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CONVERGENCE OF RENORMALIZED FINITE ELEMENT
METHODS FOR HEAT FLOW OF HARMONIC MAPS*
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Abstract. A linearly implicit renormalized lumped mass finite element method is considered for
solving the equations describing heat flow of harmonic maps, of which the exact solution naturally
satisfies the pointwise constraint [m| = 1. At every time level, the method first computes an auxiliary
numerical solution by a linearly implicit lumped mass method and then renormalizes it at all finite
element nodes before proceeding to the next time level. It is shown that such a renormalized finite
element method has an error bound of O(7 4+ h™t1) for tensor-product finite elements of degree
r > 1. The proof of the error estimates is based on a geometric relation between the auxiliary
and renormalized numerical solutions. The extension of the error analysis to triangular mesh is
straightforward and discussed in the conclusion section.
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1. Introduction. We consider the heat flow of harmonic maps in a bounded
domain 2 C RY with d € {1,2,3}, described by the partial differential equation
(PDE)

(1.1) om = Am + |[Vm[?m in 2 x (0,7,
(1.2) d,m=20 on 002 x (0,7,
(1.3) m = m’ in 2 x {0},

where 9, m denotes the normal derivative of m and the initial value m° satisfies
(1.4) Im® =1 in 0.

Under condition (1.4), it is known that the solution of problem (1.1)—(1.3) automati-
cally satisfies the pointwise constraint

(1.5) m|=1 in 2 x (0,T].

The problem can be viewed as the L? gradient flow of the energy functional E(u) =
[ |Vu[?dV under constraint (1.5). When the initial value is sufficiently smooth, it
is known that the heat flow of harmonic maps has a unique smooth solution in short
time and may blow up at some finite time; see [16]. Equation (1.1) appears in many
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applications, including the Landau-Lifshitz equation of magnetization dynamics (as
the limiting case when the damping parameter tends to oo [4, Proposition 5.2]; see
[28]), the nematic liquid crystals model (coupled with the Navier—Stokes equations to
describe the local molecular direction [12]), and color image denoising [29, 30]. The
structure of (1.1) also appears in the geometric evolution equations describing mean
curvature flow of surfaces [24, 25]. In particular, the normal vector n on a surface I’
evolving under mean curvature flow satisfies the surface PDE:

(1.6) o'n=Arn+|Vrn/?n on I' x (0,7T],

where V and Ay are the tangential gradient and Laplace-Beltrami operators on
the surface I, respectively, and 0; denotes material derivative, i.e., the time deriva-
tive in the Lagrangian coordinates. The normal vector n also satisfies the pointwise
constraint |n| = 1.

In contrast to the exact solution of (1.1), which satisfies the constraint |m| = 1
automatically, the numerical solutions of (1.1) and related PDEs given by classical
finite element methods (FEMs) and commonly used time-stepping schemes are gener-
ally not of unit length. In this case, the simplest method to restore the unit length is
to artificially renormalize the numerical solutions by a postprocessing technique, i.e.,
changing the numerical solution m} to mjy /|mj}| artificially after solving the equation
at every time level, before proceeding to the next time level. This renormalization
method is simple to implement and flexible to be combined with general FEMs in
space and linearly implicit time-stepping schemes. More importantly, such a simple
renormalization at every time level can significantly improve the performance of a
numerical method, especially when singularity arises, as shown in the numerical ex-
periments in [24, Figures 4 and 6]. As far as we know, except for the renormalization
method, no other linearly implicit methods can preserve the unit length in numerical
solutions for the problems mentioned above. However, the error analysis of such a sim-
ple renormalization method with commonly used FEMs and time-stepping schemes
is still challenging. The main difficulty is the analysis of stability in approximating
the time derivative when the renormalization is used at every time level. This is a
common difficulty for all related PDEs, including heat flow of harmonic maps, the
Landau—Lifshitz equation, and the nematic liquid crystals equations.

Convergence rates of unconstrained FEMs without renormalization were studied
in many articles for the related Landau—Lifshitz equation and nematic liquid crys-
tals equations. For the Landau—Lifshitz equation, first-order convergence in time of
linearly implicit time discretizations was proved by Cimrdk [17]; optimal-order error
estimates for fully discrete FEMs with linearly implicit backward Euler and Crank—
Nicolson time-stepping schemes were obtained by Gao [21] and An [5], respectively;
first-order convergence of a linearly implicit FEM for the Landau-Lifshitz—Gilbert
equation coupled with the eddy current equation was gained by Feischl and Tran
[20]. For the nematic liquid crystals equations, first-order convergence in time and
space of a semi-implicit mixed FEM was derived in [22]; optimal-order convergence
of a linearly implicit stabilized FEM was proved in [7]. More recently, Akrivis et al.
[2] established optimal-order error estimates for high-order linearly implicit FEMs
preserving an energy inequality for the Landau—Lifshitz equation.

Alouges et al. [3] considered an unconditionally stable and second-order method
combined with a renormalization stage at every time level and proved convergence of
the method without explicit rates; Chen, Wang, and Xie [15] acquired second-order
convergence of a semi-renormalized method for the Landau-Lifshitz equation with the
two-step backward differentiation formula (BDF2), i.e., the renormalization is used
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in the extrapolation of the right-hand side but not used in the BDF2 approximation
to the time derivative.

Convergence of several nonlinearly implicit constrained FEMs for (1.1) preserving
|mj| = 1 at the finite element nodes was shown in the literature based on compactness
arguments. For example, Bartels and Prohl [11] proved convergence of constrained
FEMs based on a nondivergence formulation using the discrete Laplacian; Bartels,
Lubich and Prohl [10] presented convergence of constrained FEMs based on a varia-
tional approach using a discrete Lagrange multiplier; Banas, Prohl, and Schétzle [9]
established convergence analysis of constrained FEMs for heat flow into spheres of
nonconstant radii. A unified inf-sup stable saddle point approach was proposed by
Gutiérrez-Santacreu and Restelli [23] for both Landau-Lifshitz equation and harmonic
map heat flows to impose the unit sphere constraint at finite element nodes with a
discrete energy law. However, no convergence rates were given for these nonlinearly
implicit constraint-preserving methods so far.

More recently, An, Gao, and Sun [6] provided the optimal-order convergence
O(1 + h?) and O(72 + h?) for the backward Euler and Crank-Nicolson semi-implicit
finite difference projection methods under the conditions h? < 7 < h'*%t and c1h <
7 < coh, respectively, where €1 € (0,1) is any positive constant. For the backward
Euler—Galerkin FEM with renormalization, An and Sun [8] obtained the optimal order
Ot + h"‘“) under the condition c1h < 7 < coh and r > 2, where ¢; and ¢y are some
positive constants. The proof of optimal order O(7 + h"T1) under a less restrictive
condition such as 7 > kh" 1 is still challenging.

In this paper, we present an optimal-order error estimate of O(r + h"*!) for a
linearly implicit renormalized lumped mass FEM on rectangular mesh under the mild
condition 7 > kh"T! for r > 1, where k is any positive constant. On a triangular
mesh, our analysis would yield O(7 + k") under the condition 7 > kh" for r > 2. We
focus on the heat flow of harmonic maps, but the techniques in this paper would also
work for related PDEs, including the Landau-Lifshitz equation and nematic liquid
crystals equations, as the common difficulty for all these equations is the analysis
of stability for the renormalization technique in approximating the time derivative.
We illustrate our idea and techniques through analyzing the following renormalized
lumped mass FEM:

(1) For given mzfl in a finite element space S}, compute an auxiliary numerical
solution mjy’ € S} by

n—1

fﬁz_mh ~n n—112~n r
,Vh)h + (th,Vvh) = (|th | mh,vh) Vv € Sh?

