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ASYMPTOTIC STABILITY OF DIFFUSION WAVES OF A
QUASI-LINEAR HYPERBOLIC-PARABOLIC MODEL FOR
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Abstract. In this paper, we derive the large-time profile of solutions to the Cauchy problem of a
hyperbolic-parabolic system modeling the vasculogenesis in R?. When the initial data are prescribed
in the vicinity of a constant ground state, by constructing a time-frequency Lyapunov functional and
employing the Fourier energy method and delicate spectral analysis, we show that solutions of the
Cauchy problem tend time-asymptotically to linear diffusion waves around the constant ground state
with algebraic decaying rates under suitable conditions on the density-dependent pressure function.
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1. Introduction. This paper is concerned with the following quasi-linear
hyperbolic-parabolic system describing vasculogenesis

Op+ V- (pu) =0,
(1.1) 9 (pu) + V- (pu ® u) + VP(p) = ppV¢ — apu,
0y = DAY + ap — bo,

where (z,t) € R® x (0,00). The model (1.1) was proposed in [13] to reproduce
key features of experiments of in vitro formation of blood vessels showing that cells
randomly spreading on a gel matrix autonomously organize to a connected vascular
network (more extensive modeling details can be found in [1]), where the unknowns
p = p(t,r) >0 and u = u(t,z) € R3 denote the density and velocity of endothelial
cells, respectively, and ¢ = ¢(t,x2) > 0 denotes the concentration of the chemoattrac-
tant secreted by the endothelial cells. The convection term V - (pu ® u) models the
cell movement persistence (inertial effect), P(p) is the cell-density dependent pressure
function accounting for the fact that closely packed cells resist to compression due to
the impenetrability of cellular matter, the parameter p > 0 measures the intensity of
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cell response to the chemoattractant concentration gradient and —apu corresponds to
a damping (friction) force with coefficient o > 0 as a result of the interaction between
cells and the underlying substratum; D > 0 is the diffusivity of the chemoattrac-
tant, and the positive constants a and b denote the secretion and death rates of the
chemoattractant, respectively.

At first sight the hyperbolic-parabolic system (1.1) is analogous to the Euler—
Poisson system with damping;:

Op+ V- (pu) =0,
(1.2) O(pu) +V - (pu @ u) + VP(p) = ppVe — apu,
—A¢ =ap — K(x),

where p, u, and ¢ denote the density, velocity, and potential of the flows, respectively,
P(p) is the density-dependent pressure function, and K(x) > 0 is the background state
(doping profile). The damped Euler—Poisson system appears in numerous important
applications including the propagation of electrons in semiconductor devices (cf. [27])
and the transport of ions in plasma physics (cf. [6]) when p < 0 and o > 0, as well
as the collapse of gaseous stars due to self-gravitation [4] when p > 0 and a = 0.
Without potential (i.e., ¢ = 0), the system (1.2) reduces to the well-known Euler
equations. The system (1.1) has several essential differences from (1.2). First, the
parabolic governing equation for ¢ in (1.1) is harder to deal with than the elliptic
governing equation in (1.2). For example, in one dimension, the sign of ¢, can be
directly determined from L'-norms of p and K(z) from the elliptic equation in (1.2),
but it is elusive from the parabolic equation in (1.1). Second, the equation for ¢
in (1.1) has a decay term —b¢ different from a given background state K(x) > 0 in
(1.2). The background state K(x) often directly determines the large-time profile of
p, but the large-time behavior of p in (1.1) is obscure. These structural differences
bring substantial differences to the model dynamics and difficulties in the analysis.
Many of the mathematical methods developed in the literature for the Euler—Poisson
system (1.2) are inapplicable to (1.1), while existing results available to (1.1) are
rather limited. The goal of this paper is to explore the possible asymptotic profile
of solutions to (1.1) without vacuum (i.e., p(x,t) > 0 for all (z,t) € R3 x [0,00)),
which is closely related to its steady states. It can be checked that the system (1.1)
possesses the following energy functional (cf. [2, 5]):

1 1 1
Flouwdl = o [ oart 1 [ Glots+ o [ (DIVoP +06yde— [ poa.
2u Jrs W Jrs 2a Jrs R3

where G”(p) = P'(p)/p, which satisfies
d 1
—Fp,u, ¢] + g/ putdx + f/ |p¢|>dz = 0.
dt o Jr3 a Jwrs

Thus the stationary solutions satisfy %F [p, u, ] = 0 which gives rise to pu = 0 and
¢¢ = 0 in R3. Since we are interested in a nonconstant profile for p, u = 0 is the only
(physical) stationary profile for the velocity u. In the literature, the following initial
data for (1.1) are considered:

(13) [pau7¢”t:0 = [pOaUOaQbO](x) - [ﬁ?oaa}] as ‘fﬂ| — 0

for some constants p > 0 and ¢ > 0. When the initial value [po, uo, o] € H*(R?)(s >
d/2+1) is a small perturbation of the constant ground state (i.e., equilibrium) [p, 0, ¢]
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with p > 0 sufficiently small, it was shown in [36, 37] that the system (1.1) with (1.3)
admits global strong solutions without vacuum converging to [p, 0, ¢] in L?-norm with
an algebraic rate (1+¢)"% as t — 0o. As o — oo (strong damping), it was formally
derived in [5] by the asymptotic analysis and subsequently justified in [12] that the
solution of (1.1) converges to that of a parabolic-elliptic Keller—Segel type chemotaxis
system. The asymptotic behavior of solutions to (1.1) and its limiting Keller—Segel
system has been compared numerically in [31]. By adding a viscous term Awu to the
second equation of (1.1), the linear stability of the constant ground state [p, 0, ¢] was
obtained in [24] under the condition

(1.4) bP'(p) — app > 0.

A typical form of P fulfilling (1.4) is P(p) = %pQ with K > <. The stationary
solutions of (1.1) with vacuum (bump solutions) in a bounded interval with zero-flux
boundary conditions were constructed in [2, 3, 30]. The model (1.1) with P(p) =
p and periodic boundary conditions in one dimension was numerically explored in
[11]. Recently the stability of transition layer solutions of (1.1) on Ry = [0,00) was
established in [15].

In this paper, we shall fully exploit the special structures of (1.1) and find the
refined large-time profile of solutions of (1.1) with (1.3). It is well known that the
frictional damping may generate nonlinear diffusive waves for the hyperbolic equa-
tions like the p-system (cf. [17, 20, 21, 28, 29, 32, 33, 34, 38] without vacuum and
[7, 18, 26, 35] with vacuum), the bipolar hydrodynamical model of semiconductors
[14], the bipolar Euler—-Maxwell equation [9], the Timoshenko system [19], the radiat-
ing gas model [25], and so on. Inspired by these works, we expect that when the initial
data [pg, uo, ¢o] are close to the constant ground state [p, 0, ¢], the asymptotic profile
of solutions to (1.1) with (1.3) under the condition (1.4) can be approximated by
diffusion waves. To see how this is possible, we first observe that due to the external
frictional force, the inertial term in the momentum equation of (1.1) decays to zero
faster than other terms so that the pressure gradient force is balanced by the frictional
force plus the potential force. Since we are concerned with the large-time dynamics
of solutions near the constant equilibrium, we may speculate the time-asymptotic dy-
namics described by the third equation of (1.1) is mainly determined by the equation
ap — bp = 0. Therefore if we define the mass flux m = pu, we anticipate that the
solution (p,u, @) of system (1.1) as ¢ — oo may behave as the solution (p, @, ¢) to the
following decoupled equations:

pt —Ag(p) =0  (porous medium equation),
(1.5) U= —%Vq(ﬁ) (Darcy law),

a ~

= Epa

S

where ¢(p) = L(P(p) — $£4%). We remark that the first equation of (1.5) is a porous

medium equation and the second equation of (1.5) indeed complies with the Darcy
law by noticing that the pt defines the mass flux. Since we shall focus on the asymp-
totic profile of solutions near the constant ground state [p, 0, ¢], we are motivated to
linearize the above equations at [, 0, ¢|.

Notice that under the condition (1.4) the linearization of the first equation of
(1.5) at p yields a linear heat equation

bP'(p) — app

Op—ocAp=0, o=
ba

9
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which has a unique solution in the form of diffusion wave profile: p(t,z) = G(¢,-) *
(po — p), where

|z|?

G(t,z) = (4not)~3/2e™ o7

is the heat kernel. Therefore we derive that a possible time-asymptotic profile of
solutions to (1.1), (1.3) may be explicitly given by

bP'(p) — aup -
_bP(p) —app

(16) ﬁ(t,ﬂ?) = G(t, ) * (pO - ﬁ)? ﬂ(t,x) = bﬁa P d)(t,l‘) - %ﬁ

The main objective of this paper is to justify that the time-asymptotic profile of
solutions to (1.1) with (1.3) is given by [p + p, @, ¢ + ¢ p] under the condition (1.4) if
the initial value is in the vicinity of the constant ground state [p,0, {p]. The specific
results are given in the following theorem.

