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Abstract

Phase retrieval with pre-defined optical masks can provide extra constraints and thus achieve improved performance.
Recent progress in optimization theory demonstrates the superiority of random masks in enhancing the accuracy of
phase retrieval algorithms. However, traditional approaches only focus on the randomness of the masks but ignore
their non-bandlimited nature. When using these masks for phase retrieval, the intensity measurements contain many
significant high-frequency components that the phase retrieval algorithm cannot take care of and thus leads to degraded
performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme
that can significantly reduce the high-frequency contents of the masks while fulfilling the randomness requirement. The
resulting intensity measurements will contain data concentrated in the mid-frequency band and around zero frequency
areas which can be fully utilized in the phase retrieval optimization process. Our experimental results show that the
proposed green noise binary masking scheme consistently outperforms the traditional ones when using in binary coded
diffraction pattern phase retrieval systems.
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1. Introduction

Many measurement systems can only detect the in-
tensity of the optical wave field. Phase retrieval, as the
name suggests, aims to reconstruct a complex-valued sig-
nal from intensity-only measurements [1–7]. The phase
retrieval problem is encountered in several disciplines, in-
cluding crystallography, optical imaging, astronomy, X-
ray, and electronic imaging. There has been considerable
recent progress in phase retrieval algorithms due to the ad-
vent of modern optimization theories [8]. In particular, the
so-called coded diffraction pattern (CDP) phase retrieval
algorithm adopts pre-defined optical masks to improve the
reconstruction performance with extra constraints [9, 10].
Specifically, the algorithm reconstructs a signal U ∈ Cn
(complex-valued) based on the Fourier intensity measure-
ments yi = |F(Ii ◦U)|2, i = 1, . . . ,M , where M , I and ◦
denote the number of measurements, pre-defined optical
masks and elementwise multiplication, respectively; and
F is the Fourier transform. In practice, the pre-defined
masks can be implemented using a spatial light modulator
(SLM) or digital micromirror device (DMD) [11–14]. The
number of measurements is related to the complexity of the
signal and the masks. For instance, the single-shot lens-
less phase retrieval methods in [12, 13] require only a single
measurement, but it can reconstruct only sparse objects.
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On the other hand, using multiple-level phase masks can
also reduce the number of measurements. However, they
require optical devices that can perform accurate multi-
level phase modulation for their implementation. The cost
of these devices is one concern; the error of these devices
due to the global grayscale-phase mismatch and spatial
non-uniformity is another. If binary masks are used, it
is empirically shown in [9, 10] that at most 6 measure-
ments are required for exact recovery via convex program-
ming. Thus, the number of measurements is not excessive.
Binary masks can provide accurate reconstruction as the
two levels can be reliably reproduced; these can be real-
ized with both DMDs and SLMs. For this reason, binary
masks are used in this work.

The importance of the randomness of the masks is em-
phasized in some research papers to ensure good phase
retrieval performance [9, 10]. Traditionally, white noise
masks are commonly used since randomness is guaranteed.
However, the Fourier spectrum of white noise masks is
non-bandlimited in theory. When using them for phase re-
trieval, the intensity measurements can have many signif-
icant high-frequency components located beyond the 0th
diffraction order (an example is shown in Figure 1(a), the
yellow circle denotes the boundary of the 0th diffraction
order). In general, we always focus on the 0th diffrac-
tion order such that the data outside the 0th diffraction
order are not detected. Even if we also detect the data
outside the 0th diffraction order, they will still be ignored
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in the phase retrieval optimization process. This is be-
cause traditional CDP phase retrieval algorithms assume
the masked data as a grid of sampled data so that its
spectrum will be periodic based on the sampling theory.
The algorithm can only handle the frequency components
within the Nyquist frequency (i.e., the red square in Figure
1(a)). Therefore, the high-frequency components located
beyond the Nyquist frequency of the system will be ignored
by the phase retrieval algorithm. It is equivalent to fil-
tering out the high-frequency components of the intensity
measurements, and this introduces errors to the optimiza-
tion process. In this paper, we base on our previous work
[15] on digital halftoning to propose a green noise optical
masking scheme for phase retrieval. The proposed scheme
allows the optical masks to have the green noise property,
which means that the energy of the masks is concentrated
in a ring shape mid-frequency region. It allows the in-
tensity measurements to also have the data concentrated
in the same region (plus those around the zero frequency,
an example is shown in Figure 1(b)). Thus, the amount
of the filtered high-frequency components can be reduced.
Halftoning is a process commonly used in digital print-
ers to simulate shades of gray by varying the size of tiny
black dots. Recently, we apply the multiscale error diffu-
sion (MED) technique to the halftoning process so that we
can control the black dot patterns to have the green noise
property [15]. Such a technique can also be used in optical
mask generation. One advantage of the scheme is that we
can generate the binary masks of different densities (the
ratio of the number of ones to zeros in the masks) while
maintaining the green noise property. The density of the
masks needs to be carefully chosen to avoid the satura-
tion problem when taking the measurements. By using
the proposed green noise masking scheme, the error of the
reconstructed phase images can be reduced compared with
using the traditional white noise masks. It has been veri-
fied with our experimental results in Section 4.