(1.7) (

i
where (-,-);, denotes the discrete inner product in the lumped mass FEM; see
section 2.1.

(2) Renormalize the auxiliary numerical solution to

(1.8) m]! = Ih(gg),

where I;, denotes the Lagrange interpolation onto the finite element space Sj.

Clearly, the renormalized numerical solution m} satisfies jmj}}| = 1 at all finite element
nodes. Since the renormalization stage (1.8) only requires us to redefine the finite
element function at the nodes, the computation would be easier than renormalizing
the numerical solution pointwise everywhere. The latter would yield a function which
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is not in the finite element space and therefore would lead to additional quadrature
error in approximating the inner products. Since both mZ_l and myj, are finite element
functions in the method (1.7)—(1.8), it follows that |Vm} ' [>m} - v} is a piecewise
polynomial, and therefore the inner products in (1.7) can be evaluated exactly without
additional quadrature error.

If we denote by EZ_I =hLym(t,—1) — ﬁlﬁ_l and eﬁ‘l = Iym(t,—1) — mZ‘l the
errors of the auxiliary numerical solution and numerical solution, respectively, then
the main difficulty in proving stability of renormalized FEMs is the conversion of
H’éZ*lH%i to ||e271||2Li without generating an additional coefficient, where || - ||z
denotes the discrete L? norm. The semi-renormalized method in [15] was analyzed
by using the equivalence relation

(1.9) len ™ ez < Cller Iz

This additional constant C' prevents the error analysis from being extended to a fully
renormalized FEM unless an additional stepsize restriction 7 > h is required. We
overcome this difficulty by proving and utilizing an improved geometric relation

(1.10) ”eZ?lH%i < ||’é;1’71|\%i + higher-order terms

without the additional constant C'. Since we only renormalize the numerical solution
at the nodes (for the convenience of computation), the geometric relation (1.10) only
holds for the discrete L? norm (instead of the standard continuous L? norm). This
requires us to use lumped mass FEM in order to have a desired error estimate. We
shall prove optimal-order convergence for the lumped mass FEM based on tensor-
product finite elements in a rectangular domain and discuss the extension to triangular
elements in the conclusion section.

The rest of this paper is organized as follows. The basic notation and main
theoretical result on the convergence of the numerical method are presented in section
2. The proof of the main theorem is presented in section 3. Numerical results are
provided in section 4 to support the theoretical analysis by illustrating the convergence
rates of the proposed method. The extension of the error analysis to triangular
mesh is discussed in the conclusion section. The proofs of some technical results,
including the discrete Sobolev interpolation and embedding inequalities, as well as the
superconvergence of the Lagrange interpolation operator, are presented in appendices.

2. Notation and main results. In this section, we introduce notation and
present the numerical scheme for solving problem (1.1)—(1.3) and our main theoretical
results. The notation for lumped mass FEM is based on the notation in [26].

2.1. Notation and finite element space. Let C(£2) be the space of continuous
functions on 2. For 1 < p < oo and integer k& > 0, let W*P be the usual Sobolev
space of functions defined in {2 equipped with the norm (see [1])

1
P
(S wesi) . 1<p<,
||f||W’w’ = || <k
D o =
‘r(illaé)zH f”L ) p 0,
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alal
o1 >d
Oxy !0z,

i=1,...,d, with |a] = a; + - + 4. The seminorm of W¥? is defined by

1
y (Eszﬂ&Q L l<p<oo,
Wk =

lel=k

max D% fllze, p = oo.

respectively, where D* = for a multi-index o = (a1,...,@q), @; = 0,

Let WP := (W*P)4 be the d-dimensional vector-valued Sobolev space with the norm
and seminorm still denoted by || - ||y »» and | - |yyr.p, respectively. As usual, we use
the abbreviation H* = W*?2 and H* = Wk:2,

Next, we define the H'-conforming tensor-product finite element space on a
rectangular domain. Without loss of generality, we consider the case d = 3 and
2 = (ag,by) x (ay,by) X (a,,b,). For positive integers J,, Jy,, and J, let K be a quasi-
uniform partition of {2 into cuboids, denoted by K, and the corresponding mesh sizes

_ b, — —
are h, = Z’Ji‘lr, hy = =5 % and h, = %%, Then, we define the tensor-product
Y z

finite element space of degree r > 1 by
= {veH':v|g Q! VK €K},

where Q¢ is the space of polynomials of degree up to r in every variable on K, defined
by

Qf = { Z Ca,, ag,asxalyazza37 Ca1,(¥27013 € R}'

0<ar,az,a3<r

The tensor-product finite element spaces in one and two dimensions can be defined
similarly. In a lumped mass FEM, the discrete inner product (-, )5, is used and defined
below.

In the case d = 1 and {2 = (a,b), we consider a partition a = zo < z, < -++ <
7, = b with a uniform mesh size h = 2=¢ jo=rgonymee, i =1,...,J.
Let I, be the piecewise Lagrange interpolation operator with Gauss—Lobatto points
T(j—1yr+k> k= 0,1,...,7, on every subinterval Z;. For any two continuous functions

f,g € C(92), we define

J r
(f,9)n f/ In(f9) dz,z/ In(fg)d :ZZa F@G-1rn)9(@G1)rik)s
Jj=1k=
where 65” are the Gauss—Lobatto quadrature weights in the subinterval Z;. By taking

B a;? for 1<k<r—1,
AG=Dr+k = 2ak for k=0,r
J b b

we have

Jr
G =3 cuf(z:)g(r)
=0

If f and 7 are the (Jr+1)-dimensional vectors consisting of the nodal values of the two
functions f and g in S%, respectively, then (f, g), = M f-g, where M € R/"T1 xR/ +1
is the diagonal matrix with elements M;; := d;;c;, with J;; denoting the Kronecker
symbol.
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In the case d = 2 and 2 = (ag, by) X (ay, by), the Lagrange interpolation operator
onto the tensor-product finite element space Sj, is given by

Inf =1InIn,f for feC(2),

where Ij,, and I, are the one-dimensional Lagrange interpolation operators with
respect to the z and y variables (based on Gauss—Lobatto points on every subinterval),
respectively. For any two functions f,g € S}, we define the discrete inner product

('7 ')h by

Jer JyT

(f7g)h = /thmlhy(fg)dzdy = Z Z O‘haizf(zil7y’i2)g(zi17yi2)7

11 =012=0

and similarly
(fvg)h = Mf '57

where f and g are (J,r + 1)(J,r + 1)-dimensional vectors consisting of the nodal
values of functions f and g, while M is a diagonal matrix consisting of the quadrature
weights.

The extension of the discrete inner product to a three-dimensional rectangular
domain 2 = (az,bs) X (ay,by) x (az,b.) is similar by using the identity

(21) Ihf:IhIIhthzf for fEC(ﬁ)

Since the weights for the Gauss—Lobatto quadrature are all nonnegative, we can
define the following discrete L? norm on the finite element space S} :

HVh||L§ = m for vp, € S},

which is also a seminorm on C(£2). Similarly, the norm || - || r» is defined by

Willy = ([ B(wimav)”

for v, € S}, and 1 < p < co. The next lemma gives the norm equivalence between
|1y and [ - [|r.

LEMMA 2.1. Let v, € S} and 1 < p < oo. Then we have
(2.2) Cillville < [[Vhllze < CollvallLe Vi € Sj

for some positive constants Cy and Cy that are independent of h.

