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Abstract: Small open reading frames are an important class of genes 

with less than 100 codons. They were historically annotated as 

noncoding or even junk sequences. In recent years, accumulating 

evidence suggested that sORFs could encode a considerable number 

of polypeptides, many of which played important roles in both 

physiology and disease pathology. However, it has been technically 

challenging to directly detect the sORF-encoded peptides (SEPs). 

Here, we discuss the latest advance in methodologies for identifying 

SEPs with mass spectrometry, as well as the progress on functional 

studies of SEPs. 

1. Introduction

As is known to all, DNAs are transcribed into RNAs and then 

translated into proteins in the central dogma. However, less than 

2% of human genome have been known to code proteins while a 

large majority of the detectable transcripts are not fully annotated. 

They were once believed to be useless or “junk”.[1] Only until this 

decade, it has come to light that many of these noncoding RNAs 

(ncRNAs) have coding potential to produce polypeptides.[2] Small 

open reading frames (sORFs) that encode these polypeptides are 

historically excluded from genome annotation for multiple reasons. 

For example, the initiation codons of sORFs are not limited to 

AUG.[3] The length of sORFs is less than 300 nucleotide, which is 

arbitrarily defined as the minimum length of open reading frames 

(ORFs).[3a-c, 4] Unlike peptide hormones and neuropeptides that 

are produced through proteolysis of large precursor proteins,[5] 

sORF-encoded peptides (SEPs) are translated directly from 

sORF. Although the ubiquitous existence of sORFs in the genome 

has been reported in various species,[6] these sORFs are 

regarded as non-functional and have been neglected for a long 

time. With the significant development of various technologies, 

such as ribosome profiling (Ribo-seq) and mass spectrometry 

(MS), the existence of sORFs and SEPs have been gradually 

evidenced in recent years.  

SEPs have been demonstrated to play an important role in a 

variety of processes and cellular pathways.[7] The biological 

functions of a handful of mammalian SEPs involving DNA repair,[8] 

mitochondrial function,[9] stress signaling,[10] and muscle 

development,[11] have been characterized in human and other 

vertebrates. In other organisms like bacteria, SEPs originating 

from small RNA (sRNA) or other ncRNA are being both 

discovered and performing indispensable biological functions.[12] 

Most known SEPs perform their functions by interacting with other 

proteins to regulate their functions. For example, Venkat et al.[12a] 

reported VcdRP from Vibrio cholerae, which was shown to 

interact with and regulate the enzymatic activity of citrate 

synthase. Considering that sORFs comprise at least 5–10% of 

genomes,[13] a large number of functional SEPs remain to be 

discovered and characterized. Kubatova et al.[14] investigated the 

secondary structures and conformation of 27 SEPs from 9 

different bacterial and archaeal utilizing nuclear magnetic 

resonance (NMR) spectroscopy. The discovery of novel SEPs will 

complete the essential composition of the genome and proteome; 

moreover, the functional characterization of SEPs will provide us 

with new insight into fundamental biology, leading to translational 

applications. Several recently published reviews provide a good 

summary of the SEPs that have been identified in the past few 

years.[15]  

The classification of sORFs have been beautifully reviewed in 

prior work.[15-16] sORFs can be classified into long noncoding 

RNAs (lncRNAs), microRNAs (miRNAs), spliced RNAs, circular 

RNAs (cirRNAs) and ribosomal RNAs (rRNAs), according to their 

origins from genome and molecular structures. lncRNAs are 

transcripts having low expression levels without coding sequence 

(CDS), and evolve rapidly.[17] miRNAs contain 5' untranslated 

region (UTR) miRNAs, 3' UTR miRNAs, as well as miRNAs 

across part of the CDS region and the adjacent 5' untranslated 

region (UTR) or 3' UTR. These miRNAs used to be known to 

regulate translation efficiency of the upstream and downstream 

canonical proteins.[18] Spliced mRNAs that frequently occur in 

conjunction with tumorigenesis and progression,[19] are 

completely from CDS regions and undergo alternative splicing. In 

recent decades, it has become apparent that these sORFs tend 

to have intriguing functions rather than being pointless 

sequences.[20] 

SEPs are recognized as important elements in biology, but 

discovering novel SEPs and understanding their functions are still 
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very challenging due to their small size, low abundance and high 

biology context-dependent specificity.[21] In recent years, 

scientists around the world have successfully identified a few 

SEPs from a plethora of organisms using different methods. The 

reported methods for discovering novel SEPs mainly fall into two 

categories, namely the sequencing result-based computational 

prediction and MS-based identification. Although computational 

prediction could indicate the general existence of sORFs and their 

coding potential, MS is the only method to provide direct evidence 

of SEPs.[22] Actually, sequencing results and computational 

prediction have enabled the identification of SEPs by MS-based 

methods when integrated approaches are implemented. In this 

review, we will focus on the current pipelines for SEP discovery 

using MS-based methods. Particularly, we will detail the progress 

made in each key step in identifying SEPs and highlight possible 

alternatives. In the end, the latest advances in studies towards the 

biological functions of SEPs will also be introduced, followed by 

the future prospect of this field. There are multiple terms in 

literature to indicate the translation products of sORFs. Some of 

them have alternative definitions, and thus using these terms may 

lead to misinterpretation. Therefore, we will use the terms SEP 

and polypeptide to indicate the translation production of sORFs 

all through this review. 
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2. Important Characteristics of SEPs 

