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ABSTRACT: A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C—H bond ami-
dation of unactivated alkenes. Due to the preference to five-membered nickellacycle formation, the chain-walking isomerization
initiated by the NiH insertion to alkene can be terminated at the y-methylene site remote from the alkene moiety. By employing 2,9-
dibutyl-1,10-phenanthroline (L4) as ligand and dioxazolones as the reagent, the amidation occurs at the y-C(sp’)-H bonds to afford
the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).

Regiocontrolled catalytic C(sp’)-H bond amidations have
been extensively investigated for atom- and step-economical
amine synthesis."> ? Classical metal-nitrene mediated intermo-
lecular amidations can target successfully either benzylic or ter-
tiary C—H bonds by virtue of their relatively weaker bond dis-
sociation energies and unique steric environment (Scheme 1a).?
The research groups of Rovis,* Glorius® and Blakey® have ac-
complished regioselective allylic C—H amidations by sequential
Ir(IlT) and Rh(IIl)-mediated site-selective metalation and mi-
gratory insertion to metal-nitrenoid species. Indeed, regioselec-
tive functionalization of unactivated methylene C—H bonds re-
mains elusive. Recently, specially designed Cu (Warren)” and
Co (Chang)® catalysts have demonstrated favorable regioselec-
tivity toward amidations of unactivated methylene C—H bonds.
However, effective differentiation among the methylene sites
with similar chemical environment remains problematic
(Scheme 1a). In a separate pursuit, the donor group-guided cy-
clometalation by electrophilic late transition metals such as
Pd(ID),’ Ir(II),!° Rh(II)!! and Ru(III)? can effect successfully
regiocontrolled C(sp®)-H functionalization for C~C and C-X
(X = heteroatom) bond formations.'* With the balance between
steric factor and thermodynamic preference for five-membered
metallacycle formation, the cyclometalation strategy is largely
limited to primary -C(sp®)-H amidations/aminations (Scheme
1b). Indeed, intermolecular regiocontrolled amidation at remote
unactivated y-methylene sites remains a formidable challenge.

Recently, NiH catalysis merging with chain-walking isomer-
ization are proved to be an effective approach for remote C—H
functionalization of alkenes.!* !> Addition of NiH to alkenes
would afford alkyl-Ni complexes, which are prone to chain-
walking isomerization through iterative f-hydride elimina-
tion/migratory insertion events. The chain-walking process led
to migration of the alkyl-Ni groups to some distal positions
(either less steric or resonance/heteroatom-stabilized sites) of
the hydrocarbon skeleton. Notably, Zhu’s group reported a pro-
tocol to directly install an arylamine function onto a benzylic
C(sp’)-H site distal from the C=C bond through a relay NiH-
mediated hydrometalation-alkene isomerization sequence, fol-
lowed by reductive coupling with nitroarenes (Scheme 1c).'>h
Inspired by Zhu’s work, we anticipated that a donor group pre-
installed on the alkene skeleton may stabilize the transient nick-
ellacycle intermediate through chelation and terminate the
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alkyl-Ni migration at some non-stabilized methylene sites.!>
5m Tndeed, chelation-control strategy has shown successes in
regiocontrolled hydroalkylation.'® Here we report a thioether-
directed remote y-C(sp*)-H amidation of alkenes using dioxa-
zolones as the amidating reagents (Scheme 1d). When 2,9-dibu-
tyl-1,10-phenathroline (L.4) was utilized as ligand, the highly y-
selective methylene C(sp’)-H amidation (up to 24:1 rr) was
achieved in up to 90% yield (>40 examples). Recently, dioxa-
zolone has emerged as a versatile reagent for transition metal-
catalyzed hydroamidation.!” However, the use of dioxazolones
in NiH-catalyzed alkene functionalization is less established.
In this work, treating 5-(benzylthio)-1-pentene 1 (0.2 mmol),
3-phenyl-1,4,2-dioxazol-5-one 2 (1.2 equiv) and pinacolborane
(2.0 equiv) in the presence of [Ni(ClOs),]-6H>O (10 mol%) and
L4 (12 mol%) in THF at room temperature for 3 h furnished y-
selective hydroamidation product 3 in 95% yield, with 4% anti-
Markovnikov product 5 formation (24:1 rr). No Markovnikov
product 4 was detected (Table 1, entry 1). Poor regioselectivity
(2:1 rr) was observed without ligands, with the desired amide 3
formed in only 22% yield (entry 2). While simple 1,10-phenan-
throline (L1) was ineffective (entry 3), the 2,9-substituents

