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THE ENERGY TECHNIQUE FOR THE SIX-STEP BDF METHOD\ast 

GEORGIOS AKRIVIS\dagger , MINGHUA CHEN\ddagger , FAN YU\ddagger , AND ZHI ZHOU\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In combination with the Grenander--Szeg\H o theorem, we observe that a relaxed posi-
tivity condition on multipliers, milder than the basic requirement of the Nevanlinna--Odeh multipliers
that the sum of the absolute values of their components is strictly less than 1, makes the energy
technique applicable to the stability analysis of backward difference formula (BDF) methods for
parabolic equations with self-adjoint elliptic part. This is particularly useful for the six-step BDF
method, for which we show that no Nevanlinna--Odeh multipliers exist. We introduce multipliers
satisfying the positivity property for the six-step BDF method and establish stability of the method
for parabolic equations.
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1. Introduction. Let T > 0, u0 \in H, and consider the initial value problem of
seeking u \in C((0, T ];D(A)) \cap C([0, T ];H) satisfying

(1.1)

\Biggl\{ 
u\prime (t) +Au(t) = f(t), 0 < t < T,

u(0) = u0,

with A a positive definite, self-adjoint, linear operator on a Hilbert space (H, (\cdot , \cdot ))
with domain D(A) dense in H and f : [0, T ] \rightarrow H a given forcing term.

We consider the q-step backward difference formula (BDF) method, generated by
the polynomials \alpha and \beta ,

(1.2) \alpha (\zeta ) =

q\sum 
j=1

1

j
\zeta q - j(\zeta  - 1)j =

q\sum 
j=0

\alpha j\zeta 
j , \beta (\zeta ) = \zeta q.

The BDF methods are A(\vargamma q)-stable with \vargamma 1 = \vargamma 2 = 90\circ , \vargamma 3 \approx 86.03\circ , \vargamma 4 \approx 73.35\circ ,
\vargamma 5 \approx 51.84\circ , and \vargamma 6 \approx 17.84\circ ; see [13, section V.2]. N{\e}rsett established a crite-
rion for A(\vargamma )-stability in [22] and numerically computed the approximations \vargamma N

3 \approx 
88.45\circ , \vargamma N

4 \approx 73.23333\circ , \vargamma N
5 \approx 51.83333\circ , and \vargamma N

6 \approx 18.78333\circ . Exact values of
\vargamma q, q = 3, 4, 5, 6, are given in [5]; see also [19], [12]. The order of the q-step method is
q.
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2450 G. AKRIVIS, M. CHEN, F. YU, AND Z. ZHOU

Let N \in \BbbN , \tau := T/N be the time step and tn := n\tau , n = 0, . . . , N, be a uniform
partition of the interval [0, T ]. We recursively define a sequence of approximations um

to the nodal values u(tm) of the exact solution by the q-step BDF method,

(1.3)

q\sum 
i=0

\alpha iu
n+i + \tau Aun+q = \tau fn+q, n = 0, . . . , N  - q,

with fm := f(tm), assuming that starting approximations u0, . . . , uq - 1 are given.
Let | \cdot | denote the norm on H induced by the inner product (\cdot , \cdot ), and introduce

on V, V := D(A1/2), the norm \| \cdot \| by \| v\| := | A1/2v| . We identify H with its dual
and denote by V \prime the dual of V and by \| \cdot \|  \star the dual norm on V \prime , \| v\|  \star = | A - 1/2v| .
We shall use the notation (\cdot , \cdot ) also for the antiduality pairing between V \prime and V.

In view of the positivity of the coefficient \alpha q, the Lax--Milgram lemma ensures
existence and uniqueness of the BDF approximations.

