
1 

Hierarchical Distributed Multi-Energy Demand Response for 

Coordinated Operation of Building Clusters 

Ling Zhenga, Bin Zhoua*, Yijia Caoa, Siu Wing Or b,c, Yong Lia, Ka Wing Chanb 

aCollege of Electrical and Information Engineering, Hunan University, Changsha 410082, China 

bDepartment of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

cHong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center, Hong Kong. 

Abstract: This paper proposes a distributed multi-energy demand response (DR) methodology for the 

optimal coordinated operation of smart building clusters based on a hierarchical building-aggregator 

interaction framework. In the proposed hierarchical framework, the aggregator acts as a digital 

representation of building entities to offer the multi-energy load prediction of buildings using a capsule 

network (CapsNet) based multi-energy demand prediction model, while these buildings leverage the load 

flexibility and multi-energy complementarity to implement the optimal DR for reducing individual costs. 

Then, a fully distributed multi-energy DR approach based on the exchange alternating direction method 

of multipliers (ADMM), which requires only limited information to be exchanged between the aggregator 

and buildings, is developed to iteratively achieve the optimal multi-energy coordination of buildings. 

Moreover, the proposed model can be dynamically corrected with real-time load data and weather 

information, and the distributed multi-energy DR approach is correspondingly optimized with rolling 

horizon procedures to reduce the impact of prediction uncertainties. Finally, the performance of the 

proposed methodology is benchmarked and validated on different scales of smart buildings, and 

comparative results demonstrated its superiority in solving the optimal synergistic operation problem of 

smart buildings. 
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Nomenclature 
    

Indices and sets  𝑆𝑂𝐶𝑏
EV,out

 Required SOC of EV when it is leaving 

b Index of buildings  𝑇𝑏
𝑎, 𝑇𝑏

𝑑 Arrival time and departure time of EV 

k Index of iteration number  𝑄GAS Heating value of natural gas 

t0 Index of current time slot 𝜂𝑏
MTE, 𝜂𝑏

MTH Gas-electricity and gas-heat efficiencies of MT 

t Index of time periods  𝑃𝑏,max
MTE , 𝑃𝑏,max

MTH  Maximum electrical and thermal outputs of MT 

φ Index of pollutant emissions  𝜂𝑏
F, 𝑃𝑏,max

F  Efficiency and maximum output of furnace 

x Sets of decision variables  𝜂𝑏
BOH, 𝑃𝑏,max

BOH  Efficiency and maximum output of boiler 

  𝜀pri, 𝜀dual Primary and dual feasibility tolerances 

Parameters    

T The rolling horizon Variables 

N Number of buildings  𝑃𝑎,𝑡
grid

, 𝑉𝑎,𝑡
gas

 Electrical power and natural gas purchased by 

the aggregator at time slot t ψ Number of pollutant emissions  

𝑐𝑡
𝑒, 𝑐𝑡

𝑔
 Electricity price and natural gas price 𝑃𝑏,𝑡, 𝑉𝑏,𝑡 Power and gas demand of building b 

𝛽𝜑
𝑒 , 𝛽𝜑

𝑔
 Emissions of pollutant φ from electricity and 

natural gas consumption 
𝐻𝐼𝑏,ℎ,𝑡,, 𝜃𝑏,ℎ,𝑡 HI value, ambient temperature corresponding to 

appliance h in building b at time t 

𝛾𝜑 Unit price of pollutant φ Pb,h,t Electrical power or thermal power consumed by 

appliance h in building b PLim, VLim Power limit of the transformer and transmission 

limit of natural gas 𝑃𝑏,𝑡
ESS,ch

, 𝑃𝑏,𝑡
ESS,dis

 Charging and discharging power of ESS of 

building b at time t 𝐻𝐼min, 𝐻𝐼max Minimum and maximum limits of HI 

𝑀1, 𝑀2… 𝑀6 Polynomial coefficients for HI 𝜑𝑏,𝑡
ESS,ch

, 𝜑𝑏,𝑡
ESS,dis

 Binary variables indicating charging and 

discharging states of ESS of building b at time t 𝜃𝑏,𝑡−1
out  Outdoor temperature at time t-1  

COPb,h Coefficient of performance of appliance h 𝑆𝑂𝐶𝑏,𝑡
,ESS

 SOC of ESS of building b at time t 

Mb, cb, Req,b Weight of air, thermal capacity of air and 

equivalent thermal resistance of building b 

 𝑃𝑏,𝑡
EV Charging power of EV of building b at time t  

𝑆𝑂𝐶𝑏,𝑡
,EV

 SOC of EV of building b at time t 

𝑃𝑏,ℎ,𝑡
max Maximum power consumed by appliance h in 

building b 

𝑉𝑏,𝑡
MT Gas input of MT of building b at time t 

𝑃𝑏,𝑡
MTE, 𝑃𝑏,𝑡

MTH Output electrical power and thermal power of 

MT of building b at time t 𝜂𝑏
ESS,ch, 𝜂𝑏

ESS,dis
 Charging and discharging efficiency of ESS of 

building b 𝑉𝑏,𝑡
𝐹 , 𝑃𝑏,𝑡

F  Gas input and output thermal power of gas 

furnace of building b at time t 𝑃𝑐ℎ,𝑏
ESS,max

,

𝑃𝑑𝑖𝑠,𝑏
ESS,max

 

Limits of charging and discharging power of 

ESS of building b 𝑃𝑏,𝑡
BOE, 𝑃𝑏,𝑡

BOH Input electrical power and output thermal power 

of boiler of building b at time t 𝑆𝑂𝐶𝑏
ESS,min

,

𝑆𝑂𝐶𝑏
ESS,max

 
Minimum and maximum values of the state of 

charge (SOC) of ESS of building b 

 

𝜆𝑡, 𝑦𝑡  Dual variables associated with equilibrium 

constraints 𝐸𝑅,𝑏
ESS, 𝐸𝑅,𝑏

EV  Rated capacity of ESS and EV 𝑢𝑡, 𝛼𝑡 

𝜂𝑏
EV Charging efficiency of EV of building b 𝑃𝑀,𝑡, 𝑉𝑀,𝑡 Auxiliary variables 

𝑃𝑏
EV,max

 Maximum charging power of EV of building b  𝑟𝑃,𝑡
𝑘 , 𝑟𝑉,𝑡

𝑘  Primal residuals and dual residuals 

𝑆𝑂𝐶𝑏
EV,min

,

𝑆𝑂𝐶𝑏
EV,max

 

Minimum and maximum values of SOC of EV 

of building b 

𝑠𝑖,𝑃,𝑡
𝑘 , 𝑠𝑖,𝑉,𝑡

𝑘   

  

1 Introduction 

1.1 Motivation 

Demand response (DR), benefiting from the customer flexibility, represents an effective way to 

reduce electrical peak loads thereby promoting the reliable and economic operation of electrical power 

systems [1]. In multi-energy systems (MESs), DR has been extended to multi-energy DR and breaks the 

barriers among different forms of energy [2]. Among the demand-side users, buildings consume a large 
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amount of electricity and play a significant role in DR programs [3], [4]. Nowadays, buildings are usually 

equipped with various energy conversion devices such as micro turbines (MTs), boilers, furnaces, as well 

as flexible devices such as electric vehicles (EVs), energy storage systems (ESSs), and heating/cooling 

systems. With the complementarity of multiple-energy carriers, smart buildings have great potential to 

participate in DR programs not only by adjusting the flexible loads but also by converting the source of 

the consumed energy [2], [5]. Therefore, the multi-energy DR of smart buildings with economic and 

energy-efficient advantages has become a pressing need. 