2. Phase Retrieval with Coded Diffraction Patterns

The objective of the CDP phase retrieval algorithm
[9, 10] can be described by Eq. (1).

Find U ∈ Cn s.t. yi = |F (Ii ◦U)|2 , i = 1, . . . ,M,
(1)

where yi is a Fourier intensity measurement and ◦ de-
notes the elementwise multiplication. The use of the op-
tical masks I provides the constraints to reduce the ill-
posedness of the problem. It has been shown in [9, 10]
that U can be perfectly reconstructed from noiseless mea-
surements y with high probability given I are random and
M is sufficiently large. However, in a coherent imaging
system, speckle noise inherent in the laser and shot noise
due to the limited photon measurements are prevalent.
They bring errors to the Fourier intensity measurements
and corrupt the reconstructed phase. The maximum a-
posterior (MAP) method is often used to ensure the per-

formance of the estimation. It is applied for estimating
the maximum point of an unknown quantity with the help
of a posterior distribution. To further improve the opti-
mization performance, different regularization terms are
added to the optimization cost function. In this work,
we adopt the total variation (TV) regularization term to
smooth out the noise while preserving the image edges [16].
Combining with the MAP formulation, we adopt the fol-
lowing TV-MAP approach [16] for the implementation of
the CDP phase retrieval algorithm in this paper:

min
U∈Cn

α‖∇U̇‖1 + 1
2

∑
i

(
|ġi|2 − ẏi log |ġi|2

)
s.t. ġi =

∣∣∣DFT (Ii ◦ U̇
)∣∣∣2 , i = 1, · · · ,M

(2)

In Eq.(2), ∇ is the gradient operator, ‖·‖1 refers to the
`1 norm and DFT refers to the discrete Fourier transform;
and ẏ represents the discrete Fourier intensity measure-
ments which are the sampled version of y. Similarly, İ
and U̇ are the samples of I and U, respectively. The first
term of Eq. (2) is the TV regularization term that has
been popularly used in noise removal. It is based on the
principle that images with spurious details have higher to-
tal variation. Reducing the total variation of the measure-
ment can remove the unwanted details. The second term
of Eq. (2) is the MAP data fidelity term that evaluates
the performance of the estimation. Minimizing these two
terms can obtain an estimate that is close to the original U̇
while reducing the spurious detail due to noise. Further-
more, the optimal solution allows discontinuities along the
curves; therefore, edges can be preserved in the restored
image. The regularization strength is controlled by the
constant α. It is usually selected empirically according
to the complexity of the signal. Similar to [9, 10], Eq.
(2) can be solved via the Alternating Direction Method of
Multipliers (ADMM) algorithm [17].

As mentioned in Section 1, binary masks are used in
this work. Both SLM and DMD can be used to implement
I. When SLM is used, I can be implemented as a set
of binary phase masks such that I ∈ {1,−1}. If DMD is
used, I becomes a set of binary amplitude masks such that
I ∈ {0, 1}. Figure 2 shows a typical experimental setup
for implementing the CDP phase retrieval system. It is
also adopted in our experiments. In this optical system,
the light from the HeNe laser is projected onto a SLM or
DMD board which implements the random masks. The
masked light is projected onto an object placed on the
image plane. The light then goes through a lens so that the
image captured by the CMOS camera (placed on the back
focal plane of the lens) is the Fourier transform intensity
yi of the transmittance function of the object U multiplied
with the i-th mask Ii.