THEOREM 1.1. For any p > 0 with ¢ = $p, if P(:) is smooth on (0,00) and
satisfies the condition (1.4) for given p > 0, then there exists a constant € > 0 such
that if

H[p() - ﬁ7 u07¢0 - QE}HHN(]RS) + Hv¢0||HN(]R3) < €,

with N > 3, then the Cauchy problem (1.1), (1.3) admits a unique global solution such
that

[o(t, ) = p, u(t, ), ¢(t, ) — 6, V] € C([0,00); HY (R?))
satisfying
(L.7) Nlp(t) = p,u(t), 6(t) = ¢, VOO v (zay < Collloo = p, w0, do — &, Vool |7 (g

for some constant Cy > 0 independent of t. Moreover, there are constants §; > 0 and
C1 > 0 such that if

[[po — 7,10, po — &, Vol w3y + Il[po — £, 1o, b0 — ]Il L1 w3y < 61,

then the solution [p(t,z),u(t,x), ¢(t,x)] satisfies for all t > 0 that

- _3.3 _o4 3
(1.8) [llo—p.¢ — Al La@sy < CrL1+)727 %0, Jlullpags) < Cr(1+1t) >z,
and
- -~ _o4 3 . 5.3
(1.9) lp=p—p, p—¢—llLa@s) < Cr(1+t)*F 30, |lu—l|| paqmsy < Cy(14t) 72724,

for any 2 < q < +o00.

Remark 1.1. It is shown in Theorem 1.1 that the solution of (1.1) with (1.3)
converges to the constant ground state [p, 0, ¢] in L?(R?®) with the convergence rate

o= 5,6 = Sllrams) < COL+DT,  lullp2@s) < COL+6)71,

which complies with the results shown in [36, 37] under the condition that p > 0 is
small. The main contributions of this paper consist of three parts. First we discover
the diffusion wave profile [p, @, ¢] given by (1.6) under the assumption (1.4) without
assuming p is small. Second we show that the solution [p, u, ¢] of the Cauchy problem
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(1.1) with (1.3) can converge to the asymptotic profile [+ p, @, ¢ + ¢] in Lé-norm for
any 2 < g < co. The works [36, 37] only show the convergence of solutions to the
constant ground state [p,0, ¢] in L?-norm. Third, we prove that the convergence rate
to the asymptotic profile [p+ p, @, é + ¢] is faster than the one to the constant ground
state [p,0, #], as (1.9) compared to (1.8).

Remark 1.2. The proof of Theorem 1.1 critically depends on the structure of the
¢-equation of (1.1) with b # 0, and hence the results of Theorem 1.1 cannot be carried
over to the damped Euler—Poisson system (1.2).

To prove our results, we first employ the Fourier energy method to construct a
time-frequency Lyapunov functional and perform the delicate spectral analysis on the
linearized problem to find its refined decay structure. Then we decompose solutions of
the Cauchy problem (1.1) into two parts, linearized solutions around the asymptotic
profile [p, @, (;NS] and perturbed solutions around the linearized solutions, and finally
manage to obtain the faster decay rates by using the refined decay properties derived
in the forgoing spectral analysis. As far as we know these methods have not been
used for the hyperbolic-parabolic system (1.1) in the literature.

The rest of the paper is organized as follows. In section 2, we study some decay
properties of the linearized system around the constant ground state by the Fourier
analysis. In section 3, we conduct spectral analysis for the linearized system and derive
the asymptotic decay rates of linearized solutions toward the linear wave profiles. In
section 4, we first derive some a priori estimates to obtain the global existence of
solutions by the method of energy estimates and find the time asymptotic decay rate
of solutions toward the constant ground state, and finally prove our main results
stated in Theorem 1.1.

2. Decay property of the linearized system. In this section, we study the
time-decay property of solutions to the linearized system based on the Fourier energy
method. The main purpose here is to exploit the linear dissipative structure to see
how the condition (1.4) plays an important role in the energy estimates. Notice that
the key estimate (2.15) in this section will also be used to explore the time-decay
property of solutions with high frequency in the subsequent sections. Before we pro-
ceed, we introduce some notation frequently used in the paper.

Notation. Throughout this paper, C' denotes a generic positive (generally large)
constant and A denotes some positive (generally small) constant, where both C' and A
may take different values in different places. For two quantities a and b, a ~ b means
Aa <b < %a for a generic constant 0 < A < 1. For any integer m > 0, we use H™,

H™ to denote the usual Sobolev space H™ (R3) and the corresponding homogeneous
Sobolev space, respectively. For simplicity, the norm of H™ is denoted by || - ||, with
-1l =1"llo. We use (-,-) to denote the inner product of the Hilbert space L?(R3),
ie.,

(f,9) = - f(x)g(z)de Vf g€ L*(R?).

For a multi-index | = (I1,l2,13), we denote 0' = 91 920! and the length of [ is
[I| =11 + s + 3. For simplicity, we denote

114, Bllx = lAllx + Bl x

for some Sobolev space X.
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2.1. Decay structure of the linearized system. In this section, we use
[p1,u, ¢1] to denote the solution of the linearized system of (1.1) around the con-
stant ground state [, 0, ¢)

3tp1+ﬁV~U=0,
P'(p)

(2.1) Owu + Vp1 4+ au— uVe, =0,

Oipr — DAG1 — apy + bpy =0,

with initial data

(2.2) [p1,u, ¢1]li=0 = [p1,05 w0, D1,0] = [po — P, w0, b0 — @)

The goal of this section is to apply the Fourier energy method to the Cauchy
problem (2.1)—(2.2) to find a time-frequency Lyapunov functional proportional to
|U(t, k)2 + |k|?|$|? with a dissipative structure. In the rest of this section, for the
simplicity of notation, we shall use [p, u, ] to denote the solution [p1,u, ¢1] of (2.1)-
(2.2), correspondingly, [po, uo, $o] to denote [p1,0, uo, ¢1,0] unless other stated. Let us
present the main result of this section as follows.

THEOREM 2.1. Let U(t,z) = [p,u,d] be a well-defined solution to the system
(2.1)—(2.2). Then there is a time-frequency Lyapunov functional E(U(t,k)) with

(2.3) EU(t, k) ~ |[p, &, ¢l1* + K[|

such that for any t > 0 and k € R? the Lyapunov inequality
d . ~ Ak |? ~

2.4 — t, k — t,k)) <

(24) FEOWR) + e R) <0

holds for some constant A > 0.

Proof. For an integrable function f : R® — R, its Fourier transform is defined by

3
f(k) = /]R3 exp(—iz - k) f(z)dx, x-k:= Zacjkj, ke R3,

Jj=1

where ¢ = v/—1 € C is the imaginary unit. For two complex numbers or vectors a
and b, (a|b) denotes the dot product of a with the complex conjugate of b. Taking the
Fourier transform in x for (2.1), we find U = [, 4, ¢] satisfies

Op + pik -4 =0,
P'(p)

(2.5) o + ikp + it — pike = 0,

dvp + D|k|*¢ — ap + bp = 0.

First of all, it is straightforward to obtain from the first two equations of (2.5)
that

1d (P'(p)
2ﬁ< P
(2.6) = Re(pikd|pit) = —Re(ud|pik - i)

= Re(udlpn) = - Re(ud]3) — Re(udh).

AP + p|a|2) T alf?
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By taking the complex dot product of the third equation of (2.5) with %gf)t, and
retaining the real part, one has

d A T .
2162 + 2 P1d2 = Re(s
G { B IOR + 22162 | + 21,2 = Relind)
which along with (2.6) implies
(2.7)
1d ()2 2 4 D2A2 by, oo 20 A a2 B2
il _9 [l —
it L + plal? + P20 + N3P - 2Re(udl) | + aplal + 16 =0
Second, by taking the complex dot product of the second equation of (2.5) with

1kp, replacing O;p by —pik - 4 from the first equation of (2.5) and retaining the real
part, one has

d P'(p .
(2.8) < Re(@likp) + pEp)|k:2|ﬁ|2 — uRe(iko|ikp) = —aRe(u|ikp) + plk - a|>.

Multiplying the third equation of (2.5) by ik, then taking the complex dot product of
the resultant equation with qub, and keeping the real part, one has

29 L (PI0R) + LD k102 + RPIR = Ren(ikolikd).
Taking summation of (2.8) and (2.9) gives
& [Re(ilik) + |k\2|03|2} + 2 19
(210) + 01 + 10 — oReutinpling)
=— aRe(u|zkp) + p|k )

Since bP'(p) — aup > 0, the matrix

P'(p)
o H
(2.11) P
o

is positive definite, which yields a positive constant C; > 0 such that

P'(p R b - e 2 . -
(212) pf”)|k|2|p|2 + 2 k[2[ g2 — 2Repu(ikplikg) > Cy (k216 + [kI|6[2)

Applying (2.12) into (2.10) along with the Cauchy—Schwarz inequality implies

d g K2y 792 pD a2, Crgpae 21712 2\(512
@ L e “1 <o(

= { Re(@likp) + 2 k1B f + = K012+ k262 + CLlRPIB < C(1+ k),
which, multiplied by 1/(1 + |k|?), gives

(2.13)
d {Re(ﬂlikﬁ) L W} uD

. K2 A
2 ~ 2 < C ~ 2.
A\ T+ K2 20T kP o T+ e O T TP eIl < Clil
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Finally, let’s define

P'(p),. . D - by o A
@ e 4 pfaf? + L2 k21 + P12 - 2Re(udlp)

Re(@likp) | p K
*“{1+mp'*m1+mpw
for a constant 0 < k < 1. Recall that the matrix (2.11) is positive definite. Then

there exist two positive constants Cs, C3 > 0 such that

R - P'(p),. b, » _— . N
G (192 +162) < Z a2+ 215 — aRe(udlp) < s (12 + 10F2)
p a

Notice that as long as 0 < k& < 1 is small enough, then E(U(t, k)) ~ |U(t)]2 + | k|?|4|?
holds true and (2.3) is proved. The sum of (2.7) with (2.13) x k gives

L k|
1+ |k|? 1+ |k|?
Therefore, (2.4) follows from (2.14) by the observation

L Ak k2
1+ |k|? 1+ k|2 1+ k2
This completes the proof of Theorem 2.1. ]

5(U(ta k)) =

(2.14) OEWU (L, k) + Ala)® + A |15, Bl|* + |p]2 < 0.

