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Abstract 4 

The shipping industry is associated with approximately three quarters of all world 5 

trade. In recent years, the sustainability of shipping has become a public concern, and 6 

various emissions control regulations to reduce pollutants and greenhouse gas (GHG) 7 

emissions from ships have been proposed and implemented globally. These regulations 8 

aim to drive the shipping industry in a low-carbon and low-pollutant direction by 9 

motivating it to switch to more efficient fuel types and reduce energy consumption. At 10 

the same time, the cyclical downturn of the world economy and high bunker prices 11 

make it necessary and urgent for the shipping industry to operate in a more cost-12 

effective way while still satisfying global trade demand. As bunker fuel consumption is 13 

the main source of emissions and bunker fuel costs account for a large proportion of 14 

operating costs, shipping companies are making unprecedented efforts to optimize ship 15 

energy efficiency. It is widely accepted that the key to improving the energy efficiency 16 

of ships is the development of accurate models to predict ship fuel consumption rates 17 

under different scenarios. In this study, the ship fuel consumption prediction models 18 

presented in the literature (including the academic literature and technical reports, 19 

which are a typical type of “grey literature”) are reviewed and compared, and models 20 

that optimize ship operations based on fuel consumption prediction results are also 21 

presented and discussed. Current research challenges and promising research questions 22 

on ship performance monitoring and operational optimization are identified.  23 
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1. Introduction 28 

1.1 Background  29 

Seaborne transport is the most energy-efficient mode of transportation, and it forms 30 

the backbone of international trade and global supply chains (Christiansen et al., 2004; 31 

Kawasaki and Lau, 2020). According to the United Nations Conference on Trade and 32 

Development (UNCTAD), more than three fourths of merchandise traded globally by 33 

volume is carried by sea (UNCTAD, 2019). As the shipping industry is mainly powered 34 

by heavy fuel oil, it also creates a large environmental footprint due to its emissions of 35 

greenhouse gases (GHGs) and polluting substances (Cheaitou and Cariou, 2012; 36 

Adland et al., 2017; Cheaitou et al. 2020; Gu et al., 2020; Wang et al., 2021). As early 37 

as 1973, the International Maritime Organization (IMO) established the Marine 38 

Environment Protection Committee (MEPC) to address marine pollution and GHG 39 

emissions. In the years since, various global conventions and regulations have been 40 

proposed and implemented to reduce shipping emissions (Gholizadeh et al., 2020). The 41 

most important is the International Convention for the Prevention of Pollution from 42 

Ships (MARPOL) adopted by the IMO (MEPC), which addresses several marine 43 

pollution issues, such as oil spills, the transportation of noxious liquids and other 44 

harmful substances, sewage, garbage, and ship air pollution (IMO, 2011). In 1997, 45 

MARPOL Annex VI introduced regulations to prevent air pollution by limiting the 46 

emissions of sulfur oxides (SOx), nitrous oxides (NOx), and other ozone-depleting 47 

substances from ship exhausts (IMO, 1997). Regulations to reduce GHG emissions 48 

(e.g., carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3)) from 49 

shipping activities were introduced in an amendment to MARPOL Annex VI in 2011 50 

(MEPC, 2011). As a consequence of these regulations, sulphur emission control areas 51 

(SECAs) and nitrogen emission control areas (NECAs) have been established across 52 

the world, and various ship energy efficiency indicators and monitoring systems for 53 

reducing GHG emissions have been proposed (Tseng and Ng, 2020). The IMO has 54 

called on shipping companies to reduce their emissions to 50% of their 2008 levels by 55 

2050. The major regulations on shipping emissions are summarized in Table 1. 56 
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Table 1. Regulations to reduce emissions from shipping 57 

Regulation 
Related 

documentation 

Time of 

implementation 
Organization  Object(s) Area(s) Main contents Notes 

SECAs MARPOL 
Annex VI 

1 Jan 2015 IMO (MEPC) All ships sailing in SECAs Four SECAs: the Baltic Sea, 
the North Sea, the North 

American Sea, and the United 

States Caribbean Sea 

The maximum fuel sulphur 
content cannot exceed 0.1% 

m/m when sailing in SECAs 

None 

NECAs 

 

MARPOL 

Annex VI 

a) 1 Jan 2016, 

and 

b) 1 Jan 2021 
 

IMO (MEPC) New ships with marine diesel 

engines with output of 130 kW or 

higher and new engines installed 
in all ships on or after a) 1 Jan 

2016, and b) 1 Jan 2021 sailing in 

NECAs  

a) The North American area 

and the United States 

Caribbean Sea, and b) the 
North Sea and the Baltic Sea 

NOx regulations tier III is 

implemented in NECAs 

NOx regulations tier III requires that engines 

under 130, between 130 and 1199, and over 

1200 propeller revolutions per minute 
(RPM) should have the total weighted cycle 

emission limit as 3.4, 2.4, and 2.0 (g/kWh) 

respectively  
Global sulfur 

content limit in 

fuel 

MARPOL 

Annex VI 

1 Jan 2020 IMO (MEPC) All existing ships Areas outside SECAs  The maximum fuel sulphur 

content cannot exceed 0.5% 

m/m 

None 

European Union 

(EU) Monitoring 

Reporting and 
Verification 

(MRV)  

EU regulation 

2015/757 

1 Jan 2018 EU All ships with a gross tonnage 

above 5000 arriving at, within, or 

departing from ports under the 
jurisdiction of a Member State of 

EU 

Global shipping lines with 

either origin or destination at 

the ports in the Member States 
of EU 

Accurate monitoring, 

reporting, and verification of 

CO2 emissions from related 
ships 

The fuel consumption and CO2 emission data 

per ship for 2018 and 2019 have already 

been published 

IMO data 
collection system 

(DCS)  

MARPOL 
Annex VI 

1 Jan 2019 IMO (MEPC) All ships with a gross tonnage of 
5000 and above 

Global Reporting verified fuel 
consumption data via their 

flag states  

Ships’ names and IMO numbers will be 
anonymized when publishing 

Energy efficiency 
operation index 

(EEOI) 

MEPC.1 
/Circ.684 

July 2009 IMO (MEPC) All existing ships Global (voluntary) Performance improvement 
by the efforts in operation 

Average indicator of the ship/fleet 
operational efficiency of all types of fuels 

during a voyage (Operational CO2 indicator) 
Energy efficiency 

design index 

(EEDI) 
 

Resolution 

MEPC.203(62) 

Jan 2013 IMO (MEPC) New and contracted ships on or 

after 1 Jan 2013 or delivered on 

or after 1 July 2015, and existing 
ships undergone major 

conversions 

Global Performance improvement of 

ship hardware 

An index indicating the energy efficiency of 

a ship in terms of g CO2/tonne/nautical mile 

for a specific ship operational condition 
(CO2 design index)  

Ship energy 
efficiency and 

management plan 

(SEEMP) 

Resolution 
MEPC.203(62) 

Jan 2013 IMO (MEPC) All existing ships Global Several steps are required: 
planning, monitoring, self-

evaluation, and 

improvements 

Use EEOI as a benchmark  

Combination 

measure of EEXI 

and CII 

MEPC 75 

virtual session 

In progress IMO (MEPC) All existing ships Global Combination of technical and 

operational approaches to 

reduce ships’ carbon intensity 

EEXI is short for energy efficiency existing 

ship index, and it is based on EEDI. CII is 

short for carbon intensity indicator and 
should be recorded in ships’ SEEMP 

58 
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However, despite the growing number of strict environmental protection 59 

regulations implemented by the IMO and individual countries and regions, emissions 60 

from shipping continue to increase overall. The main fuel-based pollutants and GHG 61 

emissions in the international shipping industry between 2012 and 2017, according to 62 

estimates based on a top-down methodology in the fourth IMO GHG study (IMO, 2020), 63 

are summarized in Table 2. Although the total cargo loaded only slightly increased from 64 

9,195 million tons in 2012 to 10,716 million tons in 2017 (UNCTAD, 2019), there was 65 

a significant increase in all types of emissions. The massive amounts of pollutants and 66 

GHGs emitted by the shipping industry are having an adverse impact on both human 67 

health and the global climate. As air emissions from vessels are proportional to the fuel 68 

consumption of the main and auxiliary engines (including boilers), especially in terms 69 

of the emissions of CO2, NOx, and SOx (Kontovas, 2014; Adland et al., 2019; Peng et 70 

al., 2020; Wu and Wang, 2020), better management of fuel consumption during ship 71 

operation could improve the energy efficiency of ships and thus reduce their emissions 72 

(Perera and Mo, 2016). 73 

Table 2. International shipping emissions from 2012 to 2017 (IMO, 2020) 74 
Emission/Year 2012 2013 2014 2015 2016 2017 

CO2 (million tonnes) 614.1  612.3 634.2 657.9 675.3 693.4 

CH4 (tonnes) 10,156.8 10,120.6 10,414.9 11,205.9 11,745.4 12,397.5 
N2O (thousand tonnes) 34,296.5  34,270.0  35,568.4 36,942.3 37,957.5  39,059.2 

SOx (thousand tonnes) 8,260.2 7,888.9 7,825.3 8,116.6 8,943.3 9,252.3 

NOx (thousand tonnes) 14,927.4  14,606.2  14,683.6  15,357.1  15,780.8  16,201.9 
NMVOC (thousand tonnes) 596.4  592.6 603.0 633.0  653.8  675.4 

PM (thousand tonnes) 1,271.2 1,237.8  1,228.3  1,258.3  1,352.4 1,399.1  

BC (thousand tonnes) 54.4 55.8 60.1  59.9 60.7 62.2  

Note: NMVOC is the abbreviation for non-methane volatile organic compounds. PM is the abbreviation for particulate matters. 75 
BC is the abbreviation for black carbon.   76 

 77 

1.2 Energy efficiency improvement and emission reduction strategies  78 

In addition to stricter emissions regulations, high bunker prices that cyclically occur 79 

and downturns in the shipping market have also pushed the shipping industry to adopt 80 

measures to improve energy efficiency and thus to reduce emissions (Beşikçi et al., 81 

2016). Currently, two main solutions are applied to improve ship energy efficiency: 82 

technical solutions and operational solutions (Leifsson et al., 2008; Wong et al., 2015; 83 

Coraddu et al., 2017; He et al., 2017; Theocharis et al., 2019). Technical solutions 84 

include upgrading propellers, optimizing vessel size, and designing the hull shape to 85 

reduce vessel resistance; using lightweight materials to reduce vessel weight; selecting 86 

efficient power systems and machinery; switching fuel type; using scrubbers; 87 

recovering waste heat; and using solar or wind power and shore power (Wan et al. 2018). 88 

There are three main categories of operational solutions according to the SEEMP, as 89 

listed in Table 3 (IMO, 2009; Ballou, 2013). Common operational measures adopted in 90 



5 
 

the shipping industry include improving on-time arrival consistency using route 91 

optimization tools, reducing routing decision errors, reducing excessive vessel motions 92 

to minimize ship and cargo damage, increasing crew comfort, reducing the ship’s 93 

structural maintenance, and routing optimization considering ECAs, as discussed by 94 

Ballou (2013). Given that the high volatility of the shipping market heavily affects 95 

shipping operators’ revenues, slow steaming is commonly adopted, and the main effects 96 

of which are classified by Cariou et al. (2019) into three categories: economic 97 

implications, environmental implications, and service-related implications. Such 98 

analysis provides valuable insights of vessel management for both academic research 99 

and the shipping industry.  100 

Table 3. Energy efficiency improving measures recommend by SEEMP 101 
Category  Measures  

Fuel 
efficiency 

operations 

• Improving voyage planning by e.g., ship route optimization 
• Weather routing 
• Just-in-time arrival at ports 
• Speed optimization, including slow steaming, sailing at optimal speed, and gradual increase in speed 

when leaving port 
• Shaft power optimization, including running at constant RPM and usage of electronic engine 

management systems 
• Switching fuel type 
• … 

 
Ship 

handling 

optimization  

• Trim optimization  
• Ballast optimization 
• Propeller design and water inflow optimization  
• Optimized using of rudder and autopilot  
• Fleet management 
• Improving cargo handling  
• … 

 
Maintenance • Hull/propeller maintenance, including hull cleaning, repairing, and painting, and propeller cleaning and 

polishing  

• Marine engine maintenance 

• … 
 

Nevertheless, it has been pointed out by Wan et al. (2018) that the technical 102 

measures currently available are struggling to steer the shipping industry in an energy-103 

efficient and low-carbon direction because their application not only requires 104 

engineering innovation but also carries a hefty price tag: the average cost per ton of 105 

CO2 reduction ranges from US$50 to $200, while the emissions trading price in the 106 

United States is US$5 to $15 per ton (Eide et al., 2011). In contrast, operational 107 

measures to improve energy efficiency carry much less cost and do not require an initial 108 

investment, and well-designed operational solutions can achieve promising energy 109 

savings (Wan et al., 2018). However, applying effective and efficient operational 110 

solutions is not a trivial task, as various factors can influence the actual fuel 111 

consumption of a ship in practice, which makes it difficult to capture the relationship 112 

between the influencing factors and the fuel consumption rate. As illustrated by Sourtzi 113 

(2019), ship design (e.g., main dimensions, propulsion system, propeller design, 114 
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hull/steel structure and cargo arrangement), vessel operational performance (e.g., 115 

sailing speed, draft, trim, displacement, hull performance, and drydocking), and 116 

environmental conditions (e.g., wind, wave, and current conditions, water and air 117 

temperature, and water depth) all influence ship fuel consumption and therefore energy 118 

efficiency. Another barrier to implementing operational changes is that the shipping 119 

industry itself is reluctant to adopt energy efficiency measures. This is mainly due to a 120 

range of issues in the development and implementation of fuel consumption 121 

management strategies, namely split incentives in stakeholders, inadequate information 122 

and transparency about energy efficiency and incentive structures, information 123 

uncertainty, and decisions made for short-term gain (Poulsen, 2011; Mansouri et al., 124 

2015). There is thus an urgent need to propose and promote more effective and 125 

applicable ship fuel management measures to reduce fuel consumption and improve 126 

energy efficiency. It is widely acknowledged that the basis of such measures is the 127 

accurate estimation of the relationship between a ship’s fuel consumption and 128 

determinants such as mechanical factors, sailing behaviors, and environmental factors 129 

using appropriate prediction algorithms before (or during) a voyage (Pedersen and 130 

Larsen, 2009; Soner et al., 2018; Meng et al., 2016; Yang et al., 2019b; Farag and Ölçer, 131 

2020). The focus of this review is therefore the literature on ship fuel consumption 132 

prediction models and fuel management models from the last 13 years (2008 to 2021). 133 