Under price-based multi-energy DR programs, the electricity consumption of buildings features 

concentration in low electricity price periods for the sake of self-profit [6], which is prone to lead to new 

power peaks especially when a large number of buildings are involved [7]. In addition, during periods of 

high electricity prices, natural gas is consumed in large quantities to meet load demands, leading to gas 

consumption peaks [8]. Consequently, multi-energy DR approaches without considering the coordinated 

operation of buildings may cause new power and gas peaks, and further result in the overload of 

distribution transformers and the insufficient supply of natural gas [7], [9]. Moreover, the accurate 

prediction of multi-energy loads is indispensable for the investigation of advisable DR approaches. Due 

to the complex inherent characteristics of multi-energy loads including the strong couplings, the spatial 

correlations [10] and the time-varying weather factors [11], it is difficult to obtain the accurate 

multi-energy demand prediction for a large number of buildings. Here, this paper is devoted to investigate 

a distributed multi-energy DR methodology based on a hierarchical building-aggregator interaction 

framework to achieve the optimal coordinated operation of heterogeneous smart buildings for the overall 

economic efficiency enhancement. 

1.2 Literature review 

So far, extensive studies have been reported on multi-energy DR strategies for the optimal operation 

of smart buildings. In [12], the price-driven DR considering various types of appliances was formulated 

as a mixed-integer linear programming (MILP) model for the economic operation of smart buildings. 

Multi-flexibility measures were applied to promote interaction between end-users and the grid. In [13], a 

decision making mechanism considering multi-energy DR was proposed to facilitate effective operation 

of smart neighborhood. Stochastic modeling was adopted to resolve uncertainties of renewable energy 

sources. A multi-energy DR strategy based on the fuzzy decision making (FDM) was presented in [14] 

for energy management and co-optimization of smart buildings. The results demonstrated that the 

proposed method can reduce the purchase costs of the system as well as maintain system independence. A 
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genetic algorithm was developed in [15] to solve the multi-objective optimal operation problem for smart 

buildings considering electro-thermal DR. The relationship between the operation costs and the energy 

efficiency was analyzed, and the simulation results showed the economic and efficient benefits of the 

proposed method. Based on the market mechanism, the multi-energy DR of smart buildings was studied 

in [16] and [17] to achieve the coordinated clearing of electrical and thermal loads. In general, the 

majority of previous multi-energy DR approaches adopted centralized algorithms in which all devices of 

buildings were controlled and managed in a centralized manner. However, the high computation and 

communication overhead, and the privacy issues limit the centralized multi-energy DR approaches to 

solve the coordinated operation problem for a large number of smart buildings [18]. 

Owing to the advantages in computing scalability, communication robustness, and privacy 

preservation, distributed algorithms have been widely applied in DR approaches. Dantzig-Wolfe 

decomposition (DWD) is used in the DR scheme for peak minimization in [19], and distributed 

game-theoretic DR strategies were presented in [20] and [21] to improve DR efficiencies of consumers. A 

distributed DR approach was proposed in [22] to support the building heating demand optimization for 

the district heating systems, and a distributed DR algorithm was used in [23] for the electrical load 

management to improve the quality of DR services. However, most of previous distributed DR algorithms 

merely focused on loads of a single energy form. In the literature, there are a few works that optimized 

the multi-energy schedules of users using the distributed DR algorithms. A distributed algorithm based on 

the game theory was proposed in [24] to determine the optimal DR strategy for electricity-natural gas 

coupled networks. A distributed multi-energy DR approach was proposed in [25] for residential buildings 

with incomplete information. Despite achieving minimal social costs, these approaches did not consider 

coordinated operations among multi-energy consumers and may cause potential competitive behaviors of 

the consumers which are adverse to the system operation performance. 

Accurate multi-energy load prediction paves the way for the investigation of multi-energy DR 

strategies and plays a crucial role in the optimal scheduling of MESs. Numerous state-of-art methods 

have been proposed to capture the coupling characteristics among multi-energy loads for enhancing the 

prediction accuracy. In [26], the inherent features of multi-energy load and generation were initially 

analyzed and then extracted by a deep belief network (DBN) based forecasting method to achieve 

multi-energy net load prediction. A hybrid model incorporating long-short term memory (LSTM) 

network, encoder-decoder and gradient boosting decision tree (GBDT) was formulated in [27] to extract 

temporal dynamic and coupling features of multi-energy loads to improve the prediction precision. In [28], 

deep multitask learning is used to capture abstract characteristics of electricity, heat, and gas loads in 
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industrial-park MES. In addition, an integrated Gaussian process (IGP) modeling framework in [29] and a 

hybrid gated recurrent unit (GRU) network in [30] were developed to cope with the spatial correlations 

among multi-energy loads over a certain region. Nevertheless, weather variables such as temperature, 

humidity, which greatly affect load variations [31], were ignored in the task of multi-energy load 

prediction in these studies. 

1.3 Contribution 

In this paper, the load flexibility and multi-energy complementarity of smart buildings are fully 

exploited to form a distributed multi-energy DR methodology for the optimal coordinated operation of 

heterogeneous buildings based on a hierarchical framework. The contributions of this paper are 

summarized as follows: 

1. A hierarchical building-aggregator interaction framework is proposed to coordinate the optimal 

operation of heterogeneous smart buildings to minimize the individual energy costs and enhance DR 

capabilities of buildings. With the proposed hierarchical framework, the aggregator optimizes the overall 

purchased electricity and natural gas while buildings exploit the load flexibility and multi-energy 

complementarity to perform multi-energy DR, and thus the interactions between the aggregator and 

buildings facilitate the optimal synergies of buildings and the local multi-energy autonomy. 

2. A CapsNet based multi-energy demand prediction model is formulated for the aggregator which 

serves as a digital representation of building entities to offer the predicted multi-energy demands. The 

couplings between multi-energy carriers, the weather impacts on loads, and the underlying spatial 

correlations among the loads from different buildings are captured by the convolution operation, and the 

nonlinear temporal dependencies among multi-energy load time series are further extracted by the 

dynamic routing mechanism between capsules. 

3. A fully distributed multi-energy DR approach based on the exchange ADMM is proposed to 

locally determine the optimal amount of multi-energy conversion and interaction, so as to iteratively 

achieve the optimal coordinated operation of buildings. The proposed approach contributes to the privacy 

preservation since only limited information needs to be exchanged between the aggregator and buildings. 

Moreover, to reduce the impact of prediction uncertainties, the distributed approach is adjusted with 

rolling horizon procedures as the prediction model is dynamically corrected using the updated load and 

weather data. 
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2 Problem formulation 

2.1 Overview of the proposed framework 

Considering that competitive behaviors usually appear among different buildings under the 

price-based multi-energy DR programs, a hierarchical building-aggregator interaction framework is 

designed to coordinate the optimal operation of heterogeneous buildings. The schematic diagram of the 

proposed framework is illustrated in Fig. 1. The two-way communication between buildings and the 

aggregator is enabled through advanced metering infrastructure (AMI) including state-of-art measurement 

and collection systems, e.g., smart meters, and communication networks. Each building possesses any 

combination of the energy-consuming devices such as the EV, ESS, energy conversion devices and 

heating/cooling systems. Within each building, the ESS and the energy conversion devices including the 

MT, the gas furnace and the electric boiler are integrated in an energy hub whereby multi-energy carriers 

are stored, converted and conditioned [2]. The local information related to energy consumption of each 

building such as the appliance operation period, technical specifications of devices and energy 

consumption preferences could reveal the users’ behaviors, habits and living pattern, etc. Thus, the users’ 

privacy could be invaded by a third party through sniffing this detailed information. In this regard, only 

limited information, i.e., load profiles of buildings, weather data and the incentive signals from the 

aggregator, is interacted in the hierarchical framework, and the appliance-level details of buildings are 

maintained privacy. 

In the upper level of the hierarchical framework, a CapsNet based multi-energy demand prediction 

model, which is driven by real-time data collected from sensors and smart meters of building entities, is 

formulated for the aggregator to estimate the multi-energy consumptions of building clusters and provides 

foundations for the optimal synergies among buildings. The collected electrical and thermal loads, the 

measured weather data, and the historical load data are stored in a data center, and the inherent features 

behind these multi-dimensional data are learned by the prediction model to simulate the multi-energy load 

variations in a digital space. In the lower level, buildings perform multi-energy DR to reduce their 

individual energy costs according to the predicted demand information and the energy price signals sent 

from the aggregator. In addition, the aggregator optimizes the overall electricity and natural gas 

purchased from the energy utility companies and determines the allocation to each building. The proposed 

hierarchical framework enables the real-time interactions between the aggregator and buildings thus 

contributing to the optimal coordinated operation of heterogeneous buildings. 
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Fig. 1. Hierarchical framework for coordinated operation of heterogeneous buildings. 