Aaf? + A 15, 811° + 912 > (1012 + 1kI21612)

Theorem 2.1 directly yields the pointwise time-frequency estimate on \U (t, k)| in
terms of initial data moduli |Uy(k)| and |k||¢o(k)].

COROLLARY 2.1. Let U(t,z), t > 0, € R® be a well-defined solution to the
system (2.1)—(2.2). Then, there are A > 0, C' > 0 such that
~ 2 ~ ~
(2.15) 0t k)| < Cexp (=255 ) (To (k)] + [l|ol)

holds for any t > 0 and k € R3.
Formally, the solution of the Cauchy problem (2.1)—(2.2) is denoted by

U(t) = [p,u, 0] = e U,

where el for t > 0 is called the linearized solution operator corresponding to the
system (2.1). Based on the pointwise time-frequency estimate (2.15), we can obtain
the following LP-L9 time-decay property of the Cauchy problem (2.1)—(2.2) same as
those for the heat equation.

COROLLARY 2.2. Let 1 < p,r <2< g<o0, >0 and let m > 0 be an integer.
Define

(2.16)
1 1 l if £ is an integer and r = q = 2,
a2 -
4/ 1+ [0+3(L - %)]_ +1  otherwise,
where [-]_ denotes the integer part of the argument. Then e'F satisfies the following

time-decay property:
m+1

_§(l_l)_m _Q(l_l)_
V™ e  Upllpa <C(L+18) 2 p @' 2 |[Upllpe + C(1+4) 272 a7 2 |lgo]|n

11 11
+Ce_’\t||Vm+[3(T q)]+U0||LT +Ce—At||vm+1+[3(r q)]+¢OHLr
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for any t > 0, where C = C(m,p,r,q,¢) > 0 is a constant.

Remark 2.1. Noticing that the term % has positive lower bounds,
Ll Ll L 1.
> —if |k| <1 and >—if k| >1
1+ k2 — 21||— o LHM2—21||—’

one can follow the procedures in the proof of Theorem 4.2 in [8] to get results of
Corollary 2.2. We omit the details for brevity.

3. Spectral analysis on the linearized system. In order to find a refined
large-time asymptotic profile of solutions to (1.1) with (1.3), we conduct the spectral
analysis for the linearized system (2.1)—(2.2).

3.1. Preparations. Let us first recall our linearized problem (2.1)—(2.2). In the
rest of this section, for the simplicity of notation, we shall use [p, u, @] to denote the
solution [p1,u, ¢1] of (2.1)—(2.2), correspondingly, [po, 1o, o] to denote [p1,0, uo, $1,0]
unless other stated. We now derive the asymptotic equations that one may expect
in the large time. By the idea of the asymptotic analysis, one may expect that the
asymptotic profile of the linearized system (2.1) satisfies

P'(p .
pfp)v,ﬂaa—w(p:o,
—ap+bp=0

with initial data

Pli=0 = po.

Therefore, p, @, and ¢ are determined according to the following equations:

rea
5tﬁ_bp(p)7a'“pAﬁ:0,
ba
.
(3.1) ﬂ:,Mv@
bap
~ a _
Qb_gpv

where initial data @, and ¢, are determined by pg in terms of the last two equations
of (3.1), respectively. With the fact bP’(p) — aup > 0, the first equation of (3.1) is
essentially a heat equation. The diffusion wave [p, @, ¢~)] defined in (1.6) is the solution
of (3.1). Its solution can also be expressed by the following Fourier transform:

2 bP/ 0) —aup R
(32) = oxm (= ke i,
and
. P'(p) — aup P'(p) — aup
(3.3) 5 = exp _bP'(p) AP 2 _bP'(p) AP
ba bap
Z_ bP'(p) —app ;2.\ (4.
(3.4 $ = exp (—bauf ) (4a0).

The above expressions will be used later.
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3.2. Spectral representation.

3.2.1. Asymptotic expansions and expressions. In this subsection, we fur-
ther explore the explicit solution U = [p,u,¢] = e'*Uj to the linearized Cauchy
problem (2.1)—(2.2). Let us rewrite the system as two decoupled subsystems gov-
erning the time evolution of [p,V - u, ¢] and V x u. Taking the curl for the second
equation of (2.1), one has

H(V xu)+a(Vxu)=0.

In terms of the Fourier transform in x, one has

O(ik x 4) + a(ik x @) =0
with the initial data

ik X a|t:0 =ik X ﬂo.

It is easy to obtain

—kx (kxa)=e "~k x (k x d)},

where k = k/|k| for |k| # 0.
Taking the divergence for the second equation of (2.1), we get the equations for
[pa V- u, ¢] = UH(ta I)

3tp+ﬁv~u:0,

P(p
8t(V-u)—|-;p)Ap—f—a(V-u)—MAQS:O,
0tp— DAG —ap+bp=0

with initial data
[pa V- u, ¢]|t=0 = [007 V- Uo, djO}
Applying the Fourier transformation to the above equation, we have
Owp + pik -4 =0,
P'(p -
(3.5) O (ik - 1) — I{Emk|2ﬁ+a(ik~ﬁ)+u|k|2¢:07
916+ D|k|>¢p — ap + b = 0,
with the initial data
(3.6) ﬁ\\(ﬂ@\t:o = Uno(k) = [po, ik - tig, Po).
Then the solution to (3.5)—(3.6) can be written as

U'H(t, k)T = eA(‘kl)tUHO(k)T
with matrix A(|k|) defined by

0 —p 0
Ak = | Z@p —a —plk)?
a 0 —b— Dlk?
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By a direct computation, we see that the characteristic polynomial of A(|k|) is

g(\) =: det(\I — A(|k[)) = A* + (b+ D|k|*> + &) \? + (ba + Dalk|*> + P'(p)|k|*) A
N———

Cc2 Cc1
+ (b + DIk[2) P'(0) [k |? — apsplk|?

€o

(3.7) =X+ e\ )+ co.

One can find some elementary properties of the function g(\) as follows:
9(0) = (bP'(p) — app) [k|* + D|k|*P'(p)|k|* > 0 as k # 0;

o g(~(b-+a+DIEP)) = —(b+DIKP)?a(b+ DIEP)o?— P’ (palkl?—apupikl? < 0;
e ¢(A\) =3A2+2(b+ DIk|* + a) A+ (ba + Dalk|*> + P'(p)|k[*) > 0 for A > 0;
o g'(N) = N+2(A+b+D|k*+a) A+ (ba + Dalk|* + P'(p)|k[*) > ba+Dalk|*+

P'(p)|k|> > 0 for A < —(b+ o+ D|k|?);
e g()) is strictly increasing for A < —(b+ a + D|k|?) or A > 0.
The above properties imply that the equation g(A) = 0 has at least one negative real
root lying in (—(b+ a + D|k[?),0). We can distinguish several possible cases for the
roots by using the discriminant,

A = 18cycico — 4cicy + cict — 4c — 27c2.
e A >0, then g(\) = 0 has three distinct real roots;
e A <0, then g(A) = 0 has one real root and two nonreal complex conjugate
roots;

e A =0, then g(\) = 0 has multiple roots which are all real.
Here the term with the highest power of A is —4D*P’(p)|k|'°, which implies that A
is a polynomial of |k| with degree 10. Hence there exist at most a finite number of
values of |k| such that A = 0. Hereafter, we exclude these finite number of values of
|k| since they will not affect the LP-estimates of solutions to the linearized equations.
We analyze the roots of the equation g(A) = det(A —A(|k|)) = 0 and their asymptotic
properties as |k| — 0. Clearly the eigenvalues \;(i = 1,2,3) of A(|k|) satisfy

M+ X+ A3 =—b—DJk* —a,
Mdodz = — (b+ DIk[*) P'(p) k[* + applk|?,
MA2 + Az + Aods = ba + Dalk|? + P'(p)|k|*.

The perturbation theory (see [16] or [23]) for one-parameter family of matrix A(|k|)
for |k| — 0 implies that X;(|k|)(j = 1,2, 3) has the following asymptotic expansions:

“+o0
Y4
Ak = ST A Ik
=0

where )\y) is the coefficient of |k|’ in the expansion. Notice that )\5-0) are the roots of
the following equation:

Then we have
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By straightforward computations along with (3.7), we find that

Mllkl) = ~ O P o o,
(35 Aa((K]) = b+ O(|K),

As([k]) = —a + O([k]),

which imply that A;(|k|) are distinct to each other as |k| — 0.
Next we give the asymptotic expressions of eA(FD? a5 |k| — 0. We note that the
solution matrix eA(*Dt has the spectral decomposition

eADE — ZeXp (IKDD)Pi (K],

where \;(|k|) are the eigenvalues of A(|k|) and P;(|k|) are the corresponding eigen-
projections. Notice that A;(|k|) are distinct to each other as |k| — 0. Then P;(|k|)
can be written as

\kl /\e Ikl)
=1,2,3.