SEPs of various lengths and with different start codons have been 

discovered using bioinformatic prediction and MS-based 

proteomic approach. Using Ribo-seq data and RibORF for 

scoring translation potential, Martinez et al.[21] found a total of 

7,664 sORFs that may be translated into SEPs from HEK293T, 

HeLa-S3 and K562 cells. Using de novo method, Wang et al.[23] 

found 1,682 peptides from 2,544 human sORFs in Hep3B cells, 

whereas Zhang et al.,[24] using a conventional database search, 

found 355 human SEPs from eight human cell lines. According to 

their discoveries, the length range of the identified SEPs is similar, 

but the distributions are slightly different (Figure 1A). De novo 

method is likely to identify short SEPs, whereas conventional 

database search identifies longer ones. Such preferences could 

be due to the different scoring algorithms of these two methods. 

In database search, longer peptides, from which more spectra are 

likely to be collected, tend to obtain higher scores.  

 

Figure 1. The length distribution (A) and the AUG start codon percentage (B) of 

SEPs in public databases and several representative studies. 

In terms of translation initiation sites, it has been 

demonstrated that not only AUG, but also GUG and UUG may be 

employed as alternative translation codon in Escherichia coli.[25] 

Indeed, a substantial percentage of SEPs are translated with non-

AUG start codons (Figure 1B). Nevertheless, the SEPs 

discovered using different approaches are all shorter than 100 

amino acids in length and worthy to be further investigated.  

3. Proteomics-based Methodology for 
Identification of SEPs 

Like all conventional MS-based bottom-up proteomic studies, 
identification of SEPs is performed through the workflow (Figure 
2), including sample extraction and enrichment, digestion and 
fractionation, MS data acquisition, and data analysis. 

3.1. Sample extraction and enrichment 

The first key step to identify SEPs with proteomics approaches is 

to extract SEPs from complex biological matrices (Figure 2A). 

Compared with proteins, extraction of SEPs is more challenging, 

because SEPs are easily hydrolysed by peptidase, or masked by 

undesired protein degradation products. Several methods have 

been applied to preserve the integrity of SEPs. In some studies, 

samples were heated up in water or lysis buffer, or stabilized by 

adding protease inhibitors to suppress peptidase and protease 

activity.[24, 26] However, the addition of peptidase and protease 

inhibitors may interfere with subsequent analysis of SEPs, as 

some of them are polypeptides. Meanwhile, the inhibition was not 

complete. An alternative method to circumvent the degradation of 

SEPs is to induce protein precipitation with hydrochloric acid or 

acetic acid, which simultaneously inactivates peptidases and 

proteases. The combination of these two methods has been 

widely used in the extraction of SEPs. A recent study by Cardon 

et al.[26b] identified new SEPs that were extracted using boiling 

water in combination with RIPA lysis buffer, and subsequently 

enriched by acetic acid precipitation. In this study, a blood marker 

(AltEDARADD) was found to be related to the diagnosis and 

prognosis of ovarian cancer. In summary, as a key step prior to 

the enrichment of SEPs, an appropriate extraction method should 

be selected according to the purpose of the study and the stability 

of the biological sample in question. 

Once extracted, SEPs need to be separated from other 

proteins in the same sample. The separation is usually achieved 

based on various physical properties (such as size, 

hydrophobicity, and charge) of SEPs using one of the below 

methods (Figure 2B). 

3.1.1. Selective precipitation 

Selective precipitation of relatively large proteins with organic 

solvents, such as methanol,[26b] acetonitrile,[23, 26b, 27] 

trichloroacetic acid, acetic acid[26a] and chloroform,[23] was shown 

to effectively retain low-molecular-weight proteins including SEPs 

in the supernatant. In particular, acetic acid precipitation 

significantly induced aggregation of large proteins and left 

proteins of molecular weight lower than 30 kDa in the 

supernatant.[26a]  In another endeavour, Cassidy et al.[27] used 

acetonitrile to precipitate proteins in the absence of detergent, 

which reduced the complexity of small protein samples, and 

successfully detected 11 SEPs smaller than 15 kDa from 

Methanosarcina mazei.  

3.1.2. Size selection 

Ultrafiltration with 10 or 30 kDa molecular weight cut-off 

(MWCO) membranes is widely used to achieve selective 

separation based on protein size. SEPs with low molecular weight 

pass through the membrane, while higher molecular weight 

proteins remain on the filter. However, ultrafiltration suffers from 

several shortcomings. First, the concentrated macromolecules 

may block the membrane pores, resulting in poor filtration 

efficiency. Second, non-specific absorption of small proteins by 

the membrane seems to be inevitable. Third, it is time-consuming 

to process samples of large volume. Another alternative 

separation method according to molecular weight is SDS-PAGE 

by which gel bands corresponding to desired molecular weight 

can be cut out for subsequent MS analysis. Ma et al.[26c] used 30 

kDa MWCO Amicon filters and Tricine gel to discover 90 and 94 

SEPs, respectively. He et al.[28] integrated four specific 

enrichment strategies (Urea-Tricine, HCl-Tricine, Urea-MWCO, 

and HCl-MWCO) for enhanced sequence coverage and SEP 

identification. 
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Figure 2． The MS-based workflow for identification of SEPs. SEPs are extracted from complex biological samples, enriched from the total proteome, and digested 

with trypsin (or multiple enzymes). The tryptic peptides are subjected to fractionation, MS data acquisition, and data analysis to identify SEPs.