As is indicated in [18, 19], yi appear as a kind of diffrac-
tion pattern as shown in Figure 1. It should be noted that
yi is obtained from the Fourier transform of the multipli-
cation of Ii and U in spatial domain. This is equivalent to
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the convolution of F(Ii) and F(U) in frequency domain.
However, F(Ii) is non-bandlimited if Ii is white. Thus, the
convolution of F(Ii) and F(U) is also non-bandlimited. It
is the reason why we can find many high-frequency data
in Figure 1(a). In this paper, we propose to use the green
noise masks that have a ring-shaped frequency spectrum
concentrated in the mid-frequency region shown in Figure
3. If the green noise masks are used, the convolution of
F (Ii) and F (U) will also have the data concentrated in
the mid-frequency region presented in Figure 1(b) (since
F (U) has large magnitude around zero frequency). It can
be seen that the high-frequency components of the 0th
diffraction order are much weaker than those using the
white noise masks.

(a) White (b) Green

Figure 1: Fourier intensity measurements of a USAF chart multiplied
with (a) a white noise mask and (b) a green noise mask. The con-
trast of the images is adjusted to visualize the small coefficients. The
yellow circle denotes the 0th diffraction order. The blue circles rep-
resent the central areas of the 1st diffraction order. The red square
denotes the region where the phase retrieval algorithm will consider.
The white noise mask introduces many high-frequency data that are
beyond the red square. They will be ignored by the phase retrieval
algorithm. The green noise mask allows the intensity measurement
to have data concentrated in the mid-frequency region. They will be
fully utilized by the phase retrieval algorithm.

HeNe Laser CMOS Camera

SLM/DMD 
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Figure 2: Experimental setup of the CDP phase retrieval system.

The above property of the green noise masks is impor-
tant for solving Eq. (2). In general, we always focus on
the 0th diffraction order such that the data outside the
0th diffraction order are not detected. Even if we also de-
tect the data outside the 0th diffraction order, they will
still be ignored in the phase retrieval optimization pro-
cess. As mentioned above, the reconstruction algorithm
is a discrete process. In each iteration, the samples of U,

i.e. U̇, are used to compute ġi =
∣∣∣DFT (İi ◦ U̇

)∣∣∣2. Then

the MAP loss function evaluates the difference between ġi
and the discrete intensity measurement ẏ. The difference
is then used to update the estimation of U̇. The sampling
period of İi and U̇ is d, i.e. the distance of the SLM pix-
els or the micro-display units of the DMD. Therefore, the

Nyquist frequency of this discrete system is λf
2d denoted by

the red square in Fig 1 (coincides with the boundaries of
the 0th diffraction order circled in yellow with radius λf

2d ).
Based on the sampling theory, ġi is periodic, and only one
period of the replicated spectrum, i.e. from −λf2d to λf

2d will
be used by the algorithm to compare with the same region
of ẏ. Therefore, the high-frequency data of ẏ beyond the
red square will not be considered in the phase retrieval pro-
cess. It is equivalent to filtering out these high-frequency
data.

As mentioned above, the intensity measurements ob-
tained using the traditional white noise masks will con-
tain many significant high-frequency components. Some of
them can even distribute outside the red square shown in
Figure 1(a). These data will not be considered in the phase
retrieval process and thus degrades the performance. In
Figure 1(b), the data of the intensity measurements with
the green noise masks concentrates in the mid-frequency
region (plus around the zero frequency) and are well within
the red square. They will be fully utilized in the phase re-
trieval process. We will verify the advantages of the green
noise masks by the experimental results in Section 4.

