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ABSTRACT: A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C–H bond ami-
dation of unactivated alkenes. Due to the preference to five-membered nickellacycle formation, the chain-walking isomerization 
initiated by the NiH insertion to alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-
dibutyl-1,10-phenanthroline (L4) as ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)–H bonds to afford 
the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).  

Regiocontrolled catalytic C(sp3)–H bond amidations have 
been extensively investigated for atom- and step-economical 
amine synthesis.1, 2 Classical metal-nitrene mediated intermo-
lecular amidations can target successfully either benzylic or ter-
tiary C–H bonds by virtue of their relatively weaker bond dis-
sociation energies and unique steric environment (Scheme 1a).3 
The research groups of Rovis,4 Glorius5 and Blakey6 have ac-
complished regioselective allylic C–H amidations by sequential 
Ir(III) and Rh(III)-mediated site-selective metalation and mi-
gratory insertion to metal-nitrenoid species. Indeed, regioselec-
tive functionalization of unactivated methylene C–H bonds re-
mains elusive. Recently, specially designed Cu (Warren)7 and 
Co (Chang)8 catalysts have demonstrated favorable regioselec-
tivity toward amidations of unactivated methylene C–H bonds. 
However, effective differentiation among the methylene sites 
with similar chemical environment remains problematic 
(Scheme 1a). In a separate pursuit, the donor group-guided cy-
clometalation by electrophilic late transition metals such as 
Pd(II),9 Ir(II),10 Rh(III)11 and Ru(III)12 can effect successfully 
regiocontrolled C(sp3)–H functionalization for C–C and C–X 
(X = heteroatom) bond formations.13 With the balance between 
steric factor and thermodynamic preference for five-membered 
metallacycle formation, the cyclometalation strategy is largely 
limited to primary β-C(sp3)–H amidations/aminations (Scheme 
1b). Indeed, intermolecular regiocontrolled amidation at remote 
unactivated γ-methylene sites remains a formidable challenge.  

Recently, NiH catalysis merging with chain-walking isomer-
ization are proved to be an effective approach for remote C–H 
functionalization of alkenes.14, 15 Addition of NiH to alkenes 
would afford alkyl-Ni complexes, which are prone to chain-
walking isomerization through iterative β-hydride elimina-
tion/migratory insertion events. The chain-walking process led 
to migration of the alkyl-Ni groups to some distal positions 
(either less steric or resonance/heteroatom-stabilized sites) of 
the hydrocarbon skeleton. Notably, Zhu’s group reported a pro-
tocol to directly install an arylamine function onto a benzylic 
C(sp3)–H site distal from the C=C bond through a relay NiH-
mediated hydrometalation-alkene isomerization sequence, fol-
lowed by reductive coupling with nitroarenes (Scheme 1c).15h 
Inspired by Zhu’s work, we anticipated that a donor group pre-
installed on the alkene skeleton may stabilize the transient nick-
ellacycle intermediate through chelation and terminate the  
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alkyl-Ni migration at some non-stabilized methylene sites.15k, 

15m Indeed, chelation-control strategy has shown successes in 
regiocontrolled hydroalkylation.16 Here we report a thioether-
directed remote γ-C(sp3)–H amidation of alkenes using dioxa-
zolones as the amidating reagents (Scheme 1d). When 2,9-dibu-
tyl-1,10-phenathroline (L4) was utilized as ligand, the highly γ-
selective methylene C(sp3)–H amidation (up to 24:1 rr) was 
achieved in up to 90% yield (>40 examples). Recently, dioxa-
zolone has emerged as a versatile reagent for transition metal-
catalyzed hydroamidation.17 However, the use of dioxazolones 
in NiH-catalyzed alkene functionalization is less established. 

In this work, treating 5-(benzylthio)-1-pentene 1 (0.2 mmol), 
3-phenyl-1,4,2-dioxazol-5-one 2 (1.2 equiv) and pinacolborane 
(2.0 equiv) in the presence of [Ni(ClO4)2]6H2O (10 mol%) and 
L4 (12 mol%) in THF at room temperature for 3 h furnished γ-
selective hydroamidation product 3 in 95% yield, with 4% anti-
Markovnikov product 5 formation (24:1 rr). No Markovnikov 
product 4 was detected (Table 1, entry 1). Poor regioselectivity 
(2:1 rr) was observed without ligands, with the desired amide 3 
formed in only 22% yield (entry 2). While simple 1,10-phenan-
throline (L1) was ineffective (entry 3), the 2,9-substituents 
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Table 1. Influence of Ligands  
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entry ligand 3 (%)
a 4 (%)
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a rrb

1
2
3
4
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6
7
8
9
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L4
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L1
L2
L3
L5
L6
L7
L8
L9

L10

95
22
12

14 (6)
c

74
n.d.
8
73
7

13
8

n.d.

