) clearly holds because, in this case, the effective arrival rate

equals the potential arrival rate under the “always concealing” strategy.

For part (ii), based on the relationship between fh and fl, we consider two cases: fh < fl

and fh ≥ fl. In the first case, PH|R < δ0 (and thus, PH|C > δ0). It then follows that λR
e (0, 1) ≤

λR
e (fh, fl) ≤ λR

e (1, 1) and λC
e (0, 0) ≤ λC

e (fh, fl) ≤ λC
e (0, 1). We know that the function λC

e (0, 1)

becomes flat when λ increases to a certain value while λR
e (1, 1) always strictly increases with

λ. Hence, λR
e (1, 1) crosses λC

e (0, 1) from below and exactly once as λ increases. Denote this

crossing point by λ̄e
1. It then follows that as long as λ > λ̄e

1, λ
R
e (1, 1) > λC

e (fh, fl). Together with

λR
e (1, 1) ≥ λR

e (fh, fl), we can conclude that “always revealing” is the optimal choice for the service

provider.

We now show the case where fh ≥ fl. In this case, PH|R ≥ δ0 (and hence, PH|C ≤ δ0), and

thus, λR
e (1, 1) ≤ λR

e (fh, fl) ≤ λR
e (1, 0) and λC

e (1, 0) ≤ λC
e (fh, fl) ≤ λC

e (0, 0). To show that “always

revealing” is the best strategy, we first introduce an effective arrival rate function which is always

no less than λe(fh, fl), and then show that the effective arrival rate under “always revealing” can

still outperform this arrival rate. Define

λ̄e(fh, fl) := [δ0fh + (1− δ0)fl]λ
R
e (fh, fl) + [δ0(1− fh) + (1− δ0)(1− fl)]λ

C
e (0, 0).

This new function replaces the term λC
e (fh, fl) in the expression of λe(fh, fl) with a larger value

term λC
e (0, 0) and thus λe(fh, fl) ≤ λ̄e(fh, fl). Denote the optimal solution of maximizing λ̄e(fh, fl)

by (f̄e
h, f̄

e
l ). Then, we have that λe(f

e
h, f

e
l ) ≤ λ̄e(f̄

e
h, f̄

e
l ).

We now show that there exists a threshold λ̄e
2 such that when λ > max{λ̄e

1, λ̄
e
2}, “always

revealing” yields an effective arrival rate no less than λ̄e(f
e
h, f

e
l ). Recall that when the server reveals

the queue length, customers join if and only if the queue length upon arrival (including themselves)

is no greater than ne(fh, fl), where ne(fh, fl) = ⌊VR(fh, fl)µ/θ⌋. Define a set of integers

S := {n ∈ N+ : ne(1, 1) < n ≤ ne(1, 0)},
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where N+ is the set of all nonnegative integers. Clearly, when queue is observable, customers’

joining threshold ne(fh, fl) always falls into the set S ∪{ne(1, 1)}, because the strategy (1, 1) yields

the lowest expected service value and the strategy (1, 0) yields the largest expected service value

for incoming customers. Therefore, we must have ne(f̄
e
h, f̄

e
l ) ∈ S ∪{ne(1, 1)}. If the set S is empty,

let λ̄e
2 = 0; otherwise, we define λ̄e

2 through the following procedure. Let n1, · · · , n|S| be all the

elements in set S, where |S| is the cardinality of S. We now fix the joining threshold ne(fh, fl) = ni

(i = 1, · · · , |S|) and consider the range λ > λ̄e
1. Consider the constrained maximization problem as

follows:

(f̄ i
h, f̄

i
l ) = argmax(fh,fl){λ̄e(fh, fl)|ne(fh, fl) = ni, λ > λ̄e

1}.

According to the definition of λ̄e
1, we have that when λ > λ̄e

1, λ
R
e (1, 1) > λC

e (0, 1) > λC
e (0, 0). Also,

as fh ≥ fl, we have λR
e (fh, fl) ≥ λR

e (1, 1). Considering these two inequalities together, we get

λR
e (fh, fl) > λC

e (0, 0). With this inequality, we can then check the expression of λ̄e(fh, fl). Now,

the value of the term λR
e (fh, fl) is fixed due to a fixed joining threshold ni and the term λC

e (0, 0)

reaching a fixed value when λ > λ̄e
1. Maximizing λ̄e(fh, fl) then requires to maximize the term

δ0fh + (1 − δ0)fl, which yields f̄ i
h = 1 and 0 ≤ f̄ i

l < 1 (note that f̄ i
l cannot equal 1 under the

constraint ne(fh, fl) = ni). Therefore, within the range λ > λ̄e
1, (f̄

e
h, f̄

e
l ) must be (1, 1) or one of

(1, f̄ i
l ) (i = 1, · · · , |S|). Furthermore, we have that

lim
λ→+∞

[λe(1, 1)− λ̄e(1, f̄
i
l )] = µ−

{
[δ0 + (1− δ0)f̄

i
l ]µ+ (1− δ0)(1− f̄ i

l )

(
µ− θ

Vl

)}
> 0.