2.2 Multi-energy demand prediction 

Multi-energy loads of a single building are strongly coupled due to the multi-energy conversion 

within the energy hub, and the loads of building clusters over a certain region are spatially correlated due 

to the similar weather conditions and socioeconomic status [29]. In addition, the load variations are 

closely associated with weather factors [31]. In this regard, a CapsNet based multi-energy demand 

prediction model capable of capturing the inherent features of the complex load and weather data is 

proposed to achieve simultaneous multi-energy demand predictions for building clusters. The proposed 

prediction model, as shown in Fig. 2, stacks a convolution sub-network with a capsule sub-network for 

feature extraction, and incorporates a regression layer to obtain prediction results. 
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Fig. 2. CapsNet based multi-energy demand prediction model. 
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Firstly, the historical electrical and thermal load time series and the weather data including the 

internal temperature Tin and humidity Hin of buildings, as well as the external temperature Tout, humidity 

Hout, and wind speed Sw are represented by a 3D matrix with the size of N×L×T, where N, L and T 

indicate the number of buildings, the sum of the number of load types and the number of weather factors, 

and the length of a past time period, respectively. In this way, the historical data can be displayed as 

image sequences to feed into the prediction model. Then, the convolution operation with different 

learnable kernels, i.e., sliding windows, are performed in the first two convolution layers to learn the 

spatial correlations, the strong couplings, and the weather impacts. The mathematical formulation for the 

convolution sub-network is presented in Appendix A, Eqs.(A.1) -(A.4). 

The extracted features are abstracted into network parameters and then passed through a linear layer 

to form as primary capsules (P-Caps). Here, a capsule is a multi-dimensional vector neuron encapsulating 

instantiation parameters about the features of an object [32], [33]. The length of a capsule represents the 

existence probability of a feature and the direction characterizes the state of the features, such as the 

distance between buildings, the temperature and humidity. The time capsule (T-Caps) layer is utilized to 

learn the temporal dependencies among the extracted spatial, coupling and weather features by the 

dynamic routing mechanism. The detailed calculation process of dynamic routing is shown in Appendix A, 

Eqs. (A.6)-(A.10). A subsequent linear layer reshapes the multi-dimensional data to 1D form and a 

full-connected regression layer finally outputs the predicted values of the electrical and thermal demands. 

The proposed multi-energy demand prediction model is trained with historical load and weather data 

which are collected and updated in the data center, and thus it is considered as a data-driven model. The 

model parameters including the weights and bias are adjusted by the back-propagation (BP) algorithm 

using the updated data from the data center. The BP algorithm tries to minimize the errors between the 

actual load data and predicted results, and its detailed calculation is presented in Appendix A, Eqs. 

(A.11)-(A.15). When the algorithm converges, the accurate prediction results of multi-energy loads are 

obtained for further derivation of the multi-energy DR approach. 

2.3 Mathematical formulation 

2.3.1 Multi-energy optimization for aggregator 

In this study, the aggregator is a non-profit organization whose aim is to coordinate the optimal 

operation of buildings with the lowest energy and environmental costs. The overall electricity and natural 

gas purchased from the energy utility companies are optimized by the aggregator with rolling procedures 

[34], and the objective function is expressed as follows, 
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0 0

0 0

grid gas grid gas

, , , ,

1

min ( )+ ( ( ))
t T t T

e g e g

a a t t a t t a t a t

t t t t

f P c V c P V




 


  
+ +

= = =

=  +   +                    (1) 

where t0 and T denote the current time slot and the rolling horizon, respectively. At the next time step t0+1, 

the new load and weather data are measured and the multi-energy demand prediction results are updated, 

and the optimization problem is solved using the updated information. The rolling horizon optimization 

procedure is repeated until the end of the optimization horizon. The aggregator maintains a balance 

between the energy supply and demand, and the objective (1) is subjected to the equilibrium constraints 

as, 

grid

, ,

1

N

a t b t

b

P P
=

=                                                 (2) 

gas

, ,

1

N

a t b t

b

V V
=

=                                            (3) 

In order to prevent adverse effects of power and gas peaks, which are caused by the concentrated energy 

consumption behaviors of buildings in response to the price signals, the aggregator coordinates the 

operation of buildings to ensure that the total power and natural gas purchased should not exceed the 

global power and gas limits, as follows, 

grid Lim

,a tP P                                               (4) 

gas Lim

,a tV V                                                   (5) 

2.3.2 Multi-energy demand response of buildings 

The individual objectives of buildings are considered in the multi-energy DR approach such that all 

buildings can benefit from the flexibility and complementarity of multi-energy carriers. At the current 

time slot t0, a multi-energy DR plan for the optimization horizon t0+T is formulated based on the 

predictions of multi-energy demands, and buildings only perform the multi-energy DR decision for the 

current time. At the next rolling step t0+1, a new multi-energy DR plan is obtained using the updated 

demand prediction data., such that the new multi-energy DR plan can potentially deal with uncertainties 

of the multi-energy demand predictions with this rolling horizon procedure [35]. The aim of buildings is 

to reduce their individual energy bills, and the objective function at each rolling step is expressed as, 

0

0

, ,min ( )
t T

e g

b b t t b t t

t t

f P c V c
+

=

=  +                                   (6) 

In smart buildings, not only the reducible appliances (e.g., heating/cooling systems) and the shiftable 

devices (e.g., EV, ESS) can provide DR capabilities, but also the inelastic/base loads can participate in 

DR by switching the source of the energy they consumed. Through the optimal synergistic operation of 

these devices, the flexibility of smart buildings can be fully made use of to enhance their DR capabilities 
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to reduce the energy costs. Here, the operation models of the reducible appliances, the shiftable devices 

and the energy conversion devices are formulated. 

1) Reducible appliance modeling 

The reducible appliances can be adjusted within a feasible range to maintain the users’ comfort. 

Thermostatically controlled appliances such as heating/cooling systems are the main reducible appliances 

[36], [37] in smart buildings and can participant in DR by changing the temperature settings. The Heat 

Index (HI), which combines temperature and relative humidity, is a comfort index to indicate 

human-perceived equivalent temperature [38]. This metric can be used to measure the thermal comfort 

violation level due to the adjustment of heating/cooling systems. The calculation formula is expressed as 

follows, 

, , , , , , , , ,

2 2

,1 2 3 4

2 2 2

, , , ,5 6

( ) ( )

( ) ( ) ( ) ( )

b h t b h t b h t t b h t b h t t

b h t t b h t t R t

HI R R

R R F

M

M R

M M M

M

   

 

=  +   +  +  

+   +   +
               (7) 

where Rt represents the relative humidity, and FR(∙) is the polynomial function with respect to Rt. Eq. (8) 

imposes the limits on HI, 

, ,min maxb h tHI H HII                                       (8) 

The indoor ambient temperature of buildings depends on the materials used in the walls, glasses, the 

structure of buildings and the outdoor temperature, etc. In this study, the relationship between the indoor 

temperature and the energy consumed by heating/cooling systems is represented by the equivalent 

thermal resistance temperature model in [39], as follows, 

out

, , , , 1 , 1

eq, eq,

, , ,

(1 )
1000 1000

+ , 1
0.000277

b h t b h t b t

b b b b b b

b h b h t

b b

t t

M c R M c R

COP P t
t

M c

  − −

 
= −  + 

     

 
 

 

           (9) 

,

x

,

ma

, ,0 b h t b h tP P                                           (10) 

where Pb,h,t  represents the electrical power consumed by the appliance if it is supplied by electricity, or 

represents the consumed thermal power if it is supplied by thermal energy. Note that if the 

heating/cooling system is operated for heating, the sign in the second term in Eq. (9) is a plus, while if it 

is operated for cooling, the sign needs to be changed to a minus. 