benzylic 2°



Table 1. Influence of Ligands

Table 2. Substrate Scope Study*“?
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“Yields determined by '"H NMR; CH,Br, as internal standard. “rr refers to
regioisomeric ratio: the major product to the sum of all other isomers (de-
termined by '"H NMR). “MeCN instead of THF; 2.0 equiv of 2.

seemed to be critical for the observed chemoselectivity. Among
related ligands (L2-L5) tested, L2 bearing a single methyl
group furnished the Markovnikov product 4 in 71% yield, with
only 14% yield of the chain-walked amide 3 (4:1 rr; entry 4).
By switching solvent to MeCN, 10:1 rr was attained with amide
4 as major product (see later section). Yet, L3 with two methyl
groups favored chain-walked amide 3 in 74%, with 16% amide
4 formation (entry 5). Employing bulkier L5 as ligand led to
suppression of amide 3 production, forming amides 4 (20%)
and 5 (20%) exclusively (entry 6). Other nitrogen-based ligands
such as diamine, pyridine and terpyridine were all ineffective
for this transformation (entries 7—11).

Employing the working protocol for the remote hydroami-
dation, we first turned to dioxazolone scope study (Table 2).
Under the optimized conditions, aryl-substituted dioxazolones
would effectively couple with the 5-(benzylthio)-1-pentene 1 to
give the corresponding amides (6—12) in good yields. Dioxa-
zolones with EDG gave higher yields (>80%) than those bear-
ing EWG (<80%). Facile coupling with the dioxazolones con-
taining primary (13—16) and secondary alkyl groups (17-21)
were also accomplished in good yields (~80%). Presumably due
to steric effect, transformation of the dioxazolone bearing an
adamantyl group was less successful (22: 33%). Surprisingly,
dioxazolones containing strained carbocycles such as cubanes
and bicyclo[1.1.1]pentanes, afforded 23 and 24 in 84% yields.
Furthermore, dioxazolones containing thiophene, phthalimide,
ether groups were converted to their amides (25-27) in good
yields. Moreover, the coupling reaction involving the dioxazo-
lone derived from 2-chloropropanoic acid was also successful,
and amide 28 was obtained in 27% yield. Here 3-indolepropi-
onic acid and 6-fluoronicotinic acid can be derivatized to the
corresponding dioxazolones, and their coupling reactions gave
amides 29 (75%) and 30 (78%) effectively. In this work, corre-
sponding amides were also prepared successfully from the anal-
ogous reactions of dioxazolones derived from ibuprofen (31:
62%), 1-pyrenebutyric acid (32: 82%), indomethacin (33: 54%),
gemfibrozil (34: 18%), naproxen (35: 44%) and isoxepac (36:
88%). The molecular structure of 36 has been confirmed by X-
ray crystallography.
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“Reaction conditions: alkenes (0.2 mmol), dioxazolones (0.24 mmol),
[Ni(ClO4)2]-6H,0 (10 mol%), L4 (12 mol%), HBpin (2.0 equiv), THF (2.0
mL), Ny, r.t,, 3 h. bIsolated yield. “Product yields determined by 'H NMR;
CH,Br; as internal standard. ‘Anti-Markovnikov by-product yields deter-
mined by '"H NMR; CH,Br; as internal standard.