Then, for λ̄e(f̄
i
h, f̄

i
l ), we can find a threshold for the potential arrival rate, λ̄i

2 (λ̄i
2 ≥ 0), such that

when λ > λ̄i
2, λe(1, 1) > λ̄e(f̄

i
h, f̄

i
l ). Let λ̄e

2 be max{λ̄1
2, · · · , λ̄

|S|
2 } when the set S is nonempty. It

follows that when λ > max{λ̄e
1, λ̄

e
2}, λe(1, 1) ≥ λ̄e(fh, fl) ≥ λe(fh, fl) for fh ≥ fl.

Finally, let λ̄e := max{λ̄e
1, λ̄

e
2}. We can then conclude that argmax(fh,fl) λe(fh, fl) = (1, 1) for

λ > λ̄e.

Proof of Lemma 3.

(i) Recall that uRe (δ) = λ
∑ne(δ)−1

j=0 p
ne(δ)
j

[
δ(Vh − Vl) + Vl − (j+1)θ

µ

]
, with ne(δ) = ⌊[δVh + (1 −

δ)Vl)]µ/θ⌋. As δ increases from 0 to 1, ne(δ) repeats the following pattern: it first remains un-

changed for a while, then increases by 1, and then remains unchanged, etc. When ne(δ) remains

unchanged, uRe (δ) is a linear function in δ with the slope being λ(Vh − Vl)
(
1− p

ne(δ)
ne(δ)

)
. And when

ne(δ) increases by 1 at some δ = δ̂, we have that δ̂(Vh − Vl) + Vl − ne(δ̂)θ
µ = 0. Notice that

29



p
ne(δ̂)−1
j < p

ne(δ̂)
j for j = 0, · · · , ne(δ̂)− 2. Then, we can get that

lim
δ→δ̂−

uRe (δ) = λ

ne(δ̂)−2∑
j=0

p
ne(δ̂)−1
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]

>λ

ne(δ̂)−2∑
j=0

p
ne(δ̂)
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]
= λ

ne(δ̂)−1∑
j=0

p
ne(δ̂)
j

[
δ(Vh − Vl) + Vl −

(j + 1)θ

µ

]
=uRe (δ̂),

which means that uRe (δ) jumps down at δ = δ̂.

(ii) Recall that uCe (δ) = λpe(δ)
[
δ(Vh − Vl) + Vl − θ

µ−λpe(δ)

]
with pe(δ) = 1 if λ < µ − θ

δ(Vh−Vl)+Vl

and pe(δ) = µ−θ/[δ(Vh−Vl)+Vl]
λ otherwise. If λ ≥ µ − θ

Vh
, then pe(δ) = µ−θ/[δ(Vh−Vl)+Vl]

λ for all

δ ∈ [0, 1], which makes uCe (δ) constant as 0; if λ ≤ µ − θ
Vl
, pe(δ) = 1 for all δ ∈ [0, 1], and thus

uCe (δ) is linear and increasing in δ with the slope λ(Vh − Vl); otherwise, pe(δ) =
µ−θ/[δ(Vh−Vl)+Vl]

λ

for δ ∈
[
0, θ/(µ−λ)−Vl

Vh−Vl

]
, which makes uCe (δ) equal to 0, and pe(δ) = 1 for δ ∈

(
θ/(µ−λ)−Vl

Vh−Vl
, 1
]
, which

makes uCe (δ) linear and increasing in δ.

(iii) Now, let us compare uRe (δ) and uCe (δ) under a given δ (0 ≤ δ ≤ 1). First, when λ ≥

µ − θ
δVh+(1−δ)Vl

, we have uRe (δ) > 0 but uCe (δ) = 0, which directly yield uRe (δ) > uCe (δ). Then,

consider 0 < λ < µ− θ
δVh+(1−δ)Vl

. Under this case, we have 0 < ρ < 1 and pe(δ) = 1. Note that in an

M/M/1/ne(δ) queue, the expected queue length is E[L] :=
∑ne(δ)

j=0 jp
ne(δ)
j = ρ

1−ρ − [ne(δ)+1]ρne(δ)+1

1−ρne(δ)+1 .

Then, we can express uRe (δ) as

uRe (δ) = λ[δVh + (1− δ)Vl]−
(E[L] + 1)λθ

µ
− λp

ne(δ)
ne(δ)

[
δVh + (1− δ)Vl −

(ne(δ) + 1)θ

µ

]
.

According to the definition of ne(δ), we have δVh + (1− δ)Vl − (ne(δ)+1)θ
µ < 0. To sum up, we can

get that

uRe (δ)− uCe (δ) >λ[δVh + (1− δ)Vl]−
(E[L] + 1)λθ

µ
− λ

[
δVh + (1− δ)Vl −

θ

µ− λ

]
=

λθ

µ− λ
− (E[L] + 1)λθ

µ
=

[ne(δ) + 1]ρne(δ)+1λθ

(1− ρne(δ)+1)µ
> 0.
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