2) Shiftable device modeling 

The shiftable devices can be shifted to different time slots in a certain optimization horizon, and the 

total energy consumed remains fixed. The ESS and EV, as two typical shiftable devices, are modeled in 

this study. The operation constraints of the ESS are introduced as, 
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ESS,ch ESS,ch ESS,dis

, ,ESS ESS

, , 1 ESS ESS,dis ESS

R, R,

( )
b b t b t

b t b t

b b b

P P
SOC SOC t

E E




−


= + − 


                 (11) 

ESS,min ESS ESS,max

,b b t bSOC SOC SOC                                (12) 

ESS,ch ESS,max ESS,ch

, ch, ,0 b t b b tP P                                       (13) 

ESS,dis ESS,max ESS,dis

, dis, ,0 b t b b tP P                                      (14) 

ESS,ch ESS,dis

, , 1b t b t +                                          (15) 

Eq. (13) and Eq. (14) impose the limits on the charging and discharging power, respectively. 

The modeling of the EV is similar to that of the ESS and the operation constraints of the EV for each 

building can be expressed as follows, 
EV

,EV EV EV

, , 1 EV

R,

,
b t

b t b t b

b

P
SOC SOC t

E
−= +   [ , ]a d

b bt T T                        (16) 

EV EV,max

,0 ,b t bP P  [ , ]a d

b bt T T                                (17) 

EV,min EV EV,max

, ,b b t bSOC SOC SOC  [ , ]a d

b bt T T                        (18) 

EV EV,out

, ,b t bSOC SOC d

bt T=                                 (19) 

Eq. (17) and Eq. (18) impose the limits on the charging power and the SOC of the EV, respecively. Note 

that the EV should be charged with the required state of energy before leaving, as described in Eq. (19), 

where 𝑆𝑂𝐶𝑏
EV,out

 represents the required SOC of the EV when it is leaving. 

3) Energy conversion device modeling 

The energy conversion devices in this study incorporate the MT, the gas furnace and the electric 

boiler. The operation constraints of the energy conversion devices are formulated as Eqs. (20)-(27). 

MTE MT MTE GAS

, ,b t b t bP V Q=                                       (20) 

MTH MT MTH GAS

, ,b t b t bP V Q=                                       (21) 

MTE MTE

, ,max0 b t bP P                                           (22) 

MTH MTH

, ,max0 b t bP P                                           (23) 

F F F GAS

, ,b t b t bP V Q=                                          (24) 

F F

, ,max0 b t bP P                                           (25) 

BOH BOE BOH

, ,b t b t bP P =                                         (26) 

BOH BOH

, ,max0 b t bP P                                          (27) 
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4) Multi-energy coupling constraint 

As depicted in Fig.1, the energy conversion devices and the ESS are integrated in an energy hub 

such that the electricity, natural gas and heat are coupled. In order to model the multi-energy couplings 

and the interior topology, a multi-energy coupling matrix Cb is formulated, as follows, 

,e GAS MTE

, , MT , ,

,h BOH GAS MTE BOH MTH F BOH

, B , MT B MT F , B , ESS

,

( )

b t

b t e P b e V e E

b t

b t b h P b b b b h V b h E

b t

b b

b

P
L Q

V
L Q

P

    

              

 
     

=     + +        
 

L C
E

        (28) 

where Eb and Lb represent the input vector and output vector of the energy hub in building b, respectively; 

𝜈𝑒,𝑃,  𝜈𝑒,𝑉,  𝜈𝑒,𝐸, are dispatch factors of the input energy resources to the electrical loads;  𝜈ℎ,𝑃,  𝜈ℎ,𝑉, 

𝜈𝑒,𝐸 are dispatch factors of the input energy resources to the thermal loads; 𝜈MT,  𝜈B,  𝜈F are dispatch 

factors of the input energy resources to the MT, electric boiler and furnace, respectively. Note that both 

the base loads and the elastic loads are included in the output load vector Lb. In order to avert the 

nonlinearity introduced by dispatch factors, a state variable-based method in [40] is used to designate the 

outputs of the energy conversion devices  𝑃𝑏,𝑡
BOH, 𝑃𝑏,𝑡

F  and 𝑃𝑏,𝑡
MTE as state variables. Without introducing 

the dispatch factors, the multi-energy coupling matrix can be reformulated as Eq. (29), where 𝑪𝑏
 ′ and 𝑬𝑏

 ′ 

are the linear coupling matrix and the extended input energy vector, respectively. 

,

BOH

,e BOH

F,

,h MTH MTE

MTE,

,GAS F GAS MTE

,

ESS

,

1 1 / 0 1 0 1

0 1 1 / 0 0

0 0 0 1 / 1 / 1 0

b t

b t

b t b

b t

b t b b

b t

b b

b t

b b
b t

b

'

'

P

P
L

P
L

P
Q Q

V

P



 

 

 
 
    −
    

=     
    − −     
 
  

L C

E

                  (29) 

3 Distributed multi-energy DR approach 

The computational complexity of the multi-energy optimization problem Eq. (1)-Eq. (27) and Eq. 

(29) increases significantly as the number of buildings grows. Also, the detailed information related to the 

technical parameters of devices and the energy usage preferences of users are not willing to be shared. 

Therefore, a fully decentralized ADMM based multi-energy DR approach is developed to decompose the 

original optimization problem into independent decision-making sub-problems to achieve the local 

multi-energy autonomy for buildings. Appendix B explains how the problem is solved with an iterative 

process. 

The information interaction between the aggregator and buildings is depicted in Fig. 3. At time slot t0, 
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buildings locally solve the optimization sub-problem by the distributed multi-energy DR approach based 

on the predicted demand information 𝑳̂𝑖,𝑡0
 from the aggregator. Specifically, in each iteration of the 

distributed multi-energy DR approach, the aggregator and buildings independently solve their local 

sub-problem in a parallel manner and the power and natural gas demand of each participant, i.e., 𝑃𝑖.𝑡
𝑘  and 

𝑉𝑖.𝑡
𝑘 , are updated. The average power and gas of all participants are given by 𝑃̅𝑡

𝑘 = (1/𝑀) ∑ 𝑃𝑖.𝑡
𝑘𝑀

𝑖=1  

and 𝑉̅𝑡
𝑘 = (1/𝑀) ∑ 𝑉𝑖.𝑡

𝑘𝑀
𝑖=1 , which can be regarded as unbalanced power and gas between the aggregator 

and the buildings, and 𝑃𝑖.𝑡
𝑘 − 𝑃̅𝑡

𝑘 and 𝑉𝑖.𝑡
𝑘 − 𝑉̅𝑡

𝑘 are the contributions that every participant needs to 

provide, as presented in Eq. (B.8). Then, the dual variables 𝑢𝑡 and 𝛼𝑡, which can be regarded as 

incentive signals corresponding to the electricity and natural gas prices, are updated according to the 

average power and natural gas of all participants, as shown in Appendix B, Eqs. (B.13)-(B.14). For the 

next iteration, the aggregator sends the updated incentive signals to the buildings, and the buildings solve 

their individual multi-energy DR problem and then send back their solution to the aggregator. The 

iterative optimization process drives 𝑃̅𝑡
𝑘 and  𝑉̅𝑡

𝑘 to move towards zero, and the distributed algorithm 

finally converges to the optimal solution. As the unbalanced energies are evenly shared by all participants 

during the iterative process, this distributed algorithm fairly resolve competition behaviors of buildings. 

When the buildings have implemented the current DR strategy, the new load and weather data 𝒚𝑖,𝑡0
 are 

measured and stored in the data center of the aggregator for the optimization in next time t0+1. 

The detailed implementation steps for the proposed hierarchical distributed multi-energy DR 

methodology are illustrated in Fig. 4. It can be seen that only a little information, i.e., the incentive signals 

from the aggregator and the demand and weather information from buildings, needs to be exchanged to 

achieve the optimal multi-energy coordination of heterogeneous buildings in the proposed methodology. 