35
30

71 (77)
c

16
20
21
6

18
28
25

4
n.d.
n.d.

3 (2)
c

6
20
n.d.
13
n.d.
n.d.
n.d.

24:1
2:1
3:1

4:1 (10:1)
c

3:1
1:1
3:1
4:1
3:1
2:1
3:1  

aYields determined by 1H NMR; CH2Br2 as internal standard. brr refers to 
regioisomeric ratio: the major product to the sum of all other isomers (de-
termined by 1H NMR). cMeCN instead of THF; 2.0 equiv of 2. 

seemed to be critical for the observed chemoselectivity. Among 
related ligands (L2–L5) tested, L2 bearing a single methyl 
group furnished the Markovnikov product 4 in 71% yield, with 
only 14% yield of the chain-walked amide 3 (4:1 rr; entry 4). 
By switching solvent to MeCN, 10:1 rr was attained with amide 
4 as major product (see later section). Yet, L3 with two methyl 
groups favored chain-walked amide 3 in 74%, with 16% amide 
4 formation (entry 5). Employing bulkier L5 as ligand led to 
suppression of amide 3 production, forming amides 4 (20%) 
and 5 (20%) exclusively (entry 6). Other nitrogen-based ligands 
such as diamine, pyridine and terpyridine were all ineffective 
for this transformation (entries 7–11).  

Employing the working protocol for the remote hydroami-
dation, we first turned to dioxazolone scope study (Table 2). 
Under the optimized conditions, aryl-substituted dioxazolones 
would effectively couple with the 5-(benzylthio)-1-pentene 1 to 
give the corresponding amides (6–12) in good yields. Dioxa-
zolones with EDG gave higher yields (>80%) than those bear-
ing EWG (≤80%). Facile coupling with the dioxazolones con-
taining primary (13–16) and secondary alkyl groups (17–21) 
were also accomplished in good yields (~80%). Presumably due 
to steric effect, transformation of the dioxazolone bearing an 
adamantyl group was less successful (22: 33%). Surprisingly, 
dioxazolones containing strained carbocycles such as cubanes 
and bicyclo[1.1.1]pentanes, afforded 23 and 24 in 84% yields. 
Furthermore, dioxazolones containing thiophene, phthalimide, 
ether groups were converted to their amides (25–27) in good 
yields. Moreover, the coupling reaction involving the dioxazo-
lone derived from 2-chloropropanoic acid was also successful, 
and amide 28 was obtained in 27% yield. Here 3-indolepropi-
onic acid and 6-fluoronicotinic acid can be derivatized to the 
corresponding dioxazolones, and their coupling reactions gave 
amides 29 (75%) and 30 (78%) effectively. In this work, corre-
sponding amides were also prepared successfully from the anal-
ogous reactions of dioxazolones derived from ibuprofen (31: 
62%), 1-pyrenebutyric acid (32: 82%), indomethacin (33: 54%), 
gemfibrozil (34: 18%), naproxen (35: 44%) and isoxepac (36: 
88%). The molecular structure of 36 has been confirmed by X-
ray crystallography.  

Table 2. Substrate Scope Studya-b 

Ph S

Ph S

Ph S

52, 85%    (4:1 dr)

50, 74%

53, 42%

Ph S N
H

Ph S N
H

R

O

Ph S N
H

O

13, R = CH2CH3,         
14, R = CH2CH2Ph,     
15, R = (CH2)6CH3,  
16, R = (CH2)10CH3

,

O

F

F
21, 79%

Ph S N
H

O

20, 83%

23, 84% 24, 84%
N
H

O S

25, 81%

N F
30, 78%

32, 82%

R

Ph S N
H

O

Cl

31, 62%

27, 89%

S

R1
S

R1

HN

O

R4

O N

OO
R4

n

n

Ni(ClO4)2
.
6H2O (10 mol%) 

L4 (12 mol%)

HBpin (2.0 equiv), THF (2.0 mL)
N2, r.t., 3 h

3: R = H,   86%

Ph S N
H

O

COOMe
Ph S N

H

O

COOEt

O

O

O

NH

36, 88%

29, 75%

N

O Cl

O33, 54% 34, 18%

Ph S

Ph S N
H

O

O

O

Ph S N
H

O
Ph S N

H

O

Ph S N
H

O

Ph S N
H

O

Ph S N
H

O

Ph S N
H

O

Ph S N
H

O

R

S

S

S

85% 
87%
82%
79% 
83% 
74%

S

45, 70%

46, 78%

44, 87%16

48, n = 1, 71% ( 78%c : 16%d )
49, n = 2,

 
62% ( 67%c : 29%d )

50, n = 3, 44% ( 53%c : 42%d )
51, n = 4, 38% ( 47%c : 46%d )