We estimate Pj(|k|) as

A(E]) = Ao (KDL A([K]) = As([kDI

AL([E) = A2(lk])  A(Ik]) — As(I&])

_ AQED? = Qo (&) + As(ED)AUELD + Ao ([EDAs(IEDT _ (fij)sxs
A(IED? = 2 (&]) + As(ED) AL (E]) + A2 (kD As(E]) -~ Ppe

P1(|k‘) =

One can compute

—P'(p) Ik ap polkf?
A(B? = | —LL k2 —aplk?  —P/(F)[k2+0?  (b+ a)ulk[2 + Dplk|*
—ab — aD|k|? —ap b% + 2bD|k|* + D?|k|*
and
(3.9)

bP'(p) — aup
M +d3=-b-—Dk?>—a-I=—(b+a)- (D - W) k> 4+ O(|k|Y),

Xods = bav+ Dalkf + P/(p) K = M (Ao + As)

bP'(p) — app

= ba + (Da+P’(p)—(b+a) — ““p) k|2 + O(|k[%).

Let us compute f;; (1 <1¢,j < 3) as follows. For fi1, one has

bP' () — anp

fir = —P'(0)|k]? + b + (DaJrP’(p) b+ a) ==L ‘W) k[ + O(Jk[*)

bP'(5) — aup
b

= ba + (Da—(b+a) - a“'”) k|2 + O(|k|Y).
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In a similar way, we can get
fiz=ap— (A2 +A3)(—p)

—ap= (=0t )~ (D= =) gz o1k ) )

B bP'(p) —aup\ _
— by (D _ W) AP + (K™,

f13 = pplk|.

For fs1, one has

for = = 2L i = (0400 - (D= =2 e oty ) T2 e
and

=PI+~ (<04~ (D~ PO o4y (-

+ba+ (Da +P(5) — (b+ a)bp("’ga_“’“‘p> Ik[2 + O([k[*)

- _ MW? +O(JkY).
@]

Similarly, one has

fos = (0 @ulbl* + Dbl = (=0 +0) = (D = O i (") ) (k)
bP (2

_ —app 4 6
= OPO) —h gy Ok,

Moreover, it holds that

fo1 = —ab — aD|k[> — (—(b+ ) — (D _ W) Ik|? + O(|k|4)> a

o — oD =D 2 oy
ba
and
fa2 = —ap,
fas = V% + 26DIK[® + D|K[* <—(b+ a)- <D—W) k|2 + O(|k:|4)> (~b-DIK?)

+ba + (Da +P'(p) — (b+ OOW) k> + O(|k|")

= B2 1 Ok,

Because of (3.9), we denote P{e® = 3779 g0 ||, Then

1 1 1 ¢, A
o = — — k O(|k|?).
P~ ba+g@RE + Ok o [gop ! T OURD)
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Let P} (|k|), P;(|k]), P}(|k|) be the three row vectors of P;(|k|), j = 1,2,3. Then
we have the expressions of p, @, and é for |k] — 0 as follows:

o _ exp (M ([k]?)

3
p= (fuﬁo + fi2ik - Gg + f13<50> + ZGXP ()‘j(|k|)t)Pj1(|k|)UHO(k)T

Plden =
= exp (Aa([k)1)po + O(Kl)exp O (kD) |To (k)| + Zexp (kDOP} (KD Tjo k)T,
a=—kxkxi ;Tzzk i
- . ik M (lk 2
= exp (—at)(—k x k X o) — |Iz€|2 {@(p(Pégi)) (f21/30 + faztk - 4o + f23¢0>
+2exp (DO PRDG10(0) |
= exp (—at)(—k x k x 6g) 4+ exp (A1 (|k])t) (Wikﬁo)
O(|k[2)exp (A1 (|K[)t)| U (k |+Zexp ([RDE) P ()T o (k)T

= ST (oo + i+ o) + 3 exp A KDOP (KD Vo )"

j=2
= exp (A ([KI)1) (F50) + O(klexp (Aa (k)8)| o (k |+Zexp (kD) PP (kDo (k)"
3.2.2. Error estimates.

LEMMA 3.1. There is rog > 0 such that for |k| < ro and t > 0, the error term
|U — U] can be bounded as

(3.10) 16(t, k) — p(t, k)| < Clkl exp (~Alk[t) [ (k)| + Cexp (~At) [T (k)|

(3.11) |a(t, k) — a(t, k)| < C|k[* exp (=\[k|*t) ‘Uo(k)‘ + Cexp (—\t) ‘Uo(k)

(312) |4(t, k) — (t, k)| < CJk| exp (—AJk|?t) |Uo(k;)| + Cexp (—At) ]UO(k)

where C' and A are positive constants.

Proof. Tt follows from the expressions of p and p that
ﬁ(ta k) - 5(t7 k)

. bP'(p) — aup .
— exp (ha (JK])1)o — exp (—(”)“WM%) o

ba
O(Ikl) exp (M ([kDE) [ (k)| + Zexp (kD8P (k) Ujok)T

= Ru1 (k) + Riz(|k|) + Rus(|k]).
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We have from (3.8) that
bP'(p) — aup
Ma(lkl) + =0 2 oy,

and

exp (kD) —exp (=L )

ba
bP'(p) — aup bP'(p) — aup
= exp (—(plzaﬂp|k|2t) exp <)\1(k|)t + W|kgt> - 1’

S
< Clexp (—th) k|4 exp (C|k|%)

< Clk|? exp (=A|k|t),

as |k| — 0. Therefore, we obtain that
| Rux(JK])| < ClkIZ exp (~AIRE) [po(R)] s [k = 0.

Note that A1(|k|) < —A|k|? and |exp(A1(|k])t)] < exp(—A|k|*t) as |k| — 0. Conse-
quently, we find that

| Rua(lkD)| < Clklexp(~AKH) [To(k)| s [k 0.

Now it suffices to estimate ‘R13(|k|)‘ Recall that (3.8) gives exp(\;(|k|)t) < e~
(j =2,3) as |k] — 0. Also notice le(|k\) =0(1) (j = 2,3). Thus we have

‘R13(|k|)‘ < Ce M

Uo(k)‘ as |k| = 0.

This yields the desired estimate (3.10).
In a similar way, we can prove (3.11) and (3.12) and complete the proof of Lemma
3.1. a

Next, we consider the properties of p(t, k), @(t, k), and ¢(t,k) as |k| — oo. It
follows from (2.15) that

(3.13) Gtk < {Cexp(—kkﬁt)ﬂ%(k» +[klldol), [K] < ro,
’ Cexp(—A) (U0 (k)] + [klldo(k)]), k] > ro.

Here rq is defined in Lemma 3.1. Combining (3.13) with (3.2), (3.3), and (3.4), we
have the following pointwise estimate for the error terms.

LEMMA 3.2. Let rq > 0 be given in Lemma 3.1. For |k| > ro and t > 0, the error
|U — U] can be bounded as

|6(t, k) = (t, k)| < Cexp(=At)(|Uo (k)| + [Kl|do(k))),
jat, k) = a(t, k)| < exp(= 6)(|Uo (k)] + [klldo]) + C exp (=t)[k] | po (k)]

)
|6(t, k) — (¢, k)| < Cexp(=At)([To (k)| + [Kl|do(k)]),

where C' and A are positive constants.
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Lemmas 3.1 and 3.2 entail that the decay rate of the perturbed solution [p —
Pyt — Uy p— ¢~)] has upper bounds exp(—A|k|?*t) in low frequency and exp(—At) in high
frequency. Then we can follow the procedures in the proof of [8, Theorem 4.2] to
derive the following time-decay properties and omit the details for brevity.

PROPOSITION 3.1. Let 1 < p,r,s < 2 < q < o0, and let m > 0 be an integer.
Suppose that [p,u, @] is the solution to the Cauchy problem (2.1)~(2.2). Then U—U =
[p— p,u—a, ¢ — @] satisfies the following time-decay property:

m+1

IV (o) = B(E))|[£a < C(1+ 1) 3G D=2 [Up | o + Ce™ |V Uy
+ Ce VB =Dl | 4 Cem M VRGOl g

Ls

m

V™ (u(t) — ()| e < C(1 + )~ 2G=D =52 | Ug| 1o + Ce ||V Uy
+ Ce M|Vt BG= Dl gy

Ls

11
L7.+Cef)\t||vm+1+[3(T "”*[Po,cbo]HLr,

and

1)_m

~ 1
V™ ($(t) = 6(t) o < C(1+ )" 2G5 U | 1o + Ce™ |V Uy 1o
_|_C«e—)\t”Ver[S(%f%)]JrUO”LT + Ce_)\t||vm+1+[3(%7é ]+¢OHLT7

for any t > 0, where C = C(m,p,r,q,£) and [ + 3(% - %)].,r is defined in (2.16).
Combining the expressions of p(t, k), @(t, k), and ¢(t, k) as |k| — 0 with (3.13),
we have the following L? — L9 time-decay estimates of [p, u, ¢].

e an integer.