The proof is straightforward and thus omitted (it can be proved based on the
equivalence of norms in a finite-dimensional space and a scaling argument which
transforms an element into a reference element).

2.2. The main result. Let 0 =tg < t; < --- <ty =T be a uniform partition
of the time interval [0, 7] with ¢, = n7 and stepsize 7 = T'/N.

The main theoretical result in this article is the following theorem on the conver-
gence of the renormalized lumped mass method (1.7)—(1.8).
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THEOREM 2.2. Let k be any positive constant, and assume that the solution of
(1.1)—~(1.3) is sufficiently smooth, i.e., with the following regularity:
mg € L0, T; W), m € L>(0,T; W>* nH?),
om € L0, T;H' ™), 9ym € L>=(0,T;L?).
Then there exists a positive constant To such that when kh™ < 7 < 79, the numerical

scheme (1.7)~(1.8) yields a unique solution my € S}, (r > 1), n=1,..., N, with the
following error bound:

(23)  max (Jmf —m(, 2]z + [0 — m(, 1) 12) < Culr +h7FY),

where C; is a positive constant depending on x (but independent of 7 and h).

Remark 2.1. In computation, choosing the time stepsize 7 much smaller than
h™t1 would be a waste because then the spatial discretization error would dominate
(thus further decreasing the stepsize would not make the error smaller). Hence, the
time stepsize restriction 7 > xh"t! is only a mild condition that does not affect
practical computation.

Throughout, we denote by C' a generic positive constant and by ¢ a small generic
positive constant, independent of 7, h, and N, which could be different at different
occurrences.

3. Proof of Theorem 2.2.

3.1. Preliminary results. In the proof of Theorem 2.2, the following several
lemmas are used.

LEMMA 3.1 (error of the interpolation operator [14, Theorem 4.4.20]). The La-

grange interpolation operator I, : C(£2) — S} satisfies the following error estimates:
(31) ||V - IhVHLp(Q) + hHV — IhVHWLp < Chs+1|v‘ws+l,p7

a
(3.2) |V = Inv| (o) < Ch* 2 |v|ge

for0< s <7 andp>d/(s+1) (in this case WP — C(§2)).

LEMMA 3.2 (error of the Ritz projection [14, Theorems 5.4.4 and 5.4.8]). The
Ritz projection Ry, : H' — SV | defined by

(3.3) (V(w—Rpw),Vvp) =0
for vy, € S with fQ(W — Rpw)dV = 0, satisfies the following error estimate:
(3.4) |w — Ryw||r2 + h||V(wW — Ryw)||2 < Ch™ Y ||wl|grer  for we H L,

LEMMA 3.3 (Bramble-Hilbert lemma [13]). Let a < b and h = b — a, and let F'
be a linear functional on Wkﬂ’p(a, b) with k > 1 and 1 < p < co. Assume that
(1) [F(N) < Cs|l fllwrsrn(ap for f € WFTLP(a,b), with some positive constant
C5 independent of h and f;
(ii) F(f) =0 for all f that are polynomials of degree less than or equal to k.
Then

(3.5) [E(f)] < Cah* Y flwrsrnapy Vf € WEP(ab)

for some positive constant Cy which is independent of h and f.
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LEMMA 3.4 (inverse inequalities [14, Lemma 4.5.4 and Theorem 4.5.11]).  Let
1 <p,g< oo, 0<m <, and assume that vy, is a function in some finite element
space subject to the triangulation K, with vy |k € Wzl)(K) NWH(K) for K € K. Then

(3.6) lonllwy ey < CR™ P79 o [y i),
1 m—Il+min{0,n/p—n 1
BT (3 lonllye) " < Chmmtmintnon/at (3 oy 4., ),
KeK KeK

where K is the set of triangles in the triangulation (as defined in section 2.1).

LEMMA 3.5. For v, € S}, the following discrete Sobolev interpolation and em-
bedding inequalities hold:

d
1

1—4
(3.8) [VillLee < Cllvillp2 * (IValle + [[Anvallz2)*,
(39) ||Vvh||L6 g C”AthHLz,

where the discrete Laplacian operator Ay : S}, — S} is defined via duality by
(3.10) (Apvp,wp) = —(Vvh,th) Vv, wp € S),.

The proof of Lemma 3.5 is presented in Appendix A.

LEMMA 3.6. Let K € K, and denote by (-,-)x the L? inner product on K. Let
Vi, be the space of vector-valued polynomials of some degree £ > 0 on K. Then

d
(3.11) (L, If = £)| <R (07 fllixey V£ € Vi,
i=1
where C is a positive constant independent of h and £ (but may depend on £).
The proof of Lemma 3.6 is presented in Appendix B.
LEMMA 3.7. For u € H?" and v;, € S}, the following superconvergence result
holds for the Lagrange interpolation operator I :

(3.12) |(V(u—Inu), Vvy)| < CR™va g

In the case of Dirichlet boundary condition, the superconvergence of tensor-
product @, elements based on Gauss—Lobatto points in solving elliptic equations
was established in [19, 27]. Here we need the superconvergence result of the Lagrange
interpolation operator Ij, in the sense of (3.12) (instead of the numerical solution of
elliptic equations). A proof of this result is presented in Appendix C.

3.2. Estimates for the truncation error. Note that the exact solution of
problem (1.1)—(1.3) satisfies the following equation:

(Oym, vy,) + (Vm, Vvy,) = (|[Vm[*m, v;,) Vv, €S},

which can be rewritten as

(Ihl’l’l(tn> —Tlhm(tn—l) 7Vh)h + (thm(tn>7 VVh)

= (|Vlhm(tn_1)|2lhm(tn),vh) + E(Vh).

(3.13)
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Here, £(v},) denotes the truncation error, given by

E(vp) = (Ihm(tn) —Tlhm(tnfl)’vo B (Ihm(tn) —TIhm(tn,l)Nh)
+ <Ihm(tn) _T]hm(tnil)avh) - (6tm(tn)7Vh>

+ (V(Iam(ta) - mit,)), Vv,
+ (1Vm(t) Pm(ta) — [V Inm(ta-1)PLam(ta), vi)
(3.14) =: &1(va) + E2(vn) + E3(va) + Ea(Vh)-

In the following, we present estimates for £;(vy), j = 1,2, 3,4, respectively.
First, since finite element functions in Sj have at most rth-order nonzero partial
derivative in each variable, by using the result of Lemma 3.6 we have

d
Eu(va)l < Ch 30 3|

(e = mit)

KekK i=1 T )
. m(t,) —m(t,_
< Ch2 Z ‘Ih ( ) . ( I)HHT ||vhHHT(K)
Kek (5
tn) — m(tn_1)
< C«h2r Hm( n n H i
% - PN (01 PRTS
(stability of Ij, in H™t1(K))
r+1 m(tn) - m(tn—l) H
< Crh Kze;c H T Hr+1(K) Vil )
(3.15) < CR™ Y vila,

where the inverse inequality (3.6) is used in the last to second inequality.
Second, by Lemma 3.1, it is easy to see that

E2(vh)| < ‘(Ih m(t,) —m(t,—1) m(t,) — m(tn_l)’Vh)‘

N ’(m(tn) —Tm(tn71) B 6tm(tn),vh)’

< CH a2 + Crllval L2
Third, it follows from Lemma 3.7 that
[E3(vi)| < CR™ vl
Finally, by using Lemma 3.1 again, we obtain
Ea(va)| < C|(IVm(t) Pmt,) — [VIm(t) Pm(t),va)|
+ C‘ (19 Znm(t)Pm(ta) - |v1hm(tn,1)|2m(tn),vh)‘