Stability of the A-stable one- and two-step BDF methods (1.3) can be easily estab-
lished by the energy technique. The powerful Nevanlinna--Odeh multiplier approach
extends the applicability of the energy method to the non--A-stable three-, four-, and
five-step BDF methods. In contrast, as we shall see, no Nevanlinna--Odeh multipliers
exist for the six-step BDF method. Here, we show that, in combination with the
Grenander--Szeg\H o theorem (see Lemma 3.2), the energy technique is applicable even
with multipliers satisfying milder requirements than Nevanlinna--Odeh multipliers.
We introduce such multipliers for the six-step BDF method and establish stability
estimates by the energy technique.

Several stability techniques have been developed for BDF methods, each one with
its own merits. The main characteristics that make the energy technique so powerful
are its simplicity and flexibility. In particular, the energy technique can be easily
combined with other stability techniques, such as the discrete maximal parabolic
Lp-regularity, and, depending on the choice of the test functions, it leads to several
stability estimates. We refer the reader to [16] for the maximal parabolic regularity
property of the BDF methods and to [6] for an efficient combination of the discrete
maximal parabolic regularity and the energy technique for BDF methods of order up
to 5 in the case of the discretization of quasilinear parabolic equations. The energy
technique has proven particularly useful in recent years in the analyses of various
variants of BDF methods of order up to 5, such as fully implicit, linearly implicit,
or implicit-explicit, for a series of nonlinear equations of parabolic type; cf., e.g.,
[20, 7, 1, 4, 6, 17, 3].

Stability conditions involving multipliers are familiar for feedback systems from
control theory; see, e.g., [25] and references therein.

An outline of the paper is as follows: In section 2, we relax the requirements on the
multipliers for BDF methods and present multipliers for the six-step BDF method. In
section 3, we use a new multiplier in combination with the Grenander--Szeg\H o theorem
and prove stability of the six-step BDF method for the initial value problem (1.1) as
well as for nonautonomous parabolic equations. In section 4, we present some numer-
ical results and compare the six-step BDF method with two Runge--Kutta methods
of similar order, namely, the three-stage Radau IIA and Gauss methods.

2. Multipliers for the six-step BDF method. Multipliers for the three-,
four-, and five-step BDF methods were introduced by Nevanlinna and Odeh already
in 1981 (see [21]) to make the energy technique applicable to the stability analysis
of these methods for parabolic equations; no multipliers are required for the A-stable
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SIX-STEP BDF METHOD 2451

one- and two-step BDF methods. The multiplier technique became widely known
and popular after its first actual application to the stability analysis for parabolic
equations by Lubich, Mansour, and Venkataraman in 2013; see [20].

The multiplier technique hinges on the celebrated equivalence of A- and G-
stability for multistep methods by Dahlquist; see [11].

Lemma 2.1 ([11]; see also [8] and [13, section V.6]). Let \alpha (\zeta ) = \alpha q\zeta 
q + \cdot \cdot \cdot + \alpha 0

and \kappa (\zeta ) = \kappa q\zeta 
q + \cdot \cdot \cdot + \kappa 0 be polynomials, with real coefficients, of degree at most

q (and at least one of them of degree q) that have no common divisor. Let (\cdot , \cdot ) be a
real inner product with associated norm | \cdot | . If

(A) Re
\alpha (\zeta )

\kappa (\zeta )
> 0 for | \zeta | > 1,

then there exists a positive definite symmetric matrix G = (gij) \in \BbbR q,q and real
\delta 0, . . . , \delta q such that for v0, . . . , vq in the inner product space,

(G)
\Bigl( q\sum 

i=0

\alpha iv
i,

q\sum 
j=0

\kappa jv
j
\Bigr) 
=

q\sum 
i,j=1

gij(v
i, vj) - 

q\sum 
i,j=1

gij(v
i - 1, vj - 1) +

\bigm| \bigm| \bigm| q\sum 
i=0

\delta iv
i
\bigm| \bigm| \bigm| 2.

Notice that we here consider real spaces for simplicity of notation; in the case of
a complex inner product, (G) is still valid with the term on its left-hand side replaced
by its real part.