Using the Urea-Tricine could identify more SEPs than the other 

three strategies, and the four strategies show complementarity. 

3.1.3. Solid phase extraction (SPE)  

SEPs can be isolated according to their hydrophilicity and 

hydrophobicity. Although C8 SPE may lead to hydrophilic protein 

loss during sample enrichment,[24] the identification number of 

SEPs that were enriched using C8 SPE and acetic acid 

precipitation could be higher than using ultrafiltration with 30 kDa 

Amicon filters.[26a] It is noteworthy that a comparable number of 

SEPs were identified by Zhang et al.[24] Using C8 SPE, 30 kDa 

Amicon filters, and a combination of these two methods could lead 

to the identification of more SEPs in total. Overall, distinct 

extraction and enrichment methods have their special strengths 

and limitations, there is so far no individual method that can 

overperform the others. Therefore, it is necessary to design a 

systematic sample preparation method to identify SEPs.  

3.2. Enzyme digestion and fractionation 

The use of a single enzyme or a combination of enzymes to digest 

samples is also an important factor affecting SEPs identification 

(Figure 2C). Most studies adopt trypsin alone or Lys-C/trypsin to 

digest SEPs. When dealing with proteins containing many or no 

lysine/arginine residues, digestion with trypsin may impair 

sequence coverage. In addition, the sophisticated structure of 

SEPs may hinder the accessibility of trypsin and lead to miss 

cleavage. Due to the hydrolysis of peptide bonds by trypsin that 

always occurs at the C-terminus of lysine/arginine, the resulting 

N-terminal tryptic peptides are predominantly double-charged, 

whereas the C-terminal peptides are single-charged and hard to 

be detected by mass spectrometers.[29] Therefore, digestion with 

trypsin alone is insufficient for SEP identification. Multi-protease 

digestion using trypsin, Lys-C, chymotrypsin, and Glu-C has been 

shown to benefit the identification of SEPs, particularly in terms of 

the identification number, spectrum count and sequence 

coverage of SEPs.[30]  

As the resultant peptide mixture can be highly complex after 

digestion, various off-line fractionation was introduced to enhance 

the sequencing depth of SEPs before MS analysis (Figure 2D). 

Electrostatic repulsion-hydrophilic interaction chromatography 

(ERLIC),[26c, 31] strong cation exchange (SCX),[32] high pH reverse 

phase fractionation,[9, 23, 30b, 33] and OFFGEL fractionation,[34] have 

been reported to significantly improve the identification of SEPs 

in multiple studies. 

3.3. Data acquisition with mass spectrometry 
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Mass spectrometry remains the only method for direct detection 

and quantification of SEPs to date. Among the various MS 

methods, there are several that have been used in studying SEPs: 

data-dependent acquisition (DDA), data-independent acquisition 

(DIA), and parallel reaction monitoring (PRM) (Figure 2E). DDA is 

one of the most classic methods and it is based on the shotgun 

principle where top N abundant precursor ions are fragmented 

and analysed.[35] Depending on whether the sample is chemically 

incorporated to stable isotopic labels, DDA can also be applied for 

labelled quantitation or label-free quantitation. In the labelled 

quantitative method, the abundance of target proteins is derived 

from the intensity of the reporter ion in the spectra. DIA, also 

known as SWATH,[36] was developed by the Aebersold’s group. It 

is gaining popularity in mass spectrometry-based proteomics, 

where it is one of the prominent label-free quantitative methods. 

DIA not only enables the simultaneous fragmentation of all 

precursor ions, which contributes to lower missing value and 

higher identification rate, but also preserves data that can be 

reanalyzed multiple times in silico using different spectral libraries. 

Under the PRM data acquisition mode, targeted precursor ions 

are selectively fragmented regardless of their relative abundance 

in the sample to generate distinctive spectrum patterns of these 

targets.[37] 

Among the various label-free MS methods, DDA has 

remained the mostly widely applied proteomics method for years. 

In the past five years, thousands of SEPs have been discovered 

by using DDA from different species including human,[24, 38] 

Escherichia coli,[39] and plants.[6c] Although DDA remains 

relatively low complexity in data and easy to process using 

several developed workflows, it is intrinsically stochastic because 

only the top N intensive peaks can be selected for fragmentation 

and MS/MS analysis. While DDA methods suffer from the 

overlooking of the precursor ions of low MS signals, DIA methods 

should offer a broader dynamic range of detection, better 

sensitivity and reproducibility. With DIA methods, all peptides are 

theoretically fragmented and detected in parallel regardless of 

intensity. DIA methods hold great promise for the identification 

and quantification of SEPs. Pak et al.[40] reported a DIA-based 

workflow to detect both canonical and noncanonical 

immunopeptides. By virtue of the workflow and a collection of 

spectral libraries, identification of immunopeptides could be 

achieved with up to 3-fold increase.[40] Apart from the large-scale 

proteomics research that is based on the label-free quantitative 

method, labelled quantitation also contributes to the detection of 

SEPs. Zhu et al.[41] and Zhang et al.[9] used the Tandem Mass 

Tags (TMT) to identify hundreds of SEPs in their studies. Among 

these SEPs, TATDN2P1 and BRAWNIN were shown to have 

potential biological functions.[9, 41]  

PRM, with improved sensitivity and accuracy for monitoring 

low abundant analytes in complex samples, is an excellent choice 

to validate the existence of newly discovered SEPs.[23-24, 42] The 

information of SEPs, including m/z and retention time of precursor 

ions, has been collected in a prior shotgun proteomics experiment 

and therefore can be used to establish the specific PRM methods 

to compare the spectra of the targets with their corresponding 

synthetic peptides. Zhu et al.[41] used PRM MS to confirm that 110 

out of the 117 SEPs from their preliminary study were true. 