+ c\ (|VIhm(tn_1)|2m(tn) IV Im(tn1) P Im(t), vh) \
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The first term on the right-hand side can be estimated as follows:

(IVm(ta) Pmit,) = [V Inm(ta) Pmt,). vi)

= (Vm(ta) - V(m(ta) = Iim(t,) m(t) - va)
+ (VIim(t,) - V(m(ta) = Lim(ta)), m(ta) - v

= 2(Vrm(t,) - V(m(ta) — Im(ta)), m(ta) - va)
— (V(mt,) = Lim(t,)) - V(m(ta) = Tm(ta) mt) - v2 )
—Q(Am(tn)~(m(t) Lm(t,)), m(t,) - vh> (integration by parts is used)
= 2(Vm(t,) (m(tn) = Tum(t)), V(m(ta) - v2))
+IV(m(ta) = lm(ta) |2 2 [Im(ta) - vilze  (Holder’s inequality is used)

OO+ vl + CR 4 vl + CR™ Y vl (Lemma 3.1 is used)

<
< Ch7'+1 ||Vh||H17

where we have used the following estimate in the second to last inequality:

9 Ch2||m(tn)”?/v2,g for r=1,
\% I;m < 5
|V (m(t,) — Ipm(t n))HL% Ch4“4||m(fn)||;,2r71,15—2 for r > 2,

< Cthm(tn)”%ﬁA for r = ]_7
Ch™ 1 ||m(t,)||32r for r>2 (4r —4>7r41).

As a result, we have
E4(vi)| < CR™H [V o
+ C" (IVInm(tn) + VIum(ta ) IV Iim(t,) = VIym(t,-)lm(t,), v ) ]
+C|(IVzam(t 1) (m(ta) — Lumit,)). vi)

< Chr—‘rl”VhHHl + CT||VhHL2 + Chr+1||VhHL2.

By collecting the results above, we obtain the following estimate for the truncation
error:

(3.16) [Eva)l < CHHIvalla + Ot vl re,
and therefore, by using Young’s inequality,
(3.17) IE(vi)| < Ce (72 + h2™2) + 2| Vv |32 + Cllval3s,

with an arbitrary positive constant €.

3.3. Error equations and an outline of the proof for Theorem 2.2. We
define the following two types of error functions:

ey = Im(t,) —mj; and €} =Im(t,) —mj
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for n > 1, with

(3.18) &) =e) = I,m’ —m) = 0.
By subtracting (1.7) from (3.13) we obtain the following equation for the error function
e

EZ — eZ_l ~n
(3.19) S i)+ (V&R V)
h

= (|Vlhm(tn_1)|21hm(tn) - |Vm2_1|2fflz,vh) + E(Vh),

which holds for all v, € S} andn=1,2,...,N.

For the convenience of the reader, we present an outline of the proof for Theorem
2.2.

In order to bound the nonlinear terms arising from the error analysis, we will
establish the following primary estimates by using mathematical induction:

(3.20) IVer s <1,
. 1
(3.21) &Nz < 5.
(3.22) e s <77, &Y pe < 7.

For n = 1, (3.20)—(3.22) naturally hold as a result of (3.18). We assume that the
numerical solution m}'~' is uniquely determined for 1 < n < k, and (3.20)—(3.22)
hold for 1 < n < k. Then we shall prove that the linear system (1.7) is uniquely
solvable for n = k (thus m} is uniquely determined) and (3.20)—(3.22) also hold for
n=~k+1.

In sections 3.4 and 3.5, we show that estimates (3.20)—(3.22) imply the following
two lemmas, i.e., Lemmas 3.8 and 3.9, which give useful relations between the two
types of error functions e} and €}.

LEMMA 3.8. If (3.21) holds for 1 <n < k, then
(3.23) lep o < ClIEG i + Ch
for 2 < p <4, where C is a positive constant independent of n, k, h, and 7.
LEMMA 3.9. For alln > 1 the following estimates hold:
(3.24) lleh ™"z
(3.25) e |z

<Clley ey,
<Ol e

for 1 < p < oco. Furthermore, if (3.22) holds for 1 < n < k, then
n— ~n— 8 1xn—
(3.26) e 12; < 182 + CrH I

where C' is a positive constant independent of n, k, h, and 7.

By using the technical estimates (3.20)—(3.22) and Lemmas 3.8-3.9, we shall prove
(3.20)—(3.22) for n = k+1 in sections 3.7-3.9 and in the mean time prove the desired
error bound given in Theorem 2.2.
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3.4. Proof of Lemma 3.8. Since the exact solution satisfies jm(¢,—1)] = 1
everywhere in {2, it follows that

Hpm(tn—1)| < jm(tn—1)| + m(tp—1) = hm(t,—1)
Hpm(tn 1) = jm(t,—1)| = jm(tp—1) = lhm(t, 1)

<1+ Chlm(ty_1) i,
> 1= Ohl[m(t )|l

The two inequalities above imply, for sufficiently small h,

(3.27) % < | hm(ty—1)| < Z pointwise in (2.
If (3.21) holds, then
1y, 3
(3.28) 5 < my 7 < 3 pointwise in 2.
When |f| ~ |g| ~ 1 pointwise in {2, by the inequality (7.11) from [2] there holds
f flgl = 1D =1fllg =H)| - ,1f =4l
(3.29) o9 ‘ <2 <Clf —gl,
|f] Ig\ |f1lg] lgl
and similarly,
(3.30) ]vm V| < OlIF — gl + OV )l
Then, by using the triangle inequality and (3.27)—(3.30), we have
~n—1
n—1 _ mh
ler llwir = Hfh(iﬁl;?fl') - Ihm(tnq)HWl
<[t - il * i - e
|~" 1| |m" lhwe = Wy =1 [l llwer
Ih n m(t
ST M, ot - |
( ) |Ihm 1) |m(n o W1P+ m(t,_1) — Iym(t,_1) W
~n—1
my, mh ~n—1
<|n 1|) | e + T e

+ Chlm(tn-1)[w2» + Chllm(tn—1)llw2r.

It remains to estimate the first term on the right-hand side of (3.31). By Lemma 3.1,
we derive on each small element K

~n—1 ~ ~
my, my 1+ || My
| ~ o < e < e
g g lweao S T Eg T lwes w0

<0h1+;(||mg Ul (i) + ||| VR [ Vap 1|HLN(K)) (here (3.28) is used)
d n
<Ch1+P(||eZ Hlwz oo gy + [Hnm(tn—1) w2 (1) + Ve oo () V8 Low (1)
I8 oo () IV Inm (1) oo ae) + IV It [3e i) )
~n— 1)

(here we replace m) " by Im(t,_1) — &)

4 ~n— ~Nn— ~n— ~n—1
< Chr (”eh Hiwree sy + 1IV€R I poo (s 165l oo (1) + RIIVER HLOO(K))
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(here we use the inverse inequality (3.6))
+ OB S (| Tnm () [weee () + 1w (1) e (10)
< Ol wrgaey + CRUTR )l (50 + [Hnma(tn1) v 1)
(inverse inequality)
< Ol&;  lwoa) + Chlm(t—1) w2 0,

where the inverse inequality (3.6) and (3.21) are used again in the last inequality.
Consequently, by summing up the inequality above for all K € IC, we have

n 1

m) -
(=) ~ e oL <l s + Oh
| 1| | 1‘ Wi

Substituting the above estimate into (3.31) yields the desired result of Lemma 3.8. O
3.5. Proof of Lemma 3.9. For the estimate (3.24), it suffices to show

(3.32) |Ihm(t,—1) —m} | < C|Iym(t,—;) —m} | at all nodes.
In fact, at each node we have |Iym(t,—;)| = [m} '] = 1 because

mr 1 I’flnfl

It 1) = m(t, ) and mp = g (2o ) - T

o my |

At each node, we denote by r?l”_l the projection of m(t,—1) = Irym(t,—1) onto the

straight line passing through the orlgm and mj~ ! and we denote by o the angle
between the two unit vectors m}'' and m(t,,— ) then
(3.33) a < Csina = C|Iym(t,—1) —m; | < C|Im(t,—1) — m} "'

at each node. Since |Im(t,_1)—m} '| is the chord with respect to angle «, it follows
that

(3.34) o~ |Im(t,—1) —m} .