ProproSITION 3.2. Let 1 < p,r,s <2< q < 00, and let m > 0 b
2.2). Then U =

Suppose that [p,u, @] is the solution to the Cauchy problem (2.1)—(
[p, u, ] satisfies the following time-decay property:

B _ m+1

IV p(t)|| e < C(L+ 1) 2= % || pol Lo + C(1+ 1)~ 2073 | Up|| o

+ Ce MV Ul s + Ce VBG4 Uy || 1 + Ce W HHBG=Dle g |10
IV u(®)[a < CO+8)FE~D 7" |lpo o + C(L+ ) 2G ™8~ |Ug| 1o

+ C'ef’\tHVmUoHLS + Cef’\t||Vm+[3(%7%)]+UoHLT + CeiMHVmHHg(%f%)]* [po, PolllLr,

and

m

V™6t < C(L+6)"2G=D=F | pg| 1o + C(1+ 1)~ 2G =D~ U |1
+ Ce MV Uo e + Ce™ [V HBE =0 e 4 G0 HHHBG =Dl gy

for any t >0, where C = C(m,p,r,q,¢) and [( + 3(% — %)]4_ is defined in (2.16).

4. Asymptotic behavior of the nonlinear system. We are devoted to prov-
ing Theorem 1.1 in this section.

4.1. Global existence. Before exploiting the large-time profile of solutions, we
first establish the global existence of solutions to (1.1) with (1.3). To this end, we
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set po = p—p, P2 = ¢ — é_and reformulate the problem (1.1) with (1.3) around the
constant equilibrium [p, 0, ¢] with ¢ = ¢p as

Oip2 + pV -u = gy,
(4.1) dyu + P/;p)VpQ + au — pVoy = go,

Ot — DAG2 — apz + bga = 0,

where the nonlinear terms g; and go are defined as follows:

g1 =V - fi, i = —pau,

/ = (=
= - Vi — (P (p2+p) _ P(P)) Vo
p2+p P

(4.2)

The initial data are given by

(4.3) (02, U, P2]|t=0 = [p2,0, U0, P2,0] = [P0 — Ps 0, Po — D]

Next we shall focus on the reformulated problem (4.1)—(4.3) and first explore the
global existence of solutions. Without confusion, in the rest of this section, we still
use [p, u, @] to denote [pa,u, 2], correspondingly, [po, uo, Po] to denote [p2.0, ug, 2,0
for simplicity unless otherwise stated. The main result of this section about the
global existence of solutions to the reformulated Cauchy problem (4.1)—(4.3) with
small smooth initial data is stated as follows.

THEOREM 4.1. Given p >0 and N > 3, let ¢ = %p and P(p) € C*(0,00), P'(p) —
app > 0. If || [po, w0, do]||3 +1| Vol % is small enough, then the Cauchy problem (4.1)—
(4.3) admits a unique global solution U = [p,u, @] satisfying

UEC([O,OO);HN(R?’)), V¢EC<[O’OO)§HN(R3))

and

t
lpsu, 1% + IVSIIR +/O (Il + IVoll3 -1 + [IVlI%) ds

< C (lllpo, uo; do] 1% + Veoll%)
for any t > 0.

To prove Theorem 4.1, it suffices to derive the a priori estimates in the following
Lemma 4.2. Before stating the a priori estimate, we define the full instant energy
functional Ex (U (t)) and corresponding dissipation rate Dy (U(¢)) for N > 3 by

evw() = X {(TLED 1oty — 00,0 + L1 OIP + (o + 10}

(4.4) = N PP
U e Y {00V + Lotvel)
a N ’ 2a
<N-1
and
(@5 DA (U(®) =l + Vol + IVl

where 0 < K < 1 is a constant.
For later use and clarity, we present the following Sobolev inequality for the L?
estimate on products of derivatives of two functions (cf. [10]).
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LEMMA 4.1. Let 0 = (04,...,0,) and n = (n1,...,mn) be two multi-indices with
10| = k1,|n| = ko and set k = ki +ko. Then, for 1 <p,q,r < oo with1/p=1/q+1/r,
we have
(4.6)

100102l 0y < € (1t ey 7"

ey + 02l gy 1990 oy )

where C' is a positive constant.

Now, we have the following key a priori estimates for the solutions to the Cauchy
problem (4.1)-(4.3).

LEMMA 4.2 (a priori estimates). Assume that the conditions on p, ¢ in Theorem
4.1 hold. Let U = [p,u,¢] € C([0,T); HN (R3)) be a solution of the system (4.1) with
Ilp, w, 9|13 + [[VO||3 < 1 for any 0 <t < T. Then, there exists an energy functional
En(:) in the form (4.4) with a dissipation rate Dy(-) in the form (4.5) such that

(4.7) %EN(U@)) L ADN(U®) <0

holds for any 0 <t <T and 0 < A < 1.

Proof. Our proof is motivated by the work [22] and consists of three steps.
Step 1. We first claim that

(4.8
1d Po+p) o 1 i L l l
2dt {<M7I<9p| >+<(p+p),|8u| ) — 2u(0'$, ' p)

b D
+ 21t + 120wl

+a Z ((p+ p), 10"ul*) + gll@ll?\r < Clllp,u, dllin (Vo u, @51 + IVRIR) -
<N

In fact, it is convenient to start from the following reformulated form of (4.1):

op+(p+p)V-u=—-u-Vp,

P'(p+p)
p+p

0y — DAY — ap + bp = 0.

(4.9) Oru + Vp+au—puVe = —u-Vu,

Applying &' to the first equation of (4.9) for 0 < |I| < N, multiplying the result

b %Zﬂp and taking integration in x give
Ld [P(p+p) 4 2 / N !
-4 P )
i (L) ol ) 4 (Pt O -, 0p)
1 Pl(ﬂ*‘ﬂ)) ! 2> k< I~k ok P'(p+p) 4
=-((——==)19p") =) C/ (O " (p+p)0°V -u,———=0p
=5 ((F557) )~ et (o o ot T
P’ 0 P’ 0
-—<u-8Wh%(p+fﬂ0%>-E:Cf<3“*U~5kVp,(p+fﬂ8%>-
p+p o p+p
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Applying 0" to the second equation of (4.9) for 0 < |I| < N, multiplying it by (p +
p)0'u, and integrating the resulting equation with respect to x, we get

2L o+ 5), 182 + (P'(p + §)3'Vp,8') + a{(p+ 5), 10"ul?)

2 dt
1 + _
= {0+ p)e 0"u*) = Y _CF <3l i ( (i p)> *Vp, (p+p)3ZU>
(4.11) k<l P
—(u-0'Vu, (p+ p)0'u)y = > CF (0" Fu- 0¥ Vu, (p+ p)o'u)
k<l

+ 10"V, (p+ p)0'u).

With integration by parts and (4.9),, we can reformulate the last term in (4.11) as
follows:

10"V, (p+ p)0'u)
= —(0'¢, (p+ P)O'V - u) — u(0'¢, Vpd'u)
= (06,0 pe) + u(0'¢, 0" (u- Vp)) + <al¢, > Cro " p+p)d"V - u> — (@', Vpo'u)

k<l
(4.12)

(010,09 p) — (0" 61, 8 p) + (0 6, u - 8"V p) — (06, V ')

+pu <a’¢, > cto " (p+p)o"V - u> + 1 <al¢, > cro' - a‘“vp> .

k<l k<l

Applying &' to the third equation of (4.9) for 0 < |I| < N, multiplying it by
%81@, and integrating the resultant equation with respect to x, we have

ﬂ bj 12 @ 1 2 Hoat 2 ! !
(4.13) dt{Qauwn + B0V |+ B2 = 1(0 61,0 0).

It follows from (4.10)—(4.13) that

(4.14)
da (1/Pp+p) o 1 a2y L, Al by 2 | BD 5
(3 (FLED 1057 + Lo+ 00 100uP) — w0016, 0'9) + 22100 + 22 1010

+al(p+p).|0"ul) + Ll0'erl|” = 1L(1) + Y ClT(0),

k<l

where
_ 1 Plp+p 1 _
Lty =(P"(p+ p)Vpd'p, 0'u) + 3 <<(pp)> ,|3l,0|2> + ={(p + P)s, |0"ul?)
pto Jy 2
1 P'(p+p) PUNE 1,12
+2<V (u Py 017 ) + 5 <V u(p +p)), |0'ul?)
— w(0'Vé,ud'p) — p(0'$, V - ud' p) — p(d'$, Vpo'u)
and
- ) P'(p+p) _ P'(p+p)
I t:—<8lk + p)OFV cu, —— 29 Y — (9 9V p, — 2!
k(1) (p+p) s 0F s 0F
Lo
- <al—k (Plffpp)) 0" Vp, (p+ p)alu> — (0" *u - 05V, (p + p)0'u)

+ 1 (0", 0" (p + p)OFV - u) + p (8'p, 0 Fu - 9¥Vp) .
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When |I|] = 0, it suffices to estimate I!(#) that by the Cauchy-Schwarz and
Gagliardo—Nirenberg inequalities,

1L (@0) < CIVollllplizs lullzs + CIV - ull(lpllzellplizs + [l ol 2s)
+ CllullL=(IVpllllpllzellpllcs + [IVollllullzel[ullze) + CIVA L2l pll Lo l|ul| s
(4.15)  +ClBllLslIV - ullzlplie + ClI Vol Lzl Lo [ull s
< C(lllp, u, Pl + [T, wlIDIV [ps u, 8]
< Clllp, u, ¢ll2lIVIp, u, 41|,

where we have used the facts ||[p, u, ¢]||y < 1 and
Op+ (p+p)V-u=—u-Vp.
When [I| > 1, it follows from the Cauchy—Schwarz inequality that
[LL(1)] < ClVpll=[10'pl|[[0"ull + CIV - ull L= (|0 pl|* + [0 u]|?)
+ Cllull =V ol L= (10" plI* + 118"u]|?) + Cllull == (10" pl1* + [[0'V &%)
+ OV -l (100l* + 10'0]1) + ClIVpll o< ([0l + 0°0]1?)
< Clllpdlls (IV[ps ws dllI3—1 + VIR
which along with (4.15) yields
(4.16) IO < Clllpsullls (1], u, @] 3-1 + IVIR) -
By the Cauchy—Schwarz inequality, we have
[T (0)] < Cl' IO (p + p)O*V - ul| + C18'p][[|0"Fu - 9*V p)|
P D
gk ((”“’)> 8kVp” + 0| | Fu - 85V
p+p
+C)10'|| |0 (p+ p)OFV - ul| + C||8' || ||0"Fu - 0F V)|

6
=> Ji
=1

For Jy, noticing that |l — k| > 1, there exists some multiple index s with |s| = 1. We
have from (4.6) that

+ C||0"u||

(4.17)

1| < C@'plll|0+20° 00"V -
< Cll'pll (10l V111V - ull + IV - ull < | V11 0%] )
< CIV2[p, ull1 IV Ip,ll3r—s
< Cllp, )l IV (o, ullf—s.