Literature from earlier periods is excluded because data-driven models for ship 134 

performance monitoring only started to appear in the last 13 years. The limited number 135 

of related papers and reports gives us an opportunity to summarize the details of the 136 

reviewed literature in lists and to make comprehensive comparisons of fuel 137 

consumption prediction models. Promising future research directions are outlined based 138 

on the findings of the review. 139 

Literature from earlier periods is excluded because data-driven models for ship 140 

performance monitoring only started to appear in the last 13 years. The limited number 141 

of related papers and reports gives us an opportunity to summarize the details of the 142 

reviewed literature in lists and to make comprehensive comparisons of fuel 143 

consumption prediction models. Promising future research directions are outlined based 144 

on the findings of the review  145 

 146 

2. Literature review method and structure 147 

Given the focus on fuel consumption prediction models and the fuel management 148 

models derived from them, we searched the Scopus, Google Scholar, and Science 149 

Citation Index databases using keywords related to fuel consumption prediction and 150 
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management, such as “ship fuel consumption prediction,” “ship fuel consumption 151 

estimation,” “ship energy efficiency prediction,” “ship energy efficiency estimation,” 152 

“ship fuel efficiency,” “ship fuel management,” and “ship performance monitoring.” 153 

We identified relevant papers in the initial search and then checked the papers and 154 

reports cited by them and that cite them. Considering our main focus on fuel 155 

consumption prediction models, we excluded papers that only propose fuel 156 

management measures and assume that the relationship between fuel consumption and 157 

the various influencing factors (e.g., sailing speed) is deterministic. Finally, we 158 

identified 83 related papers, 53 of which propose fuel consumption prediction models 159 

for ship performance monitoring only (termed ship performance monitoring models) 160 

and 30 of which propose two-stage models for fuel consumption prediction and 161 

management to achieve ship operational optimization (termed ship operational 162 

optimization models). We classify these models into three categories, namely white-163 

box models (WBMs), black-box models (BBMs), and grey-box models (GBMs) based 164 

on Haranen et al. (2016). Descriptions of the three categories and the number of related 165 

papers in each are presented in Table 4. We also analyzed the publishing years of the 166 

83 papers according to the prediction models presented. The statistical models and 167 

machine learning (ML) models in BBMs were considered separately. The results are 168 

shown in Figure 1.  169 

Table 4. Description and overview of the prediction models in this review 170 
Type Description (Haranen, 2016) Examples (Yang et al., 2019) Sub-types No. of related 

papers 

WBM A WBM is based on a priori 
knowledge and physical principles 

of the vessel power system, and its 

structure and parameters are all 
known.  

Holtrop-Mennen method 
(Holtrop, 1977, 1978, 1984; 

Holtrop and Mennen, 1978, 

1982), Kristensen-Lützen 
method (Kristensen and Lützen, 

2012). 

None 24 

BBM A BBM is established using 
experimental or practical sailing 

data and is purely data driven. 

Therefore, no prior knowledge or 
physics insight is needed when 

training a BBM. 

Statistical models (e.g., 
multiple linear regression), 

machine learning models (e.g., 

artificial neural networks, tree-
based models, and support 

vector machines). 

a) BBM based on statistical modeling: 
statistical models are used for fuel 

consumption prediction, which 

focuses on explaining the relationship 
between fuel consumption and various 

influencing factors.  

b) BBM based on ML: machine 
learning models are used for fuel 

consumption prediction, which 

focuses more on accurate prediction 

results and model generalizability. 

 

a) 17 
b) 35 

GBM GBMs are developed based on 
both the physical properties 

underlying WBMs and knowledge 

extracted from experimental or 
operational data in BBMs. 

A WBM is first developed 
based on hydrodynamic 

knowledge, then a BBM is used 

to estimate or adjust some of 
the coefficients, as in Journée et 

al. (1987), Meng et al. (2016), 
and Yang et al. (2019). 

None 7 
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 171 
Note: the number of papers in 2021 is not fully counted. 172 

Figure 1. Summary of the reviewed papers by year 173 

Figure 1 indicates that the number of papers on the predication of ship fuel 174 

consumption increased after 2014 and especially after 2018. Moreover, as shown in 175 

Table 4, about 63% of the papers develop BBMs for ship fuel consumption prediction, 176 

whereas more than 40% of the 83 papers use ML model based BBMs to predict fuel 177 

consumption. Figure 1 also shows that there has been an increasing trend of using 178 

BBMs based on ML for fuel consumption prediction. Between 2017 and 2020, the use 179 

of WBMs for fuel consumption prediction also showed an upward trend. In contrast, 180 

papers using GBMs for fuel consumption prediction are relatively evenly distributed 181 

over the 13-year review period.  182 

 183 

3. Review of data and prediction models in current literature 184 

3.1 Input data overview 185 

Given the complexity of vessel engine power systems and sea and weather 186 

conditions, numerous ship-related internal factors and external environmental factors 187 

affect the fuel consumption rate and thus energy efficiency (Adland et al., 2021). We 188 

divided the data that serve as the inputs to the fuel consumption prediction models into 189 

four categories according to the data source: ship mechanical data, ship operational data, 190 

ship maintenance data, and sea and weather conditions. Ship mechanical data include 191 

parameters related to static ship dimensions and information about the power system. 192 

Ship operational data mainly comprise information on ship voyage and sailing behavior 193 

and ship mechanical conditions in operation, such as power system performance, 194 

displacement, and hull conditions. Ship maintenance data are mainly related to 195 

information on ship dry docking. Sea condition data cover sea water temperature, waves, 196 

swells, and currents, and weather condition data mainly cover wind and air pressure.  197 
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A major data source is the daily noon report prepared by the ship’s chief engineer 198 

and sent by the ship’s master to the shipping company and shore management (Pedersen 199 

and Larsen, 2009; Pedersen et al., 2015; Lu et al., 2015; Beşikçi et al., 2016; Meng et 200 

al., 2016; Yuan and Nian, 2018; Uyanık et al., 2019; Du et al., 2019; Adland et al., 2020; 201 

Işıklı et al., 2020). Although noon reports may differ, the main content is consistent: 202 

types of daily fuel consumption, basic voyage information (e.g., voyage number, date 203 

and time of report, load condition, and ship position), sailing behavior information (e.g., 204 

average sailing speed and sailing distance since last report, propeller slip, and average 205 

engine revolutions per minute), and sea and weather conditions (e.g., wind, current, 206 

wave, and swell conditions). However, as noon reports are completed manually, their 207 

accuracy cannot be guaranteed. Furthermore, only one record is made per day, which 208 

reduces the data quality and quantity (Bocchetti et al., 2013, 2015; Erto et al., 2015; 209 

Chaal, 2018; Farag and Ölçer, 2020).  210 

For modern ships equipped with onboard sensors, sensor data serve as another 211 

important data source (Petursson, 2009; Petersen et al., 2012a, 2012b; Bocchetti et al., 212 

2015; Jeon et al., 2018; Soner et al., 2018; Lepore et al., 2019; Capezza et al., 2019; 213 

Man et al., 2020; Farag and Ölçer, 2020; Wang et al., 2016, 2020). To obtain various 214 

types of data, different types of sensors should be installed onboard. For example, fuel 215 

consumption sensors, global positioning system (GPS) receivers, shaft power testers, 216 

wind speed sensors, and water depth sonars are installed on cruise ships to obtain 217 

instantaneous data on fuel consumption, ship navigation speed, speed and torque shaft, 218 

wind speed, and water depth (Wang et al., 2016). Fuel consumption sensors, GPS 219 

receiving devices, and shaft power meters are used in tankers to acquire real-time data 220 

on fuel consumption, ship navigation speed, longitude and latitude, and shaft speed and 221 

power (Wang et al., 2020).  222 

Another widely adopted onboard system is the automatic identification system 223 

(AIS), which enables ships to broadcast and receive messages to and from other ships 224 

or coastal authorities that are also equipped with the AIS. The AIS provides static 225 

information (e.g., ship identity, size, and type), dynamic information (e.g., ship position, 226 

sailing speed, heading degree, rate of turn, navigation status, and reporting time stamp), 227 

and voyage-related information (e.g., destination, estimated time of arrival, and draught) 228 

(Yang et al., 2019a). Onboard sensors and the AIS provide consecutive data streams at 229 

a much higher frequency (e.g., every few seconds or minutes) and quality than noon 230 

reports. However, the data acquisition costs are much higher.  231 

The engine room logbook, which tracks of all a ship’s machinery parameters, 232 

performance, maintenance, and malfunctions, can provide both static and dynamic 233 
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mechanical data during ship operation (Uyanık et al., 2020). Ship information is also 234 

provided by online resources (Huang et al., 2018; Man et al., 2020; Linh and Ngoc, 235 

2020; Yan et al., 2020; Li et al., 2018, 2020). For example, static mechanical data and 236 

maintenance records can be found in Lloyd’s Register and the World Shipping Register. 237 

The surrounding sea and weather data can be found on sea and weather forecast 238 

websites, such as National Marine Environmental Forecasting Center (NMEFC), 239 

National Oceanic and Atmospheric Administration (NOAA), Weathernews Inc. (WNI), 240 

Copernicus Marine Environment Monitoring Service (CMEMS), the European Centre 241 

for Medium-Range Weather Forecasts (ECMWF), etc. Detailed features of the four data 242 

categories used in current literature and their sources are shown in Table 5. 243 

Table 5. Features and sources of common data categories 244 
Data Features Sources 

Ship mechanical data Ship dimension: length, beam, gross tonnage, deadweight, berth number 

on cruise ships, etc. 

Onboard sensors, noon report, engine 

room logbook, AIS, etc. 
Power system: engine parameters, design speed, RPM at design speed, 

etc. 

Ship operational data Ship voyage and sailing behavior: speed over ground (SOG), speed 
through water (STW), sailing time since last dry docking, sailing 

distance since last record, ship course, type of fuel used, fuel density and 

temperature, etc. 

Noon report, AIS, engine room logbook, 
Lloyd’s Register, World Shipping 

Register, etc. 

Ship mechanical condition while operating: propeller pitch, rudder 

angle, main engine load and working hours, engine RPM, stabilizer fin 

operation time, turbo exhaust temperature, trim angle, draft, 
displacement, shaft generator, hull and propeller fouling condition, 

wetted surface area, etc. 

Ship maintenance data Dry docking data, etc.  Records from shipping company, Lloyd’s 
Register, World Shipping Register, etc. 

Sea and weather 

condition data 

Sea conditions: sea depth, sea water temperature and density, direction 

and value of wave, swell, and current, etc.  

Noon report, onboard sensors, online sea 

and weather forecast websites, etc.  

Weather conditions: direction and value of wind, air density and 
temperature, etc.  

 245 

3.2 General fuel consumption prediction procedure 246 

To obtain accurate vessel fuel consumption prediction results, several key issues 247 

need to be considered (Zheng, 2021). First, the objectives, resources, and requirements 248 

of the ship energy efficiency management project must be clarified. The objectives may 249 

include the prediction target (e.g., ship fuel consumption rate, ship emission status, or 250 

ship energy efficiency indicator) and the prediction accuracy expected. Resources refer 251 

to the available data sources and computational power, if big data are being used. 252 

Requirements are related to the specific application context: who would the users of the 253 

ship fuel consumption prediction model be and what kind of presentation format would 254 

they expect? For example, academic researchers and technicians would expect more 255 

details of the fundamental theory and detailed implementation procedure of a prediction 256 

model, whereas the onboard crew would be more interested in the ease of use of the 257 

graphical user interface of the model and would pay less attention to the theories behind 258 

it. Another aspect of model requirements is the model transparency or explainability, 259 
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that is, whether the underlying and working processes of the prediction model need to 260 

be completely or partially explainable or whether only high prediction accuracy is the 261 

goal.  262 

Second, the datasets needed to fulfill the objectives identified in the first step should 263 

be selected, with consideration of the availability of data sources and shipping domain 264 

knowledge. The appropriate data (or features) should then be collected and combined 265 

from various datasets and sources. Data quality and quantity should be checked after 266 

data collection. Data pre-processing is then conducted, which includes, but is not 267 

limited to, data cleaning, feature dimension reduction, data transformation, and dataset 268 

splitting for prediction model training, validation, and testing. 269 

Third, appropriate prediction models that fulfill the objectives and requirements 270 

identified in the first step must be selected, with consideration of the advantages and 271 

disadvantages of the different approaches presented in the literature and reports or 272 

adopted by the relevant authorities. The different types of vessel fuel consumption 273 

prediction models are classified and analyzed in the following sections. Alternatively, 274 

novel prediction models can be developed to achieve particular requirements or to 275 

improve prediction accuracy, with specific model parameters and hyperparameters 276 

determined as necessary. Finally, model performance must be validated, including in 277 

practical scenarios. 278 

 279 

3.3 Review of white-box models (WBMs) 280 

In WBMs, the basic model construction procedure is to calculate the resistances 281 

encountered by a ship from different sources based on physics principles and 282 

hydrodynamics laws. The total resistance consists of calm water resistance and the 283 

additional resistance presented by wind, waves, shallow water, and other external 284 

factors. Once the overall resistance condition is modeled, the engine power required to 285 

drive the ship at a certain speed and the corresponding fuel consumption rate can be 286 

calculated (Haranen et al., 2016). Emissions from ships, including those of various 287 

pollutants and GHGs, can then be calculated based on the engine power and fuel 288 

consumption results from the WBM. A total of 24 papers on WBMs were reviewed, of 289 

which 16 are on ship performance monitoring (listed in Table 6) and 8 are on ship 290 

operational optimization (listed in Table 7). 291 
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Table 6. Ship performance monitoring via WBMs (16 papers) 292 
Literature Shipping sector 

and fleet size 

Data type and resources Prediction target(s) Fuel consumption prediction model Fuel consumption prediction model 

performance 

Journal 

Jalkanen et al. 
(2012) 

A RoPax ship Ship operational data from AIS; 
ship mechanical data from IHS 

Fairplay 

Fuel consumption and ship 
emissions of pollutants and GHG 

in the Baltic Sea surrounding the 

Danish Straits  

STEAM2 The performance is slightly better than 
STEAM 

Atmospheric 
Chemistry and 

Physics 

Goldsworthy and 

Goldsworthy 

(2015) 

7125 vessels 

operating in the 

whole Australian 
region 

Ship operational data from AIS in 

the whole Australian region;  

ship mechanical data from Lloyd’s 
database 

Fuel consumption and emissions 

of pollutants and GHG 

A generic model based on ship 

activities  

R2 is 0.9787 for fuel consumption prediction 

for a bulk carrier for testing 

Environmental 

Modelling & 

Software 

Moreno-Gutiérrez 

et al. (2015) 

Ships that passed 

through the Strait 
of Gibraltar during 

2007 

Ship operational data from dynamic 

AIS data; 
ship mechanical data from Lloyd’s 

Register and IHS Fairplay 

Fuel consumption, delivered 

power and the emissions of 
pollutants and GHG in 2007 

9 generic inventory methods from 

papers and reports published in EU and 
USA 

STEAM (Jalkanen et al., 2009) is the most 

realistic approach to calculate the energy 
consumption, while Goldsworthy 

(Goldsworthy and Renilson, 2013) is the most 

complete method which applies emission 
factors for total emission calculation 

Energy 

Rakke (2016) A ship fleet 

consisting of 
about 16,000 ships 

Ship operational and mechanical 

data from AIS and a public 
database 

Ship fuel consumption and 

emissions of pollutants and GHG 

Holtrop-Mennen model The error rate is about 5% for a small number 

of ships for model testing 

Master thesis 

at Norwegian 
University of 

Science and 

Technology 
(NTNU) 

Tillig et al. 