Substituting this into the left-hand side of (3.33) yields (3.32), which further implies
(3.24). Moreover, employing the norm equivalence given in Lemma 2.1, we obtain
(3.25).

In what follows, we denote by € the angle between the vectors mzfl —m(t,_1)
and m}"' — m(t,—_1). Then at each node, it holds that
‘m(tn—l) - m2_1| - |m(tn—1) th ! |m(tn—1) - mZ_l‘ - |m(tn—1) - ﬁlﬁ_1|
(3.35) = [m(ty,—1) — m) (1 — cos ),

where
1 —cosf = 2sin?(0/2) < CH%

By a simple computation, we have § = § ~ [m(t,_1) — m} |, where (3.34) is used.

Substituting this estimate of 8 into (3.35) and using (3.32), we obtain
e < &+ Clep P < e+l
which further implies

|e271|2 |~n 1|2+C|~n 1||~n 1|3_~_C|fézfll6

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/21/22 to 158.132.161.68 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

RENORMALIZED FINITE ELEMENT METHODS 325

at each node. This yields that

lle " l1Zz < llep " 1Z: +Clley iz 1€
< lley™ 1||Lg+0||~" 1||L3||”é HL3||~” 1||L6+C||~Z 1||L5
< 182 + 7RIS
where the Sobolev embedding H! — LS and (3.22) are used in deriving the last
inequality. This completes the proof of Lemma 3.9. 0

3.6. Solvability of the linear system. The linear system (1.7) has a unique
solution if and only if the corresponding homogeneous linear system

)

(3.36) (%,vh)h + (VAR Vva) = (Vo PR, va) Vva € SE
has only the zero solution. Since the induction assumption (3.20) implies
(3.37) IVmy ™z < | VIm(ty—1)llze + || Ve~ e <O +1

for 1 < n < k, substituting v, = mj’ into the homogeneous linear system (3.36) yields
||~h||2 ~n n—112~n ~n m”
——" 4 [|Vmg (2. = ((Vmy ' Pmy, mp) < ||Vmg 2wy
< C”ﬁthEQHthEG’

where (3.37) and the Sobolev interpolation inequality (cf. [1, page 135, Theorem 5.2])
are used. By using the Sobolev embedding H' — L5 and Young’s inequality, we
further obtain

||mh||2 ot anpd ~ 112
+ Vg1, < Ollmgllz. 1wy 7 <Cllmy|z: + HthHl

<C|mj 7. + §|\Vﬁlhll2m-

For sufficiently small 7, the two terms on the right-hand side can both be absorbed
by the left-hand side. In this case, we obtain

[my|; = 0.

This shows that the homogeneous linear system (3.36) has only the zero solution
(when 7 is smaller than some constant). This proves the unique solvability of the
original linear system (1.7).

3.7. Error estimates. Taking v;, = €} in the error equation (3.19) yields
[&312, — llef 2,
27
< (IVIm(ta ) PIim(t,) — [V~ 05, 87 ) + (&)
- <|VI;Lm(tn_1)|21;Lm(tn) - |v1hm(tn_1)|2ﬁlg,5;:)

+ ((VIam(ta-0)|? — [Ty~ )i, &) + E(7)
=: & (ey) + Eo(ey) + E(e)

(3.38) SACHE
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for 1 < n < k. In the following, we present detailed estimates of the right-hand side
of (3.38).
The estimate (3.17) implies that

(@) < O(r? + h*2) + | Ve |1 + Clleq |7
It is easy to see that
&5(eq)| < O VInm(tn-1)l[7 €717 < Cllef]72.

Replacing m} by Iym(t,) — €} in the expression of & (€}) and using (3.24)—(3.25),
we obtain

ACHIES ’(|thm(tn_1)|2 —Vmi2, ey 2)’
+ ’<(|thm(tn_1)|2 - |Vm2_1|2)[hm(tn)7“e’z>’
= | (IVBan(t)P ~ Vi 2. 65|

+ ’((QVIhm(tn_l) ~ Ve ™!) Vel Ium(t,) - &)

The last term on the right-hand side can be estimated as follows:
((2whm(tn,1) — Ve ). Ve, [,ml(t,) -'é;;)
= (Z(Vlhm(tn_l) — Vm(t, 1)) Ve} !, Im(t,) -ag)
+ <2Vm(tn_1) Vel !, Iym(t,) fé;;) - (Ve;;—l Vel Iym(t,) -’e“;;)
< Chllm(tn—1)llwzs[IVer ™ |2 185 e
- [(mm(tn,l) -e" ! Iym(t,) .a;;) + (2vm(tn,1)e;§*1, V(Ihm(ty) -’ég))}
+Clley ™ m [IVey "l zalleh | s
< Clle} Mz lerl e (here the inverse inequality (3.7) is used)
+C(ller M zaller ez + llep ™ el Vel )
+C(&} Hlmr + h)|Ver all€flle (here we use Lemma 3.8 with p = 2)

< C(lley lzalehllze + ey~ sl VeRllza + I~ [l 18514 + llef " calleR o),

where (3.20) and the inverse inequality (3.7) are used in the last inequality. As a
result, we have

€6 (€]
< Cl&pll7e + ClIvmy [l &5 |7

+ C(HeZ*le &7l s + llen ™ el VeIl 2 + l1eg [l 1€ | o + ||ezil||L4||’é;zL”L4)
< Cl 2. + Cl[e}||2.  (here (3.20) is used, which implies | Vm} |4 < C)

4 (I8 R e + 15 e IV o+ 18 s 18R s + 18 47 )
< CII8}13: + CIE 21331 5

ERUN SN Y o 13
+C(IIeZ*1IILzHehIIL6 +l&n e e I VeRllze + I8~ e leR 2 18717
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Sn=1)1% an—1y1 e T |l=n) i
e CAR A CARFACA AR
< BRI + 118 132) + =(IV&RI22 + V&5~ [32),

where € can be arbitrarily small at the expense of enlarging the constant C.
Substituting the above estimates into (3.38) leads to

5712, — llep ™13,
e 12

(3:39) < O(F*+ 1) +e(|Verlz + IVey 7)) + CUlIIZ: + ey~ 11Z2)

for 1 < n < k. Then we substitute (3.26) into (3.39) and get

~n ~n—12

8512, — 11,
2T

<O+ h¥H2) 4| V&g |3z + Cle + 77)[VER 3 + Cler 132 + 1871 32)

+IVeR .