Moreover, PRM can also be used to measure the abundance of 

SEPs. For example, Delcourt et al.[43] employed PRM and isotope 

labelling to quantify the two translation products, reference MiD51 

protein and alternative MiD51 protein (AltMiD51) of the same 

MIEFI gene based on its hits detected in Ribo-seq data; and 

AltMiD51 was identified as the major player in the regulatory 

function of this gene. 

3.4. Database search strategy and database construction  

The database search strategy by in silico matching against the 

theoretical spectra of peptides in an appropriate reference 

database is essential for protein identification.[44] Similar to the 

database-dependent proteomic studies on reference proteins, the 

accurate identification and investigation of SEPs heavily depends 

on the reliability of the database used. An ideal reference 

database for spectral matching should consist of all bona fide 

sample specific SEPs, with few irrelevant sequences to reduce 

false discovery and searching time.[31a, 45] As most SEPs are 

absent from databases that are commonly used, such as Ensembl, 

RefSeq, and UniProtKB,[31a, 45] it is particularly important to 

generate customized reference databases for mining novel SEPs. 

3.4.1. Database construction from genomic sequencing data 

and RNA-seq data 

To generate a reference database that covers putative SEPs, 

one of the most straightforward methods is to use the in silico six 

frame translation of the whole genome sequences. In the 1990s, 

this particular approach was used in conjunction with mass 

spectrometry to improve protein identification in Escherichia 

coli.[46] Until 2009, the six-frame genome translation approach 

was applied to identify SEPs in Methanosarcina acetivoranswere 

by Ferguson et al.[47] Several other groups also utilized the six-

frame translation to construct reference databases and 

subsequently identified hundreds of novel SEPs from multiple 

species, including Saccharomyces cerevisiae,[28] Bacillus 

subtilis,[30b] Zea mays and Arabidopsis thaliana.[48] However, 

databases derived from the six-frame translation are restricted in 

their application to organisms with relatively small and intronless 

genome only with an obvious reason: a database that is derived 

from six-frame translation of whole human genome can be 70 

times inflated than its corresponding Ensembl database.[15a] On 

the one hand, such databases contain a large number of spurious 

sequences and thus are so inflated that they are likely to lead to 

false identifications and an exponential increase in searching 

time.[15a] On the other hand, the false peptide sequences present 

in such databases make it unreliable to assess the confidence of 

peptide spectral matches (PSMs), further aggravating the 

difficulty in the discovery of low abundant SEPs.[49] 

To compress the size of reference database and elevate the 

proportion of bona fide SEPs, different sources of genomic 

annotation and transcriptomic data are introduced to construct the 

database through six- or three-frame (forward only) in silico 

translation. PeptideClassifier and iPtgxDB integrate six-frame 

genome translation and annotations from different sources to 

unambiguously identify novel SEPs from prokaryote,[50] such as B. 

henselae, Bradyrhizobium diazoefficiens, and Escherichia coli. In 

2013, Slavoff et al.[31a] successfully uncovered 86 novel SEPs with 

custom reference databases that were derived from the six-frame 

translation of RefSeq transcripts and the three-frame translation 

of RNA-seq data of K562 cells. After their pioneering work, plenty 

of novel SEPs have been identified from different species, such 

as human, mouse, zebrafish, fruit fly, and the nematode C. 

elegans.[26a, 26c, 27, 42, 51]  The combination of annotated protein 

database and in silico translation of RNA-seq data excludes ORFs 

that cannot be transcribed, and thus reduces the chance of false 

discovery. Nevertheless, such method is still haunted by a large 

proportion of spurious SEPs since it only relies on AUG as the 
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start codon and the stop codon to recognize ORFs. Hence in 

subsequent studies, RNA-seq data was used in combination with 

other evidence of sORFs, such as bioinformatic prediction and 

Ribo-seq data, to refine the customized SEP reference database 

for improved reliability.[6c, 51a, 52] 

3.4.2. Database construction from RNA-seq and Ribo-seq 

data: various pipelines to predict sORFs 

Since the development of Ribo-seq technology in 2009, 

scientists have been able to detect the actively translated region 

of mRNAs in a genome-wide manner by capturing and 

sequencing the ribosome protected fragments (RPFs).[53]The 

utilization of translation inhibitors and the 3-nucleotide periodicity 

of RPFs offers information on active translated ORFs with single-

codon resolution.[54] Ribo-seq has proven to be a highly powerful 

technique for exploring the peptide-coding potential of sORFs.[55] 