(2017) 

A tanker ship Ship mechanical and operational 

data; 
sea and weather conditions based 

on simulation 

Ship fuel consumption per route A generic model with resistance 

prediction using Technical University 
of Denmark (DTU) method, Holtrop-

Mennen method and computational 
fluid dynamics (CFD); power and RPM 

prediction using Holtrop-Mennen 

method   

Not applicable Proceedings 

of the 
Institution of 

Mechanical 
Engineers, 

Part M 

Johansson et al. 

(2017) 

Global ships in 

2015 

Ship operational data from AIS; 

ship mechanical data from IHS 

Fairplay and classification societies  

Global ship fuel consumption 

and emissions of pollutants and 

GHG   

STEAM3 The predicted global ship fuel consumption is 

qualitatively in agreement with those in the 

third GHG study of IMO and that reported by 
the International Energy Agency 

Atmospheric 

Environment 

Orihara and 

Tsujimoto (2018) 

A tanker and a 

bulk carrier 
 

Ship mechanical and operational 

data from ship logbook; 
sea and weather conditions from 

ship logbook 

Ship speed, engine power, and 

fuel consumption 

A physical simulation model  Not applicable  Journal of 

Marine 
Science and 

Technology 

Tillig et al. 
(2018) 

A RoRo ship and a 
tanker ship 

Ship mechanical and operational 
data, and sea and weather 

conditions based on simulation  

Ship fuel consumption prediction 
during design process 

Monte Carlo simulation The error rate is about 12% in very early 
design phase and less than 4% in very late 

design phase 

Ships and 
Offshore 

Structures 

Simonsen et al. 
(2018) 

Three cruise ships  Ship mechanical and operational 
data from AIS; 

Fuel consumption at sea and in 
port, respectively 

Model proposed in IMO’s third GHG 
emission study 

R2 between 0.3 and 0.4 in the test set Energies 
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port survey reports/real world data 
from MS Finnmarken 

Huang et al. 

(2018) 

Ships in Ningbo-

Zhoushan port  

Ship operational and mechanical 

data from AIS; 
sea and weather data from online 

resources 

Fuel consumption and emissions 

of pollutants and GHG   

A generic model based on ship 

activities considering the influences of 
ocean environment 

The relative error rate is within 10% Transportation 

Research Part 
D 

Merien-Paul et al. 
(2018) 

A bulk carrier Ship operational data in different 
sailing statuses and the geo-spatial 

data 

Fuel consumption A generic model based on bottom-up 
fuel consumption prediction approach 

Not applicable Transportation 
Research Part 

D 

Goldsworthy and 

Goldsworthy 

(2019) 

Ships berthing at 

four ports in 

Australia in 2016 

Ship operational data from AIS; 

ship mechanical data from IHS 

Markit Maritime & Trade  

Fuel consumption and emissions 

of pollutants and GHG from 

auxiliary engines and boilers  

A generic model based on Goldsworthy 

and Goldsworthy (2015) and 

Goldsworthy (2017) 

Not applicable  Science of the 

Total 

Environment 

Moreno-Gutiérrez 
et al. (2019) 

A Ro-Pax ferry Ship operational data from noon 
report; 

ship mechanical data from IHS 

Ship fuel consumption and 
emissions of pollutants and GHG 

4 existing general methods proposed in 
papers or by organizations and a newly 

proposed model combining the 4 

existing models  

The newly proposed model combines the 
advantages of the 4 methods and can be 

applied to different fleets 

Science of the 
Total 

Environment 

Tillig and 

Ringsberg (2019) 

A tanker ship Ship mechanical and operational 

data 

Fuel consumption  A four degree-of-freedom simulation 

model 

Not applicable Ships and 

Offshore 

Structures 
Medina et al. 

(2020) 

A container ship Ship operational data; wind data 

from ERA-5 database 

Fuel consumption A simple analytical model and a semi-

empirical formula considering wind 

conditions 

Not applicable Transportation 

Research Part 

D 

 293 
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Table 7. Ship operational optimization via WBMs (8 papers) 294 
Literature Shipping 

sector and 
fleet size 

Data type and resources Prediction 

target(s) 

Fuel consumption 

prediction model 

Fuel 

consumption 
prediction 

model 

performance 

Optimization objective(s) Decision 

variable(s) 

Solution approach(es) Journal 

Li et al. 
(2018) 

An oil 
tanker 

Ship operational and mechanical 
data from experiment; 

sea and weather data from online 

resources  

Fuel 
consumption 

per hour 

A white-box simulation 
model based on Kwon’s 

model  

Not applicable  To minimize fuel 
consumption and maximize 

route cost reduction over a 

given route 

Sailing speed The internal penalty 
function 

Ocean 
Engineering  

Tillig et 

al. (2020) 

A container 

ship and a 

tanker 

Ship mechanical data and weather 

statistics from Monte Carlo 

simulation  

Fuel 

consumption 

per hour  

A pure white-box model 

based on Tillig et al. (2017, 

2018), Tillig and Ringsberg 
(2019) 

Not applicable To minimize fuel 

consumption over a voyage 

Sailing speed Development of a 

simulation model called 

ShipCLEAN in Matlab 

Transportation 

Research Part D 

Wang et 

al. (2020) 

A tanker 

ship 

Ship operational data from onboard 

sensors; 
sea and weather data from ECMWF 

Fuel 

consumption 
per nautical 

mile 

A generic model 

considering multiple 
environmental factors 

Not applicable  To minimize fuel 

consumption  

Sailing route 

and sailing 
speed 

Particle swarm 

optimization (PSO) 
algorithm  

Ocean 

Engineering 

Yang et 
al. (2020) 

A tanker 
ship 

Ship operational and mechanical 
data; 

sea and weather data from noon 

report 

Fuel 
consumption 

per hour  

The DTU-SDU (University 
of Southern Denmark) 

model 

The overall 
average relative 

error of all 

segments on a 
route is 1.36% 

To minimize fuel 
consumption over a given 

route 

Sailing speed 
through water 

Generic algorithm  Sustainability  

Li et al. 

(2020) 

A container 

ship 

Ship operational and mechanical 

data from experiment; 
sea and weather data from online 

sources 

Fuel 

consumption 
per hour 

A white-box model based 

on Kwon’s model and the 
International Towing Tank 

Conference (ITTC) 

Not applicable To minimize fuel 

consumption and the ship 
operating costs over a given 

route 

Sailing speed Linear approximation 

(COBYLA) in SciPy 

Applied Ocean 

Research 

Wang et 

al. (2021) 

A tanker 

ship 

Ship operational data and 

mechanical data from towing tank 

tests; 
sea and weather data from online 

resources 

Fuel 

consumption 

per hour 

A while-box model based 

on towing tank tests, ISO 

reports, and JONSWAP 
spectrum  

Not applicable To minimize fuel 

consumption and increase 

arrival punctuality over a 
voyage 

Ship engine 

power 

A combination of 

dynamic programming 

and generic algorithm 

Transportation 

Research Part D 

Fan et al. 
(2021) 

A cruise 
ship 

Ship operational data, mechanical 
data, sea and weather conditions 

from an onboard energy efficiency 

monitoring system 

Fuel 
consumption 

per voyage 

A generic model 
considering water velocity 

based on regression 

analysis 

Not applicable  To minimize total fuel 
consumption over a voyage 

Main engine 
speed 

Dynamic programming 
algorithm 

Proceedings of 
the Institution 

of Mechanical 

Engineers, Part 
M 

Tzortzis 

and 
Sakalis 

(2021) 

A container 

ship 

Ship operational data, mechanical 

data, sea and weather conditions 
from onboard sensors 

Fuel 

consumption 

A white-box model based 

on several current models 
such as Holtrop (1984), 

Holtrop and Mennen 

(1982), ITTC (2021), and 
MAN (2018), etc. 

Not applicable To minimize total fuel 

consumption over a voyage 

Sailing speed Dynamic programming 

algorithm applied on a 
specific route after 

segmentation 

Ocean 

Engineering 

295 
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Most of the WBMs in the 24 papers listed in Tables 6 and 7 are based on ship 296 

operational data (23 papers) and mechanical data (21 papers), with half also relying on 297 

sea and weather data. None consider ship maintenance data (14 papers, especially those 298 

in recent years). In addition to fuel consumption prediction, nearly half of the models 299 

also predict ship emissions, including pollutants such as SO2, NOx, carbon monoxide 300 

(CO), PM and GHGs, such as CO2 (9 papers). Most of the WBMs are developed by the 301 

authors themselves, although some papers adopt WBMs proposed by other 302 

organizations, such as the IMO, ITTC, and DTU-SDU, or by other authors. Two studies 303 

by Moreno-Gutiérrez et al. (2015 and 2019) compare the advantages and disadvantages 304 

of different types of WBMs and develop an improved WBM. Twelve of the 24 papers 305 

do not discuss the performance of fuel consumption prediction models, whereas in the 306 

papers in which model performance is presented, different test scenarios and metrics 307 

are used, making direct performance comparisons difficult. Of the 8 papers dealing with 308 

ship operational optimization models listed in Table 7, 5 discuss single-objective 309 

optimization models that aim to minimize fuel consumption, and the other 3 consider 310 

dual-objective optimization models that simultaneously minimize fuel consumption 311 

and maximize route cost reduction, minimize ship operational costs, or increase arrival 312 

punctuality. Six of the optimization models choose ship sailing speed as the decision 313 

variable, and 2 consider ship engine power and main engine speed. A detailed 314 

description of the approaches adopted in WBMs for ship fuel consumption prediction 315 

is given in Appendix B.1. 316 

The main advantage of WBMs is that they can be applied at the initial stage of ship 317 

design and during sea trials, as the model structure and parameters are fully known from 318 

a priori knowledge and theoretical insights based on physical and hydrodynamics laws, 319 

naval architecture principles, computational fluid dynamics methods, and ship model 320 

tests. Furthermore, as WBMs are developed based on physics principles, they are 321 

transparent and explainable and are thus widely used in the shipping industry. Despite 322 

these advantages, there are some clear disadvantages of WBMs. First, WBMs use 323 

various assumptions from model structure to parameter estimation, and their 324 

performance is strongly influenced by these assumptions. The ship resistance 325 

components are treated separately and their interactions are ignored, which may result 326 

in inconsistencies in the WBMs developed (Haranen, 2016). As a result, the suitability 327 

and generalizability of WBMs can be poor (Haranen, 2016; Yang et al., 2019b). Second, 328 

as much a priori knowledge about the whole vessel system is needed to calibrate WBMs, 329 

their development and application may be restricted, because such knowledge may be 330 

difficult to comprehend for a non-expert. Third, as WBMs are deterministic models, 331 
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which means that their structure and parameters are given and fixed and thus no 332 

randomness can be included to allow data uncertainty to be modeled, the models cannot 333 

learn from the data. Consequently, it is difficult to improve their performance given that 334 

data accumulate during ship operation. In addition, the deterministic property also 335 

makes WBMs vulnerable to noisy data, which are common in practice. 336 

 337 

3.4 Review of black-box models (BBMs) 338 

3.4.1 Review of BBMs based on statistical modelling 339 

BBMs based on regression models are a type of classical model widely used in 340 

studies on ship fuel consumption prediction. The main procedure begins with 341 

feature/data acquisition and pre-processing. Then, reasonable assumptions are made, 342 

and suitable regression models are chosen. Next, the model parameters are estimated 343 

using real or simulated ship operational data, and finally, the model’s fit and 344 

generalization abilities are validated. One stream of BBMs is based on statistical 345 

modeling for fuel consumption prediction, which mainly aims to identify the 346 

relationship between fuel consumption and sailing speed, as it is widely believed by 347 

researchers and practitioners that ship sailing speed is the most significant determinant 348 

of ship fuel consumption. A ship’s fuel consumption rate at sea is usually treated as 349 

proportional to its sailing speed to a power of  . The cubic law, which adopts 3 = , 350 

is particularly well known (Ryder and Chappell, 1980; Ronen, 1982, 2011; Wang and 351 

Meng, 2012; Du et al., 2019; Ronen et al., 2020); in practice, however,    can be 352 

smaller or larger than 3 depending on many factors, such as ship type, real sailing speed, 353 

and the surrounding sea and weather conditions (Wang and Meng, 2012).  354 

Table 8. Power of speed-fuel consumption in current literature (6 papers/reports) 355 
Literature Shipping sector and fleet 

size 

Range of power Data resources 

Notteboom and 
Cariou (2009) 

Container ships 3.3 Ship operational and mechanical data from 
Lloyd’s Fairplay Database 

Wang and Meng 

(2012) 

Container ships in a liner 

shipping network 

2.7 to 3.3 Ship operational data provided by a global 

liner shipping company 
    

MAN Diesel and 

Turbo (2018) 

 

Tanker 3.2 to 3.8 Not applicable 
Bulk carrier 3.0 to 3.6 

Container ship 3.1 to 3.4 

Ro-pax 3.4 to 4.8 

Adland et al. (2018) 8 crude Oil tankers 1.452 (laden) to 2.144 (ballast) Ship operational data and sea and weather 
data from noon report; ship maintenance 

records  

Kristensen (2019) Oil tanker 1.6 to 4.8 Ship mechanical data from Clarkson 
Bulk carrier 1.6 to 4.3 

Container ship 1.8 to 4.4 

Adland et al. (2020) 16 crude oil tankers For Aframax tankers, the elasticity ranges 
from 0.114 to 3.783; for Suezmax tankers, 

the elasticity ranges from 0.760 to 3.667 in 

different speed intervals 

Ship operational data and sea and weather 
data from noon report 

Although the cubic law relation between a ship’s sailing speed and the fuel 356 

consumption rate is widely adopted, Notteboom and Cariou (2009) conduct a 357 
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pioneering study using regression analysis on ships’ operational and mechanical data 358 

extracted from Lloyd’s Fairplay Database and estimate an empirical relationship 359 

between sailing speed and installed power for container ships. Since then, numerous 360 

studies estimate the relationship between ship sailing speed and the corresponding fuel 361 

consumption rates for different ship classes under various conditions.  362 

Many of the studies listed in Table 8 use ship operational data and mechanical data 363 

to calibrate the speed–fuel consumption curves, but most do not explicitly consider the 364 

influence of the surrounding sea and weather conditions. Adland et al. (2018, 2020) 365 

incorporate various such conditions, such as wind, swell, current, and waves, into their 366 

statistical fuel consumption prediction models. Adland et al. (2018) also focus on the 367 

impact of periodic hull cleaning and dry docking operations on vessels’ energy 368 

efficiency and Adland et al. (2020) deeply explore fuel consumption–speed curves, both 369 

of which are important but challenging issues in vessel fuel consumption prediction and 370 

optimization. More sophisticated models that consider factors in addition to operational 371 

and mechanical factors, such as sea and weather conditions and ship maintenance data, 372 

are summarized in Table 9. Studies of ship operation optimization based on statistical 373 

models are presented in Table 10.  374 
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Table 9. Ship performance monitoring via BBMs based on statistical modelling (13 papers) 375 
Literature Shipping sector 

and fleet size 

Data type and resources Prediction target(s) Fuel consumption 

prediction model 

Fuel consumption prediction 

model performance 

Journal 

Bocchetti et al. 
(2013) 