Summing up the above inequality yields
n .
IeRlI7: +27 ) [Ve, ]l
j=1

SO+ 1)+ Cle + 7)Y V3. +C Y |83

Jj=1 Jj=1

for 1 < n < k. Then, by choosing sufficiently small £ and 7, the second term on
the right-hand side can be absorbed by the left-hand side. By applying the discrete
Gronwall inequality, we obtain

k
(3.40) max [ &2, + 7 [Ve] |2 < C(r + )2,
j=1

1<n<k

Meanwhile, noting (3.24) and Lemma 2.1, it follows that

(3.41) max [lef 1 + max [[& 12 < C(r+ b7,

This, together with Lemma 3.1, proves the desired error bound in (2.3) for 1 < n < k.
It remains to complete the mathematical induction by proving (3.20)—(3.22) for
n==k+1.

3.8. Proof of (3.20)—(3.21) for n = k + 1. In this subsection, we prove
(3.20)—(3.21) for n = k + 1 in the two cases

< h1875 and T > h187a

respectively. The proof of (3.22) for n = k + 1 is given in the next subsection.
If 7 < h'875 by using (3.41) and the inverse inequality (3.7), we have

(3.42) [Vek ||l e < Ch 15 |[8F e < CA™ "4 (7 + A™HY) < ChF,

1

(3.43) &k || < Ch™%|[&f |12 < Ch™% (7 + ™) < ChA.
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If 7 > k1875 then we rewrite (3.19) as
N ok _ k-1
(3.44)  (Andk,vp) = (M,vh)
T h
— (IVIum(te) PLam(te) — [Fmf ™ Piaf, vi ) = £(vi)
=G +G2+Gs Vv, €eS].

By using (3.40)—(3.41), it is easy to see that

ek — ekt
61| < Hhih‘
T

2 ”VhHL%L
k—1

&, — e r+1
<O|| == Ivallee < O+ R vl

<CT_1(T+T%)HV;1||L2 < Cllvpl|lgz  (since r > 1).
By using (3.20), we have
1G] < IV hm(tas) PLum(ts) — [T~ Pif]| f1vallze
< |V rmt) + o [Tel | vl |1V It 8] val s
< || @VIm(te) + Vel ) Vel Tum()| | Ivalles
+ | @IV It + Vel ) Ve 8| vallzs

+ |1V It 8

lvallzs
C(IVIm (1) Vel s + [ Vel 130 ) | Inm ()l o vl 2
+ C(IVIum(te-) Vel 12 + Vb~ 4 ) 18] e vl o

+ CIVInm(te—1)|[7al1€5 ]| o [[vall 2
<(C+Clegllze)llvallze-

By using (3.16) and the inverse inequality (3.7), we have
|Gs| < C(r+ R )|lvallrz < Cllvarz.

Substituting the above estimates of G;, j = 1,2, 3, into (3.44) yields

~ Ahgk’vh
|Anek| L2 = sup [(An, va)l
vLES] Vi #0 [vhllze
< C + C|‘gh“Lw
< O+ Ok * (185l + 1 AnSElle)*  (here (3.8) is used)
< O+ Cl&;ll e + el Anetll 2,
where € can be arbitrarily small at the expense of enlarging the constant C. By

choosing a sufficiently small e, the last term on the right-hand side of the above
inequality can be absorbed by the left-hand side. As a result, we obtain
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(3.45) |ArEs [l < C,

which further implies that

1-4 d
4

(3.46) 185112 < ClEEIlL: " (I[&hllee + [ An&R12) T < C(r + A3
Since

V812 = (V&5 V8h)* = (~2n8h,85)* < |14k I5. 8k .
it follows that (interpolating the L* norm by using the L? and L% norms)
(347)  [V&kles < V85I EIVaEIFe < CIBEIE: N AngEIES* < O+ 7+,
where (3.9) is used in the second to last inequality and (3.40) and (3.45) are used in
the last inequality.

Combining (3.42)—(3.43) and (3.46)—(3.47) yields, in both cases 7 < h*®7® and
7> hlsTs,

oo

(3.48) IVerls

<C(r+ )t
(3.49) 85l <

C
C(r+h)7.

For sufficiently small 7 and h, (3.49) implies (3.21) for n = k 4+ 1. Then Lemma 3.8
implies that (3.23) also holds for n = k+ 1 (with p = 4 therein), which together with
(3.48)—(3.49) further implies that

(3.50) IVefllzs < Cll&klwra + Ch < C(r + h)+.

Hence, for sufficiently small 7 and h, (3.49) and (3.50) lead to

e~ =

(3.51) [VeFllps <1 and |[€F||r~ <

This completes the proof of (3.20)—(3.21) for n =k + 1.

3.9. Proof of (3.22) for n = k 4+ 1. On the one hand, by using the inverse
inequality and the L? error bound in (3.41), we have

(3.52) 65l < Ch™%[[&)]| 2 < Ch™8 (7 + A"+,
(3.53) 1&F e < Ch™%|[&} |2 < Ch™8 (1 + h™*h).

On the other hand, by the Sobolev interpolation inequality (cf. [1, page 135, Theorem
5.2]) and (3.39), we have

(3.54)
~ ke =k l-d -1 r+1y14 r+1y1—4 -4 r+1
I3 X 1 2 X T T T X UT T 5
[ lzs < Cl&EIIE N[k ll2 ¢ < Clr2(r + )8 (r + A8 < Cr i (7 + b7 H)
(3.55)
a _d
&k llze < ClSkIE N6kl 2" < Ol 2 (r + ]S (7 + K1) 178 < Or 8 (7 4+ ™).
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Combining the estimates (3.52) and (3.54) yields

Cmin{h_%,T_%}(T + ht
Cmin{h*%,T*%}T + C’min{h*%,T*%} BTt

[€h s

C(ri= 15 4 prHD0- 55y
C(ri + h(r“)%) (because r +1 > 2 and d < 3)
o

7% (when 7 > kh™t?)

INCINCIN NN N

(3.56) (when 7 sufficiently small).

Similarly, combining the estimates (3.53) and (3.55) yields
Cmin{h_% , 76 4Rt
Cmin{h™ 5,778} 7+ Cmin{h 5,76} hrt!

(r1=8 4 pr 0o seim))

AP

C
C(r? + h(r"’l)%) (because r +1 > 2 and d < 3)
C

72 (when 7 > kh™t?)

INCINCIN N IN N

(3.57) 7% (when 7 is sufficiently small).

The estimates (3.56)—(3.57) imply (3.22) for n =k + 1.

The mathematical induction on (3.20)—(3.22) is completed. As a result, the error
bounds in (3.40)-(3.41) hold for ¥ = N. Then, combining the error bound in (3.41)
and Lemma 3.1, we obtain the desired error bound (2.3). This completes the proof of
Theorem 2.2.

4. Numerical results. In this section, we present numerical results to support
the theoretical result proved in Theorem 2.2 by illustrating the convergence rates of
the renormalized lumped mass method.

We consider problem (1.1) on the two-dimensional domain 2 = [1/2,3/2] x
[1/2,3/2] and let T = 0.5. The initial value of the solution is chosen to be

(4.1) m’ =

where

and S(z,y) = /W (z,y)% + m3(z,y)2 + m3(x, y)2. Clearly, the initial data (4.1) sat-
isfies the pointwise constraint [m°| = 1 and the boundary condition (1.2). We solve
problem (1.1) with the above initial condition by the proposed method (1.7)—(1.8) on
both rectangular and triangular meshes.