Thus, the communication burden is significantly lightened making the distributed multi-energy DR 

approach much scalable, and meanwhile the detailed multi-energy management within each building are 

kept confidential. 
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Fig. 3. Information interaction between the aggregator and buildings. 
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Fig. 4. Implementation framework of the proposed methodology. 

4 Case studies 

4.1 System data and load prediction 

The proposed hierarchical distributed multi-energy DR methodology is studied on a typical MES in 

Northern China. The MES is comprised of 10 heterogeneous smart buildings with different load 

behaviors and supplied by a 1250kVA three-phase transformer. The Time-of-Use (ToU) tariff electricity 

price is illustrated in Fig. 5 and the natural gas price is set as 0.56 $/m3. The technical specifications of the 

ESSs, EVs and energy conversion devices of the buildings are listed in Table 1-3. The pollutant emission 

parameters of the electricity and natural gas consumption, as well as the environmental cost factors are 

given in Table 4, which are derived from [41], [42]. 

Table 1 Technical specifications of ESSs. 

ESS 

𝑃ch,𝑏
ESS,max = 𝑃dis,𝑏

ESS,max
=[30, 20, 40, 60, 30, 25, 30, 

20, 30,50] kW 

𝜂𝑏
ESS,ch = 𝜂𝑏

ESS,dis =[0.9, 0.9, 0.9, 0.9, 

0.9, 0.9, 0.9, 0.9, 0.9, 0.9] 

𝑆𝑂𝐶𝑏
ESS,min

=[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4] 

𝑆𝑂𝐶𝑏
ESS,max

=[0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 

0.9, 0.9, 0.9, 0.9] 

𝐸R,𝑏
ESS=[150, 120, 200, 180, 160, 100, 150, 80,130, 160] kWh 

Table 2 Technical specifications of EVs. 

EV 

𝑃𝑏
EV,max

=[20, 25, 15, 30, 25, 25, 40, 25, 30, 35] 

kW 

𝜂𝑏
EV =[0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 

0.9, 0.9] 

𝑆𝑂𝐶𝑏
EV,min

=[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4] 

𝑆𝑂𝐶𝑏
EV,max

=[0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 

0.9, 0.9, 0.9, 0.9] 
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𝑆𝑂𝐶𝑏
EV,end

=[0.85, 0.8, 0.7, 0.75, 0.7, 0.85, 0.8, 

0.65, 0.75, 0.9] 

𝐸R,𝑏
EV =[100, 120, 80, 100, 125, 100, 150, 

140, 120, 130] kWh 

Table 3 Technical specifications of energy conversion devices. 

MT 

𝜂𝑏
MTE =[0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 

0.45, 0.45, 0.45] 

𝜂𝑏
MTH =[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4] 

𝑃𝑏,max
MTE =[60, 65, 50, 65, 80, 70, 75, 50, 65, 80] kW 

Furnace 𝑃𝑏,max
F =[25, 20, 30, 20, 25, 30, 25, 25, 30, 25] kW 

𝜂𝑏
F =[0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 

0.8, 0.8] 

Boiler 𝑃𝑏,max
BOH =[40, 35, 30, 35, 45, 50, 35, 40, 45, 40] kW 

𝜂𝑏
BOH=[0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 

0.75, 0.75, 0.75, 0.75] 

Table 4 Pollutant emission parameters and environmental cost factors. 

Pollutants CO2 SO2 NOx 

Electricity (kg/kWh) 0.92 0.0005 0.002 

Natural gas (kg/106m3) 2.01 11.6 0.0062 

Environmental value ($/kg) 0.004 0.93 1.24 
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Fig.5. Time-of-Use (ToU) tariff electricity price. 

To validate the effectiveness of the CapsNet based multi-energy demand prediction method, the load 

and weather data in December in 2019 are used for simulation and the sampling interval is 1h. To 

intuitively illustrate the multi-energy load prediction results of different methods, building 5 is selected as 

an example of these buildings and the prediction results on the 26th are shown in Fig. 6. It can be seen 

that the prediction results of the proposed prediction model show more similar contours and variation 

trends to the real multi-energy load data than the results of other methods. Thus, the proposed model is 

suitable for multi-energy demand of buildings. The daily electrical and thermal load profiles of buildings 

on the same day of the next month predicted by the CapsNet based prediction model are depicted in Fig. 7. 

In this study, the electrical and thermal base loads account for 70% and 40% of the total electrical and 

thermal demands respectively. The heating/cooling system is supplied by thermal energy and the 

maximum power consumption 𝑃𝑏,ℎ,𝑡
max shall not exceed 60% of the total thermal demands. The parameters 

related to the equivalent thermal resistance temperature model of buildings are adapted from [36]. The 

comfort indoor temperature is assumed to be distributed between [20℃, 25℃]. The initial SOC and the 
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arrival/departure time of the EVs are gathered from [43], [44]. The maximum natural gas limit is set as 80 

m3 [8]. With regard to the ADMM algorithm, the penalty parameter 𝜌 is set as 2, and the primary 

feasibility tolerance 𝜀pri and the dual feasibility tolerance 𝜀dual are set as 0.1 and 1 respectively [45]. 

The multi-energy DR methodology is performed over one day with 24-time slots, and all the tests are 

implemented in Matlab R2018b with YALMIP toolbox and solved by CPLEX solver on a 64-bit personal 

computer. 
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(a)                                                (b) 
Fig. 6. Load prediction results of building 5 by different prediction methods (a) predicted electrical 

load profiles, (b) predicted thermal load profiles. 
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Fig. 7. Load prediction results of 10 buildings by CapsNet (a) predicted electrical load profiles, (b) 

predicted thermal load profiles. 

4.2 Comparative results and analysis 

To verify the effectiveness of the proposed multi-energy DR methodology, three schemes are 

performed for comparison: 1) Scheme 1 is the conventional electricity and natural gas scheduling without 

the implementation of multi-energy DR. The dispatch factors are set as 0.5, 0.3 and 0.2 for the MT, 

furnace and boiler, respectively; 2) Scheme 2 performs centralized multi-energy DR in previous studies 

[13] without considering the optimal coordinated operation of buildings; 3) Scheme 3 employs the 

proposed distributed multi-energy DR methodology. 
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Fig. 8 depicts the total electrical power purchased from the electricity utility company with the 

schemes 1-3. As can been seen from the figures, without the implementation of multi-energy DR, the 

input power of scheme 1 reaches the peak during the period of high electricity price, i.e., 7pm to 9pm. In 

contrast, the power consumption during 7pm to 9pm is considerably reduced by using the centralized 

multi-energy DR scheme 2, but more severe new power peaks appear during the periods of low electricity 

prices, i.e., from 11pm to 6am. This is because, without considering the optimal coordinated operations 

among buildings, the power consumed by the buildings is concentrated during the period of the lowest 

electricity price, thus violating the power limit of the transformer. Compared with schemes 1 and 2, the 

electrical power peaks are flattened due to the optimal synergies of buildings with the proposed 

distributed multi-energy DR methodology. Fig. 9 shows the total natural gas purchased from the natural 

gas utility company. It can be observed that natural gas is heavily consumed with scheme 1 to meet the 

large thermal demands at night and early morning. As the energy source can be switched from natural gas 

to electricity based on the thermal demands with schemes 2-3, the natural gas input is significantly 

reduced during 11pm-7am. However, the natural gas purchased in scheme 2 exceeds the transmission 

limit of natural gas from 7am to 9am. The electricity price in this period is higher than that in previous 

time, and thus natural gas is preferentially consumed. It can be summarized from Figs.8-9 that the power 

and natural gas peaks can be effectively shaved with the proposed distributed multi-energy DR 

methodology as the optimal multi-energy coordination of smart buildings is achieved. 
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Fig. 8. Total purchased electrical power from the electricity utility with scheme 1-3. 
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Fig. 9. Total purchased natural gas from the natural gas utility with scheme 1-3. 
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The comparative economic performance results of buildings on energy costs with schemes 1-3 are  

presented in Table 5. It can be seen that both the electricity cost and the natural gas cost for each building 

with scheme 1 are the highest. With the implementation of multi-energy DR, the energy costs with 

scheme 2 and scheme 3 are substantially reduced. As one energy resource with lower price cannot be 

substituted indefinitely by another resource with higher price to avoid new energy consumption peaks in 

scheme 3, the energy costs of scheme 3 for each building are higher than those of scheme 2. Table 6 

presents the comparative results of schemes 1-3 on the energy cost, environmental cost and total cost of 

the aggregator. In contrast with scheme 1, the energy cost and environmental cost of scheme 2 are 

reduced by 24.10% and 8.18%, respectively, while those of scheme 3 are decreased by 21.04% and 

5.68%, respectively. It can be concluded that multi-energy synergies can be made use of by scheme 2 and 

scheme 3 to fulfill the demands with lower energy and environmental costs. Although obtaining 

satisfying economic performance, scheme 2 cannot guarantee the secure and reliable operation of the 

system as competitive behaviors appear among the buildings without the optimal coordinated operation. 