3. Green Noise Binary Masks

3.1. Generation of the Green Noise Masks

In Section 2, we have explained why the non-bandlimited
nature of the traditional white noise masks will lead to
significant high-frequency data that will be ignored in the
phase retrieval optimization process and leads to degraded
performance. In this paper, we propose to use the green
noise masks with energy concentrated in the mid-frequency
region. The DFT magnitude (in log scale) of some exam-
ples of green noise masks are shown in Figure 3. As can
be seen in the figure, the energy of the masks concentrates
in the ring in the middle of the Fourier spectrum. Thus,
the high-frequency energy of the mask is significantly re-
duced. The green noise masks in Figure 3 are designed
based on a digital halftoning method called FMEDg that
we proposed in [15]. Digital halftoning is a process for
turning a grayscale image into a binary image such that it
can be physically printed [20]. When the input is a con-
stant grayscale patch, the output of digital halftoning is
a binary noise pattern composed of black (0) and white
(1) dots. We make use of the digital halftoning method
FMEDg in this research because it can generate binary
noise patterns that fully fulfill the needs of a CDP phase
retrieval process. First, the output of digital halftoning
is a set of black and white dots, which is the same as a
binary mask. Second, the method can ensure the spatial
distribution of the dots to be aperiodic, homogeneous and
isotropic. Thus, it can fulfill the randomness requirement.
More importantly, we can control the frequency response
of the output noise pattern (from green to blue) and its
density (i.e. the ratio of the number of ones to zeros in
the masks). The algorithm starts with a mask with a con-
stant value, for instance, 0.5. Then an iterative feature
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preserved multiscale error diffusion (FMED) approach is
used to process each pixel in the mask [21]. More specifi-
cally, we select a not-yet processed pixel and quantize its
value to be either 0 or 1. Then the quantization error is
diffused to the pixel’s neighbors with a ring-shaped non-
causal diffusion filter. This process repeats until all pixels
are processed. One can refer to [15] for the operation de-
tails. Since the method, which is based on FMED, can
generate green noise patterns, the method is named as
FMEDg. In that method, the diffusion filter plays a criti-
cal role in controlling the frequency response of the output
pattern. Let us illustrate it through an example. Without
loss of generality, we assume that pixel (0, 0), which has
the initial value of 0.5, is the pixel picked at a particular
iteration. Assume it is quantized to 0, FMEDg will diffuse
the quantization error, i.e. 0.5, to a ring-shaped region
surrounding the pixel as shown in Figure 4. The process
is controlled by the following diffusion filter:

D(m,n) =
A (m,n,R2)−A (m,n,R1)

(R2
2 −R2

1)π
, (3)

where A(m,n,Rk) is a function such that,

A (m,n,Rk) =

{
1,
√
m2 + n2 ≤ Rk, k = 1, 2,R2 > R1

0, otherwise
(4)

   

! = 1.0, " # 0.393

 

! = 1.5, " # 0.057 ! = 2.0, " # 0.096 ! = 2.5, " # 0.148

Figure 3: Spatial domain (upper), Fourier domain in log scale (lower)
and energy concentration ratio of green noise masks of different R1

with σ = 0.5. The parameter η is defined as the amount of energy
with frequency greater than 0.8 of the maximum range. The regions
circled in red indicate that the high-frequency data will become sig-
nificant again when R1 increases to a certain value.

More specifically, the error 0.5 will be multiplied by
D (m,n) and added to the pixel (m,n) if (m,n) is located
inside the ring-shaped region determined by the outer ra-
dius R2 and inner radius R1. In [15], we show that by
setting R2 =

√
2R1, we can control the cluster size of the

noise pattern to be approximately equal to R2
1πσ, where

σ is the initial constant gray level of the mask and is also
the final density of the noise pattern. The larger is the
cluster size of the noise pattern, the lower the frequency
response will be. And since the filter is isotropic, the fre-
quency response of the noise pattern will appear as a ring-
shaped pattern shown in Figure 3. Thus, by following the
FMEDg method, we can generate a green noise mask of

any principal frequency and density σ by simply adjusting
the parameter R1 of the diffusion filter.

 !

 "

Pixel (0,0)

Region to which the quantization 

error of pixel (0,0) should be 

diffused 

Figure 4: An illustration of the ring-shaped diffusion filter.

3.2. Analysis of the Green Noise Mask Generated by the
FMEDg Method

Figure 3 shows some examples of the green noise masks
of different R1 generated by the FMEDg method (with the
density σ fixed at 0.5). Here we would like to introduce an-
other parameter η which indicates the energy of the mask
in the high-frequency region of the spectrum. We define η
as,

η(i) =

∑
m,n i(m,n > 0.8N)∑

m,n i(m,n)
, (5)

where i = |DFT (I)|2 and N is the total number of DFT
coefficients. It can be seen in Figure 3 that, as R1 in-
creases, the noise pattern in the mask becomes clustered
and the ring shape frequency spectrum shrinks towards
the center. Thus, the principal frequency of the noise pat-
tern decreases. However, the high-frequency energy of the
masks (indicated by η) does not decrease as the principal
frequency decreases. Rather, it first decreases but then in-
creases as R1 further increases. This is because as the ring
shape frequency spectrum shrinks towards the center, an-
other ring starts to appear at the high-frequency spectrum
(circled in Figure 3).