The synthetic versatility of this reaction was further explored
with a collection of structurally diversified alkenes (Table 2).
With 3-phenyl-1,4,2-dioxazol-5-one, alkenes with functional-
ized aryl rings (37—42) produced the corresponding amides in
~80% yields. As expected, alkenes with modified thioether
group are effective to bring about the y-C—H amidation products
43—46. Interestingly, hydroamidation of dithiane-substituted al-
kenes was also accomplished (47: 78%). Adding methylene
units between the sulfur and the C=C termini was somehow tol-
erated, albeit with reduced selectivities on longer migrating dis-
tance. This can be attributed to the diminished chelation effects
toward the initial NiH hydrometallation. The reactions of inter-
nal alkene and alkenes with alkyl branching at the a- and y- po-
sition gave also high y-selectivity (50, 52—53). The lower yield
of 53 is presumably due to increased steric effect of the tertiary
center.

As mentioned earlier, employing L2 as ligand for the Ni-
catalyzed hydroamidation has diverted the regioselectivity to
the Markovnikov amide 4 formation (Table 1, entry 4).!% Upon
reaction optimization (see Supporting Information), we found



Table 3. Ni-Catalyzed Markovnikov Hydroamidation*?
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65 R=CFy 64% (1:31:4 68, R =4-Mecyclohexyl,  51% (1:30:3)

“Reaction conditions: alkenes (0.2 mmol), dioxazolones (0.4 mmol),
[Ni(ClO4),]-6H,O (10 mol%), L2 (12 mol%), HBpin (2.0 equiv), MeCN
(2.0 mL), Ny, r.t., 3 h. *Isolated yield. “The ratio of products was determined
by 'H NMR; CH,Br; as internal standard.

that performing the reaction in MeCN solvent along with 2.0
equiv of 2 would afford predominantly the Markovnikov amide
4. Similar observation has been reported by Hong and co-work-

rs.! As depicted in Table 3, the hydroamidation of alkenes
with substituents on the aryl ring produced 54-58 in moderate
yields with regioselectivity of ~10:1 rr. Aliphatic sulfide (59)
and bisulfide (60) were also effective substrates. A series of di-
oxazolones bearing both aryl and alkyl groups furnished the de-
sired amides 61-68 in remarkable selectivity.

Scheme 2. Binding Mode Study of The Thioether Group*?
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To examine the binding mode of the sulfur donor,?® we prepared
a N, S-bidentate-tethered alkene substrate 69. Treating 69 with
a stoichiometric amount of NiCl, afforded a stable metallacyclic
complex 70, and its structure has been confirmed by X-ray crys-
tallographic study (Scheme 2a). When subjecting 69 to the Ni-
catalyzed conditions, Markovnikov amide 74 was obtained ex-
clusively in 20% yield. Assuming a Ni-H intermediate, this re-
sult suggests that a preferred formation of a 5,6-bicyclic alkyl-
Ni complex (72) (Scheme 2b). Presumably, the 5,6-bicyclic
structure (72) is thermodynamically more stable than the anal-
ogous 5,5-bicyclic structure (73), thereby suppressing the
chain-walking process.?! By HRMS analysis of the reaction
mixture, molecular ion cluster peaks corresponding to 71-73
have been detected (see Supporting Information), supporting
the bicyclic alkyl-Ni complex formation. These results are con-
sistent with the nickallacycle formation involving the thioether
group.