N N
nBu nBuL4

Scope of dioxazolones

Scope of alkenes

S

S
47, 78%

N
H

O

Ph S

O

35, 44%

N
H

O

Ph S

26, 78%

N

O

O 28, 27%

Ph S N
H

O

n-Pr

n-Pr

17, 78%

Ph S N
H

O

18,  75%

from Ibuprofen

from 1-Pyrenebutyric acid from Indomethacin

from Isoxepac

from Gemfibrozil

from Naproxen

O

0.2 mmol

0.24 mmol

76%
79%
83%
81%

90%
88%
80%
73%
75%
80%
46%

6,
7,
8,
9,
10,
11,
12,

R = Me, 
R = OMe,
R = OH,
R = F,
R = Cl,
R = CF3

,
R = NO2

,

Ph S N
H

O

22, 33%

3

2-Naphthyl

p-Tolyl37,  R = Me,
38,  R = OMe,
39,  R = t-Bu,
40,  R = F,
41,  R = Cl,
42,  R = CF3

,

3

Ph S N
H

O

  19,  78%

i-Pr

+
γ

R2

R3

R2

R3

S
Ph 43, 90%

Ph S

n

aReaction conditions: alkenes (0.2 mmol), dioxazolones (0.24 mmol), 
[Ni(ClO4)2]6H2O (10 mol%), L4 (12 mol%), HBpin (2.0 equiv), THF (2.0 
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mined by 1H NMR; CH2Br2 as internal standard. 

The synthetic versatility of this reaction was further explored  
with a collection of structurally diversified alkenes (Table 2). 
With 3-phenyl-1,4,2-dioxazol-5-one, alkenes with functional-
ized aryl rings (37–42) produced the corresponding amides in 
~80% yields. As expected, alkenes with modified thioether 
group are effective to bring about the γ-C–H amidation products 
43–46. Interestingly, hydroamidation of dithiane-substituted al-
kenes was also accomplished (47: 78%). Adding methylene 
units between the sulfur and the C=C termini was somehow tol-
erated, albeit with reduced selectivities on longer migrating dis-
tance. This can be attributed to the diminished chelation effects 
toward the initial NiH hydrometallation. The reactions of inter-
nal alkene and alkenes with alkyl branching at the α- and γ- po-
sition gave also high γ-selectivity (50, 52–53). The lower yield 
of 53 is presumably due to increased steric effect of the tertiary 
center. 

As mentioned earlier, employing L2 as ligand for the Ni- 
catalyzed hydroamidation has diverted the regioselectivity to 
the Markovnikov amide 4 formation (Table 1, entry 4).18 Upon 
reaction optimization (see Supporting Information), we found  



 

Table 3. Ni-Catalyzed Markovnikov Hydroamidationa-b 
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aReaction conditions: alkenes (0.2 mmol), dioxazolones (0.4 mmol), 
[Ni(ClO4)2]6H2O (10 mol%), L2 (12 mol%), HBpin (2.0 equiv), MeCN 
(2.0 mL), N2, r.t., 3 h. bIsolated yield. cThe ratio of products was determined 
by 1H NMR; CH2Br2 as internal standard. 

that performing the reaction in MeCN solvent along with 2.0 
equiv of 2 would afford predominantly the Markovnikov amide 
4. Similar observation has been reported by Hong and co-work-
ers.19 As depicted in Table 3, the hydroamidation of alkenes 
with substituents on the aryl ring produced 54–58 in moderate 
yields with regioselectivity of ~10:1 rr. Aliphatic sulfide (59) 
and bisulfide (60) were also effective substrates. A series of di-
oxazolones bearing both aryl and alkyl groups furnished the de-
sired amides 61–68 in remarkable selectivity. 

Scheme 2. Binding Mode Study of The Thioether Groupa-b 
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To examine the binding mode of the sulfur donor,20 we prepared 
a N, S-bidentate-tethered alkene substrate 69. Treating 69 with 
a stoichiometric amount of NiCl2 afforded a stable metallacyclic 
complex 70, and its structure has been confirmed by X-ray crys-
tallographic study (Scheme 2a). When subjecting 69 to the Ni-
catalyzed conditions, Markovnikov amide 74 was obtained ex-
clusively in 20% yield. Assuming a Ni-H intermediate, this re-
sult suggests that a preferred formation of a 5,6-bicyclic alkyl-
Ni complex (72) (Scheme 2b). Presumably, the 5,6-bicyclic 
structure (72) is thermodynamically more stable than the anal-
ogous 5,5-bicyclic structure (73), thereby suppressing the 
chain-walking process.21 By HRMS analysis of the reaction 
mixture, molecular ion cluster peaks corresponding to 71–73 
have been detected (see Supporting Information), supporting 
the bicyclic alkyl-Ni complex formation. These results are con-
sistent with the nickallacycle formation involving the thioether 
group. 