As it is explained above, the intensity measurement
data of frequency higher than the Nyquist frequency of the
system will be ignored in the phase retrieval optimization
process. Although they are of very high frequencies, ignor-
ing them can still significantly affect the performance. A
simulation is conducted to demonstrate their importance.
We use two standard images namely Cameraman and Bar-
bara (see Figure 6(a)) as the amplitude and phase part of
the input image. Then we multiply the image with the
proposed green noise mask (with R1 = 1.5 and σ = 0.5),
blue noise mask and traditional white noise mask [9]. The
binary amplitude masks I ∈ {0, 1} are used in the simula-
tion. Figure 5 shows the masks and their Fourier intensi-
ties. Some examples of the Fourier intensity measurements
with these masks are shown in Figure 6(a). For each inten-
sity measurement, we set the 10% highest frequency data
to zero to demonstrate the effect when high-frequency data
are ignored. Specifically, we create a binary mask with in-
ner 90% data set as 1 while the outer 10% data set as 0.
Then we multiply every intensity measurement with the
binary mask to remove the high-frequency information.
For each kind of mask, 4 Fourier intensity measurements
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(M = 4) are acquired and fed to the same CDP phase re-
trieval process described in Eq. (2). The number of mea-
surements is not the main focus here. As long as M is not
too small, we find in the simulation that the same conclu-
sion can be drawn irrespective of the number of measure-
ments. This is because having more masks cannot change
the fact that 10% highest frequency data is missing. If M
is very small, the optimization process sometimes cannot
converge. The performance is evaluated by two criteria:
sum square error (SSE) of the amplitude and mean square
error (MSE) of the phase. They are defined as follows:

SSEamplitude = 10 log10

∑N−1
i=0

∑M−1
j=0 (|ui,j | − |ũi,j |)2∑N−1

i=0

∑M−1
j=0 (|ui,j |)2

,

MSEphase =
1

MN

N−1∑
i=0

M−1∑
j=0

(∠ui,j − ∠ũi,j − φ)
2
,

(6)
where u and ũ denote the original and reconstructed im-
age, respectively. Both ∠u and ∠ũ are unwrapped to en-
sure the true phase difference is evaluated. A global phase
shift φ (a fixed constant) is further subtracted from the
result to avoid the MSEphase value to be amplified due to
the bias in the estimated ∠ũ. The values of SSEamplitude

are usually negative and expressed in dB. The smaller the
value of SSEamplitude, the better is the performance. The
criterion is the same for MSEphase. To optimize the per-
formance, we fine-tune the value of the regularization pa-
rameter α in Eq. (2) to ensure the best SSE is obtained
in each case.

The reconstruction performance using different masks
is shown in Figure 6(b). It can be seen that when all data
are available, all masks give similar performance. When
10% of highest frequency data are removed, the blue noise
mask (η = 0.327) gives the worst result since it has the
highest high-frequency concentration. It will introduce
many high-frequency data to the intensity measurements.
The white noise mask (η = 0.181) commonly used in the
literature also does not give a good result because its high-
frequency concentration is still significant. On the other
hand, the green noise mask (η = 0.057) gives the best
performance both quantitatively and quantitatively. The
degradation due to the removal of the high-frequency data
is the least among three masks. It can be best observed
in the region circled in Figure 6(b). Table 1 further shows
that the performance differences of the masking schemes
are consistent at different noise levels. When 10% of the
highest frequency data are removed, the green noise mask
always performs the best at all noise levels. This simula-
tion has clearly indicated the importance of high-frequency
data in the intensity measurements. In Section 4, we fur-
ther demonstrate the improvement of the proposed green
noise masking scheme by applying it to two practical CDP
phase retrieval systems.

   

Green, ! " 0.057 White, ! " 0.181Blue, ! " 0.327

Figure 5: Spatial domain (upper), Fourier domain in log scale (lower)
and energy concentration ratio of different kinds of binary masks.