Twin cruise 
ships 

Ship operational data and sea and weather 
conditions from onboard data acquisition 

device  

Fuel consumption per 
voyage 

Multiple linear 
regression (MLR) 

analysis 

Average R2 is 0.9875 in the 
training set 

Conference proceedings 

Coraddu et al. 
(2014) 

A RoPax vessel Ship mechanical and operational data from 
ship monthly report 

Fuel consumption per 
nautical mile and EEOI 

Monte Carlo based 
simulation 

Not applicable  Proceedings of the Institution 
of Mechanical Engineers, Part 

M 

Bochetti et al. 
(2015) 

A cruise ship Ship maintenance and operational data, 
and sea and weather conditions from noon 

report and onboard sensors 

Fuel consumption per 
voyage 

MLR analysis R2 is at least 0.93 in the 
training set 

Journal of Ship Research 

Erto et al. (2015) A cruise ship Ship maintenance data and operational 
data, and sea and weather conditions from 

onboard sensors 

Fuel consumption per mile MLR analysis R2 is 0.94 in the training set Quality and Reliability 
Engineering International 

Bialystocki and 
Konovessis (2016) 

A pure car and 
truck carrier 

Ship operational data and sea and weather 
conditions from noon report 

Fuel consumption per day Polynomial regression R2 is 0.7557 in the training 
set 

Journal of Ocean Engineering 
and Science 

Jia et al. (2017) 483 VLCCs Ship operational data from AIS; 

mechanical data from Clarksons World 
Fleet Register   

Fuel consumption per 

voyage, GHG and pollutant 
emissions per voyage 

Bottom-up vessel fuel 

consumption calculation  

Not applicable Transportation Research Part D 

Lepore et al. (2018) A Ro-Pax 

cruise ship 

Ship operational data and sea and weather 

conditions from onboard multisensory 
system 

Fuel consumption per hour Multiway partial least-

squares (PLS) regression 

R2 is 0.82 in cross validation Quality and Reliability 

Engineering International 

Adland et al. (2018) 8 crude Oil 

tankers 

Ship operational data and sea and weather 

conditions from noon report; 
ship maintenance data provided by a 

shipping company 

Fuel consumption per day MLR analysis R2 ranges from 0.685 to 

0.834 in the training set 

Journal of Cleaner Production 

Lepore et al. (2019) A Ro-Pax 

cruise ship 

Ship operational data and sea and weather 

data from onboard sensors  

Fuel consumption per hour, 

energy efficiency initiative 

(EEI), and GHG emissions 

Orthogonal least 

squares-partial least 

squares method 

Not applicable Quality Engineering  

Capezza et al. 

(2019) 

Two Ro-Ro Pax 

ships 

Ship operational data and sea and weather 

conditions from onboard sensors  

Fuel consumption per hour PLS regression Not applicable Transportation Research Part D 

Adland et al. (2020) 16 oil tankers Ship operational data and sea and weather 
conditions from noon report 

Fuel consumption per day Piecewise linear 
regression 

R2 ranges from 0.739 to 
0.885 when dividing the 

speed values into three 

endogenous thresholds 

Transportation Research Part E 

Işıklı et al. (2020) A bulk carrier Ship operational data and sea and weather 

conditions from noon report 

Fuel consumption per day Response Surface 

Methodology 

R2 is 0.8037 in test set Journal of Cleaner Production 

Le et al. (2020a) Five classes of 
container ships 

grouped by size 

Ship operational data per voyage and 
mechanical data provided by a Korean 

shipping company 

Fuel consumption rate 
(ton/TEU/knot) 

MLR analysis MAPE ranges from 11.62% 
to 20.71% in cross validation 

Maritime Policy & 
Management 

 376 
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Table 10. Ship operational optimization via BBMs based on statistical modelling (4 papers) 377 
Literature Shipping sector 

and fleet size 

Data type and 

resources 

Prediction 

target(s) 

Fuel consumption 

prediction model 

Fuel consumption 

prediction model 
performance 

Optimization 

objective(s) 

Decision variable(s) Solution 

approach(es) 

Journal 

Wang 

and 

Meng 
(2012) 

Container ships in 

a liner shipping 

network 

Ship operational data 

from a liner shipping 

company 

Fuel 

consumption 

per day 

Linear regression 

(LR)  

R2 is at least 0.96 

in training set 

To minimize fuel 

consumption in the 

liner shipping network 

Sailing speed and the 

number of ships deployed 

on each route of a liner 
shipping network 

A novel outer-

approximation 

algorithm  

Transportation 

Research Part E 

Yao et al. 

(2012) 

Container ships 

for a single 
shipping liner 

service 

Ship operational data 

from a shipping 
company 

Fuel 

consumption 
per day 

LR  Not applicable To minimize total 

bunker fuel related 
cost for a shipping 

liner service 

Bunkering ports and 

amounts, and sailing speed  

CPLEX Computers & 

Operations Research 

Lee et al. 
(2018a)* 

A container ship Ship operational data 
from a liner shipping 

company and sea and 

weather data from 
CMEMS 

Fuel 
consumption 

per day 

An LR model 
extended from 

Yao et al. (2012) 

Error rate is 7.5% 
in the test set 

To minimize fuel 
consumption and 

maximize service level 

agreement via a 
decision support 

system 

Sailing speed PSO algorithm Computers & 
Operations Research 

Lee et al. 
(2018b) 

A container ship Ship operational data 
and sea and weather 

conditions 

Fuel 
consumption 

per unit time 

Polynomial 
regression 

The error is within 
0.5% compared 

with the actual 

data 

To minimize fuel 
consumption over a 

voyage 

Heading angle and engine 
RPM 

Non-dominated 
Sorting Genetic 

Algorithm 

(NSGA)-II 

Ocean Engineering 

Note *: DSS is implemented in the paper 378 
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All 17 of the papers listed in Tables 9 and 10 use ship operational data at sea, and 379 

12 also consider the surrounding sea and weather conditions. Unlike studies on WBMs, 380 

most of which consider ship mechanical data, only 3 of these 17 papers use ship 381 

mechanical data. In addition, 3 papers consider ship maintenance data regarding dry 382 

docking, 2 papers predict ship energy efficiency indicators such as EEOI and EEI, and 383 

2 papers predict GHG and pollutant emissions. The consideration of the above-listed 384 

factors is thus far rarer in BBM research than in studies on WBMs. Among the statistical 385 

models adopted for fuel consumption prediction, linear regression models, including 386 

simple linear regression and multiple linear regression, are the most popular, being used 387 

in 3 and 6 papers, respectively. Polynomial regression models are used in 2 papers. 388 

Piecewise linear regression is also used to allow multiple linear models to be fitted to 389 

the data in different ranges of X . In addition, 3 papers use PLS regression. As shown 390 

in the tables, most of the papers present model performance metrics (e.g., R2, MSE, 391 

MAE, and MAPE) for either or both a training set and a test set, which differs from 392 

studies of WBMs. A detailed illustration of BBMs based on statistical modeling is given 393 

in Appendix B.2. In addition, although most of the papers only consider one specific 394 

vessel in developing tailored models for ship fuel consumption prediction, some of the 395 

studies consider a fleet containing several (sister) vessels, yielding prediction models 396 

that are more sophisticated and practical. For example, Adland et al. (2018) use noon 397 

reports of a fleet of 8 identical Aframax-size crude oil tankers, and those of a fleet of 398 

10 Aframax product tankers and 6 Suezmax vessels (Adland et al., 2020) to identify the 399 

relationships between various influencing factors and vessel fuel consumption 400 

conditions. Le et al. (2020a) use the voyage records of more than 100 container ships 401 

to estimate fuel consumption. 402 

Three of the 4 papers developing ship operational optimization models aim to 403 

minimize fuel consumption/costs; the fourth constructs a bi-objective function that 404 

minimizes fuel consumption and maximizes the service level agreement via a decision 405 

support system (DSS), aiming to support decision makers who are not experts in 406 

prediction and mathematical modeling and analysis (Lee et al., 2018). However, the 407 

decision variables of these 4 papers vary. One paper only considers sailing speed, while 408 

two papers consider sailing speed and the ship deployment/bunkering port and amount 409 

simultaneously. One paper also considers the heading degree and engine RPM when 410 

sailing.  411 

 412 

3.4.2 Review of BBMs based on machine learning (ML)  413 

Recent years have witnessed a boom in studies that develop BBMs based on ML 414 
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for fuel performance monitoring, driven by the accessibility of massive amounts of data 415 

on ship energy efficiency, especially from onboard sensors, and increases in 416 

computational power. Similar to the procedure for developing BBMs based on 417 

statistical modeling, practical ship operational data should be collected and pre-418 

processed, as data quality and quantity play major roles in all types of ML models. 419 

Suitable ML models are then chosen and developed based on the requirements, and the 420 

input data are then further pre-processed if necessary. Hyperparameters should be tuned 421 

based on the training and validation sets to improve the model’s generalization ability. 422 

Finally, model performance is validated using the test set. Compared with statistical 423 

models, ML models are more suitable for dealing with high-dimensional data, and thus 424 

can incorporate a wider range of input features. However, their black-box nature 425 

decreases their interpretability compared with statistical modeling approaches. We 426 

summarize ship performance monitoring models and ship operational optimization 427 

models adopting BBMs based on ML in Tables 11 and 12. 428 
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Table 11. Ship performance monitoring via BBMs based on ML (20 papers) 429 
Literature Shipping sector 

and fleet size 

Data type and resources Prediction target(s) Fuel consumption 

prediction model 

Fuel consumption prediction model performance Journal 

Pedersen and 
Larsen 

(2009) 

A tanker ship Ship operational data and sea and weather 
conditions from noon report 

Fuel consumption 
per hour 

ANNs  The error rate is about 7% in test set Conference proceedings 

Petersen et al. 
(2012a) 

A ferry ship Ship operational data and sea and weather 
conditions from onboard sensors 

Fuel consumption 
per hour 

ANNs The root mean square error (RMSE) is 47.2 in the 
test set 

Ship Technology Research 

Petersen et al. 

(2012b) 

A ferry ship Ship operational data and sea and weather 

conditions from onboard sensors 

Fuel consumption 

per hour 

ANNs and Gaussian 

processes (GPs) 

The RMSE for ANNs and GPs is 47.2 and 51.4, 

respectively in the test set 

Journal of Marine Science and 

Technology 
Wang et al. 

(2018) 

A ship fleet of 

COSCO 

Ship mechanical and operational data, and sea 

and weather conditions derived from the 

software of a shipping company 

Fuel consumption 

per hour 

LASSO regression The mean absolute error (MAE) is 4.9 in test set Transportation Research Part D 

Soner et al. 

(2018) 

A ferry ship Ship operational data and sea and weather 

conditions from onboard sensors 

Fuel consumption 

per hour 

Tree-based models 

including bagging, random 

forest (RF), and bootstrap 

The RMSE for bagging, random forest, and 

bootstrap is 45.2, 43.5, and 41.3, respectively in 

test set 

Ocean Engineering 

Jeon et al. 

(2018) 

A bulk carrier Ship operational data and sea and weather 

conditions from onboard sensors 

Main engine fuel 

consumption per 

day 

ANNs  Median R2 is 0.9383 of tangent Sigmoid ANNs in 

test set 

Journal of Mechanical Science 

and Technology 

Yuan and 

Nian (2018) 

An oil tanker Ship operational data and sea and weather 

conditions from noon report 

Fuel consumption 

per hour 

GPs The RMSE is 0.4418 in validation set Conference paper 

Gkerekos et 
al. (2018) 

A reefer vessel Ship operational data and sea and weather data 
from noon report 

Fuel consumption 
per sailing distance 

5 machine learning 
models: decision tree 

(DT), RF, support vector 

regressor (SVR), shallow 
and deep neural networks 

R2 ranges from 0.7 to 0.9 in k-folding Conference proceedings 

Gkerekos et 
al. (2019) 

A bulk carrier Ship operational data and sea and weather data 
from noon reports; 

automated data logging & monitoring (ADLM) 

systems 

Fuel consumption 
per day 

12 machine learning 
models: linear regression, 

LASSO, Ridge, elastic net, 

DT, RF, k-nearest 
neighbors (KNN), support 

vector machine (SVM), 

extra tree model, boosting 
model, bagging model, 

ANNs 

When data from noon report is used, R2 of the 
models ranges from 0.7011 to 0.9146 in test set; 

when data from ASLM systems are used, R2 

ranges from 0.7269 to 0.9729 in test set 

Ocean Engineering 

Soner et al. 
(2019) 

A ferry ship Ship operational data and sea and weather 
conditions from onboard sensors 

Sailing speed 
through water and 

fuel consumption 

per hour 

Ridge regression and 
LASSO regression  

The RMSE in ridge and LASSO regression models 
is 48.7 L/h and 44.6 L/h, respectively, in the test 

set 

Journal of Marine Science and 
Technology 

Sourtzi 

(2019) 

 

A passenger 

ship 

Ship operational data and sea and weather data 

from electronic voyage reports extracted from 

the MRV software 

Fuel consumption 

per hour 

A multi-layer feed-forward 

neural network model 

The mean absolute percentage error (MAPE) is 

2.16% in the test set 

Master thesis at the University 

of Piraeus 

Panapakidis A passenger Ship operational data and sea and weather Ship fuel Long short-term memory The MAPE of three case studies ranges from 2.177 Electronics 
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et al. (2020) ship conditions from voyage report consumption per 
hour 

(LSTM) and Elman neural 
network (ENN) 

to 2.506 

Peng et al. 

(2020) 

8019 ship 

records at the 
Jingtang Port 

Ship arrival time, handling volume and goods, 

berth, type of trade et al. at Jingtang Port 

Ship fuel 

consumption at port 

5 machine learning 

models: gradient boosting 
regression (GBR), RF, BP 

neural network, liner 

regression and KNN 

R2 of the 5 models ranges from 0.46 to 0.91 in test 

set 

Journal of Cleaner Production 

Man et al. 