Definition 2.2 (multipliers and Nevanlinna--Odeh multipliers). Let \alpha be the
generating polynomial of the q-step BDF method defined in (1.2). Consider a q-tuple
(\mu 1, . . . , \mu q) of real numbers such that with the given \alpha and, abusing notation a little
bit, \mu (\zeta ) := \zeta q  - \mu 1\zeta 

q - 1  - \cdot \cdot \cdot  - \mu q, the pair (\alpha , \mu ) satisfies the A-stability condition
(A), with \kappa (\zeta ) replaced by \mu (\zeta ), and, in addition, the polynomials \alpha and \mu have no
common divisor. Then we call (\mu 1, . . . , \mu q) Nevanlinna--Odeh multiplier for the q-step
BDF method if

(P1) 1 - | \mu 1|  - \cdot \cdot \cdot  - | \mu q| > 0

and simply multiplier if it satisfies the positivity property

(P2) 1 - \mu 1 cosx - \cdot \cdot \cdot  - \mu q cos(qx) > 0 \forall x \in \BbbR .

Notice that, with the notation of this definition, (A) and (G), respectively, mean
that the q-step scheme described by the parameters \alpha q, . . . , \alpha 0, 1, - \mu 1, . . . , - \mu q and
the corresponding one-leg method are A- and G-stable, respectively. Of course, these
are necessarily low-order methods, but this is irrelevant here. We do not compute
with them; we only use them to establish stability of the q-step BDF method.

Optimal Nevanlinna--Odeh multipliers, i.e., the ones with minimal | \mu 1| +\cdot \cdot \cdot +| \mu q| ,
for the three-, four-, and five-step BDF methods, were given in [4].

Some comments on the requirements in Definition 2.2 and their role in the stability
analysis are in order. The essence of the positivity property (P2) is that, in combi-
nation with the Grenander--Szeg\H o theorem, it ensures that symmetric band Toeplitz
matrices T = (tij)i,j=1,...,m, of bandwidth 2q + 1 and dimension m \geqslant 2q + 1, with
entries tij = ti - j ,

(2.1) t0 = 1 - \varepsilon , ti = \mu i/2, i = 1, . . . , q, ti = 0, i = q + 1, . . . ,m - 1,
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2452 G. AKRIVIS, M. CHEN, F. YU, AND Z. ZHOU

are, for sufficiently small \varepsilon , positive definite; see section 3 for the application of this
property, with a concrete multiplier, for the case of the six-step BDF method. To prove
stability of the method by the energy technique, we test (1.3) by un+q  - \mu 1u

n+q - 1  - 
\cdot \cdot \cdot  - \mu qu

n and obtain

(2.2)
\Bigl( q\sum 

i=0

\alpha iu
n+i, un+q  - 

q\sum 
j=1

\mu ju
n+q - j

\Bigr) 
+ \tau An+q = \tau Fn+q,

n = 0, . . . , N  - q, with

(2.3)

\left\{             
An+q :=

\Bigl( 
Aun+q, un+q  - 

q\sum 
j=1

\mu ju
n+q - j

\Bigr) 
,

Fn+q :=
\Bigl( 
fn+q, un+q  - 

q\sum 
j=1

\mu ju
n+q - j

\Bigr) 
.

The term Fn+q in (2.2) can be easily estimated from above via elementary inequalities.
The first term on the left-hand side of (2.2) can be estimated from below using (G);
this is the motivation for the requirement (A). Which one of the two positivity
conditions, (P1) or (P2), enters into the stability analysis depends on the way we
handle the second term on the left-hand side of (2.2), i.e., An+q. In the standard
approach, we estimate An+q from below at every time level and subsequently sum
over n; then requirement (P1) is crucial; cf., e.g., [7], [1], [4]. Instead, in the approach
proposed here, we sum over n and subsequently estimate the sum Aq + \cdot \cdot \cdot +Am,m \leqslant 
N, from below; in this way, it turns out that the relaxed positivity condition (P2)
suffices. In the latter approach, the positive definiteness of symmetric band Toeplitz
matrices T , of any dimension m \geqslant 2q+1, with entries given in (2.1), plays a key role.