Different from in silico methods, Ribo-seq relies on the distribution 

patterns of RPFs, rather than the canonical initiation codon or 

transcript annotations, to predict coding sORFs.[56] Thus putative 

peptides encoded by both AUG- and non-AUG-initiated sORFs 

are incorporated in the reference database.[16b]  

Many tools are available for the construction of reference 

databases based on Ribo-seq data, and they assist in the 

discovery of thousands of novel SEPs. RiboTaper, presented by 

Calviello et al.[57] in 2016 was a relatively early and statistically 

rigorous method based on 3-nucleotide periodicity of RPFs to 

identify actively translated regions. RiboTaper was then 

integrated into a proteogenomic pipeline and identified 218 novel 

proteins in Chinese hamster tissue and CHO cell lines.[58] 

Following the debut of RiboTaper, many tools have been 

developed for analysing Ribo-seq data (Table 1).[54, 59] Although 

most of them were not originally designed for mining sORFs from 

Ribo-seq data, they have great potential in the studying of sORFs. 

Using reference databases constructed with these tools, 

thousands of SEPs have been identified recently. The 

probabilistic inference of codon activities by an EM algorithm 

(PRICE), developed by Erhard et al., looks for the set of codons 

that is most likely to generate the observed reads, and predict the 

potential start codons using a machine learning (ML) model with 

high accuracy. The presence of PRICE-predicted SEPs was 

validated using two previously published MHC-I 

immunopeptidome datasets.[16b] Very recently, the application of 

PRICE has contributed to the identification of 525 noncanonical 

immunopeptides that are derived from sORFs.[60] Apart from 

PRICE, RibORF and RiboCode have also been applied to 

reference database construction for mining SEPs from MS data.[21, 

61] 

However, it is almost unlikely to eliminate the translation-

irrelevant binding between ribosome and transcripts in Ribo-seq, 

and thus the probability of false discovery is increased. [62] In 

addition, the difference of algorithm design may lead to fairly 

different sORF prediction results from the same Ribo-seq data. 
 

 

Table 2. Software tools available for mining sORFs from Ribo-seq data 

Tool Year Algorithm Function 

ORF-RATER[63] 2015 
Linear regression 

algorithm 

Identifying and 

quantifying translation 

of ORFs 

RibORF[64] 2015 
Support vector 

machine 

Genome-wide 

translated ORF 

identification 

riboHMM[6b] 2016 
Hidden Markov 

model 
ORF prediction 

RiboTaper[57] 2016 Multitaper method ORF prediction 

RIBO-TISH[54] 2017 

The non-parametric 

Wilcoxon rank-sum 

test 

Translation initiations 

analysis and ORF 

prediction 

RP-BP[59a] 2017 Bayesian approach ORF prediction 

PRICE[16b] 2018 

Expectation–

maximization 

algorithm and 

machine-learning 

model 

ORF prediction and 

resolving overlapping 

sORFs 

Ribowave[59b] 2018 Wavelet transform 

ORF prediction, protein 

abundance estimation, 

TE calculation, 

ribosomal frameshift 

identification 

RiboCode[65] 2018 
Wilcoxon signed-

rank test 

De novo annotation of 

the translatome 

ORFquant[66] 2020 Multitaper method 
ORF prediction and 

quantification 

Ribotricer[59c] 2020 3D to 2D projection 
ORF detection across 

multiple species 

 

To enhance the reliability of database derived from Ribo-seq data, 

the orchestration of multifaceted methods, including bioinformatic 

analysis,[52] RNA-seq,[55b] and genome-scale CRISPR screens is 

imperative.[67] In complement to customized reference databases 

for discovering SEPs from specific samples, public databases of 

sORFs predicted using Ribo-seq data such as OpenProt,[68] 

sORFs.org,[69] ARA-PEPs,[70] PsORF,[71] and MetamORF,[72] are 

easily accessible. These resources can be readily adopted in 

database construction for identification of SEPs when sample-

specific Ribo-seq data are unavailable. 

3.5. De novo sequencing 

When lacking a flawless database, de novo sequencing is a 

valuable supplement to database search to discover unannotated 

proteins like SEPs. De novo sequencing of MS data is a library-

independent approach for deciphering protein or peptide 

sequences only from the spectrum. The sequence of SEPs that is 

absent from the database used for searching will never be 

identified by any of the MS database search algorithms. Since de 

novo sequencing does not require any reference databases to 

deduce peptide sequences from MS raw data, the spectrum 

identification rate could be improved.[23] The peptides-spectrum 

match (PSM) can be assigned by de novo sequencing engines, 

including pNovo3,[73] Novor,[74] PepNovo,[75] and PEAKS.[76] These 

engines employ divergent algorithms, such as spectrum graph,[75] 

TagGraph,[77] and deep learning,[78] to evaluate the PSM quality 
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by generating confident scores. To date, de novo sequencing has 

been implemented to discover SEPs in addition to database 

search in a few studies. Chen et al.[79] and Wang et al.[23] identified 

over hundreds of SEPs using PEAKs and pNovo3, respectively. 

In these studies, stringent filtering criteria, such as confident score 

cut-offs and sequence similarity to the reference database by 

BLASTp,[80] are adopted to eliminate false discovery. Notably, in 

spite of the improved spectrum identification rate, de novo 

sequencing was reported to offer identifications of which only 35% 

were also identified using database search.[81] The incorporation 

of de novo sequencing in MS-based proteomic studies is still 

disputable.[82] Very recently, Erhard et al.[83] developed Peptide-

PRISM, an FDR-based method to filter noncanonical 

immunopeptides that were discovered using de novo sequencing. 