(2020) 

Five ferries Ship operational data from onboard sensors, ship 

log and AIS; 

sea and weather data from online sources and 

government department 

Fuel consumption 

per journey 

Multi-layer perceptron 

(MLP) and self-organizing 

map (SOM)  

Average relative error is 140% in MLP and 110% 

in SOM in the test set 

Applied Sciences 

Farag and 

Olcer (2020) 

A tanker ship Ship operational data and sea and weather data 

from onboard sensors and weather hindcast 
information 

Total energy 

consumed, total 
voyage fuel 

consumption, total 

CO2 emissions, and 
average propulsion 

power  

A combined ANN and 

MLR 

The error rate is 0.43% in test set Ocean Engineering 

Uyanık et al. 
(2020) 

 

A container 
ship 

Ship operational data and sea and weather data 
from noon reports, engine logbook, and sensors 

Fuel consumption 
per day 

14 machine learning 
models: Ada boost, 

Bayesian ridge, DT, elastic 

net, GBR, hist gradient 
boosting, kernel ridge, 

KNN, LASSO regression, 

MLR, MLP, RF, ridge 
regression, SVM 

R2 ranges from 0.96502 to 0.99999 in validation 
set 

Transportation Research Part D 

Le et al. 
(2020b) 

Five classes of 
container ships 

grouped by size 

Ship operational data per voyage and mechanical 
data provided by a Korean shipping company 

Fuel consumption 
per sailing distance 

ANNs MAPE ranges from 7.4 to 16.8 Maritime Policy & 
Management 

Karagiannidis 
and Themelis 

(2021) 

A container 
ship 

Ship operational data and sea and weather 
conditions from onboard measuring device 

Fuel consumption 
per day 

ANNs with feature 
engineering 

RMSE ranges from 0.64 to 3.42 in test set Ocean Engineering 

Kim et al. 
(2021) 

A container 
ship 

Ship operational data and sea and weather data 
from an onboard alarm monitoring and control 

system  

Fuel consumption 
per sailing distance 

ANNs and MLR R2 ranges from 0.8 to 0.9936 in test set Journal of Marine Science and 
Engineering 

Zhu et al. 
(2021) 

A passenger 
ship 

Ship operational data and sea and weather data 
from onboard sensors 

Fuel consumption 
per sailing time 

MLR, SVR, ANNs ANN has the best performance, followed by LR 
and SVR 

Journal of Marine Science and 
Engineering 

430 
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Table 12. Ship operational optimization via BBMs based on ML (15 papers) 431 
Literature Shipping 

sector and 
fleet size 

Data type and resources Prediction 

target(s) 

Fuel consumption prediction 

model 

Fuel consumption 

prediction model 
performance 

Optimization 

objective(s) 

Decision 

variable(s) 

Solution 

approach(es) 

Journal 

Petersen 

(2011) 

A domestic 

ferry 

Ship operational data and 

sea and weather data from 

onboard sensors 

Fuel 

consumption 

per hour 

4 machine learning models: 

ANNs, GPs, Gaussian mixture 

model (GMM), time-delay 
networks 

The RMSE of the 

models is about 50 

L/h in test set 

To minimize fuel 

consumption 

Trim Enumeration  Master thesis in 

DTU 

Beşikçi 

et al. 
(2016)* 

An oil tanker Ship operational data and 

sea and weather data from 
noon report 

Fuel 

consumption 
per hour 

ANNs R2 is 0.759 in test set To minimize fuel 

consumption 

Sailing speed, 

RPM, trim, wind 
and sea effects 

Developing a 

decision support 
system 

Computers & 

Operations 
Research 

Rudzki 

and 
Tarelko 

(2016)* 

A tall ship Ship operational, 

mechanical, and 
maintenance data, and sea 

and weather data from sea 

trials 

Sailing speed 

and fuel 
consumption 

per hour 

ANNs The mean squared 

error (MSE) is 
0.0813 in training 

set 

To propose a two-

objective 
optimization 

problem regarding 

fuel consumption 
and speed 

Propeller pitch 

and engine 
rotation speed 

Weighted-sum 

method considering 
two objectives  

Ocean 

Engineering 

Wang et 

al. (2016) 

A cruise ship Ship operational data and 

sea and weather data from 
onboard sensors 

Wind speed, 

water depth, 
and fuel 

consumption 

per meter 

Wavelet neural network Not applicable  To minimize fuel 

consumption 

Main engine 

speed 

A dynamic 

optimization method 
proposed by the 

authors 

Transportation 

Research Part D 

Farag 

(2017)* 

An oil tanker Ship operational data and 

sea and weather data from 

the ship’s automatic 
monitoring system, AIS, 

and weather hindcast 
information 

Fuel 

consumption 

ANNs and MLR analysis Model accuracy is 

97.45% in test set 

To maximize ship 

energy efficiency 

Sailing speed and 

heading angle 

Development of a 

DSS by Excel and 

Matlab 

Mater thesis at 

World Maritime 

University 

Chaal 

(2018)* 

A tanker ship Ship operational data and 

sea and weather data from 
onboard sensors and 

software  

Fuel 

consumption 
per hour 

DT, AdaBoost DT, KNN and 

ANNs 

R2 ranges from 0.74 

to 0.96 in test set 

To minimize fuel 

consumption  

Trim, trim and 

route  

Generic algorithm  Master thesis at 

World Maritime 
University 

Du et al. 
(2019) 

Two container 
ships 

Ship operational data and 
sea and weather data from 

noon report 

Fuel 
consumption 

per day 

ANNs The RMSE ranges 
from 8.23 to 10.25 

in test set  

To minimize fuel 
consumption 

Sailing speed, 
trim, speed and 

trim 

Enumeration and 
dynamic 

programming 

Transportation 
Research Part B 

Zheng et 
al. (2019) 

A cruise ship Ship operational data from 
AIS 

Fuel 
consumption 

per hour 

ANNs Model accuracy is 
more than 0.9 in test 

set 

To minimize fuel 
consumption over 

a voyage 

Sailing speed Four improved PSO 
algorithms 

Journal of 
Cleaner 

Production 

Sun et al. 
(2019) 

A bulk carrier Ship operational data and 
sea and weather data from 

onboard sensors 

Sailing speed 
and fuel 

consumption 

ANNs The MSE is 
7

0.911 10
−

  in the 

training set 

To minimize 
EEOI 

Engine revolution  Genetic algorithm Journal of 
Marine Science 

and Engineering 

Zhang et 

al. (2019) 

A general 

cargo ship 

Ship operational data from 

AIS and sea and weather 

EEOI ANNs R2 is about 0.96 in 

validation set 

To optimize ship 

energy efficiency 

Route Ant colony 

algorithm 

Ocean 

Engineering 
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data from NMEFC 
Tarelko 

and 

Rudzki 
(2020)* 

 

A tall ship Ship operational data and 

sea and weather data from 

noon report 

Fuel 

consumption 

per hour and 
sailing speed 

ANNs The error rate 

between 0.8% and 

2.8% in test set 

To minimize fuel 

consumption and 

maximize sailing 
speed 

Sailing speed MATLAB 

optimization toolbox 

Neural 

Computing and 

Applications 

Gkerekos 
and 

Lazakis 

(2020) 

A crude oil 
tanker 

Ship operational data from 
noon report, sea and 

weather data from 

CMEMS 

Fuel 
consumption 

per hour 

ANNs R2 is 0.894 in the 
test set 

To minimize fuel 
consumption 

Sailing route Modified Dijkstra’s 
algorithm 

Ocean 
Engineering 

Linh and 

Ngoc 

(2020) 

A liner ship Ship operational data from 

a shipping company;  

sea and weather data from 
online resources 

Fuel 

consumption of 

a route 

Deep ANNs with 10 hidden 

layers 

The MAPE is 5.89% 

in test set 

To minimize fuel 

cost 

Route  Asymmetric 

traveling salesman 

problem algorithm 

The Asian 

Journal of 

Shipping and 
Logistics 

Yan et al. 

(2020) 

A dry bulk 

ship 

Ship operational data and 

sea and weather data from 
noon report and EMCWF 

Fuel 

consumption 
per hour 

RF The MAPE is 7.91% 

in test set 

To minimize fuel 

consumption over 
a voyage 

Sailing speed CPLEX Transportation 

Research Part E 

Tran 

(2020) 

A bulk ship Ship operational data and 

sea and weather data from 
noon report 

Fuel 

consumption 
per voyage 

A fuzzy c-means clustering 

method (unsupervised) 

Not applicable To optimize ship 

energy efficiency 

Loading of ship A fuzzy analytical 

hierarchy process 
(AHP) method 

Ocean 

Engineering 

Note *: DSS is implemented in the paper432 
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Tables 11 and 12 show that 34 of the 35 papers leverage ship operational data to 433 

predict ship fuel consumption during sailing, and the other uses ships’ trading and 434 

berthing information at port to predict in-port fuel consumption. Most of the papers 435 

consider sea and weather conditions in ship performance monitoring (31 papers). 436 

However, only 2 papers utilize ship mechanical data for fuel consumption prediction 437 

and only 1 uses maintenance data. Unlike WBMs, which are widely used to predict ship 438 

emissions as well as fuel consumption, ML models are seldom used to predict emissions 439 

(only 1 paper does so). Artificial neural networks (ANNs), including back propagation 440 

neural networks, multi-layer perceptron (MLP), and wavelet neural networks, are the 441 

most popular ML models, being used in 29 of the 35 studies. Linear regression models, 442 

including ordinary least squares (OLS), as well as regularized linear regression models, 443 

such as least absolute shrinkage and selection operator (LASSO) regression, ridge 444 

regression, and elastic net regression, are the next most popular, followed by tree-based 445 

models such as the decision tree (DT), random forest (RF), Adaboost DT, and gradient 446 

boosting DT models. Support vector machine (SVM) and k-nearest neighbor (KNN) 447 

ML models are also popular. All these models are supervised ML models, where the 448 

data label, i.e., the fuel consumption rate, is used in model training. Some unsupervised 449 

ML models are also used, such as self-organizing maps (SOM) (Man et al., 2020), the 450 

Gaussian mixture model (GMM) (Petersen, 2011), and fuzzy c-means clustering (Tran, 451 

2020) models. In addition, although onboard sensors are widely used to collect nearly 452 

real-time ship sea trial data, no more than 10% of the 35 papers use deep learning 453 

models to achieve more accurately predict fuel consumption (3 papers).   454 

Most of the papers developing BBMs for ship fuel consumption listed in Tables 11 455 

and 12 present model performances for unseen data (e.g., on test and validation sets or 456 

in k-fold cross validation). This differs from WBMs, where one third of the papers do 457 

not give metrics for model performance in training, validation, or test sets, and also 458 

differs slightly from BBMs based on statistical modeling, where many papers only 459 

present model fitting performances for the training set. This is because WBMs are based 460 

on a priori knowledge and physical insights into a system with known structure and 461 

parameters to disclose the theoretical basis underlying various influencing factors and 462 

the prediction target. In contrast, BBMs based on ML more strongly emphasize the 463 

bias–variance tradeoff to achieve better model generalization ability. The mean squared 464 

error of a prediction model can be decomposed into two components: a bias component 465 

and a variance component. When model complexity increases, the variance tends to 466 

increase, and the squared bias tends to decrease. However, if the model is too complex, 467 

it will adapt too much to the training data and will not generalize well to unseen data 468 
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(i.e., it will have large test errors). In contrast, if the model is not complex enough, it 469 

will underfit the training data and have large bias, again leading to poor generalization 470 

ability. Therefore, one of the goals of BBMs based on ML is accurate prediction of new 471 

and unseen data based on statistical patterns in a training set. 472 

To explore the underlying of the models for ship fuel consumption prediction using 473 

ML-based BBMs, we briefly present the basic ideas underlying them and their pros and 474 

cons in Appendix B.3. For more comprehensive discussion and analysis of these models, 475 

readers are referred to Hastie et al. (2014) and Friedman et al. (2001). 476 

Some papers compare the performance of different ML models using the same data 477 

set. For example, Petersen et al. (2012a, 2012b) and Soner et al. (2018, 2019) use ship 478 

operational data and the surrounding sea and weather data from the onboard sensors of 479 

a domestic ferry. Based on model validation results, it is concluded that bootstrap tree-480 

based model is the most suitable model for fuel consumption prediction using this 481 

dataset (Soner et al., 2018), followed by RF and LASSO regression (Soner et al., 2018, 482 

2019). GPs have the worst performance on the test set among all the ML models, 483 

possibly because they eschew the Gaussian assumption. In addition, Gkerekos et al. 484 

compares 5 ML models (2018) and, in another study, 12 ML models (2019), and Uyanık 485 

et al. (2020) compares 14 ML models for fuel consumption prediction. Gkerekos et al. 486 

(2018) shows that RF and SVR perform better than DT and ANNs with different 487 

structures, including deep neural networks. Uyanık et al. (2020) concludes that linear 488 

regression-based models, including Bayesian ridge, kernel ridge, multiple linear, and 489 

ridge models, perform better than all the ML models, including other types of linear 490 

regression models, tree-based models, KNN, and ANNs. Gkerekos et al. (2019) also 491 

compares the model performance using datasets from manually filled noon reports and 492 

onboard automated data logging & monitoring (ADLM) systems. The results show that 493 

model performance evaluated using the coefficient of determination (R2) can be 494 

significantly improved if sensor data are used. In addition, SVM with a radial basis 495 

function (RBF) as the kernel has the best performance when using training data 496 

constructed from noon reports, and the extra trees model performs best when using 497 

training data constructed from ADLM systems.  498 

Of the 15 papers developing two-stage models for ship operational optimization, 9 499 

papers aim to minimize fuel consumption or fuel costs and 4 aim to optimize ship 500 

energy efficiency. Two papers aim to minimize fuel consumption while maximizing 501 

sailing speed. These 15 papers also consider other decision variables than sailing speed, 502 

such as trim settings, sailing route, loading of ships, and engine performance indicators. 503 

Five papers implement DSSs to better assist the decision makers.  504 
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Compared with WBMs, BBMs, whether based on statistical modeling or ML, have 505 

better fitting ability for training data and the highest prediction accuracy for unseen data. 506 