The proposed distributed multi-energy DR methodology can reduce the economic costs and meanwhile 

shave electrical power and gas peaks to enhance the operation performance of the whole MES. 

Table 5 Comparative economic performance results of buildings with scheme 1-3. 

Index of 

buildings 

Scheme1 Scheme2 Scheme3 

Electricity 

cost ($) 

Natural gas 

cost ($) 

Energy 

cost ($) 

Electricity 

cost ($) 

Natural gas 

cost ($) 

Energy 

cost ($) 

Electricity 

cost ($) 

Natural gas 

cost ($) 

Energy 

cost ($) 

1 119.73  103.44  223.17  98.48  69.53  168.01  107.32  68.13  175.44  

2 138.33  107.97  246.30  113.64  78.24  191.88  118.33  80.18  198.52  

3 140.98  104.94  245.92  121.47  71.96  193.43  128.13  72.49  200.62  

4 125.16  105.52  230.68  89.16  76.15  165.31  95.12  77.24  172.36  

5 128.64  108.85  237.49  89.99  80.90  170.90  102.22  77.04  179.26  

6 136.77  107.93  244.70  115.99  71.57  187.56  125.72  69.67  195.38  

7 129.26  104.10  233.35  81.47  81.14  162.61  93.94  77.44  171.38  

8 149.49  107.87  257.35  145.17  68.36  213.52  152.83  67.35  220.17  

9 162.00  109.49  271.49  139.35  73.54  212.89  148.77  71.45  220.22  

10 188.44  98.21  286.65  139.62  74.41  214.03  151.81  70.70  222.51  

Table 6 Comparative cost results of the aggregator with scheme 1-3. 

Scheme 1 2 3 

Energy cost ($) 2477.11  1880.13  1955.85  

Environmental cost ($) 94.11  86.41  88.76  

Total cost ($) 2571.22  1966.54  2044.61  
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Fig. 10 shows the charging power of EVs for each building with scheme 2 and scheme 3. It can be 

observed that the EVs in scheme 2 are mainly charged during hours with the lowest electricity price, i.e., 

11pm-5am, while the charging durations of EVs in scheme 3 are different as the leaving time, arriving 

time and technical specifications are varied. Besides, the charging power of EVs in scheme 2 is larger 

than that in scheme 3, which is likely to cause power peaks during the period of low electricity price. Due 

to the optimal coordinated operation of buildings, the charging time of EVs in scheme 3 is dispersed to 

various periods after their arrival, rather than concentrated in the period with the lowest electricity price. 

Fig. 11 shows the charging/discharging power of ESSs with schemes 2-3. It can be found that the 

charging/discharging periods of ESSs in scheme 2 are similar with those in scheme 3. Compared with 

scheme 2, the charging power of ESSs in scheme 3 is lower during the periods of low electricity prices. 

Correspondingly, the discharging power of ESSs in scheme 3 is lower during high-price periods, thus 

causing more electricity expenses. 

0

5

10

15

20

25

30

35

40

7am 9am 11am 1pm 3pm 5pm 7pm 9pm 11pm 1am 3am 5am
0

5

10

15

20

25

30

Building1 Building2
Building3 Building4
Building5 Building6
Building7 Building8
Building9 Building10

Building1 Building2
Building3 Building4
Building5 Building6
Building7 Building8
Building9 Building10

(Scheme 2)

(Scheme 3)

Period of the day

P
o

w
er

 (
k
W

)
P

o
w

er
 (

k
W

)

 

Fig. 10. Charging power of EVs with schemes 2-3. 
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Fig. 11. Charging/discharging power of ESSs with schemes 2-3. 
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Figs. 12 and 13 illustrate the electrical and thermal outputs of MTs for each building with schemes 

2-3, respectively, and Figs. 14-15 depict the output curves of the boilers and the furnaces. It is observed in 

scheme 2 that the MTs only work during 6am-11pm when electricity prices are relatively high to produce 

electricity and heat, while the boilers only operate during the hours 10pm-7am with low electricity prices. 

Since the thermal loads are mainly supplied by electric boilers at night and early morning, power peaks 

could occur during these periods. In addition, the furnaces serve as a supplement to fulfill the thermal 

demands throughout the day, and their outputs are adjusted to follow the thermal load profiles. In contrast, 

the MTs, boilers and furnaces are jointly optimized all the day to fulfill the demands of buildings in 

scheme 3. Furthermore, the outputs of furnaces in scheme 3 are larger than those of scheme 2, while the 

thermal outputs of boilers and MTs in scheme 3 are smaller compared with those of scheme 2. Thus the 

furnaces are prioritized to supply the thermal demands in scheme 3 due to their high energy conversion 

efficiency. 

   

Fig. 12. The curves of electrical outputs of MTs.      Fig. 13. The curves of thermal outputs of MTs. 
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Fig. 14. The output curves of boilers.            Fig. 15. The output curves of furnaces. 

The heterogeneous buildings possess various devices with technical specifications that are not 

necessarily the same, and thus the response characteristics of each building are varied. The daily energy 

analytics of various devices for two representative buildings, a residential building (building 2) and a 
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commercial building (building 9), in scheme 3 are shown in Figs. 16-17. It can be observed that the EV in 

building is mainly charged during the night, while the charging time for the EV in building 9 is more 

flexible and mainly in the daytime. Besides, the power of the furnace and the heating system in building 9 

drops at night, while the power of the heating system increases and the power of the furnace is almost 

invariant late at night. This is because residents are at home at night and residential buildings have higher 

electricity and heat demands than during the day. Moreover, the power of the boiler grows while the 

power of the MT decreases in both buildings, which is resulting from the low electricity price at night. 

It can be concluded from the comparative studies that the flexibility provided by EVs, ESSs and 

multi-energy conversion devices is fully exploited by the proposed distributed multi-energy DR 

methodology to fulfill the multi-energy demands of buildings with reduced individual costs. Meanwhile, 

the power peaks and natural gas peaks are shaved through the optimal multi-energy coordination of 

heterogeneous smart buildings thus facilitating the secure and reliable operation for the MES. 
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Fig. 16. Energy analytics of various devices for building 2.  Fig. 17. Energy analytics of various devices 

for building 9. 

4.3 Discussion 

4.3.1 Convergence and scalability 

In order to verify the convergence of the proposed distributed multi-energy DR methodology, the 

values of the primal and dual residuals, described in Eq. (55) and (56), during the iterative process with 

different step size ρ are depicted in Fig. 18. It can be found that the primal and dual residuals converge 

within around 40 iterations, and a larger step size would result in fewer iterations. Nonetheless, the 

determination of the step size ρ is still an open issue for different problems. In this study, the values of ρ 

are chosen according to the methods suggested in [46] and previous research experience. To further 

demonstrate the superiority of the proposed distributed multi-energy DR methodology for the coordinated 

operation of buildings, the proposed distributed methodology as well as the centralized approach [13] 

were performed on a MES with the number of buildings ranging from 10 to 800. The comparative results 
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of the computational time for different number of buildings are given in Table 7. It can be observed that 

the runtime for both approaches increase with the growing number of buildings. Besides, the runtime of 

the proposed methodology increases approximately linearly with the increase of the number of buildings, 

while the runtime of the centralized approach grows more dramatically since it requires more time for the 

collection of all necessary information. Therefore, the proposed approach can be scalable to a large 

number of buildings as it converges in a suitable time. 
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(a)                                     (b) 

Fig. 18 (a) Convergence process of primal residual, (b) Convergence process of dual residual. 