The successful identification of 6,636 noncanonical 

immunopeptides has demonstrated the practical feasibility to use 

de novo sequencing for discovering SEPs. 

4. Methods to Predict SEPs Other Than 
Proteomics Approaches 

Bioinformatic and computational analysis of genome sequence 

are intuitive operations to predict SEPs, predominantly through 

detecting purifying selection, similarity comparison with any 

known protein domains, and machine learning algorithms (Table 

3).[84] PhyloCSF is one of the most widely used tools to detect 

evolutionarily conserved coding ORFs. It performs alignment of 

transcripts from multi-species and takes phylogenetic models into 

account additionally. [85] Other prediction tools with the same 

working principle include RNAcode, [86] uPEPeroni, [87] and 

micPDP.[88] Alternative selection-based tools predict the coding 

ORFs through evaluation of the nucleotide composition, as 

exemplified by CRITICA,[89] PhastCons,[90] and sORF finder.[91] An 

advancement of these tools in predicting coding ORFs is that they 

take into account the influence from the ORF context in addition 

to the conservation of sequences. The second most utilized 

principle for SEP prediction is to test whether the sORFs in 

question are similarity to any known proteins or protein domains. 

Tools based on this working principle include BLAST, [92] 

HMMR,[93] and PFAM.[94] There are also emerging tools that are 

specially built on machine learning (ML) algorithms for SEP 

prediction, such as DeepCPP and miPepid. [95] In particular, 

miPepid is alignment-free and designed specifically to predict the 

coding potential of sORFs.[95b] Using the cryptic features of coding 

sORFs that were concealed in the training datasets, miPepid was 

able to predict whether a given sORF encodes a polypeptides 

with 96% accuracy.[95b] Nevertheless, all these bioinformatic tools 

have their own systematic drawbacks, which calls for careful 

selection of an appropriate one according to the research content. 

Tools that are based on intrinsic features of exons may omit SEPs 

with non-AUG initiation codon,[96] whereas those comparing 
 Table 3. Representative bioinformatic tools for SEP prediction 

Tool Year Working Principle 

BLAST[92] 1990 Sequence similarity to known proteins 

HMMER[93] 1995 Sequence similarity to known proteins 

CRITICA[89] 1999 Nucleotide composition 

PhastCons[90] 2005 Nucleotide composition 

sORF finder[91] 2009 Nucleotide composition 

PhyloCSF[85] 2011 

Evolutionary conservation, codon 

substitution, multispecies transcript 

alignment 

RNAcode[86] 2011 Codon substitution 

micPDP[88] 2014 Codon substitution 

uPEPperoni[87] 2014 Codon substitution 

ELM[97] 2018 Similarity to linear proteins 

miPepid[95b] 2019 Machine learning algorithms 

PFAM[94] 2019 Similarity to linear proteins 

DeepCPP[95a] 2020 Machine learning algorithms 

RNAsamba[98] 2020 Similarity to known proteins 

 

phylogenetic conservation may suffer from the bad quality of the 

multi-species alignment. Other tools that are restricted to 

functional polypeptides that assemble known proteins might be 

counterproductive for newly emerging and species- or tissue-

specific SEPs.[84] Therefore, a combination of tools based on 

different working principles will be beneficial to achieve accurate 

and comprehensive identification of SEPs. 

5. Molecular Functions of SEPs  

Quite a few SEPs that are translated from lncRNA, circRNA, and 

miRNA have been reported to function in multiple biological 

processes, such as DNA repair,[8] tumorigenesis,[99] ion signalling 

and muscle development,[11, 100] metabolism,[9] and transcriptional 

regulation.[101] 

5.1. lncRNA-encoded polypeptides 

lncRNAs that are conventionally more than 200-nt in length make 

up the most of known noncoding RNAs (ncRNAs).[102] Multiple 

biological and molecular functions of lncRNA-encoded 

polypeptides have been found in i) regulation of DNA repair,[8] 

cancer proliferation,[99a] invasion, metastasis and prognosis,[26b, 99a, 

103] ii) modulation of metabolism and muscle cell growth,[9, 11, 100] 

and iii) cellular response to stress.[10, 21, 99b, 104] SEPs and their 

corresponding sORFs can independently regulate biological 

processes through different mechanisms, like the case for non-

annotated P-body dissociating polypeptide (NoBody). It is 

encoded by a lncRNA LINC01420,[38] and the lncRNA is 

negatively correlated to the overall survival rate of patients with 

nasopharyngeal carcinoma.[105] Increase in NoBody abundance 

leads to decrease in the amount of aberrant transcripts that are 

substrates of the nonsense-mediated mRNA decay (NMD).[38] 

NoBody binds to the enhancer of decapping 4 (EDC4) as a novel 

component of the mRNA decapping complex to accelerate mRNA 

turnover through NMD.[38, 106] In addition to acting as modulators, 
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SEPs have also been found to be a biomarker of many cancers, 

showing their relationship with to diagnosis and prognosis.[26b, 103] 