Similarly, we can estimate Jo — Jg that

(4.18)

6

(4.19) D 1l < Clile,w, GllN 1V oy w, &)1
i=2

Plugging (4.18) and (4.19) into (4.17), we see

(4.20) [T < Cllpsw, Ml [V [ps s @]l 1-
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Substituting (4.16) and (4.20) into (4.14), one has

(4.21)
d (1 /P(p+p) . 2 1 a2 LAl by ar 2 | BD i 2
%(§<ip+ﬁ 106 ) + 54+ ), 10"ul*) = (', 0'p) + 221106 + £ 110V |

+a{(p+ ), 0ul”) + gllaldnll2 < Clllp,us Alliw (IV1psu dlIn—1 + [VOR) -

Then (4.8) follows by taking the summation of (4.21) over || < N.
Step 2. We claim that

d

o
@ > {00V + S0Vl |+ NIVoli_y + AVl
. lI<N-1

< CllullX + Clilo, WX IV Ip, ulllF 1.

Let 0 < |I] < N — 1. Applying &' to the second equation of (4.1), multiplying it
by 0'Vp, taking integration in x, using integration by parts, and replacing d;p from
(4.1)1, one has

d P'(p)

— (0", 0'Vp) + —20'Vp||? — 1 (0'V¢,0'V
(4.23) Z P+ =0Vl u(0'Ve,9'Vp)

=p||V - 8'u|? — (V- 0'u, ' g1) — a(d'u, V' p) + (8 ga, V' p).
Applying 9'V to the third equation of (4.1), then multiplying the resultant equation
by %81V¢, and integrating the result with respect to x, we get

d D b
(24) -0V + EZ0'V26|? - n(9'V6.0'Vp) + 20 ve|? = 0.

Summing (4.23) and (4.24), one has

d (0 ot 2 P'(D) oo 12 ! ! 2L 2
5t 1101w V) + S 10V | + LNl — 20 (296,0'p) + £ 70V

D
+ 210V = IV -l — (V- 0,0 1) — @, VO p) + (042, V' ).

Notice that the matrix (2.11) is positive definite. Then there exists one positive
constant C; > 0 such that

P'(p) 2 1 1 pb o 2 1 2 1 2
T”a Vol* = 2u(0'Ve,d'Vp) + ;Ha Voll* > Cy (18'Vpl|* + [|0'Vo?) .

Then, it follows from the Cauchy—Schwarz inequality that

d I gl Hoa 2 Ci) o 2 ! 2, MDD oo 2
was) @ L@ WOV + IOV |+ SHOVIE + il Vol + £ 0V
<CO(IV-ull + 10"ul?) + C (1091 ) + 10'g2]*) -
Noticing that g1, g2 are quadratically nonlinear, one has from (4.6) that

1991117 + 110" g2]1* < Clllp, wl IR NV o, ulll 1

Substituting this into (4.25) and taking the summation over |I| < N —1 imply (4.22).
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Step 3. Multiplying (4.22) by k and adding the resulting inequality to (4.8), we
have

1d P'(p+p) 0 2 IR o
2dtl|§v{<w,lﬁ Pl >+<(p+p),a ul?) — 2u(0'p, ' p)

b D
2 otol + 20w}

d
s S0 @0 0'V0)+ 2109617+ mX IVl + mAIV6IR,

llI<N-1

+a Y o+ 10" + el

<N

< Cxllully + Clllp, u, dlllw (IVIp,u, ¢llFy 1 + [VolR) -

By choosing « and ||[p, u, ¢]|| ; small enough, we can obtain (4.7) with (4.4) and (4.5).

This completes the proof of Lemma 4.2. 0
Proof of Theorem 4.1. We rewrite ( pf;p) |0'p|?) as follows:
P'(p+p) PURE: Pl(ﬁ) PUNE Pp+p) P(p) PURE:
— 90l —[[0°pllI” + - —, [0 ),
p+p p p+p p

which updates (4.4) to

en(w() = X {EL0 I 200,00 + NGO + (o4 10 |

<N P
Pp+p) P(p) pD
(4.26) + Z< ) 1oty + H2 72
<N pEp P a

ey {<8lu,8le>+%||alv¢H2}

[|<N-1

with constant 0 < k < 1. By the fact that the matrix (2.11) is positive definite, along
with the smallness of x and ||p||n, we have that

En(U®) ~ lllp,u, el + VIR

This together with (4.7) leads to

t
o A% + (V613 + / (lul% + 1V pl3 s + V%) ds
<C (||[po, uo, ool % + HVQZ)O]H?V) .

This a priori estimate combined with the local existence theorem completes the proof
of Theorem 4.1.

2. Asymptotic decay rate to constant states. In what follows, since we
shall apply the linear LP-L9 time-decay property of the homogeneous system (2.1)—
(2.2) to the nonlinear case, we need the mild form of the nonlinear Cauchy problem
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(4.1)—(4.3). By Duhamel’s principle, the solution U can be formally written as

U(t) = ettty +/ e(t_S)L[gl(s),gg(s),O]ds
(4.27) v

¢
:etLUo+/ e =ILIV - f1(s), g2(s), 0]ds,
0

where e' is the linearized solution operator and the nonlinear source terms g1, g2, f1
were defined in (4.2). For later use with clarity, we introduce some basic inequalities
without proof.

LEMMA 4.3. For any ri € [0,73], A > 0, and a > 0, there exists a constant C > 0
such that

C(ry,ro)(1+¢)~(mtr2=b) re <1,
t
/ (I+t—s)"(14+s)"ds < C(ri,r2)(1+t) " In(1+¢t), 7ro2=1,
0
C(ry,re)(1+1)77, ro > 1,

and .
/ e M=) (1 4 )" ds < C(1+ 1),
0
Below we shall show that the solutions obtained in Theorem 4.1 enjoy the al-
gebraic decay rates under some additional regularity and integrability conditions on
initial data. To this end, for given Uy = [po, uo, ¢o], we set €, (Uy) as

(4.28) em(Uo) = [Uollm + [Veollm + [[Uo] 21
for the integer m > 0. Then one has the following theorem.

THEOREM 4.2. Under the assumptions of Theorem 4.1, if ex(Ug) > 0 is small
enough, then the solution U = [p,u, ¢| of (4.1)—(4.3) satisfies

(4.29) U@ n + [Volln < Cen(Uo)(1+1)~1
and

(4.30) IVU @) [n—1 + [IV2ll 1 < Cen(Uo)(1+1)%
for any t > 0.

Next, we give the proof of Theorem 4.2 which consists of several steps shown
below.

4.2.1. Decay rate for the full instant energy functional. Recall from the

proof of Lemma 4.2 that
d
(4.31) ZENU(®) + 2Dy (U(1) <0

for any t > 0. We now apply the time-weighted energy estimate and iteration to the
Lyapunov inequality (4.31). Let ¢ > 0. Multiplying (4.31) by (1 + ¢)¢ and taking
integration over [0, ] give

(1+ ) En(U() + A /0 (14 ) Dy (U(s))ds

< EN(U()) + E/Ot(l + S)zilgN(U(S))ds.
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Noticing that
En(U() < C(DnU®) + I[p(t), o)1),
we have
(1+ 0 En (U (1) + A / (14 5) D (U(5))ds
0
< En(U) + O [ (149 lp(s). (5)] s
e /t(1 + )1 Dn (U (s))ds.
0
Similarly, it holds that
(L+0)eEn(U®) + A /t(l +8) 1Dy (U(s))ds
0
< En(U) + C(=1) [ (14920 p(s). (5) s
+C(—-1) /t(l +5) 2 DN (U(s))ds
0
and
En(U) + A/O D (U(s))ds < Ex(Us).

Then, for 1 < £ < 2, it follows by iterating the above estimates that

(L+ ) En(U®) + A /t(l +5)"Dn(U(s))ds
(4.32) 0

gca@w+céu+@“wwwmwww

On the other hand, to estimate the integral term on the right-hand side of (4.32), let’s
define

(4.33) Enoo(U()) = sup (1+ 8)3EN(U(s)).

0<s<t

Then we have the following estimates.