Table 7 Comparisons of runtime for different approaches. 

Number of buildings 

Runtime (s) 

Proposed 

approach 

Centralized 

approach 

10 48 76 

20 92 158 

50 221 345 

100 416 512 

200 824 1069 

800 3215 10023 

4.3.2 Advantages of the proposed distributed methodology 

The proposed distributed multi-energy DR methodology has the following four advantages 

compared with centralized approaches. 

● Privacy preservation: In the proposed distributed methodology, only the information associated 

with load demand and incentive signals are interacted between buildings and the aggregator, while the 

appliance-level information of all buildings is required to be transmitted to the aggregator to make DR 

decisions in centralized approaches. The proposed methodology can protect private information of users 

and thus is preferable. 

● Light communication overhead: The distributed methodology can avoid communication 

congestion since the multi-energy DR problem is solved in a parallel fashion by individual buildings. In 

contrast, all decision variables of buildings will be transmitted in the communication networks for 
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centralized approaches, and the communication overhead would grow drastically with the increase of the 

number of buildings. 

● Reliable communication: In the proposed hierarchical framework, buildings solve the local DR 

sub-problem independently. If there is a communication failure between a building and the aggregator, 

the remaining buildings can still provide their DR capabilities. Nevertheless, if the communication 

network between the aggregator and buildings is disconnected, the centralized DR approach is no longer 

available. 

● High scalability: The results in Table 7 confirm that the distributed algorithm can converge in a 

more appropriate time than the centralized approach. Hence, the proposed distributed DR methodology is 

more scalable to incorporate a large number of buildings. 

4.3.3 Comparison with related studies 

Table 8 summarizes the DR methods in the recent literature. Various features including privacy, 

fairness, scalability are compared to show the novelties of the proposed distributed multi-energy DR 

methodology. Note that the customer comfort is not explicitly investigated, but the customer comfort is 

considered in the modeling of reducible appliances. Table 8 shows that no article involves the 

comprehensive features associated with the effectiveness and efficiency of the DR methods, and thus 

verifies the superiority of the proposed methodology. 

Table 8 Summary of features of DR methods. 

R
ef

er
en

ce
 

P
ri

v
ac

y
 

F
ai

rn
es

s 

S
ca

la
b

il
it

y
 

C
o

m
fo

rt
 

D
et

ai
le

d
 

m
o

d
el

 

O
p

ti
m

al
it

y
 

C
P

U
 t

im
e
 

M
u

lt
i-

en
er

g
y

 

D
R

 

L
o

ad
 

p
re

d
ic

ti
o

n
 

C
o

o
rd

in
at

io
n

 

A
p

p
ro

ac
h
 

The proposed 

methodology 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Distributed 

[19] ✓  ✓   ✓ ✓   ✓ Distributed 

[20]    ✓  ✓     Distributed 

[21]    ✓ ✓ ✓ ✓    Distributed 

[22] ✓    ✓ ✓   ✓ ✓ Distributed 

[23]   ✓   ✓     Distributed 

[24] ✓  ✓  ✓ ✓ ✓ ✓   Distributed 

[25] ✓    ✓ ✓  ✓   Distributed 

[47] ✓  ✓ ✓  ✓ ✓   ✓ Distributed 

[48] ✓  ✓ ✓ ✓ ✓ ✓   ✓ Distributed 

[49] ✓  ✓ ✓  ✓    ✓ Distributed 

[50] ✓ ✓  ✓  ✓ ✓   ✓ Distributed 

[51] ✓     ✓   ✓  Distributed 
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[52] ✓ ✓    ✓     Distributed 

[53] ✓   ✓  ✓    ✓ Distributed 

[12]    ✓ ✓   ✓ ✓ ✓ Centralized 

[13]    ✓ ✓   ✓   Centralized 

[14]     ✓ ✓  ✓   Centralized 

[15]    ✓  ✓  ✓ ✓  Centralized 

[16]    ✓ ✓   ✓  ✓ Centralized 

[17]   ✓ ✓  ✓ ✓ ✓   Centralized 

[54]   ✓   ✓    ✓ Centralized 

[55]    ✓ ✓      Centralized 

[56]      ✓ ✓  ✓  Centralized 

5 Conclusion 

In this paper, a distributed multi-energy DR methodology is proposed to coordinate the optimal 

operation of heterogeneous smart buildings based on a hierarchical framework. A data-driven 

multi-energy demand prediction model using CapsNet is designed for the aggregator to simultaneously 

predict the multi-energy demands of building clusters. An exchange ADMM based distributed DR 

approach is then developed to iteratively solve the synergistic operation problem of buildings. The key 

findings from the simulation studies are summarized as follows: 1) The proposed methodology provides 

effective interactions between the aggregator and buildings and can achieve the optimal coordinated 

operation of building clusters to enhance the system operation performance. 2) The proposed 

methodology can incentivize buildings to fully exploit the load flexibility and multi-energy conversions 

to reduce their individual energy bills, and obtain the satisfactory overall economic and environmental 

efficiency. 3) The proposed distributed multi-energy DR methodology is more computationally efficient 

compared with the centralized method, especially for large-scale building clusters. Moreover, the 

proposed methodology guarantees the privacy preservation for buildings since only limited information 

needs to be exchanged between the aggregator and buildings. 
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Appendix A. Mathematical formulation of multi-energy demand prediction 

At time t, the matrix 𝒚𝑡𝜖𝑅𝑁×𝐿 is defined to indicate the multi-energy loads and weather data at t 

and 𝒚𝑏,𝑡 indicates the data of building b, as shown in Eq. (A.1). The loads at future time t+t’ can be 

predicted based on the previous collected data as shown in Eq. (A.2), where 𝑳̂𝑡+𝑡′  and 𝑳̂𝑏,𝑡+𝑡′ 

represents the predicted loads of all buildings and the predicted loads of building b, respectively; 𝜽 

represents the parameter set of the prediction model; f indicates the mapping function of the input and 

output of the model. The convolution computation is expressed by Eq. (A.3), where 𝜷𝑡𝑝, 𝒃𝑝 and xtp 

denote the convolution kernels, the bias and the pth feature map, respectively;   represents the 

convolution operator. The feature maps are then passed through the activation function ( )g  to form a 

feature set 𝝈𝑡 = {𝜎𝑡|1, 𝜎𝑡|2, ⋯ }
𝑡
 as shown in Eq. (A.4). 