It is well known that the A-stability property (A) for a multiplier for the q-step
BDF method implies

| \mu 1| + \cdot \cdot \cdot + | \mu q| \geqslant cos\vargamma q;

see [21]. In particular, for the six-step BDF method, this means that | \mu 1| +\cdot \cdot \cdot +| \mu 6| \geqslant 
0.9516169. Actually, as we shall see, no Nevanlinna--Odeh multiplier exists for the six-
step BDF method; see Remark 2.1. This was the motivation for our relaxation on the
requirements for multipliers. Fortunately, the relaxed positivity condition (P2) leads
to a positive result.

Proposition 2.3 (a multiplier for the six-step BDF method). The set of num-
bers

(2.4) \mu 1 =
13

9
, \mu 2 =  - 25

36
, \mu 3 =

1

9
, \mu 4 = \mu 5 = \mu 6 = 0

is a multiplier for the six-step BDF method.

Proof. The proof consists of two parts; we first prove the A-stability property (A)
and subsequently the positivity property (P2).

A-stability property (A). The corresponding polynomial \mu is

(2.5)
\mu (\zeta ) = \zeta 3

\bigl( 
\zeta  - 1

2

\bigr) 2\bigl( 
\zeta  - 4

9

\bigr) 
= \zeta 6  - 13

9
\zeta 5 +

25

36
\zeta 4  - 1

9
\zeta 3

=
1

36
\zeta 3(36\zeta 3  - 52\zeta 2 + 25\zeta  - 4).
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SIX-STEP BDF METHOD 2453

We recall the generating polynomial \alpha of the six-step BDF method:

60\alpha (\zeta ) = 147\zeta 6  - 360\zeta 5 + 450\zeta 4  - 400\zeta 3 + 225\zeta 2  - 72\zeta + 10.

First, \alpha (0) = 1/6, \alpha (1/2) =  - 37/3840 and \alpha (4/9) =  - 0.003730423508913, whence
the polynomials \alpha and \mu have no common divisor.

Now \alpha (z)/\mu (z) is holomorphic outside the unit disk in the complex plane, and

lim
| z| \rightarrow \infty 

\alpha (z)

\mu (z)
= \alpha 6 =

147

60
> 0.

Therefore, according to the maximum principle for harmonic functions, the A-stability
property (A) is equivalent to

Re
\alpha (\zeta )

\mu (\zeta )
\geqslant 0 \forall \zeta \in K ,

with K the unit circle in the complex plane, K := \{ \zeta \in \BbbC : | \zeta | = 1\} , i.e., equivalent
to

(2.6) Re
\bigl[ 
\alpha (ei\varphi )\mu (e - i\varphi )

\bigr] 
\geqslant 0 \forall \varphi \in \BbbR .

In view of (2.5), the desired property (2.6) takes the form

(2.7) Re
\bigl[ 
60\alpha (ei\varphi )e - i3\varphi 

\bigl( 
36e - i3\varphi  - 52e - i2\varphi + 25e - i\varphi  - 4

\bigr) \bigr] 
\geqslant 0 \forall \varphi \in \BbbR .

Now it is easily seen that

60\alpha (ei\varphi )e - i3\varphi =
\bigl[ 
157 cos(3\varphi ) - 432 cos(2\varphi ) + 675 cos\varphi  - 400

\bigr] 
+ i

\bigl[ 
137 sin(3\varphi ) - 288 sin(2\varphi ) + 225 sin\varphi 

\bigr] 
.

With x := cos\varphi , recalling the elementary trigonometric identities

cos(2\varphi ) = 2x2  - 1, cos(3\varphi ) = 4x3  - 3x, sin(2\varphi ) = 2x sin\varphi , sin(3\varphi ) = (4x2  - 1) sin\varphi ,

we easily see that

(2.8) 60\alpha (ei\varphi )e - i3\varphi = 4(1 - x)(8 + 59x - 157x2) + i4(137x2  - 144x+ 22) sin\varphi .