BBMs based on ML usually have better generalization ability than BBMs based on 507 

statistical modeling (Petersen et al., 2012b). Another advantage of BBMs over WBMs 508 

is that no a priori knowledge regarding the vessel physics is required, as BBMs are 509 

purely data-driven. In addition, because the model is calibrated and the parameters are 510 

estimated using experimental or operational data, BBMs can learn from real situations 511 

better as data accumulate, and in theory, their generalization performance and ability to 512 

handle noisy data should improve. According to the Vapnik–Chevronenkis (VC) 513 

dimension, a larger training dataset size should improve machine learning model 514 

performance by reducing overfitting (Juda and Le, 2019). However, noise and errors in 515 

the data from ships’ noon reports and onboard sensors are likely to limit the 516 

improvement of model performance as data accumulate.  517 

However, BBMs also have several disadvantages. As BBMs are purely data-driven, 518 

a large quantity of high-quality data is needed for model construction, and thus the data 519 

quantity and quality have substantial effects on model performance. Therefore, BBMs 520 

cannot to be used in the vessel design and initial sea trial stages, where data availability 521 

is limited. It should be noted from Tables 9 through 12 that the sample size of ship data 522 

used to construct BBMs based on statistical modeling and ML in the literature is usually 523 

small, as most studies consider only one or two vessels of the same type. The available 524 

data tend to be especially limited for models using noon reports.  525 

Another main drawback of BBMs is their poor interpretability: the models are 526 

usually complex and difficult to intuitively explain. As they are trained in a purely data-527 

driven way, they are not informed by basic vessel physical knowledge, and thus experts 528 

in the shipping industry have difficulty accepting them. The complex structure of ML 529 

models, combined with the large number of estimation parameters, endows them with 530 

a strong ability to learn the training data, including specific details and noise. However, 531 

this can weaken their generalization ability. For example, Friedman et al. (2001) states 532 

that ANNs, which learn a large number of weights, tend to overfit the data at the global 533 

minimum. Therefore, to improve model performance, regularization techniques should 534 

be adopted, such as the early stopping rule, validation sets, and weight decay. However, 535 

it is not trivial to find a balance between overfitting and model complexity, especially 536 

when the data contain noise, which will generate counterintuitive prediction results in 537 

the ML models. For example, if we increase the input sailing speed while keeping all 538 

other input variables fixed, we expect the predicted fuel consumption to increase; 539 

however, ML models may predict the opposite. Shipping experts may be highly 540 
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resistant to ship fuel consumption prediction models that violate the concepts of domain 541 

knowledge and data science in such a serious way.  542 

One last point concerns how the BBMs developed for ship fuel consumption 543 

prediction in the reviewed literature solve the common challenges in regression analysis, 544 

especially endogeneity and correlations. As both ship sailing speed and engine power 545 

(and thus fuel consumption) are set based on the surrounding sea and weather 546 

conditions together with other external factors, the problem of endogeneity in these 547 

studies is inevitable. Similarly, sailing speed and the surrounding sea and weather 548 

conditions are correlated: for example, the captain must slow down in bad weather for 549 

safety reasons. Both problems are seldom addressed by the BBMs based on statistical 550 

modeling in the reviewed literature. The only study that addresses the endogeneity 551 

problem is that by Adland et al. (2020), who proposes a novel framework to estimate 552 

the elasticity (including speed intervals) of the speed–consumption relationship to 553 

partially address the problem of endogeneity, which enables better exploitation of the 554 

explanatory variables and better explanation of the speed–consumption relationship. 555 

This initial but meaningful step toward solving more advanced challenges in vessel 556 

energy management and green shipping has significance for follow-up research. 557 

Regarding multicollinearity between features, it is reported in Le et al. (2020b) that a 558 

pairwise correlation between two independent variables indicates a potential 559 

multicollinearity problem, whereas further examination of tolerance and the variance 560 

inflation factor (VIF) does not yield any multicollinearity concerns. In addition, the 561 

authors claim that as their research focuses on fuel consumption prediction rather than 562 

identification of the factors affecting fuel consumption and their detailed effects, the 563 

problem of multicollinearity can be safely ignored. In addition, Lepore et al. (2019) and 564 

Capezza et al. (2019) develop PLS models to reduce multicollinearity by reducing the 565 

predictors to a smaller set of uncorrelated components and performing least squares 566 

regression on these components.  567 

Endogeneity is seldom considered in the studies proposing BBMs based on ML, 568 

except for Du et al. (2019), in which the endogeneity of engine RPM, which depends 569 

on variables outside the engine, such as sailing speed, draft, trim, and sea and weather 570 

conditions, is considered in variable selection. In BBMs based on ML, correlations 571 

between features can be reduced by pre-processing data and adopting suitable ML 572 

models for fuel consumption prediction. The use of correlation analysis to identify and 573 

delete features that are highly correlated with each other, known as feature selection, is 574 

common before developing ML models: it can be found in Lee et al. (2018), Farag and 575 

Ölçer (2020), Karagiannidis and Themelis (2021), and Kim et al. (2021), where domain 576 



30 
 

knowledge is used for feature selection; in Wijaya et al. (2020), where principal 577 

component analysis (PCA) is used; and in Kim et al. (2021), where LASSO is used. 578 

Moreover, some ML models can inherently overcome the problem of correlations 579 

between features. A typical example is ensemble tree-based models (e.g., random forest 580 

and gradient boosting decision tree), which are used in Soner et al. (2018), Chaal (2018), 581 

Gkerekos et al. (2019), Uyanık et al. (2020), Yan et al. (2020), Peng et al. (2020), and 582 

are resistant to collinearity for two reasons. First, only a random subset of features is 583 

used to construct each tree, and thus, it is likely that only one of a group of correlated 584 

features will be selected per tree. Second, if two or more highly correlated features are 585 

selected to construct the same tree, no explicit preference for one over the other(s) will 586 

be imposed when selecting the next leaf-splitting step, as the features can be regarded 587 

as interchangeable with respect to leaf impurity reduction. Another typical example is 588 

regularized linear regression models such as ridge regression and LASSO regression, 589 

where some features are retained while others are discarded by setting their coefficients 590 

to zero. Specifically, size constraints are imposed on the coefficients in ridge regression 591 

using L2 regularization (Gkerekos et al., 2019, Soner et al., 2019, Uyanık et al., 2020) 592 

and in LASSO using L1 regularization (Petersen et al., 2012, Gkerekos et al., 2019, 593 

Soner et al., 2019, Uyanık et al., 2020).  594 

 595 

3.5 Review of grey-box models (GBMs) 596 

There are two types of GBMs in the literature. In the first type, namely sequential 597 

GBMs, two or more models are developed in a series, including at least one WBM and 598 

one BBM, and then the WBM(s) and BBM(s) are combined to form a single GBM. For 599 

example, a BBM can be developed to process the raw data and the initial prediction 600 

results are then fed into a WBM, or vice versa (Leifesson et al., 2008, Coraddu et al., 601 

2017). The other type is parallel GBMs. In one such case, a WBM is first established 602 

based on theoretical principles and vessel physical laws, and then the unknown 603 

parameters are estimated by BBMs from experimental data (Meng et al., 2016; Yang et 604 

al., 2019b). In another case, a priori knowledge (used in WBMs) is integrated into a 605 

BBM by introducing model regularization (Caraddu et al., 2017 and 2018). Currently, 606 

there are few GBMs for ship fuel consumption prediction. The existing ship 607 

performance monitoring models and operational optimization models based on GBMs 608 

are summarized in Tables 13 and 14, respectively. 609 
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Table 13. Ship performance monitoring via GBMs (4 papers) 610 
Literature Shipping sector 

and fleet size 

Data type and resources Prediction target(s) Fuel consumption prediction 

model 

Prediction model performance Journal 

Leifsson et al. 
(2008) 

A container ship Ship operational and mechanical data; 
sea and weather data  

Fuel consumption per 
hour 

A WBM, a BBM, a sequential 
GBM, and a parallel GBM 

GBMs can slightly improve the performance 
of WBM; the prediction accuracy of GBM 

and BBM is similar 

Simulation Modelling 
Practice and Theory 

Caroddu et al. 
(2015) 

A Panamax 
chemical/product 

tanker 

Ship operational and mechanical data, 
and sea and weather data from onboard 

sensors 

Fuel consumption and 
shaft power 

A WBM, a BBM, and a parallel 
GBM 

The WBM performs worse; the GBM can 
achieve the same performance as the BBM 

using less historical data 

Conference proceedings  

Meng et al. 
(2016) 

A container ship Ship operational data and sea and 
weather data from noon report 

Fuel consumption per 
day 

GBMs with parameters estimated 
by sequential estimation 

procedure  

R2 of the first model is at least 0.928, root 
mean squared residuals of the second model 

is no more than 10 in training set 

Transportation Research 
Part B 

Yang et al. 
(2019b) 

A crude oil tanker Ship operational and mechanical data, 
and sea and weather data from noon 

report 

Fuel consumption per 
day 

A generic algorithm-based GBM R2 is 0.9003 in the training set Annals of Operations 
Research 

 611 

Table 14. Ship operational optimization via GBMs (3 papers) 612 
Literature Shipping sector and 

fleet size 
Data type and resources Prediction target(s) Fuel consumption 

prediction model 
Fuel consumption 
prediction model 

performance 

Optimization 
objective(s) 

Decision 
variable(s) 

Solution 
approach(es) 

Journal 

Caraddu 
et al. 

(2017) 

A tanker ship Ship operational data 
and sea and weather data 

from onboard sensors 

Shaft power, shaft 
torque, and fuel 

consumption 

A WBM, a BBM, a 
naive GBM and 

advanced GBM (denoted 

by N-GBM and A-GBM)  

Best MAPE of N-GBM 
and A-GBM is 0.79 and 

0.92, respectively 

To minimize 
fuel 

consumption 

Trim Enumeration  Ocean 
Engineering 

Lu et al. 

(2015)* 

Two tanker ships Ship mechanical and 

operational data, and sea 

and weather conditions 
from noon report and 

NOAA 

Ship fuel consumption 

per tonne of cargo and 

per nautical mile 

A GBM based on 

modified Kwon’s 

methods 

The error rate is 5.12% for 

one tanker ship and 7.15% 

for the other tanker ship in 
test set 

To minimize 

fuel 

consumption  

Route Setting up grid 

system on world 

map and selecting 
the optimal route 

manually  

Ocean 

Engineering 

Coraddu 
et al. 

(2018) 

A tanker ship Ship operational data 
and sea and weather data 

from onboard sensors 

Shaft power, shaft 
torque, fuel 

consumption 

A WBM, a BBM, a N-
GBM, and a A-GBM 

The MAPE is within 2% 
in the test set 

To minimize 
fuel 

consumption  

Trim Enumeration  Soft 
Computing 

for 

Sustainability 
Science 

Note *: DSS is implemented in the paper 613 
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Tables 13 and 14 show that all of the papers developing GBMs for fuel consumption 614 

prediction use ship operational data and sea and weather data, and most also use ship 615 

mechanical data (4 papers). However, ship maintenance data are not used in these 616 

models. Regarding the structure of the developed GBMs, 3 papers develop both 617 

sequential and parallel GBMs, and most of the others develop parallel GBMs. A more 618 

detailed illustration of the GBMs, especially what WBMs and BBMs they contain and 619 

how they are combined with each other, is given in Appendix 3.4.  620 

An advantage of GBMs is that they can combine WBMs, which are explainable 621 

and based on solid physical insights, with BBMs, which have high accuracy. 622 

Theoretically, therefore, their performance should be better than that of BBMs and also 623 

partially explainable even with fewer historical training data (Yang et al., 2019b). This 624 

should largely prevent unreasonable prediction results that contradict domain 625 

knowledge, and guarantee prediction accuracy. Unfortunately, these trends are not 626 

obvious in current research results in the literature listed in Tables 13 and 14.  627 

 628 

3.6 Review of technical reports  629 

Technical reports published by the government, academic institutions, and 630 

companies on ship fuel consumption make up a body of “grey literature” that provide 631 

considerable insights into this area. The GHG studies published by the IMO, including 632 

the First, Second, Third, and Fourth IMO GHG Studies published in 2000, 2009, 2014, 633 

and 2020, respectively, are the most authoritative technical reports regarding ship fuel 634 

consumption and emission analysis. The 4th IMO GHG Study, which is the latest in 635 

this series, estimates the consumptions of different types of fuels and the emissions in 636 

international voyages from a more macro-scale perspective than most of the academic 637 

studies reviewed in this study (IMO, 2020). It adopts both a top-down approach (by 638 

leveraging World Energy Statistics, including fuel sales data and emission factors to 639 

estimate the total mass of fuel consumption and the corresponding emissions) and a 640 

bottom-up approach (by leveraging AIS-transmitted data to describe individual vessels’ 641 

operational activity). Detailed instructions and formulas to estimate the specific fuel oil 642 

consumption and various types of emissions are given in the report. It also makes 643 

comparisons between the top-down and bottom-up estimation approaches for ship fuel 644 

consumption and emissions, and the bottom-up method is found to estimate absolute 645 

values that are consistently higher than those of the top-down method.  646 

Apart from the IMO, research institutions and companies around the world also 647 

publish technical reports on ship fuel consumption prediction and analysis. For example, 648 

researchers from the Technical University of Denmark and University of Southern 649 
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Denmark propose and analyze methods to predict ship resistance and the corresponding 650 

propulsion power (Kristensen and Lützen, 2012). Various types of resistance, such as 651 

frictional resistance, incremental resistance, air resistance, steering resistance, and 652 

residual resistance, are considered to calculate a ship’s total resistance, and the required 653 

effective power is then derived. Researchers from Chalmers University of Technology 654 

summarize models and methods for ship energy efficiency management (Tillig et al., 655 

2015). Their report includes the components of a vessel as a whole system, models, and 656 

tools to monitor ship energy efficiency (classified into holistic models, subsystem 657 

models, and commercial tools and software), and energy-saving measures. The Arctic 658 

Climate Change, Economy and Society (ACCESS) adopts a semi empirical–analytical 659 

approach to calculate the fuel consumptions of bulk carriers, oil tankers, and LNG 660 

carriers under different ice conditions for the past (1960 to 2020) and present (1960 to 661 

2020) and predicts them for the future using software called ICEROUTE (ACCESS, 662 

2014). MAN Energy Solutions, a leading engine production company, published a 663 

report titled “Basic principles of ship propulsion” that clarifies elements of a ship’s 664 

structure and propulsion system. The report presents the relationships between ship 665 

propulsion power and the influencing factors, such as the speed, environmental 666 

regulations, hull, and propeller, for different types of ships (MAN, 2018).  667 

 668 

4. Future research questions 669 

The development of data-driven ship performance monitoring models and 670 

operational optimization models in academic research is relatively new. We hope that 671 

we have provided glimpses of its potential to reduce the emissions of pollutants and 672 

GHG from international shipping activities and to decrease vessel operating costs for 673 

shipping companies.  674 

It should be noted that in practice, given the fact that several factors are determined, 675 

including but not limited to the cargo intake, the surrounding sea and weather conditions, 676 

and the range of speed values given by commercial contracts, ship operators can only 677 

have limited degrees of freedom to control their vessels so as to reduce fuel 678 

consumption and emissions. The main objective of existing ship fuel consumption 679 

prediction models is to provide more accurate estimations of fuel consumption rates 680 

under various conditions, such as sailing at various speeds and trim settings under 681 

different sea and weather conditions and hull/propeller fouling conditions. Considering 682 

the actual performances achieved thus far, we propose four scenarios in which ship 683 

operators can consider using fuel consumption prediction models and voyage 684 

optimization models.  685 
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1) If ship maintenance records (e.g., drydocking, hull and proper cleaning) can be 686 

taken into account in the fuel consumption prediction model, fuel consumption rates 687 

under different fouling and degradation conditions can be estimated, which can give 688 

insight into vessel maintenance for ship operators.  689 

2) When accurate weather forecasts within a short period can be obtained, dynamic 690 

and stochastic fuel consumption prediction and, subsequently, voyage optimization 691 

(e.g., speed and trim optimization) can be achieved by only considering the sub-voyage 692 

of two to three days ahead while taking into account the preset allowable arrival time 693 

to the end of each sub-voyage. If the sea and weather conditions change or the sub-694 

voyage is completed, new dynamic and stochastic voyage planning should be made.  695 

3) When accurate weather forecasts for a longer period than that needed to complete 696 

the voyage between a certain origin–destination pair can be obtained, given the earliest 697 

and latest allowable arrival times to the destination, speed and/or trim optimization can 698 

be conducted for the whole voyage.  699 

4) The ship fuel consumption prediction models developed under different sea and 700 

weather conditions can also shed light on weather routing to enhance maritime safety 701 

while reducing fuel consumption and emissions, as they can predict fuel consumption 702 

rates under various sea and weather conditions in different geographical locations. 703 

Based on the above summary and comparison of the three types of models for ship 704 

fuel consumption prediction, namely WBMs, BBMs based on statistical modeling/ML, 705 

and GBMs, together with the ship operational optimization models based on the fuel 706 

consumption prediction results, we outline some promising future research questions 707 

from three perspectives: data, prediction models, and management strategies, as listed 708 

in Table 15. 709 

Table 15. Outline of future research questions 710 
Category Questions 

Data a. How to consider more valid features, e.g., hull and propeller roughness, ship damage, and engine 

performance degradation in fuel consumption prediction models? 
Prediction 

models 

a. How to construct GBMs by combining WBMs and BBMs more effectively? 

b. How about applying deep learning models for fuel consumption prediction? 

c. How to incorporate domain knowledge into BBMs?  
d. How to develop a comprehensive fuel consumption prediction model for different types of ships? 

e. How about comparing the newly proposed ship performance monitoring tools in the papers with the 

existing tools proposed by organizations (e.g., IMO, ITTC) and analyzing their pros and cons? 
f. What are the advantages and disadvantages of various machine learning models for fuel consumption 

prediction? 