1, 2, ,

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )
=

( ,1) ( , 2) ( , )

t t t

t t t N L

t t t N t

t t t

y y y L

y y y L
R

y N y N y N L



 
 
  =    
 
 

y y y y        (A.1) 

' 1 ' ' ' 1 2
ˆ ˆ ˆ ˆ = ( , , , )t t t t t t N t t t t tf  + + + + − + − +

 =
 

L L L L y y y θ， 2， ，              
(A.2) 

= ( )tp t tp pg  +y y β b                                (A.3) 

= ( )t tqg +σ wy b
                                 (A.4) 

Based on the above derivation, the multi-energy load prediction problem can be further represented 

as 

' 1 2
ˆ ( , , , )t t t t tf  + − + − +

 =L σ σ σ θ                          (A.5) 

where f   denotes the mapping function of temporal dependency extraction, and θ  represents the 

parameter set of capsule sub-network. The extracted spatial, coupling and weather features of 

multi-energy loads are chronologically encoded as primary capsules (P-Caps). Subsequently, the temporal 

dependencies among the extracted features are captured through the time capsule (T-Caps) layer by the 

dynamic routing mechanism, as follows, 

ˆ
ij ij i

=μ W μ                                    (A.6)
 

exp( )

exp( )

ij

ij

ijj

b
c

b
=


                                (A.7) 

ˆ
j ij j ij

c= s μ                                   (A.8) 
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j j
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s s
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ss
                                (A.9) 

ˆ
ij ij j j i

b b= + v μ                                 (A.10)
 

where 𝝁𝑖, 𝝁̂𝑗|𝑖 and Wij represent the features encapsulated in P-Caps i, the predicted temporal features 

for T-Caps j from P-Caps i, and the network weight matrix, respectively; cij denotes the coupling 

coefficient between P-Caps i and T-Caps j, and bij represents a temporary variable; sj and vj represent the 

input and output of T-Caps j, respectively. The P-Caps routes its prediction to the T-Caps by adjusting cij 

using the Softmax function (A.7). The input vector sj, which is the weighted sum of all predictions from 

the P-Caps layer, can be calculated by Eq. (A.8), and the output vector vj is calculated by the Squashing 

function (A.9). The similarity between vj and 𝝁̂𝑗|𝑖 is determined by the dot product 𝒗𝒋 ∙ 𝝁̂𝑗|𝑖. Specifically, 

if the predictions of temporal features from the P-Caps are similar with the output of T-Caps, 𝒗𝒋 ∙ 𝝁̂𝑗|𝑖 

will possess a big internal product thereby increasing the coupling coefficient cij by using Eqs. (A.10) and 

Eq. (A.6). Through the process of dynamically adjusting of the coupling coefficient cij, the temporal 

dependencies among the extracted spatial, coupling and weather features of multi-energy loads are 

captured in T-Caps. 

The back-propagation algorithm is adopted to minimize the errors between the actual load data Lt+t’ 

and the predicted results 𝑳̂𝑡+𝑡′, and the loss function J is defined as, 

' '

1 1 ˆ= t t t t
F

t

J
N L

+ +



−



T

L L
T

                          (A.11) 

where ‖∙‖𝐹 and |𝑻| denotes the Frobenius norm and the size of training samples, respectively. The 

network parameters including the weights wl and the bias bl are adjusted by the Adam algorithm [47], as 

follows, 

1 / ( )l l l l l −= − +w w m e                           (A.12) 

1 / ( )l l l l l −= − +b b m e                           (A.13) 

1 1 1(1 ) /l l l lJ −= + −  m m w                          (A.14) 

2

2 1 2= (1 ) ( / )l l l lJ − + −   e e w                         (A.15) 

where ml and el denote the first-order and second-order moment estimation vectors; ϛ1 and ϛ2 indicate 

exponential decay rate parameters; αl denotes the learning rate. The training process is repeated until 

the training epoch l reaches the prescribed value. 

Appendix B. Mathematical derivation of distributed multi-energy DR approach 
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It can be observed that the global energy equilibrium constraints Eq. (2) and Eq. (3) bridge the 

optimization problems for the aggregator and buildings. Suppose −𝑃𝑀,𝑡=𝑃𝑎,𝑡
grid

 and  −𝑉𝑀,𝑡=𝑉𝑎,𝑡
gas

, where 

𝑃𝑀,𝑡 and 𝑉𝑀,𝑡 are two auxiliary variables, and then Eq. (2) and Eq. (3) can be reformulated as, 

, ,

1

0
N

b t M t

b

P P
=

+ =                                          (B.1) 

, ,

1

0
N

b t M t

b

V V
=

+ =                                          (B.2) 

Thereby, the original optimization problems can be reformulated as follows, 

1M N= +                                            (B.3) 

0 0 0 0

0 0 0 0

, , , ,

1 1

min ( ) ( ) ( ) ( )
t T t T t T t TN N

b b t a M t b b t a M t

b t t t t b t t t t

f P f P f V f V
+ + + +

= = = = = =

+ − + + −                  (B.4) 

s.t.  Eqs. (4)-(5), Eqs. (7)-(27), (29)                       (B.5) 

,

1

0,
M

i t

i

P
=

=  0 0,..., +t t t T                                    (B.6) 

,

1

0,
M

i t

i

V
=

=  0 0,..., +t t t T                                    (B.7) 

where M denotes the total number of the aggregator and buildings. The equilibrium constraints (B.6)-(B.7) 

force that the multi-energy demand and supply of all participants are balanced in each time slot. To 

determine the optimal multi-energy DR approach, a distributed optimization algorithm based on the 

exchange ADMM is developed. For notational convenience, x represents the decision variables for the 

optimization problem Eqs. (B.4)-(B.7), and 𝜆𝑡, 𝑦𝑡 represent the dual variables associated with Eqs. 

(B.6)-(B.7). According to the unscaled form of the exchange ADMM in [46], the problem Eq. (B.4) can 

be decomposed into decision-making sub-problems with an iterative process, as follows, 

0
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, , , ,

1

2 2

, , , ,
2 2

( ( ) ( )min

( ) ( ) )
2 2

t TM
k k

i i t i i t t i t t i t
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
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+

= =

+ +  + 

+ − − + − −


x

                  (B.8) 

s.t.  Eq. (B.5)                                        (B.9) 

The dual variables are updated as, 

+1+1= +
kk k

t t tP                                        (B.10) 

+1+1= +
kk k

t t ty y V                                      (B.11) 

where k is the index of the iteration; 𝑃̅𝑡
𝑘 = (1/𝑀) ∑ 𝑃𝑖.𝑡

𝑘𝑀
𝑖=1 , 𝑉̅𝑡

𝑘 = (1/𝑀) ∑ 𝑉𝑖.𝑡
𝑘𝑀

𝑖=1  represent the average 

power and natural gas of all participants, respectively; 𝜌 > 0 denotes the penalty parameter and is used 
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as the step size for dual update. For mathematical conciseness, Eq. (B.8), (B.10)-(B.11) can be written in 

a scaled form as Eqs. (B.12)-(B.14), where 𝜆𝑡  and 𝑦𝑡  are scaled with 𝑢𝑡 = 𝜆𝑡/𝜌 and 𝛼𝑡 = 𝑦𝑡/𝜌, 

respectively. 

0

0

2 2

, , , , , ,
2 21

( ( ) ( ) )min
2 2
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k k

k k k k
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+1+1= +
kk k

t t tu u P                                         (B.13) 

+1+1= +
kk k

t t tV                                          (B.14) 

The local sub-problem for each building at the kth iteration is formulated as follows, 
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      (B.15) 

s.t.  Eqs. (7)-(27), (29)                                   (B.16) 

For the aggregator, the local optimization sub-problem can be expressed as, 
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s.t.  Eqs. (4)-(5)                                     (B.18) 

In each iteration k, the aggregator and buildings update their solutions according to Eqs. 

(B.15)-(B.18), and the average power and natural gas of all participants 𝑃𝑡̅
𝑘
 and  𝑉𝑡̅

𝑘
are correspondingly 

updated. For the next iteration k+1, the aggregator send the updated incentive signals 𝑢𝑡 and 𝛼𝑡 to the 

buildings based on Eqs. (B.13)-(B.14), and the buildings solve their individual sub-problems according to 

the incentive signals and then send back their energy demand information. The convergence criteria for 

the distributed iterative optimization are given by the primal residuals 𝑟𝑃,𝑡
𝑘 , 𝑟𝑉,𝑡

𝑘  and dual residuals 𝑠𝑖,𝑃,𝑡
𝑘 , 

𝑠𝑖,𝑉,𝑡
𝑘  [46], 
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The stopping criteria are as follows, 

pri

, ,2 2
+k k

P t V tr r  ,  0 0,..., +t t t T                              (B.23) 

dual

, , , ,2 2
+k k

i P t i V ts s  , 1,...,i M= ,  0 0,..., +t t t T                      (B.24) 

where 𝜀pri (𝜀pri > 0) and 𝜀dual (𝜀dual > 0) are primary and dual feasibility tolerances. 
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