Notice that the factor 1  - x in the real part of \alpha (ei\varphi )e - i3\varphi is due to the fact that
\alpha (1) = 0. Similarly,

36e - i3\varphi  - 52e - i2\varphi + 25e - i\varphi  - 4 =
\bigl[ 
36 cos(3\varphi ) - 52 cos(2\varphi ) + 25 cos\varphi  - 4

\bigr] 
 - i

\bigl[ 
36 sin(3\varphi ) - 52 sin(2\varphi ) + 25 sin\varphi 

\bigr] 
and

(2.9)
36e - i3\varphi  - 52e - i2\varphi + 25e - i\varphi  - 4 = (144x3  - 104x2  - 83x+ 48)

 - i(144x2  - 104x - 11) sin\varphi .

In view of (2.8) and (2.9), the desired property (2.7) can be written in the form

(2.10) 4(1 - x)P (x) \geqslant 0 \forall x \in [ - 1, 1]
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Fig. 2.1. The graph of polynomial P/142 of (2.11) in the interval [ - 0.37, 1].

with
P (x) := (8 + 59x - 157x2)(144x3  - 104x2  - 83x+ 48)

+ (1 + x)(137x2  - 144x+ 22)(144x2  - 104x - 11),

i.e.,

(2.11) P (x) = 2(71 + 611x+ 1334x2  - 5150x3 + 4784x4  - 1440x5).

It is now easy to see that P is positive in the interval [ - 1, 1] and thus that
(2.7) is valid. First, the quadratic polynomial 71 + 611x + 1334x2 is positive for all
real x since it does not have real roots. All other terms are positive for negative x,
whence P (x) is positive for negative x. Furthermore, for 0 \leqslant x \leqslant 1, we obviously have
71 + 611x \geqslant 682x2 and can estimate P (x) from below as follows:

P (x) \geqslant 2x2(2016 - 5150x+ 4784x2  - 1440x3)

= 2x2
\bigl[ 
(2016 - 5150x+ 3344x2) + 1440x2(1 - x)

\bigr] 
.

Again, the quadratic polynomial 2016 - 5150x+ 3344x2 is positive for all real x, and
the positivity of P (x) follows. See also Figure 2.1.

Positivity property (P2). Here, we prove the desired positivity property (P2) for
the multiplier (2.4). Actually, since in the stability analysis we will use the value
\varepsilon = 1/32 in (2.1), to avoid repetitions, we shall directly prove that the function in
(P2) for the multiplier (2.4) is bounded from below by 1/32. To this end, we subtract
1/32 from the corresponding expression and shall show that the function g,

(2.12) g(s) :=
31

32
 - 13

9
cos s+

25

36
cos(2s) - 1

9
cos(3s), s \in \BbbR ,

is positive. Now elementary trigonometric identities lead to the following form of g:

g(s) =  - 4

9
cos3 s+

25

18
cos2 s - 10

9
cos s+

79

288
.

Hence, we consider the polynomial p:

(2.13) p(x) :=  - 4

9
x3 +

25

18
x2  - 10

9
x+

79

288
, x \in [ - 1, 1].

It is easily seen that p attains its minimum in [ - 1, 1] at x \star = (25 - 
\surd 
145)/24 and

p(x \star ) = 0.009321552602567 > 0.

Therefore, g is indeed positive; in particular, the desired positivity property (P2) is
satisfied. See also Figure 2.2.
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Fig. 2.2. The graphs of the function g and the polynomial p of (2.12) and (2.13).

2.1. On the conditions (P2) and (P1). We briefly comment on the discrep-
ancy between the positivity conditions (P2) and (P1). Obviously, (P1) implies (P2).