3.3. The Choice of R1 and σ

As mentioned above, the parametersR1 and σ of FMEDg
should be carefully chosen. We use the following simula-
tion to show how they will affect the performance of the
phase retrieval process. First, we use the FMEDg method
to generate a few green noise masks of different R1 and
σ. The binary amplitude masks I ∈ {0, 1} are used in the
simulation. The sizes of the test images and masks are
both 200 × 200 pixels. For each R1 and σ, 4 green noise
masks are generated and multiplied with the images. The
DFTs of the resulting images are computed and 4 inten-
sity measurements are obtained. Note that the size of the
measurements for different masks are the same hence the
same proportions of the 0th order are acquired. Poisson
and Gaussian noises are added to the Fourier intensity im-
ages in order to simulate the experimental environment.
The Fourier intensity images are capped at the value 4095
(corresponding to 12 bits) to simulate the dynamic range
of the camera. We then use the TV-MAP algorithm in Eq.
(2) to retrieve the magnitude and phase of the original im-
age. To optimize the performance, we fine-tune the value
of the regularization parameter α in Eq.(2) to ensure the
best MSEphase is obtained in each case.

The simulation results are shown in Table 2. It can be
seen that the SSE and MSE decrease as R1 and σ in-
crease up to a certain limit and then the SSE and MSE
increase thereafter. We have explained in Section 3.2 why
the high-frequency information of the mask will increase
when R1 increases beyond a certain limit and degrade the
performance. Similar behavior is noted when σ increases.
For binary amplitude masks, increasing σ will enlarge the
dynamic range of the Fourier intensity image, which will
introduce the saturation problem (also exists in the exper-
iment) when σ increases up to a certain value and then
affects the performance. In case that the binary phase
masks are used, we have also noted in the experiments
that the saturation problem occurs if σ is set to be bigger
than 0.6 or smaller than 0.4. Consequently, the parameters
R1 and σ should be carefully chosen in the experiments.
It is indeed an advantage of using the FMEDg method
for generating the green noise masks since it allows us to
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(a)

(b)

Original image

Amplitude Phase

Recovered images using blue noise mask

(without cut of high frequency data)
Amplitude (SSE -17.993 dB)                  
Phase (MSE 0.039)

Recovered images using white noise mask

(without cut of high frequency data)
Amplitude  (SSE -18.644  dB)         
Phase (MSE 0.036)

Recovered images using green noise mask

(without cut of high frequency data)
Amplitude (SSE -18.852 dB)              
Phase (MSE 0.037)

Recovered images using blue noise mask

(with 10% cut of highest frequency data)

Amplitude (SSE -8.690 dB)                  
Phase (MSE 0.133)

Recovered images using white noise mask

(with 10% cut of highest frequency data)

Amplitude  (SSE -14.679  dB)          
Phase (MSE 0.051)

Recovered images using green noise mask

(with 10% cut of highest frequency data)

Amplitude (SSE -17.867 dB)            
Phase (MSE 0.039) 

Fourier Intensity Measurements

White Green Blue

Figure 6: (a) Simulation images: Cameraman + Barbara, and the Fourier intensity measurements with white, green and blue noise masks (in
log scale for visualizing the small coefficients). (b) Reconstruction results of using the green, blue and white noise masks with/without 10%
of the highest frequency data setting as 0. The same Poisson and Gaussian noises (noise variance = 15) are added to the Fourier intensity
measurements in each case. In this simulation, 4 Fourier intensity images (M = 4) are used for each kind of noise mask. The performance
difference of the green and white noise masks can be best observed in the regions circled in red.

flexibly adjust the parameters R1 and σ to achieve the re-
quired frequency characteristics and density to maximize
the performance.

4. Experimental Results

The aim of the experiments is to demonstrate the per-
formance achieved by using the proposed green noise-masking
scheme in an actual CDP phase retrieval system. It is com-
pared with the traditional white noise masks [9]. The ex-
perimental setup comprises a Thorlabs 10mW HeNe laser
with wavelength λ = 632.8 nm; and a 12-bit 1920 × 1200
Kiralux CMOS camera with pixel pitch 5.86µ m. For the
implementation of the noise masks, a 1920×1080 Holoeye
Pluto phase-only SLM with pixel pitch δSLM = 8µm is
used. Only the central 256 × 256 SLM pixels are utilized
in all experiments. The focal length of the lens behind
the SLM is 75mm. As explained in Section 2, the Nyquist
frequency of the system is λf

2d corresponding to the red
square in Figure 1. For all experiments, we use the same
set of optical devices hence the Nyquist frequency is the
same as λf

2d . The data of the same rectangular areas are
captured for the phase retrieval algorithm using different
kinds of random masks. The whole experimental setup
has already been shown in Section 2 (Figure 2). Figure 7
shows a photograph of the actual hardware setup.