In colorectal cancer (CRC), a 53-aa peptide encoded by lncRNA 

HOXB-AS3 was found to have inhibitory effect on cancer growth, 

and it could suppress glucose metabolism. HOXB-AS3 is down-

regulated in highly metastatic and primary CRC tissues, and 

patients with low HOXB-AS3 peptide level had poorer 

prognoses.[103a] Other studies have shown that many lncRNAs 

bind to RPS6 in cancer cells, and SEP SMIM30, which is encoded 

by LINC00998, could promote tumorigenesis by modulating cell 

proliferation and migration.[99a] Furthermore, the SMIM30 level 

was correlated with poor survival in patients with hepatocellular 

carcinoma (HCC).[99a]  

Polypeptides encoded by lncRNAs also function as important 

regulators of metabolism and cell growth.[100a] In muscle cells, 

Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) is a central 

pump mediating the reuptake of Ca2+ into the sarcoplasmic 

reticulum (SR).[100a] The Ca2+ uptaking system is directly impeded 

by three muscle-specific SEPs, myoregulin (MLN),[11c] 

phospholamban (PLN),[11b] and sarcolipin (SLN).[11a, 100b] In 

contrast, the only known endogenous SEP, DWORF, can 

enhance SERCA activity by interfering with MLN, SLN, and 

PLN.[100c] Multiple independent studies have shown that SEPs are 

able to regulate general biological pathways and processes as 

well. Small regulatory polypeptide of amino acid response (SPAR), 

a polypeptide encoded by the lncRNA LINC00961, interacts with 

the lysosomal v-ATPase to deactivate mTORC1.[100d] Myomixer, 

encoded by Gm7325, promotes fibroblast-fibroblast and 

fibroblast-myoblast fusions in association with Myomaker, which 

is the critical step in myofiber formation during muscle 

development.[100e] BRAWNIN, a mitochondrial-localized SEP, 

encoded by C12orf73 gene, was identified by using Ribo-seq 

combined with proteomic prediction pipelines.[9] BRAWNIN is an 

essential regulator of oxidative metabolism for respiratory chain 

complex III assembly, and is induced by AMPK pathway. Down-

regulation or loss of BRAWNIN impairs mitochondrial ATP 

production.[9] In another study, several lncRNAs were detected to 

have coding capability using Ribo-seq data, and 11 polypeptides 

encoded by these lncRNAs were validated.[107] Three of the SEPs 

were subsequently identified to regulate cardiomyocyte 

hypertrophy by being involved in modulating oxidative 

phosphorylation, calcium signalling pathway, and the MAPK 

pathway.[107] Very recently, a short ORF-encoded histone binding 

protein (SEBHP) was identified as a transcriptional regulator that 

interacted with chromatin-bounded proteins. Strikingly, SEBHP is 

capable of modulating more than 15% of the active 

transcriptome.[101] 

The early studies on aberrant translation of ncRNAs in 

response to cellular stress started with prokaryotes, and the 

functions of several bacterial SEPs have been fully investigated 

at both the phenotypic and molecular levels.[108] It was not until 

the 2010s that there were reports about the regulated expression 

of SEPs in human cells in response to cellular stress. One 

fundamental work is to identify essential polypeptides that is 

encoded by lncRNA Aw112010 for modulating mucosal immunity 

in bacterial infection and colitis.[104a] Additionally, a mitochondrial 

SEP termed PIGBOS which is encoded by the opposite strand of 

PIGB gene is identified to regulate the unfolded protein response 

(UPR).[104b] This SEP is critical for many cellular activities, and 

depletion of PIGBOS would lead to severe UPR and increased 

cell death upon endoplasmic reticulum (ER) stress.[104b] The 

FOXA1-regulated conserved small protein (FORCP), which is 

encoded by a putative gastrointestinal specific lncRNA 

LINC00675, is overexpressed to regulate apoptosis and 

tumorigenesis upon ER stress in well-differentiated CRC cells.[99b] 

In addition to cancer regulation, recent evidence has 

demonstrated that lncRNAs are also involved in the proliferation 

of pulmonary artery smooth muscle cells (PASMCs) in response 

to hypoxia in pulmonary hypertension.[10] The lnc-Rps4l-encoded 

peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) is 

found to inhibit the proliferation of PASMCs and the 

phosphorylation of RPS6 through its interaction with RPS6 under 

hypoxic conditions. [10] 

5.2. circRNA-encoded polypeptides 

circRNAs are covalently closed loops of ncRNAs containing no 

5’cap or polyA tail.[109] They are produced during alternative 

splicing,[110] and driven by the internal ribosome entry site (IRES)- 

or N6-methyladenosine (m6A)-mediated initiation.[111] To date, 

several circRNA-encoded polypeptides have been identified in 

different cancers, such as glioma, HCC, and CRC, with their 

functions in physiology and cancer development have also been 

validated extensively.[109] The circular form of the SNF2 histone 

linker PHD RING helicase gene (circ-SHPRH) is translated into a 

novel tumor suppressor termed SHPRH-146aa.[99c] This SEP 

protects the full-length SHPRH encoded by SHPRH from 

ubiquitination-mediated protein degradation, and the sORF is 

known for the inhibitory effect in regulating cell proliferation and 

tumorigenicity.[99d] Other circRNA-encoded peptides, including 

PINT-87aa encoded by the circular form of the long intergenic 

non-protein-coding RNA p53-induced transcript (LINC-PINT), and 

FBXW7-185aa encoded by circ-FBXW7, were also reported.[99e, 

99f] Particularly, PINT-87aa interacts with polymerase associated 

factor complex (PAF1c) directly, and thereby inhibits the 

transcriptional elongation of many oncogenes.[99e] In parallel to 

SHPRH-146aa and PINT-87aa, FBXW7-185aa shows an 

agonistic effect in cell proliferation and cell cycle acceleration as 

a cancer suppressor through destabilization of c-Myc.[99f] 