Rectangular mesh. With tensor-product 1 and @ elements, the temporal
discretization errors of the numerical solutions are presented in Tables 4.1-4.2 with
different time stepsizes 7 and mesh sizes h. The numerical results in Tables 4.1-4.2
indicate that the spatial discretization errors are sufficiently small (further decreasing
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TABLE 4.1
) N N N )
Temporal discretization error Hmh,‘r - thT/2||L2 with Q1 element.

h\T 1/20 1/40 1/80 1/160 Convergence rate
1/32 2.233e-3  8.433e-4  3.693e-4  1.784e-4 ~ 1.05
1/64 2.244e-3 8.441le-4  3.691e-4  1.784e-4 ~ 1.05
1/128  2.246e-3  8.443e-4  3.691e-4  1.784e-4 ~ 1.05
TABLE 4.2

. o N N .
Temporal discretization error Hmh’_r - mh,‘r/2”L2 with Q2 element.

h\T 1/20 1/40 1/80 1/160 Convergence rate
1/32 2.247e-3  8.443e-4  3.691e-4  1.784e-4 ~ 1.05
1/64 2.247e-3  8.444e-4  3.691e-4  1.784e-4 ~ 1.05
1/128  2.247e-3  8.444e-4  3.691le-4  1.784e-4 ~ 1.05
TABLE 4.3

o o N N .
Spatial discretization error ||my  — mh/2’7_||L2 with Q1 element.

T\h 1/16 1/32 1/64 1/128 Convergence rate

1/80 2.946e-5  7.413e-6 1.857e-6  4.644e-7 ~ 2.00

1/160 2.594e-5 6.477e-6  1.619e-6  4.048e-7 ~ 2.00

1/320  2.492e-5 6.194e-6 1.547e-6  3.865e-7 =~ 2.00
TABLE 4.4

o o N N .
Spatial discretization error ||my  — mh/Q,TIILQ with Q2 element.

T\h 1/16 1/32 1/64 1/128 Convergence rate

1/80 1.874e-7 1.827e-8 2.082e-9  2.535e-10 ~ 3.04

1/160 1.377e-7  1.497e-8 1.792e-9  2.214e-10 ~ 3.02

1/320  1.178e-7 1.357e-8 1.658e-9  2.060e-10 ~ 3.01
TABLE 4.5

. . . N N . =4
Temporal discretization error |my’  — mh’7/2||L2 with Py element.

h\T 1/20 1/40 1/80 1/160 Convergence rate
1/32 7.373e-4  3.259e-4  1.504e-4  7.190e-5 ~ 1.06

1/64 7.842e-4  3.523e-4  1.645e-4  7.920e-5 ~ 1.05
1/128  7.585e-4  3.377e-4  1.56Te-4  T7.517e-5 ~ 1.06

the spatial mesh size does not affect the temporal discretization error) and can be
neglected in observing the first-order convergence in time, which is consistent with
the theoretical result proved in Theorem 2.2.

The spatial discretization errors of the numerical solutions with @, elements are
presented in Tables 4.3—4.4 for » = 1,2. The numerical results in Tables 4.3-4.4 indi-
cate that the temporal discretization errors are sufficiently small (further decreasing
the time stepsize does not essentially affect the spatial discretization error) and can
be neglected in observing the (r+ 1)th-order convergence in space, which is consistent
with the theoretical result proved in Theorem 2.2.

Triangular mesh. The temporal and spatial discretization errors on triangular
meshes are presented in Tables 4.5-4.7 and Tables 4.8-4.10, respectively, for P, ele-
ments with = 1,2, 3 (the specific definitions are in [18]). First-order convergence in
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TABLE 4.6
Temporal discretization error ||mh,7_ - mh,7/2”L2 with Pa element.

h\T 1/20 1/40 1/80 1/160 Convergence rate
1/32 7.170e-4  3.148e-4  1.445e-4  6.882e-5 ~ 1.07
1/64 7.168e-4  3.147e-4  1.445e-4  6.880e-5 ~ 1.07
1/128  7.169e-4  3.148e-4  1.445e-4  6.881e-5 ~ 1.07
TABLE 4.7

: ati N _ N i D
Temporal discretization error ||rnh,7_ mh,r/2”L2 with P3 element.

h\T 1/20 1/40 1/80 1/160 Convergence rate
1/32 7.170e-4  3.148e-4  1.445e-4  6.883e-5 ~ 1.07
1/64 7.170e-4  3.148e-4  1.445e-4  6.883e-5 ~ 1.07
1/128  7.170e-4  3.148e-4  1.445e-4  6.883e-5 ~ 1.07
TABLE 4.8

T di i N N un B
Spatial discretization error ||my  — mh/2,THL2 with P element.

T\h 1/16 1/32 1/64 1/128 Convergence rate
1/80 5.193e-5  1.299e-5  3.249e-6  8.123e-7 ~ 2.00
1/160  4.995e-5  1.248e-5  3.120e-6  7.798e-7 ~ 2.00
1/320 4.977e-5 1.242e-5 3.103e-6  7.757e-7 ~ 2.00
TABLE 4.9

Spatial discretization error ||mh77_ — mh/277_HL2 with Py element.

T\h 1/8 1/16 1/32 1/64 Convergence rate
1/80 1.718e-6  1.067e-7  1.334e-8  1.668e-9 ~ 3.00
1/160 1.699e-6 8.989e-8  1.109e-8  1.382e-9 ~ 3.00
1/320 1.734e-6 8.862e-8  1.073e-8  1.330e-9 ~ 3.01
TABLE 4.10

Spatial discretization error |mY_ — miV 2 with P3 element.
P h,T h/2, 7L

T\h 1/8 1/16 1/32 1/64 Convergence rate
1/80 1.465e-7 1.011e-9 5.835e-11  3.622e-12 =~ 4.00
1/160 1.208e-7  8.423e-10  4.833e-11  2.998e-12 =~ 4.01
1/320 1.099e-7  7.984e-10  4.637e-11  2.879e-12 ~ 4.00

time and (r + 1)th-order convergence in space are observed numerically. The spatial
convergence is one order higher than our theoretical result for triangular mesh.

5. Conclusions. We have proved the optimal-order convergence of a linearly
implicit lumped mass method, with renormalization at the finite element nodes at
every time level, for the equations describing heat flow of harmonic maps. The proof
is based on a geometric relation (3.26) (that has not been previously used in the
literature) between the errors of the auxiliary and renormalized numerical solutions.
The error of the numerical solution is shown to be O(7+h" 1) when the tensor-product
Q. elements on rectangular mesh are used, where 7 and h are the time stepsize and
spatial mesh size, respectively. Since the geometric relation holds only for e} =
mj} — I;m(t,) (instead of m} — R,m(t,), where Rj, is the Ritz projection operator),
the optimal-order convergence in space is proved by utilizing the superconvergence
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result of the Lagrange interpolation operator in Lemma 3.7 (instead of using the Ritz
projection operator Rp,).

The error analysis in this paper can be extended to triangular mesh straightfor-
wardly by using the lumped mass FEM on triangular mesh constructed in [18] (with
finite element space S}, = (f/hT )4, where XN/,Z is defined in [18, section 5]). In this case,
the quadrature error bound in (3.15) should be replaced by the following result (cf.
[18, Lemma 5.2 with ¢ = 1 and p = k — 1]):

(5.1) [Ex(vi)| < CR"[[vhll -

Moreover, since the superconvergence result in Lemma 3.7 does not hold for triangular
mesh, the estimate (3.12) should be replaced by the following standard result:

(5.2) |(V(u = Ihu), Vvy)| < CHT|[va| g

With these changes, the error analysis in this article would yield the following error
bound under the stepsize restriction 7 > h":

(5.3)  max ([my —m(,t,)[|z2 + my —m(,t,)][z2) < O(r + h7) forr > 2,

1<n<g

where the condition r > 2 is required in (3.56)—(3.57) (in which A"*! should be
replaced by h"). Hence, the result for triangular mesh is one order lower than the
result for rectangular mesh.