To explore the underlying mechanism of the chain-walking 
process, deuterium labeling experiments with 76 as substrate  

Scheme 3. Mechanistic Studya-c 
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were performed. With DBpin as hydride source, deuterium in-
corporation was found at all positions from the terminal to the 
γ-position (Scheme 3a). This result supports the 1,2-hydride 
shift mechanism for the chain-walking isomerization.14b Sub-
jecting disubstituted alkene 78 to the standard conditions fur-
nished predominantly the γ-C–H amidation product (95%). 
While the terminal amide product was obtained, the high regi-
oisomeric ratio (24:1 rr) for the γ-amidation product indicates 
that the thioether-directed nickellacycle formation should pre-
vail over steric effect in determining the direction of the chain-
walking isomerization (Scheme 3b). Moreover, a competition 
study with 79 as substrate afforded a 2:1 mixture of 80 and 81 
as products. This confirmed that the thioether-metallacycle for-
mation is a stronger factor than the π-conjugation in determin-
ing the regioselectivity (Scheme 3b). In agreement with our ear-
lier experiment with 78 as substrate, the metallacycle formation 
serves as the regio-determining step for this reaction. 
Radical scavengers such as TEMPO, BHT and α-cyclo-
propylstyrene were employed to probe the involvement of rad-
ical intermediates (Scheme 3c). Under the standard conditions, 
BHT and α-cyclopropylstyrene exerted negligible effect to the 
formation of 3, suggesting that radical-mediated reaction path-
ways are untenable. However, formation of 3 was suppressed 
(61%) in the presence of TEMPO. This could be attributed to 
the oxidation of the low valent nickel intermediate by TEMPO, 
resulting in catalyst deactivation.22 



 

Scheme 4. Proposed Mechanism 
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In this work, we have also conducted a Hammett correlation 
study using a series of para-substituted aryl dioxazolones (82–
88) under competition conditions, and the yields were deter-
mined by 1H NMR. Plotting the log(kFG/kH) values with the 
Hammett σ(para) substituent constants resulted a linear plot 
with a slope of -0.48 (R2 = 0.975) (Scheme 3d). The observed 
negative reaction constant suggests that the product-determin-
ing step is likely to be the “dioxazolone + alkyl-Ni”, which 
would be promoted by electron-donating substituents on the di-
oxazolone reagent.23 

Scheme 4 depicts a plausible mechanism for this transfor-
mation.19, 24 The reaction is likely to be initiated by the genera-
tion of [NiH] (A) from Ni(ClO4)26H2O, L4 and HBpin.15j, 25 
Hydrometalation of alkene 1 by A should give a 6-membered 
metallacycle B as an immediate product.16, 19 Complex B should 
undergo spontaneous reversible β-hydride elimination/migra-
tory insertion processes to afford a more stable 5-membered 
metallacycle C.26 It is plausible that the isomerized internal al-
kene intermediate may have dissociated from the Ni center prior 
to sequential hydrometallation to form C. Coordination of di-
oxazolone 2 to C should form a Ni-complex D, which would 
transform further to some electrophilic metal-nitrenoid E 
through releasing a CO2 molecule. Facile nitrene insertion 
should afford a Ni-amide complex F, which is readily proto-
nated to give amide 3 and G for turnovers.17c The proposed 
mechanism lends it support from the HRMS study of the reac-
tion mixture with intermediates B, C, F and H being observed 
(see Supporting Information).  

The reported protocol is amenable to gram-scale operation, 
obtaining amide 3 in 77% yield. Moreover, the synthetic versa-
tility of 3 was also explored. Successful desulfurization with 
Raney Ni gave 89 in 87% yield. Reduction with LiAlH4 fur-
nished 90 in 81% yield. Controlled oxidation with H2O2 and m-
CPBA furnished sulfoxide 91 and sulfone 92 in 64% and 89% 
yields respectively (Scheme 5). 

 

  

Scheme 5. Synthetic Transformations of Amide 3a 
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In conclusion, we developed a NiH-catalyzed thioether-di-
rected nickellacycle formation strategy for targeting remote γ-
methylene C–H bond amidation of unactivated alkenes. The 
preferred five-membered nickelacycle formation effectively 
terminate the chain-walking isomerization at specific γ-
methylene site. This cyclometalation-control approach offers 
remarkable regio-differentiation of multiple methylene C–H 
sites of similar chemical environment on the hydrocarbon chain. 
We envision that this catalytic hydroamidation protocol would 
serve more than a synthetic tool for diverse amide synthesis but 
also offer insights for development of regiocontrolled C–N 
bonds construction on unactivated aliphatic alkanes.  
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