LEMMA 4.4. For any t > 0, it holds that

(4.34)  l[p(t), 6()][* < COL+6)72 (E} (U (0) + Vol F1rz2 + [Veol?) -

Proof. By applying the linear estimates on p and ¢ with m =0, ¢g=r=2, p=
s =1 in Proposition 3.2 to the mild solution form (4.27), respectively, one has

I[o(t), 6(@)][| < L+~ (Uoll 22 + [ Veoll)

(4.35) ¢ ,
+CA(H%*@7UMﬂ%m@Mumﬂ®~
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Recall the definition (4.2) of g1 and go. It is straightforward to verify that for any
0<s<t,

llg1(5), g2(s)] | Linez < CEN(U(s)) < (1+8) "2 En o (U (1)),

where we have used (4.33). Putting the above inequality into (4.35) and using Lemma
4.3 give

i, O] < CA+ )" (|Uollprnzz + Vool 2 + Enme(U(R))),

which implies (4.34). This completes the proof of Lemma 4.4. |

Next, we prove the uniform-in-time bound of En o (U(t)) which yields the time-
decay rates of the Lyapunov functional Ex (U (t)) and thus ||U(t)||%. In fact, by taking
¢ =3 +¢in (4.32) with € > 0 small enough, one has

(14 t)2TEn(U()) + )\/t(l +5)2T DN (U(s))ds

< CEn(Uo) + C/O (1+ )7 [o(s), (s)]||ds.

Here, using (4.34) and the fact that En o0 (U(t)) is nondecreasing in ¢, we have that

‘/0 (1 + s)%+€||[p(s)’¢(s)]”2ds
< C+ ) (E o (U®) + [1Uol21p12 + [ Vol1?) -

Therefore, it follows that

(1+1)2TEn(U) + A/Ot(l +5)2T DN (U(s))ds
< CEN(Uo) + C(1+ 1) (ERX o (U®) + [ Uol|F1rz2 + IV 01?)
which implies
(L+8)2En(U(1) < C (En(U0) + EXoc(U®) + Vol 112 + 1V 0]|?)
Thus, one has
Enoo(U(1) < C (Vo) + EX (U (1)) -

Here, we have used the definition of ex(Up). Since en(Up) > 0 is sufficiently small,
ENoo(U(t)) < Ce (Up) holds true for any ¢ > 0, which implies

IU®)|x + Vol < CENU )V < Cen(Up)(1+1) 1

for any ¢ > 0. This yields (4.29) in Theorem 4.2.

4.2.2. Decay rate for the higher-order instant energy functional. In this
subsection, we shall continue the proof of Theorem 4.2 for the second part (4.30). In
fact, it can be reduced to the time-decay estimates only on |V[p, ¢]|| by the following
lemma.
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LEMMA 4.5. Let U = [p,u, @] be the solution to the Cauchy problem (4.1)—(4.3).
Then if En(Up) is sufficiently small, there exist a high-order instant energy functional
ER(-) with

ENUW) ~ IVUD)IR-1 + V26 lIn—1

and the corresponding dissipation rate D% () satisfying
d
(4.36) %SZ(U@)) +ADR(U()) < C|IVIp, gl

for any t > 0.

Proof. The proof can be carried out by slightly modifying the proof of Lemma
4.2. In fact, by conducting the energy estimates on the only high-order derivatives,
similar to (4.8) and (4.22), it can be verified that

1d P'p+p) o 2 U o
2dt1<%:<N{< o s 101 )+ (o +0),10l) — 2400, ')

bu uD
ol + 2 ool

+a D o+ p) 10"l + EVedli
1<|I|<N

< Clllp.w, glllv (V[ u, @]l 3—1 + V28l3 1)

and

d 7
= > {@w Vo) + L0V} NIVl + AVl
1<[I|<SN-1

< ClIVullRy—y + Clilo, ul X IV o, ul| %1

Here, the details of proof are omitted for simplicity. Now, similar to (4.26), let us
define

= 5 {(TLLO o) 200,00 + IO G + (o + o loul) |
(4.37) 1<I[<N pTe “
AR e Y {00V + el )

1<|U[<N -1

and

(4.38)  DLUE)=a ) /w (p + p)I0"ul?dz + N|V2pl Ry 5 + AIVZR s
L<IEN

Thus, EL(U)) ~ |[VU#)||Z_; + [[V?¢||n—1 for 0 < k < 1. Furthermore, the linear
combination of the previously obtained two estimates with coefficients corresponding
to (4.37) yields (4.36). This completes the proof of Lemma 4.5. |

By comparing (4.38) with (4.37) for the definitions of % (U(t)) and D% (U(t)), it
follows from (4.36) that

d

ZENU @) + A (U(#) < C[IVIp, el ()],
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which implies

(439)  EN(U(D) < e MEX(Uo) + C/O exp{=A(t — 5)}[|VIp, ¢](s)*ds.

To estimate the time integral term on the right-hand side of the above inequality, we
show the following result.

LEMMA 4.6. Under the assumptions of Theorem 4.1, if ex(Up) defined in (4.28)
is sufficiently small, then

(4.40) I¥1p, ¢](t)]|? < Ce& (Uo)(1 +1) %

holds for any t > 0.
Proof. Suppose that enx(Uy) > 0 is sufficiently small. It follows from (4.29) that

(4.41) U@ |x + [[Ve()||n < Cen(Uo)(1+1) 1.

Applying the linear estimate on p,¢ by setting m =1, g =r =s =2, p=11in
Proposition 3.2 to the mild form (4.27), respectively, one has

IV1p, @l < CL+ )% (1Tl prrysn + V260ll)

(4.42) t 5
e / (14— )73 [g1(5), 92(5), Ol 11 g1 s
0

Recalling the definition (4.2), we can verify that

191(5), 92() ()l 1 < CIU )13 < O (Uo) (1 + ).

Then it follows from (4.41), (4.42), and Lemma 4.3 that

IV]p, @](t)]| < Cen(Up)(1+1)7%.

The proof of Lemma 4.6 is completed. O
By (4.39), (4.40), and Lemma 4.3, we immediately have

EXU(t)) < exp{-AM}EX (Uo) + Ce& (Uo)(1 + )73,

which proves (4.30) in Theorem 4.2.

Based on the decay properties for |[U||y and ||VU||x—1 in Theorem 4.2, we can
obtain the decay estimates of |[Vu|| and |[V?p||, which will be used later to explore
the faster decay rates from the nonlinear equation to the linear case.

LEMMA 4.7. Under the assumptions of Theorem 4.1, if en(Up) defined in (4.28)
is sufficiently small, then

(4.43) [Vu(t)]| < Cen(Up)(1+1t)" %
and
(4.44) IV2p(t)]| < Cen(Uo)(1+1) 75

hold for any t > 0.
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Proof. By applying the linear estimates on u with m =1, g=r=s=2, p=1
in Proposition 3.2 to the mild solution form (4.27), one has

[Vu®)]| < CAL+8)"Flpollr + CL+ )% (1Uoll 1z + V2[00, do]ll)

(4.45) w0 [(are=9 el

[ =9 (o O 920 (9]
0

By applying the linear estimates on p withm = 2, ¢ = r = s = 2, p = 1 in Proposition
3.2 to the mild solution form (4.27), we obtain

_T _9
IV2p®)ll < CA+ 873 lpollzr + CA+H)7% ([Tl p1agz= + 1V760ll)

(4.46) + O/O L+t —5) " lgu(s)lpr + 1+t —5) "7 ||[g1, 92)(8)l| 112725

Recalling the definition (4.2), it is straightforward to verify
g1, 921() |1z < CIU () I3IVU($)l2 + VU ()l < CeR (Uo)(1 + )7
and
IV2g1(5) |2 < CIVU(s)[3 < CeX(Uo) (1 4 5) 2.
Then it follows from (4.45), (4.46), and Lemma 4.3 that
[Vu(®)]| + V20l < Cen (Vo)1 +1) 5.

|

4.2.3. Decay rate of LI-norm. For L? rate of p and ¢, it is easy to see from
Lemma 4.4 that

(4.47) o)l + 6(t)]| < Ces(Uo)(1 + 1)~ 1.

Applying the L°° linear estimate on [p,¢] with m =0, ¢ =00, r =2, s=p=11in
Proposition 3.2 to the mild form (4.27), one has

s A ()l L= < CAL+8)"% | pollps + (1 +8) "2 Uollrr + €| Upl| 11
+ e MVl 2 + e M V3o | 2

+0/0 {@+t=9 )l + 1+t =)o, 02(5) 12 } ds
0 [ el () + e o gul(5) 1} .