To explore the underlying mechanism of the chain-walking
process, deuterium labeling experiments with 76 as substrate

Scheme 3. Mechanistic Study“*
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ard. “rr was determined by 'H NMR.

were performed. With DBpin as hydride source, deuterium in-
corporation was found at all positions from the terminal to the
y-position (Scheme 3a). This result supports the 1,2-hydride
shift mechanism for the chain-walking isomerization.!*® Sub-
jecting disubstituted alkene 78 to the standard conditions fur-
nished predominantly the y-C—H amidation product (95%).
While the terminal amide product was obtained, the high regi-
oisomeric ratio (24:1 rr) for the y-amidation product indicates
that the thioether-directed nickellacycle formation should pre-
vail over steric effect in determining the direction of the chain-
walking isomerization (Scheme 3b). Moreover, a competition
study with 79 as substrate afforded a 2:1 mixture of 80 and 81
as products. This confirmed that the thioether-metallacycle for-
mation is a stronger factor than the n-conjugation in determin-
ing the regioselectivity (Scheme 3b). In agreement with our ear-
lier experiment with 78 as substrate, the metallacycle formation
serves as the regio-determining step for this reaction.

Radical scavengers such as TEMPO, BHT and a-cyclo-
propylstyrene were employed to probe the involvement of rad-
ical intermediates (Scheme 3c). Under the standard conditions,
BHT and a-cyclopropylstyrene exerted negligible effect to the
formation of 3, suggesting that radical-mediated reaction path-
ways are untenable. However, formation of 3 was suppressed
(61%) in the presence of TEMPO. This could be attributed to
the oxidation of the low valent nickel intermediate by TEMPO,
resulting in catalyst deactivation.??



Scheme 4. Proposed Mechanism
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In this work, we have also conducted a Hammett correlation
study using a series of para-substituted aryl dioxazolones (82—
88) under competition conditions, and the yields were deter-
mined by 'H NMR. Plotting the log(krc/kn) values with the
Hammett o(para) substituent constants resulted a linear plot
with a slope of -0.48 (R?=0.975) (Scheme 3d). The observed
negative reaction constant suggests that the product-determin-
ing step is likely to be the “dioxazolone + alkyl-Ni”, which
would be promoted by electron-donating substituents on the di-
oxazolone reagent.”

Scheme 4 depicts a plausible mechanism for this transfor-
mation.'” ?* The reaction is likely to be initiated by the genera-
tion of [NiH] (A) from Ni(ClO4),-6H,0, L4 and HBpin.!% %
Hydrometalation of alkene 1 by A should give a 6-membered
metallacycle B as an immediate product.'® ! Complex B should
undergo spontaneous reversible f-hydride elimination/migra-
tory insertion processes to afford a more stable S-membered
metallacycle C.%° It is plausible that the isomerized internal al-
kene intermediate may have dissociated from the Ni center prior
to sequential hydrometallation to form C. Coordination of di-
oxazolone 2 to C should form a Ni-complex D, which would
transform further to some electrophilic metal-nitrenoid E
through releasing a CO; molecule. Facile nitrene insertion
should afford a Ni-amide complex F, which is readily proto-
nated to give amide 3 and G for turnovers.!” The proposed
mechanism lends it support from the HRMS study of the reac-
tion mixture with intermediates B, C, F and H being observed
(see Supporting Information).

The reported protocol is amenable to gram-scale operation,
obtaining amide 3 in 77% yield. Moreover, the synthetic versa-
tility of 3 was also explored. Successful desulfurization with
Raney Ni gave 89 in 87% yield. Reduction with LiAlH4 fur-
nished 90 in 81% yield. Controlled oxidation with H,O, and m-
CPBA furnished sulfoxide 91 and sulfone 92 in 64% and 89%
yields respectively (Scheme 5).

Scheme 5. Synthetic Transformations of Amide 3“
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In conclusion, we developed a NiH-catalyzed thioether-di-
rected nickellacycle formation strategy for targeting remote y-
methylene C-H bond amidation of unactivated alkenes. The
preferred five-membered nickelacycle formation effectively
terminate the chain-walking isomerization at specific p-
methylene site. This cyclometalation-control approach offers
remarkable regio-differentiation of multiple methylene C—H
sites of similar chemical environment on the hydrocarbon chain.
We envision that this catalytic hydroamidation protocol would
serve more than a synthetic tool for diverse amide synthesis but
also offer insights for development of regiocontrolled C-N
bonds construction on unactivated aliphatic alkanes.
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