Appendix A. Proof of Lemma 3.5. To prove (3.8), we define v € H? to be
the solution of the following problem:

(A1)

Av = Apvy,  in 02,
o,v=0 on 9{2,

for any given vj, € S}, with fQ vdV = 0. Then, we split the bound into three parts:

1 1
(A2) vl < Hv,ﬁf/ vidV = v|| vl + ]—/ vidV|
2] Jo Les 2] Jo

In the following, we analyze the right-hand side of (A.2).
First, we consider the estimate of the second term on the right-hand side of (A.2).
The standard H?2-regularity estimate of problem (A.1) implies

(A.3) Ivllg> < CllAnval Lo
By the definition of Ay in (3.10), we have
(Awvh, wn) = —(Vvi, Vwi) < Ch7? | vi 2 [wall 2
for wy, € S}, which implies
(A.4) | Awvallis < Ch=2|vallse.

Then, assuming 1 € H? to be the solution of the problem

Ap=v in (2,
d,% =0 on 012,
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with [, 4dV = 0, it follows from (A.4) and integration by parts that

(v,v) = (AP, v) = (¥, Av) = (¢, Apvy)
= (Rn, Apvi) + (¥ — Rutb, Apvp)

< =(VRp, Vvp) + ([ — Rpp|| 2| Anval| 22

< —(V, Vvp) + CR2|[Y| g2 || Anville  (here (A.4) is used)

< (AY, va) + CllY )2 [vall

< CllYll2llvall 2

< Olvlizzlval ze,
where Rp1) denotes the Ritz projection defined in (3.3). As a result, we have
(A.5) IVllL2 < Cllvallre,
which together with the Sobolev interpolation inequality [1, Theorem 5.9] and (A.3)
yields

1-4 1-4
(A.6) [Vilze < C||V||L24||V\|Hz Clivallz* IIAthIILz

Next, we consider the estimate of the first term on the right-hand side of (A.2).
By (A.1), there holds

(V(vih=v),V(vih = V) = (V(vih = V), VV) = (V(v, = v), V(v — v))
< V(v = V)HL2||V(IhV = V)llz2,
which leads to
(A7) 196 = V)22 < IV = V)22 < Chlvlle.

Let g := vy — ﬁ Jo vadV — v so that [, gdV = 0, and define ¢, to be the solution
of

Apg =g in £,
Ovpg =0 on 012,

with [, ¢ydV = 0. Then, we have

IglZ: = —(Ve, Viog) = —(V(vih = v), Vipg) = —~(V(vi = V), V(ipy — Inipy))
<IV(ve = V)22 IV(eg — Inpg) | 2
< OR?||v| 2l gl a2
< CR?|\v]|u2 gl 2,

which implies

1
- [ v | < onviige.
i =g [ wav =], < ol

Thus, we bound the first term on the right-hand side of (A.2) by

),
v — — vthva

1
< thff/ vthfIth v — vz
12| Jo Lee

1
<Cht th - |Q|/ vpdV — IhVHL2 + C’hQ*%HvHHz (here Lemma 3.1 is used)
o)
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_d

< Ch™2

1
v,,,_ﬁ/ vth—vH FCh~ 4 |v — L,v|[ 2 + Ch2 % v o
2] Jo L2

< Ch2 % ||v]| 2
(A.8)
< Ch2 % | Apvall 2,

where (A.3) is used in the last inequality.
Substituting (A.6) and (A.8) into (A.2) results in

_d 1—-2 4 1—-2 4
[Vl < CR*72 || Apvallpz 1 ARVAIl L2 4+ Cllvill e Tl Anvallfa + Va2

1—4 4 1—4 d
S COlvallze "I1Anvallzz + Ivallpe *Ivall 22
1-4 4
S Clvallpz *(lvrlle + [ Anvallz2) 7,
where we have used (A.4) in the second to last inequality.
Furthermore, by the inverse inequality (3.7) and (A.7), we get

IVUInv = vi)llLe + [VInv| e

W3V Iy = va)llze + Cllv] e

W5V (Iyv — V)| 12 + Ch™ 5|V (v = vi) |2 + C||v] a2
CR =8 |[v| 2 + C||v]| a2

CllAnval L2,

Vvl Lo

INCINCIN O IN N
Q Q

where (A.3) is used in the last inequality. The proof of Lemma 3.5 is complete. 0O
Appendix B. Proof of Lemma 3.6. In the case d = 1 there holds

(LInf = k| < ClfllLem) < Clflweraxy ¥ f € WHK).

Hence, the functional F : W?™1(K) — R defined by F(f) := (1,1, f — f)k satisfies
condition (i) in Lemma 3.3. We further note that the (r 4 1)-point Gaussian-Lobatto
quadrature is exact for polynomials of degree not larger than 2r — 1, i.e., F(f) =0
for all f that are polynomials of degree less than or equal to 2r — 1. As a result, F
satisfies condition (ii) in Lemma 3.3 for k = 2r — 1. As a result of Lemma 3.3, the
following inequality holds:

(L Inf = [)x| < CR*MN0F fllory YV f € W2HH(E).

This proves the desired inequality (3.11) in the case d = 1.
In the case d = 3, it follows from (2.1) that
(1, Inf — £) |
= |, In, In, In. £ — In, In ) i | + |(1, In, In £ — I ) i | + |(1, In £ — £) |
< CP 02 (Iny In.£)| 1 () + CR N0 (In.B) | 1.0y + Ch?" (|02 || L1 ()
< ORIy, Ty 0) e i) + CHE 0 (T D) 10 + CHE™ 028
= Ch*™* | Iy, I 02 €| oo (1) + CRP | 1 027 F | oo (10) + CR2TF|O27E | oo (1)
< ORFH YO 8 o ) + CRE 028 e 10y + CH2 027
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If f € Vy, then (3.11) follows from the inequality above and the inverse inequality

(3.6). The proof for the case d = 2 is similar and thus omitted. d
Appendix C. Proof of Lemma 3.7. We first consider the case d = 1. Let
[a,b] := UJ_,Z;. Since u — Iu = 0 at the two end points of each subinterval Z;, by

using integration by parts on each subinterval Z; we obtain

‘(8 (u — Inu), zvh)’ = ‘i:( (u — Ipu), 8xvh) ‘i(u—[hu,amvh)z
j=1

Jj=1 g

3= (uan), = (),

= j j

Z;

Because Ipu - Ozzvp, on each subinterval Z; is a polynomial of degree not higher than
2r — 2, (Inu, Ozzvn)z; equals the Gauss-Lobatto quadrature for u - 0,,vp on Z;. Em-
ploying Lemma 3.6, it follows that

] (8$(u ~ L), aIuh) ‘ Z OB |[udygvp |1 ( Z CH" |l g2z vn | 2z,

j=1
CR?" |||l mr2r o) 1m0 p)

<
< CR ol 1 (a )

When d > 1, for example, d = 2, we have
’ (V(u — Ipu), Vvh> ‘ < ’ (@E(u — Ipu), 8xvh> ’ + ‘ (8y(u — Ipu), 8yvh) ’
< / ” Ch™ |V ady + / - Ch*|vi my da,
where

by by 1
/ Cvalmdy = O [ ([ (00w + fwaf)ae) "y

y x

<o / / (18va? + val?)dzdy)* < OB vl

and similarly
by
/ CH™ v sy d < O v
The above results yield (3.12) immediately. When d = 3, the estimate (3.12) can also
be proved by similar analysis. The proof of Lemma 3.7 is complete. ]
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