It follows from (4.2) that

g1, 92)(8)l| 11z < CIU(3)I3 < CEE(Up) (1 + )%
We have from Lemma 4.3 that

1, d1() || o < Ces(Uo)(1+ )%,
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which together with (4.47) and L? — L interpolation gives

(4.48) o, @1 (1)l e < Ces(Uo)(1+1) 217, 2< g < oo,

Applying the second estimate on v with m =0, ¢ =r =2, s =p = 11in
Proposition 3.2 to the mild form (4.27), we get

t
lu@®)]l < CA+)7% (1Usll 1Lz + [IVoll) +/ (L4t =) llg1(s), 92(5)ll| L1 p2dls.
0
By (4.29), it follows that

llg1(s), g2 ()l L1z < CIU(s)][3 < CEU)(1 +5) 7%
Therefore, one has by using Lemma 4.3 that
(4.49) lu(®)l] < Ces(Uo)(1+ )75

For the L°°-norm decay rate, applying the second estimate on v with m =0, ¢ =
oo, r =2, s =p =1 in Proposition 3.2 to the mild form (4.27), one has

lu()| e < CL+1)llpoller + (1 + )72 Vo]l + e |Uo]l s
+e MV ol 2 + eIV [p, do]l| 2

0 [t =) + 0+ 1= g gl s

t
+C/0 e (g1, 92l (5| gz + V21 ()][1) s
It is straightforward to verify that for any 0 < s < t,

g1, g2](s)ll 22 < CIUSNIVU < Ces(Uo)(1 +5) 72,

1V2[g1, 2] (s) || 2 < C|VU(s)|12 < CE(Up)(1 + )73,
and
IV3g1ll 2 < CIIVU(s)|3 < Ce3(Up) (1 + 5)~ 3.
Then, we have from the above inequalities and Lemma 4.3 that
[u(t)|| L < Cea(Uo)(1 + )72
By (4.49) and L? — L* interpolation, we have
(4.50) ()]0 < Cea(Uo)(L +)2+51, 2 < g < o0,

4.3. Asymptotic decay rates to the linearized problem. In this section,
we shall prove that the solution U = [p, u, ¢] of the nonlinear Cauchy problem (4.1)—
(4.3) can be approximated by the solution of the corresponding linearized problem
(2.1)-(2.2) in large time with faster decay rates.
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PROPOSITION 4.1. Suppose that e4(Up) > 0 is sufficiently small, and U = [p,u, )]
is the solution to the Cauchy problem (4.1)—(4.3) with initial data Uy. Let P1,Pa, and
P denote the projection operators along the component p,u, ¢ of the solution e'“Uy,
respectively. Then it holds that for any t > 0 and 2 < q < o0,

3

(4.51) |p(t) = Pre"Usl|,, < C(A+1t)"2F2a,
(4.52) [u(t) — PaetUs||,, < C(1+ ) F+3,
(4.53) |6(t) — P3etLUp||,, < C(1+ 1)~

Proof. We rewrite each component of solutions U = [p, u, ¢] to (4.1)—(4.3) as the
mild solution forms by the Duhamel’s principle:

t
(454) p(t,.fﬂ) = PletLUO + / Ple(tis)L[v : fl(s)792(5)70]dsa
0
t
(4.55) u(t, ) = Pae Uy + / Pyl =LV . f1(s), ga(s), 0]ds,
0
and

t
o(t,z) = P3e'lUy +/ P3el'"9L[V - f1(s), g2(s), 0]ds.
0

Denote N(s) = [V-f1(s), g2(s),0]. In what follows we only prove (4.51) and (4.52),
and the estimate (4.53) can be proved in a similar way. One can apply the linear
estimate on P1e! Ny to the mild form (4.54) by settingm =0, g=r=2, s=p=1
in Proposition 3.2, so as to obtain

[o(t) — Pret Uy || < /t HPle“*”L[v : fl(s),gQ(s),O]H ds
(4.56) 0

< C/O (L4t =) (|fi(s)ller + [N ()| prp2) ds.

Here the divergence form of the first source term has been used. Recalling the defini-
tion (4.2), we can verify that

_3
IN(s)llzinzz + 1 fi(s)llr < CIU()]13 < Ce5(Uo)(1 +5) 7.
Then substituting this estimate into (4.56), and using Lemma 4.3, we get that
[p(t) = Pre s < C(1+1)7F.

One can apply the linear estimate on Pie*’ Ny to the mild form (4.54) by setting
m =0, ¢g=o00,7r =2, s=p=11in Proposition 3.2, so as to obtain

t
lo(®) = PrettOall,. < [ [Prc® Y (o). galo). 0] _ds
(4.57) 0

< C/O L+t =572 (Ifr(s)llLr + IN () pargr) ds.
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It follows from (4.2) that
IN () pirgre+Ifi(8)le < CIU )1 [IVU () [2+Cllp(s) [ [u(s) || < Ces(Uo) (145) 2,

where the L? time-decay rate (4.49) of u has been used. Then substituting this
estimate into (4.57), and using Lemma 4.3, we get that

[|p(t) — P1e" Uy <O(+t)72

I

By L? — L™ interpolation, we have

lp(t) — PretLUp||,, < Cen(Up)(L+1)"2F 2, 2 < ¢ < co.

1
Applying the linear estimate on Pye!’ Ny to the mild form (4.55) by letting m =
0, g=r =2, s=p=1 in Proposition 3.2 gives

(4.58)||U(t) - PzetLUoH < /0 HPze(t—s)L[V . fl(s),92(5)70]H ds

t
_z
<C [t t= ) FUAG e + ING ) ds.
0
Using the time-decay rates (4.47) and (4.49), we can estimate L'-norm and H2-norm

of fi as follows:

1£1(8)llr < llulllpll < CEUo)(1+5)"3(1+5)~F < C3(Up)(1+ )72,

£z < Nlullz [V2pll + Il | V2ull < CVU |3 < Ce5(Ug)(L + ) 2.
For other terms with the first-order derivative, like pV - u, one has

1oV - ullLrare < [[Vullllpll + llpllze [Vl
< Ces(Uo)(1+5) " Tea(Uo)(1+5) 7 < CE(U0)(1+ )7,
and similarly it follows that
lu-Vollpinze + llu- Vullpinze + [1pVoll iz < Ce5(Uo)(1+ )72
Plugging the above inequalities into (4.58), and using Lemma 4.3, we get
Jute) ~ Pact o] < (1 + 7%
Before estimating the L°°-norm, we first give another LP-L? time-decay estimates

on u. It follows from the second estimate (3.11) in Lemma 3.1 and expression (3.3)
that

m+1 m—+1

_3(1_1y_ _3(l_1y_
IV u(t)llea < CO+6)725 7072 |poller + C(1+1) 25 ™0™ 72 | VU | 1r
+C€_/\tHVmUOHLS +C@—At||vm+[3(%7%)]+UOHLT -‘rC’e_/\t|\Vm+1+[3(%7%)]+[/)0,¢0]HLT-

Applying the linear estimate on Pye'* Ny to the mild form (4.55) by setting m =
0, g =00, =2, s =p =1 to the second estimate over [O, %} in Proposition 3.2, and
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by setting m =0, ¢ =00, s =r =2, p=1 to the above estimate over [£,¢] give

o)~ Pac 0] < [ [Poc 9 - o gn(0.01] s

. C/z’(l—kt—s)_g A ) prmgza + N | pimgz) ds
(4.59) o
+OL (L+t—8) (V- fi(s)lr + VN (s)||z2) ds

t
+C/L e M (IN() 22 + VPN (8)l22 + IV (V- fa(s)) || 12) ds.

From the definition (4.2) and the time-decay rates (4.47) and (4.49), we have
1) pinge < lulllloll + 1T 6)sVU ()3
< CEWUY)(1+5)"T(1+5)"1
< CeEX(Up)(1+ )72
and
IN($) | < NU(S)IIVU(s)l]2 < CEU0)(1+ )75 (145) 71 < Ce(Up)(1+5) 2.

For the terms in V- f1, by using the time-decay rates (4.40), (4.43), (4.47), and (4.49),
one has

lu- Vol < [[ulll|Voll € Ces(Uo)(1+ )~ Tes(Up)(1+8)~F < CE(Up)(1+ )73,

16V - ull 1 < IIIIIV - ull < Ces(Uo)(1+ ) Tes(Uo)(1+ )5 < Ce3(Uo)(1+5)" 7.
Similarly, it follows that
IV Vo)l < IVoll? + Nl V2ol
where ||V2p|| is bounded by e4(Up)(1 + s)~ 7 in (4.44) and hence,
IV (V) < [Vl + [1llIVp]l < €4(Uo)(1 + )72,
Moreover,
IN(s)llz2 + V2N ()2 + IV2 (V- f1(9) || < VU3 < E3(Uo) (1 +5) 2.

Plugging the above inequalities into (4.59) and using Lemma 4.3, one has

(|u(t) — Poet™Up||, . < C(1+1)73,

I

which together with L2 — L™ interpolation leads to

[ u(t) = Pae“Up||,, < Cea(Up)(1+)~3F 2

Iz

for 2 < g < co. This completes the proof of Proposition 4.1. 0
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4.4. Proof of Theorem 1.1. With all necessary a priori estimates derived in
preceding sections, we are ready to prove Theorem 1.1. By Theorem 4.1, (4.48),
and (4.50), we get the global existence of solutions to (1.1), (1.3) with (1.7)—(1.8) in
Theorem 1.1. It remains only to show (1.9).

For the solution Us(x,t) = [p2,u,$2] of the Cauchy problem (4.1)—(4.3) and
the desired large-time asymptotic profile U(z,t) = [p, @, @], their difference can be
rewritten as

Uy — U = (Uy — eUy) + (eF Uy — 1),

that is,

p—p—p=rp2—p=(p2 —Pre""Uy) + (P1e"" Uy — p),
(u — PQGtLUo) + (PQBtLUO - fL) ;
(¢2 — P3e'"Up) + (P3€tLU0 - &) :

u—1u

$—¢—¢=¢s— ¢

Recall that the solution [p1,u, ¢1] of the linearized Cauchy problem (2.1)—(2.2) can
be written as [p1,u, $1] = [P1, P, P3]e!XUy. Then (1.9) follows from Proposition 3.1

(replacing [p,u, @] by [p1,u, ¢1]) and Proposition 4.1 (replacing [p, u, ] by [p2, u, $2]).
This completes the proof of Theorem 1.1.
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