Laser

SLM

Camera

Figure 7: The hardware setup of the SLM-based CDP phase retrieval
system.

In the experiments, we also use the SLM to gener-
ate the testing objects. Specifically, three images namely,
Cameraman, Vortex and Cell (see Figure 8) are loaded to
the SLM to generate the phase testing objects that can
impose multiple-level phase changes. In this experiment,
the binary phase masks I ∈ {1,−1} are used. The images
are pre-multiplied with the random masks before sending
to the SLM. Therefore, the output of the SLM has already
implemented the function Ii ◦ U in Eq. (1). The green
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Table 1: A comparison of the performance when using different noise masks at different noise levels. In this simulation, 10%
of the highest frequency data are set as 0 to demonstrate the importance of high-frequency data. 4 Fourier intensity images
(M = 4) are used for each kind of noise mask.

Gaussian
noise variance

Mask Green White Blue
SSEamplitude

(dB)
MSEphase

SSEamplitude

(dB)
MSEphase

SSEamplitude

(dB)
MSEphase

5 −20.486 0.015 −16.243 0.017 −10.792 0.065

10 −19.274 0.023 −15.513 0.030 −9.289 0.097

15 −18.023 0.040 −14.449 0.049 −8.443 0.130

20 −14.353 0.073 −13.585 0.086 −7.974 0.172

25 −13.893 0.104 −12.464 0.122 −7.661 0.224

30 −12.820 0.149 −11.422 0.173 −7.187 0.273

Table 2: Reconstruction performance with respect to different σ and R1 with green noise masks

σ

R1 1.0 1.5 2.0 2.5
SSEamplitude (dB),

MSEphase

SSEamplitude (dB),
MSEphase

SSEamplitude (dB),
MSEphase

SSEamplitude (dB),
MSEphase

0.3 −11.943, 0.121 −14.636, 0.089 −13.467, 0.094 −13.124, 0.094
0.4 −13.116, 0.122 −13.971, 0.079 −14.527, 0.083 −14.119, 0.090
0.5 −13.880, 0.084 −16.451,0.054 −16.043, 0.058 −15.795, 0.059
0.6 −12.694, 0.116 −14.527, 0.081 −13.294, 0.082 −14.757, 0.084
0.7 −11.826, 0.241 −13.745, 0.170 −12.760, 0.175 −12.373, 0.187

noise masks are generated using the FMEDg method de-
scribed above. Based on the simulation result described
in Section 3.3 and further experimental work, we choose
R1 = 1.5 and σ = 0.5 when generating the green noise
masks. Only 3 measurements are taken for each kind of
binary phase masks. The number of measurementsM does
not affect the conclusions of the experiment as long as it
is not too small. If it is very small, the phase retrieval
algorithm sometimes cannot converge. It is worth noting
that the fixed constant α in the optimization algorithm
controls the strength of regularization. For different ex-
perimental objects, the optimal α are different because of
their different complexities (curves, sizes, edges, etc.). In
our experiments, we fine-tune the values of α to obtain
the minimum error in each case. The experimental results
and the corresponding Fourier intensity measurements are
presented in Figure 8. It can be clearly seen that the per-
formance of the reconstructed images via the green noise
masks are much better than those reconstructed via the
white noise masks, both quantitativel y and qualitatively.
The improvement in MSE can be up to 47.57% . The
improvement on the vortex images is particularly signifi-
cant. A zoom-in region of the reconstructed cell image is
presented to better visualize the performance of different
masking schemes. It can be seen that textures and edges of
the reconstructed cell image via the green noise masks are
much clearer and sharper than those via the white noise
masks.

We also use a real object which is a periodic pillar
optical grating (shown in Figure 9) fabricated with SU-
8 to demonstrate the effectiveness of the proposed green
noise masks. The SU-8 is transparent under 632.8 nm.

The period of the grating is 200 µm and the height is
d = 600 nm. Hence the phase difference between air and

SU-8 area is ∆φ = 2πd(n1−n2)
λ ≈ 0.98π, where n1 ≈ 1.52

and n2 = 1 represent the refractive index of the SU-8 and
air, respectively. We use the SLM in the last experiment
to generate the same set of the phase-only random masks.
The central 250 × 250 pixels of the SLM are used in the
experiment. Only 1 measurement is used for each kind of
binary masks. Using more masks would not change the
conclusion of the experiment.