Management 
strategies 

a. How to measure and reduce the inaccuracy of the fuel consumption prediction model in the first stage 
brought to the operational optimization model in the second stage? 

b. How to combine the ever-changing sea and weather conditions with ship operational optimization 

models, especially in a real-time manner? 
c. How to consider the fluctuations of fuel prices and freight rates in operational optimization? 

d. How about combining the ship performance monitoring models with liner shipping network design, 

such as fleet deployment, and cargo routing? 
e. How to conduct sensitivity analysis based on the prediction results to generate managerial insights? 
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4.1 Data 711 

Research questions regarding the data used in fuel consumption prediction models 712 

aim to take a wider range of relevant features into account to achieve more accurate 713 

prediction results. For example, Adland et al. (2018)’s study of the effects of hull 714 

damage, hull and propeller fouling, and engine degradation on fuel consumption relies 715 

on both before–after and difference-in-difference estimators. These findings are 716 

instructive to ship operators and can serve as key building blocks for the optimization 717 

of vessel maintenance intervals. Meanwhile, such conditions can be difficult to observe 718 

and evaluate in practice, and thus no studies directly take their impact into consideration. 719 

In addition, ship maintenance records, which can be used to improve the overall ship 720 

safety level and energy efficiency, are accessible from shipping companies and vessel 721 

databases. Therefore, we expect that taking ship maintenance data into account in ship 722 

performance monitoring can make fuel consumption prediction more accurate and 723 

efficient. Nevertheless, as shown in Section 3, few ship fuel consumption prediction 724 

models take the time since last dry docking into consideration (Bocchetti et al., 2015; 725 

Erto et al., 2015; Rudzki and Tarelko, 2016; Adland et al., 2018, 2020), and other ship 726 

maintenance information, such as hull and propeller cleaning, main engine maintenance, 727 

and major overhaul information, is seldom considered.  728 

 729 

4.2 Prediction models  730 

Research into fuel consumption prediction models aims to improve their 731 

performance from three perspectives: improvement of prediction accuracy, 732 

development of unified models, and comparison of different models. In addition to 733 

incorporating more valid features to improve model accuracy, other strategies, such as 734 

developing GBMs that combine WBMs and BBMs more effectively and developing 735 

deep learning-based prediction models if data quantity allows, are also promising 736 

alternatives. In addition, if domain knowledge can be contained in BBMs, such as the 737 

monotonicity and convexity of speed-to-fuel consumption prediction, it can not only 738 

improve prediction performance but also significantly improve the interpretability and 739 

credibility of BBMs.  740 

Current BBMs developed for fuel consumption are usually tailored, which means 741 

that they are trained using the sailing data of a single ship, and thus their accuracy can 742 

only be guaranteed if applied to monitor the performance of that ship. As calibrating 743 

fuel consumption prediction models can be a complex and time-consuming process, 744 

this tailored property has restricted the generalization of BBMs. This situation could be 745 

improved if unified BBMs that can be universally applied were developed.  746 
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Some ship fuel consumption and emission prediction models are proposed and 747 

implemented in practice by organizations, companies, and research institutes, such as 748 

those summarized in Section 3.5. In addition, various ship performance monitoring 749 

models are developed and validated in academic papers, but few are compared with 750 

existing models using uniform datasets and evaluation metrics. Therefore, the pros and 751 

cons and the suitable application scenarios of the newly proposed models are not clear, 752 

which may inhibit their potential to reduce ship emissions. Another issue is the lack of 753 

comparison and systematic analysis of the various ML models used for fuel 754 

consumption prediction using different datasets. Tables 11 and 12 show that tree-based 755 

models such as RF have superior performance compared with other popular ML models 756 

(Gkerekos et al., 2018, 2019). However, in our experience, the tree-based models may 757 

not be suitable for direct application to fuel consumption prediction without 758 

modification. The main reason is that the output of tree-based models is not continuous 759 

when all other features are fixed while the values of one feature, such as sailing speed, 760 

change from small to large (Yan et al. 2020). This discontinuous output is totally 761 

contradictory to domain knowledge in the shipping industry and is inappropriate as an 762 

input into the subsequent operational optimization models.  763 

 764 

4.3 Management strategies  765 

The first research question associated with ship fuel consumption management 766 

strategies is how to reduce the influence of the inaccuracy of fuel consumption 767 

prediction models on the subsequent ship operational optimization model. One viable 768 

way is to reduce the inaccuracy of the fuel consumption prediction model in the first 769 

stage. However, it can be difficult to further improve the prediction accuracy given 770 

limited data quality and quantity, and the generalization error cannot be fully eliminated. 771 

Therefore, other ways to reduce such adverse influences, especially considering the 772 

relationship between the fuel consumption prediction and management models, are 773 

worthy of investigation. Another question is how to consider the fluctuation of the 774 

factors with uncertainty in the ship operational optimization model, such as the ever-775 

changing sea and weather conditions, fuel prices, and freight rates. In addition, as few 776 

studies (one exception being Wang and Meng [2012]) combine data-driven ship fuel 777 

consumption prediction models with liner shipping network design, such research 778 

questions remain to be investigated. In addition, managerial insights generated from 779 

sensitivity analysis based on fuel consumption prediction models developed from 780 

experimental or operational data are also worthy of investigation, as they can be a 781 

guideline for daily vessel operations. 782 
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4.4 Some other common challenges in regression models 783 

Finally, other common challenges in regression models, such as endogeneity and 784 

collinearity, are not adequately considered and addressed in the literature on ship fuel 785 

consumption prediction. Vessel propulsion systems are quite complex: various internal 786 

and external factors interact and can influence actual fuel consumption, but such factors 787 

cannot be fully captured and considered in a single model. In addition, in actual voyages, 788 

ship sailing speed and engine power are simultaneously set based on various external 789 

factors, such as the sea and weather conditions. Consequently, the problem of 790 

endogeneity is inevitable in ship fuel consumption prediction models. Sailing speed, 791 

which is regarded as the most important determinant of fuel consumption rates, is 792 

influenced by various surrounding factors, especially the sea and weather conditions, 793 

and the features considered in fuel consumption prediction models might be highly 794 

correlated.  795 

Vessel fuel consumption prediction models based on ML rely heavily on feature 796 

engineering, which includes valid feature selection, new feature construction, feature 797 

washing and encoding, and feature importance identification, and they therefore can be 798 

viewed as a pure black box in the prediction step: all related features after processing 799 

are input into a certain ML model or an ensemble of homogeneous or heterogeneous 800 

ML models, and the result is generated as the output of the prediction model (Friedman 801 

et al., 2001). Therefore, the problem of endogeneity is rarely discussed in the context 802 

of ML-based prediction models. The problem of feature correlation can also be 803 

addressed in the process of feature engineering, especially by feature selection through 804 

filter-based (by considering the relevance of each feature and the prediction target), 805 

wrapper-based (by considering the influence of each feature on the prediction 806 

performance), and embedded methods (conducted by a specific prediction model) 807 

(Harrington, 2012).  808 

Endogeneity and feature correlation problems can heavily degrade the applicability 809 

and performance of BBMs based on statistical modeling. For example, severe 810 

multicollinearity increases the variance of the coefficient estimates by making them 811 

very sensitive to minor changes in the model. Consequently, the coefficient estimates 812 

are unstable and difficult to interpret, and the statistical power of the prediction model 813 

is weakened. In addition, one of the most important OLS assumptions is that the errors 814 

are uncorrelated with the dependent variables. If this assumption is violated, an OLS 815 

model can produce biased and inconsistent parameter estimates, and the hypothesis 816 

tests will produce misleading results. How to overcome the problems of 817 

multicollinearity and endogeneity in BBMs based on statistical modeling is therefore 818 
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worthy of further investigation.  819 

 820 

5. Conclusion   821 

This paper reviews the literature on ship fuel consumption prediction and the ship 822 

energy efficiency management and optimization models developed over the past 13 823 

years. Major recent emission control regulations and ship energy efficiency indicators 824 

are first reviewed. Next, strategies to improve ship energy efficiency recommended by 825 

SEEMP and adopted by the shipping industry in practice are discussed. The features 826 

and sources of the main datasets, namely ship operational data, mechanical data, 827 

maintenance data, and sea and weather data used for ship fuel consumption prediction 828 

models, are presented, and the prediction model construction procedure and the related 829 

literature published in the past 13 years are reviewed. We divide fuel consumption 830 

prediction models in the academic literature into three main categories: white-box 831 

models (WBMs), black-box models (BBMs), and grey-box models (GBMs) that 832 

combine WBMs and BBMs. As there are only 84 related papers and reports, we list 833 

their details and make a comprehensive comparison of ship performance monitoring 834 

models, such as the data required for model calibration, their pros and cons, and their 835 

applicable scenarios. We provide a detailed illustration of the approaches developed for 836 

the three types of models from various perspectives. Technical reports, a typical type of 837 

grey literature published by the government, academic institutions, and companies, are 838 

also covered in this review to give a more comprehensive picture of the literature on 839 

ship energy consumption management. Finally, current research challenges and 840 

promising research questions are outlined.  841 

 This paper is the first comprehensive review of the literature on ship fuel 842 

consumption prediction and management. Accurate fuel consumption prediction is the 843 

foundation of improving vessel energy efficiency and thus reducing pollutant and GHG 844 

emissions from the shipping industry. It is also a fundamental step toward zero-emission 845 

shipping. The content of this review will be of interest to academic scholars, shipping 846 

industry practitioners, and maritime policy makers. It can thus help to address one of 847 

the most important and urgent contemporary issues faced by the IMO and the whole 848 

maritime industry: achieving environmental sustainability in shipping. 849 
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Appendix A. List of acronyms used in the review  855 
Abbreviation  Explanation Abbreviation Explanation 

ACCESS Arctic Climate Change, Economy 

and Society 

LSTM long short-term memory 

AHP analytical hierarchy process MAE mean absolute error 

AIS automatic identification system MAPE mean absolute percentage error 

ANNs artificial neural networks  MARPOL The International Convention for the 

Prevention of Pollution from ship 

ASLM automated data logging & 

monitoring 

MEPC Marine Environment Protection 

Committee 

BBM black-box model ML machine learning 

BC black carbon MLP multi-layer perceptron 

CFD computational fluid dynamics MLR multiple linear regression 

CII carbon intensity indicator MRV Monitoring Reporting and Verification 

CMEMS Copernicus Marine Environment 

Monitoring Service 

MSE mean squared error 

CO carbon monoxide NECAs nitrogen emission control areas 

DCS data collection system NMEFC National Marine Environmental 

Forecasting Center 

DSS decision support system NOAA National Oceanic and Atmospheric 

Administration 

DT decision tree NSGA non-dominated sorting genetic algorithm 

  OLS ordinary least squares 

ECMWF The European Centre for Medium-

Range Weather Forecasts 

PCA principal component analysis 

EEDI energy efficiency design index PLS partial least-squares 

EEI energy efficiency initiative PM particulate matters 

EEOI energy efficiency operation index PSO Particle swarm optimization 

EEXI energy efficiency existing ship 

index 

R2 coefficient of determination 

ENN Elman neural network RBF radial basis function 

EU European Union RF random forest 

GBM grey-box model RMSE root mean square error 

GBR gradient boosting regression RPM revolutions per minute 

GHG greenhouse gas SECAs sulphur emission control areas 

GMM Gaussian mixture model SEEMP ship energy efficiency and management 

plan 

GPS global positioning system SOM self-organizing map 

GPs Gaussian processes STEAM ship traffic emission assessment model 

IMO International Maritime 

Organization 

SVM support vector machine 

ITTC International Towing Tank 

Conference 

SVR support vector regressor 

KNN k-nearest neighbors UNCTAD United Nations Conference on Trade and 

Development 

LASSO absolute shrinkage and selection 

operator 

WBM white-box model 

LR linear regression WNI Weathernews Inc. 
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Appendix B. A more detailed illustration of the prediction approaches 856 

B.1 WBMs 857 

WBMs based on solid physical insights are the most classical and well-studied 858 

stream of methods for ship fuel consumption prediction, as their structure is completely 859 

known and the parameters are estimated through theoretical methods and towing tank 860 

tests. As vessel fuel consumption estimation approaches based on WBMs are complex 861 

and are largely based on physical theories, especially in the calculation of resistances 862 

from multiple sources, their detailed presentation is outside the scope of this study. 863 

Readers are referred to Schneekluth and Bertram (1998) and to Newman (2018) for 864 

more information on calm-water resistance estimation, and to Salvesen (1978), Kwon 865 

(2008), Panigrahi et al. (2012), and Cai et al. (2014) for a more detailed introduction to 866 

added resistance calculation. In this review, we mainly discuss the different types of 867 

resistance encountered by a ship when sailing, as shown in Table B.1. 868 
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Table B.1. Summary of common resistances encountered by a ship in sailing 869 
Source of resistance  Description  Influencing factors Related literature/estimation methods 

Total hull resistance  A ship experiences a force acting opposite to its 

direction of motion as it moves through calm water.  