Particularly in glioblastoma, these three SEPs are observed 

downregulated, and their corresponding circRNAs are also 

positively correlated to the overall survival rate of patients.[99c, 99e, 

99f] Very recently, a secretory SEP E-cadherin variant (C-E-Cad), 

which is encoded by a circular E-cadherin RNA, has been 

identified to stimulate EGFR signalling and promote 

tumorigenicity in glioblastoma.[112] All these studies have 

demonstrated the essential regulatory functions of circRNA-

encoded peptides in tumorigenesis.  

5.3. miRNA-encoded polypeptides 

Primary miRNAs are the long precursors of miRNAs that function 

mainly in mRNA silencing and post-transcriptional regulations.[113] 

During the maturation of miRNAs, they are processed and spliced 

into miRNAs as short single-stranded ncRNAs.[114] There are a 

few pieces of evidence that demonstrate the coding potential of 

miRNAs in plant biology, such as the discovery of primary 

miR171b and miR165a in the root development in alfalfa and 

Arabidopsis thaliana, respectively.[16a] In human cells, miRNAs 

prefer to interact with mRNA through base pairing to regulate the 

expression of most mRNAs.[16a, 105, 115] In 2017, miPEP-200a and 

miPEP-200b are the first two polypeptides encoded by primary 

miRNAs miR-200a and miR-200b, respectively.[116] These two 

SEPs have been demonstrated to regulate epithelial-

mesenchymal transition of prostate cancer cells by inhibiting the 

vimentin-mediated pathway.[116]  
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6. SEPs in HLA-I complexes  

In addition to performing biological functions as polypeptides, 

SEPs are also substrates of the antigen processing and 

presenting machinery, leading to the discovery of SEP-derived 

noncanonical antigens.[16d, 117] In human cells, the major 

histocompatibility (MHC) complexes present peptide fragments or 

immunopeptides from cellular proteins that are digested by 

proteosomes. While most of the immunopeptides are recognized 

as “self-antigen”, a few tumors associated/specific antigens 

(TAAs/TSAs) are promising targets for immunotherapy. 

Pioneering works have demonstrated that SEPs offer a new 

source of immunopeptides supplementary to canonical 

proteins.[16d, 117] Cancer antigens derived from SEPs that were 

specifically upregulated in tumor could trigger immune 

responses.[117e, 117f] Since 2018, several independent research 

groups including our group have reported the prevalence of 

noncanonical immunopeptides in cancer. By utilizing a 

proteogenomic approach, 40 TSAs have been identified from 

human primary tumors, 90% of which are from noncoding 

regions.[118] By virtue of Ribo-seq, 320 noncanonical 

immunopeptides derived from SEPs were identified from a 

previous study.[21] In another work, thousands of noncanonical 

immunopeptides were identified by using Ribo-seq and MS, and 

their source proteins were tumor-specific SEPs expressed in 

multiple cancers.[119] With the incorporation of bulk and single cell 

sequencing, Ribo-seq and MS, hundreds of shared and tumor-

specific noncanonical immunopeptides derived from SEPs have 

been discovered.[42] Alternatively, 240 noncanonical peptides 

were identified from human induced pluripotent stem cells 

(iPSCs) using MS, Ribo-seq and CRISPR-based screening 

methods.[67] Indeed, immunopeptidome is an ideal enrichment for 

SEPs with 2,503 out of 14,498 proteins are SEPs.[60] All these 

studies demonstrate the existence of SEPs and their involvement 

in antigen presentation pathway and cancer immunology. 

7. Conclusions 

As hidden gems for decades, SEPs have attracted much attention 

and research on them has made significant progress in recent 

years. Many methods for improving the identification of SEPs 

have emerged. Addition to the MS-based bottom-up proteomic 

methods we reviewed in the paper, there are a few recent works 

using top-down strategies to identify SEPs. Zhang et al.[23] applied 

top-down methods and found 241 SEPs in Hep3B cell line. 

Cassidy et al.[32a] identified 12 SEPs and characterized 

corresponding 36 proteoforms by top-down strategy from 

Methanosarcina mazei. These findings suggest that the top-down 

strategy is also a feasible alternative method to study SEPs. It is 

noticed that almost every step in the mass spectrometry-based 

proteomics workflow have been optimized substantially, including 

SEPs extraction in sample preparation, sample separation, data 

acquisition and analysis, etc. However, we must admit that the 

current identification number is still not reaching the predicted 

numbers of SEPs. With the rapid development of mass 

spectrometry methodologies, it is foreseeable that there will be a 

dramatic increase in number of SEPs. Meanwhile, the 

quantification of SEPs will become more accurate, making it 

feasible to study the biological functions of SEPs in large scale.  
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