The experimental results are shown in Figure 9. For
the amplitude part, periodic rings appear in the recon-
structed images because of the sharp change along the
edges of the pillars. As can be seen, the amplitude image
via the green noise mask is smoother and more uniform
than that of the white noise mask. For the phase part, the
phase difference between the pillar areas and the air areas
is approximately 0.98π as stated in the above paragraph.
It is clearly shown that the reconstructed image with the
green noise mask can better reconstruct the phase part
while there exists phase errors via the white noise mask.
The phase errors mainly locate close to the edges of the pil-
lar, which means that the lost high-frequency information
degrades the performance. From the above experimental
results, we have shown that the proposed green noise mask
outperforms the traditional white noise mask both quanti-
tatively and qualitatively when using in SLM-based phase
retrieval systems.

To demonstrate the generality of the proposed green
noise masking scheme, we also apply the scheme to a DMD-
based CDP phase retrieval system. Different from the ex-
perimental setup in Figure 7, a 1024 × 768 pixels DMD

7



MSE:

Green:  . !"#

White: 0.413

MSE:

Green:  . "$%

White: 1.667

MSE:

Green:  . #&&

White: 0.459

Cameraman

Vortex

Cell

Figure 8: Experimental results via the green and white noise masks. Only the data inside red-square region will be considered in the phase
retrieval algorithm.

with pixel pitch 13.68µm installed on a Discover 1100
DLP board is used to generate the random masks. The
other parts of the setup can be found in Figure 2. Fig-
ure 10 shows a photograph of the actual hardware setup.
The optical path includes a reflective mirror (placed in the
bottom-right corner) is used to match the blazed grating
angle of the DMD board. Several reflective mirrors are
also used in the laser beam magnification path because of
the limited size of the optical table. In this experiment,
the binary amplitude masks I ∈ {0, 1} are loaded to the
DMD board. A Newport USAF chart is placed on the ob-
ject plane as the testing object. The projected light can
only pass through the chart through its holes thus intro-
duces sharp amplitude changes along the boundaries of the
holes. The light that can pass through the chart should
have the same phase, and we do not expect there is any
variation in phase for the regions with no light. For the
experiment, 3 measurements are captured by the camera
for each kind of binary masks. The green noise masks are
generated using the same R1 and σ as in the SLM ex-
periments. Similar to the SLM experiment, the number
of measurements chosen does not affect the conclusions
of the experiment as long as it is not too small. They
are fed to the same TV-MAP algorithm to retrieve the

amplitude and phase of the USAF chart. And we fine-
tune the values of α to achieve the minimum error in each
case. Figure 11 shows the experimental results and the
corresponding Fourier intensity measurements with differ-
ent binary masks. It can be seen that the amplitude and
phase images retrieved through the use of different kinds
of binary masks have clear differences. Even though the
background areas of the amplitude images are smooth for
all kinds of binary masks, the quality of the images in the
regions where light can pass through has a considerable
difference. The amplitude image resulting from using the
green noise masks remains sharp and relatively uniform.
Comparing with the ground truth, the SSE(dB) of the
amplitude images with the green and white noise masks
are −9.400 dB and −3.722 dB, respectively. As to the
phase images, the one reconstructed with the green noise
masks has a much smoother background and fewer errors
compared with the white noise masks.
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Figure 9: Experimental results of the periodic pillar grating with green and white random masks. 1 measurement is used for each kind of
masks. The image size is 250 × 250. Only the data inside red-square region will be considered by the phase retrieval algorithm.
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Figure 10: The actual DMD-based CDP phase retrieval system.

5. Conclusion

This paper proposes a green noise binary masking scheme
for the coded diffraction pattern (CDP) phase retrieval
systems. We have explained why the high-frequency data
in the Fourier intensity measurements will be ignored in
the CDP phase retrieval process. To reduce the informa-
tion loss, we suggested using green noise masks that have
very low high-frequency concentrations. The green noise
masks are designed using a digital halftoning method we
developed earlier. It has the advantage that the principal
frequency and the density of the noise mask can be con-
trolled independently. Also, we have demonstrated how
the high-frequency data in the Fourier intensity measure-
ments can affect the quality of the reconstruction images.
It is verified by the experimental results, which show that
the quality of the amplitude and phase images retrieved
using the proposed green noise binary masking scheme
outperforms the commonly used white noise binary masks
when applying to two CDP phase retrieval systems.
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