Sailing speed, hull form (draft, beam, length, 

wetted surface area), and water temperature 

The procedures proposed by Holtrop and Mennen 

(1982), by Kristensen and Lutzen (2012), and by 

ITTC (2008); 

The resistance curve from CFD computations, and 

the results of towing tank tests 

Wave making resistance  As a ship moves through water, many wave systems 

are created and interact by adding or reducing each 

other’s effects. 

Ship hull shape, seakeeping characteristics of 

the ship, and sea spectrum 

The procedures proposed by Salvesen (1978), by 

Kwon (2008), by Panigrahi et al. (2012), by ITTC 

(2014), and by Liu and Papanikolaou (2016) 

Ocean currents Ocean currents can be categorized into global and 

tidal current, and they can either accelerate or retard a 

ship depending on its direction. It is also the main 

cause of the difference between speed through water 

and speed over ground of a sailing ship.  

Ship’ heading and sailing speed over ground, 

current velocity and direction 

The procedure proposed by Windeck (2013) and Cai 

et al. (2014) 

Winds Winds contribute to the creation of waves and act as a 

force on the vessel as wind resistance. 

Ship’s heading and sailing speed over ground, 

the cross-sectional area of a ship above the 

waterline, wind velocity and direction 

The procedures proposed by Kristensen and Lutzen 

(2012), Windeck (2013), ITTC (2014); 

Wind tunnel test and the CFD simulation 

Ocean waves Ocean waves are caused by external factors such as 

wind and storm, which are different from the wave 

making resistance. They expend a ship’s energy by 

increasing the wetted surface area of the hull, rolling, 

pitching, and heaving.  

Ship’ heading and sailing speed over ground, 

wave velocity and direction 

The procedure proposed by ITTC (2014); 

Seakeeping experiments and simulations, slender-

body theory, 3D panel methods, and the CFD 

simulation 

Shallow waters The resistance faced by a ship increases when sailing 

in shallow water, which is defined by the absolute 

water depth and the ship’s draught, due to several 

factors: 1) shallow water increases the water flowing 

speed under the hull and thus increases the viscous 

resistance on the hull; 2) the faster moving water 

decreases the pressure under the hull and thus 

increase the wetted surface area; 3) wave making 

resistances increases in shallow water.  

Water depth, ship hull conditions, and sailing 

speed 

The procedure proposed by Schlichting (1934, 1979); 

The CFD simulation 

Hull fouling Hull fouling of a ship increases surface roughness 

and thus increases the viscous and friction resistances 

Ship hull form and scale, and the hull fouling 

conditions 

The procedure proposed by Foteinos et al. (2017), 

Oliveira et al. (2018), Song et al. (2020); 

The CFD simulation and towing tests  

870 
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After the total resistance faced by a ship is estimated, it is possible to calculate the 871 

towing power to move the ship through water given a required sailing speed. The 872 

towing power can be calculated as the product of the total resistance and the required 873 

speed over water. The required nominal power of the propulsion engine can be 874 

determined, and the fuel consumption of the ship can be estimated based on the power 875 

requirement in different sailing activity phases (Zis et al., 2020). 876 

 877 

B.2 BBMs based on statistical modelling  878 

Given n   ship operational records, the set of k   influencing factors (called 879 

predictor variables) is denoted by X , with one influencing factor denoted by ix , and 880 

the observed fuel consumption rate (called the response variable) is denoted by y . The 881 

details of BBMs based on statistical modeling are summarized in Table B.2. 882 
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Table B.2. Summary of popular BBMs based on statistical modelling in ship fuel consumption monitoring 883 
Model Basic ideas Assumption General format Common parameter estimation 

approach 

Simple linear 

regression 
Study the relationship between the 1k =  

predictor variable denoted by x  and the response 

variable y  in a linear form. 

• The relationship between X  

and y  is linear and additive. 

• The errors are independent, 

normally distributed with mean 

zero and a constant variance. 

• In multiple linear regression, the 

predictor variables are 

independent of each other. 

0 1y x  = + +   Least squares  

Multiple linear 

regression 
Study the relationship between the , 2k k   

predictor variables in set X  and the response 

variable y  in a linear form. 

0 1 1 2 2

... k k

y x x

x

  

 

= + + +

+ +
 

Polynomial 

regression 
The nonlinear relationship between X  and y  

is modelled as an thn  degree polynomial in X . 

• The relationship between X  

and y  is linear or curvilinear. 

• The errors are independent, 

normally distributed with mean 

zero and a constant variance. 

• The predictor variables are 

independent of each other. 

2 3

0 1 2 3y = 

... h

h

X X X

X

   

 

+ + + +

+ +
  

Least squares  

Piecewise linear 

regression 
X  is partitioned into intervals with a separate 

line segment fitted to each interval. 

The assumptions of simple linear 

regression 

Suppose there are two 

breakpoints: x  and x . Then 

' '

0 1

'' ''

0 1

''' '''

0 1

, ',

, ' '',

, ''.

x for x x

y x for x x x

x for x x

 

 

 

 + 


= +  


+ 

  

  

LOESS (locally estimated 

scatterplot smoothing) 

estimation for breakpoints, and 

least squares for parameter 

estimation in the simple linear 

regression in each interval 

Partial least 

squares regression 

A linear regression model based on principal 

components regression to deal with the situation 

where the number of predictor variables is larger 

than the observations, or when there is 

multicollinearity among X . 

\ Please refer to ‘Algorithm 3.3 

Partial Least Squares’ in Section 

3.5 of Hastie et al. (2017). 

Please refer to Haenlein and 

Kaplan (2004). 

884 
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B.3 BBMs based on ML 885 

Details of the BBMs based on ML techniques are summarized in Table B.3.  886 

Table B.3. Summary of popular BBMs based on ML in ship fuel consumption monitoring 887 
Model Basic idea Sub classes used 

in the related 

literature 

Pros Cons 

ANN A supervised model aims to extract linear 

combinations of the inputs as derived 

features, and then model the target as a 

nonlinear function of these features. 

Back 

propagation 

neural networks, 

MLP, wavelet 

neural networks, 

deep learning 

models 

• Good at modeling nonlinear data with a large number of 

inputs 

• A flexible model where several layers of neurons can be 

contained 

• A pure black-box model lacking interpretability 

• Computationally expensive if many layers of 

neurons are contained 

• Easy to overfit the data, especially in case of 

limited data 

LR A supervised model assumes that the 

regression function is linear in the inputs. The 

inputs multiplied by some constants are 

added up to get the output. 

OLS • Easy to understand and implement 

• Computationally inexpensive 

• Able to provide an adequate and interpretable 

description of how the inputs affect the output 

• Able to outperform fancier nonlinear models especially 

with small numbers of training cases 

• Too strong assumption regarding the linear 

relationship between the inputs and the output 

• Easy to be influenced by outliers and noises in 

data 

• The prediction ability on unseen data may not 

be satisfactory 

 

Regularized 

LR 

A type of restricted LR model based on 

shrinkage methods applied to the regression 

coefficients to reduce variance.   

LASSO, ridge 

regression, 

elastic net 

regression 

• Address the problem of multicollinearity in data when 

LR is applied 

• Reduce the problem of overfitting 

• Relative interpretability can be retained 

• Weaken the interpretability of an LR model due 

to feature selection 

• Complicate the LR model by introducing more 

hyperparameters  

 

Tree-based 

models 

A supervised model successively splits the 

data into smaller segments until all the target 

variables are the same or until the dataset can 

no longer be split. 

DT, RF, 

Adaboost DT, 

gradient 

boosting DT 

• A single tree is easy to understand and interpret, which 

also allows for visual representation  

• Little data preprocessing is needed, and can even deal 

features with missing values 

• Feature selection happens automatically when a tree 

grows 

• Single DTs are easy to be ensembled  

• Different types of pruning methods can be applied to 

improve model generalization ability 

• A single DT with high variance is highly like to 

overfit the data 

• Lack smoothness in the prediction surface in 

regression setting 

 

SVM/SVR A supervised model aims to split the data 

using a decision boundary (hyperplane). The 

prediction results are regarded to be more 

 • Kernels can be used to effectively deal with high-

dimensional data 

• Work very well when there is clear margin of 

• Easy to be influenced by noises in data, 

especially those causing overlapping 

• Not suitable for large datasets 
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reliable if the data points are farther from the 

decision boundary. 

separation between classes 

• As only a subset of training points (i.e., support vectors) 

is used in the decision function, it is memory efficient 

 

KNN A supervised model aims to find the K most 

similar (closet) training samples of a certain 

test sample where the closeness is evaluated 

by distance (e.g., Euclidean distance, Cosine 

distance, and Manhattan distance) 

 • Very intuitive and easy to implement, as there is no 

‘training’ step to build the model like the other ML 

models 

• It can immediately adapt when new training data are 

collected 

• The speed of algorithm declines very fast as the 

number of samples/features grows  

• Very sensitive to outliers 

• A priori specification of the value of ‘K’ is 

needed 

 

SOM An unsupervised model which can be viewed 

as a constrained version of K-means 

clustering, in which the prototypes are 

encouraged to lie in a one- or two- 

dimensional manifold in the feature space  

 • The data can be interpreted and understood to some 

extend  

• Able to deal with large and complex datasets with a 

short amount of time  

 

• Large amount of data is needed to develop 

meaningful clusters  

• Hard to deal with categorical data 

 

GMM An unsupervised and probabilistic model that 

assumes all the data points are generated from 

a mixture of a finite number of Gaussian 

distributions with unknown parameters. A 

GMM model is implemented by expectation-

maximization (EM) algorithm 

 • It is one of the fastest algorithms for learning mixed 

models 

• It is more flexible in terms of cluster covariance 

allowing for soft classification   

 

• Might take a long time to run than other similar 

models such as K-means 

• Based on the assumption of Gaussian 

distribution of the data points 

Fuzzy c-

means 

clustering 

An unsupervised and soft clustering method 

where each data point can belong to more 

than one cluster with the basic idea similar to 

K-means 

 • Allow for soft classification as the data points can 

belong to more than one cluster with a likelihood 

• To deal with datasets with overlaps better 

• A priori specification of the value of ‘c’ is 

needed 

• Sensitive to noises in data 

• Euclidean distance measures can unequally 

weight underlying factors 
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B.4 GBMs 889 

Details of the GBMs developed in current literature are summarized in Table B.4.  890 

Table B.4. A more detailed description of the GBMs proposed in current literature 891 
Literature WBM used BBM used How to combine the WBM and BBM Findings 

Leifsson 

et al. 

(2008) 

A generic model 

based on physical 

principle  

A feed 

forward ANN 

model 

• A serial GBM: a set of input features is first fed into the WBM, and the 

estimated fuel flow rates and the vessel’s speed through water are fed to the 

BBM to predict the real fuel flow rate and the vessel’s speed through water 

• A parallel GBM: the set of input features to both the WBM and BBM is the 

same, with the WBM predicting the fuel flow rate and the vessel’s speed 

through water and the BBM modeling the residual of the predicted and 

actual fuel flow rate and vessel speed 

• The performance of the serial and parallel GBM is similar 

• There is a slight improvement of the GBMs developed over the 

WBM 

• The performance of the developed GBMs is similar to that of the 

BBM 

• The extrapolation ability and the ability to incorporate physical 

phenomena in model development are illustrated by model 

simulations 

 

Coraddu 

et al. 

(2015) 

A generic model 

based on the 

knowledge of 

physical processes 

Regularized 

least squares 

The a priori knowledge considered in the BWM is included in the BBM 

using Gaussian kernel in the regularization process  

• GBM can incorporate the a priori knowledge of a WBM into a 

BBM while slightly improving the prediction accuracy of the 

BBM 

• Less data (about only half) is needed to construct a GBM 

compared to the BBM with the same performance 

Lu et al. 

(2015) 

A generic model 

with still water 

resistance modelled 

by Holtrop and 

Mennen’s method 

and added 

resistance modelled 

by a modified 

Kwon’s method   

Speed-power 

curve 

estimated 

from ship 

operational 

records  

The total power transmission efficiency from brake power of the main engine 

to the final effective power in the WBM is estimated from the speed-power 

curve calibrated from ship sea trial documents 

Apart from the ability to predict ship fuel consumption under various 

conditions, the proposed GBM can also be used to examine the 

fouling effects of hull and propeller, and the engine degradation 

trends 

 

Meng et 

al. (2016) 

Two generic models 

considering various 

fuel consumption 

influencing factors 

such as sailing 

speed, 

displacement, wind, 

and wave 

A least 

squares 

method and a 

sequential 

parameter 

estimation 

procedure for 

parameter 

estimation of 

the WBMs 

• Parameters of the first nonlinear regression model considering speed and 

displacement are estimated by a linear least-square method 

• Parameters of the second nonlinear regression model are estimated by a 

sequential calibration procedure with the trust region algorithm 

 

Besides data quality, the form of the regression model developed for 

fuel consumption prediction and the optimization algorithm used for 

coefficient calibration together govern the fitting performance 
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developed 

Coraddu 

et al. 

(2017) 

A WBM based on 

the knowledge of 

physical underling 

processes 

Regularized 

least squares, 

LASSO 

regression, 

and RF  

• A Naive approach (N-GBM): the output of the WBM is used as a new 

feature of the BBM 

• An advanced approach (A-GBM): the regularization process in the BBM is 

changed to include some a priori information 

• Both the N-GBM and A-GBM improve the BBM just by few 

percentages regarding model accuracy 

• WBM can help GBM to obtain higher accuracy with respect to 

BBM by using much less data 

• An onboard trim optimization method is proposed based on the 

fuel consumption prediction results of the GBMs 

Coraddu 

et al. 

(2018) 

A WBM based on 

the knowledge of 

physical processes 

Regularized 

least squares, 

LASSO 

regression, 

and RF 

• An N-GBM: the output of the WBM is used as a new feature of the BBM 

• An A-GBM: the regularization process in the BBM is changed to include 

some a priori information 

• GBM can combine the high prediction accuracy of BBM while 

reducing the amount of data required and the total computation 

time for training the model by adding WBM components 

Yang et al. 

(2019) 

A procedure based 

on basic principles 

of ship propulsion 

A generic 

model to 

estimate the 

unknown 

parameters of 

the WBM  

Fuel consumption is first modelled considering wind and waves factors in a 

WBM. The problem of parameter estimation of the developed WBM is 

formulated as a least squares minimization model and solved by a generic 

algorithm based on real operational data. The developed model is called GA-

based GBM 

• The developed GA-based GBM can make full use of the collected 

data and estimate all parameters together in one-time run 

• The developed GA-based GBM can provide accurate fuel 

consumption estimation for all weather directions 

• The output of WBM is always among the seven most important 

features for the GBMs 
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