Let Sq \subset \BbbR q denote the region of the points (\mu 1, . . . , \mu q) satisfying the positivity
condition (P2). Since (P1) and (P2) are obviously equivalent for q-tuples (\mu 1, . . . , \mu q)
with only one nonvanishing component, the intersection of Sq with each coordinate
axis is an interval of the form ( - 1, 1).

Let us next focus on the instrumental case of S2, that is, of the intersection
of Sq with the \mu 1\mu 2 plane; i.e., consider the set of points (\mu 1, . . . , \mu q) \in Sq with
\mu 3 = \cdot \cdot \cdot = \mu q = 0. Then the positivity condition reads

(2.14) p(x) := 1 - \mu 1x - \mu 2(2x
2  - 1) > 0, x \in [ - 1, 1].

For \mu 2 = 0, this condition is satisfied if and only if | \mu 1| < 1. For nonvanishing \mu 2, the
derivative of p vanishes at x \star =  - \mu 1/(4\mu 2) and

(2.15) p(x \star ) = 1 + \mu 2 +
1

8

\mu 2
1

\mu 2
.

For positive \mu 2, this is a positive global maximum of p. Therefore, in this case, (2.14)
is satisfied if and only if p( - 1) and p(1) are positive, whence

(2.16) \mu 2 < 1 - | \mu 1| .

For negative \mu 2, the expression in (2.15) is a global minimum of p. Now we distinguish
two subcases. If | \mu 2| \leqslant | \mu 1| /4, then the minimum is attained at a point | x \star | \geqslant 1,
whence (2.16) suffices for (2.14). If, on the other hand, | x \star | < 1, then (2.14) is
satisfied if and only if the expression on the right-hand side of (2.15) is positive, i.e.,

4
\Bigl( 
\mu 2 +

1

2

\Bigr) 2

+
1

2
\mu 2
1 < 1;

that is, (\mu 1, \mu 2) lies in the interior of an ellipse. Summarizing, (2.14) is satisfied if
and only if (\mu 1, \mu 2) lies in the region

S2 =
\Bigl\{ 
(\mu 1, \mu 2) :  - 

| \mu 1| 
4

\leqslant \mu 2 < 1 - | \mu 1| 
\Bigr\} 

\cup 
\Bigl\{ 
(\mu 1, \mu 2) : 4

\Bigl( 
\mu 2 +

1

2

\Bigr) 2

+
1

2
\mu 2
1 < 1 and | \mu 2| >

| \mu 1| 
4

\Bigr\} 
.

Notice that the lines \mu 2 = \pm (1 - \mu 1) are tangent to the ellipse at their intersection
points with the lines \mu 2 = \mp \mu 1/4, respectively, i.e., at the points (\pm 4/3, - 1/3). This
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2456 G. AKRIVIS, M. CHEN, F. YU, AND Z. ZHOU

Fig. 2.3. Illustration of the conditions (P1) and (P2), left and right, respectively, for \mu 3 =
\cdot \cdot \cdot = \mu 6 = 0; cf. (2.17).

is, of course, due to the fact that for these values, the global minimum in (2.15) is
attained at the points x \star = \pm 1. Therefore, the intersection S2 of Sq with the \mu 1\mu 2

plane is the union of two overlapping simple sets, a triangle and an ellipse,

(2.17) S2 =
\Bigl\{ 
(\mu 1, \mu 2) :  - 

1

3
\leqslant \mu 2 < 1 - | \mu 1| 

\Bigr\} 
\cup 
\Bigl\{ 
(\mu 1, \mu 2) : 4

\Bigl( 
\mu 2 +

1

2

\Bigr) 2

+
1

2
\mu 2
1 < 1

\Bigr\} 
;

see Figure 2.3 (right). Notice, in particular, that

(2.18) | \mu 1| <
\surd 
2 and | \mu 2| < 1.

Replacing x by x/2 and by x/3, respectively, in the positivity condition (P2), it
is obvious that the intersection of Sq with the \mu 2\mu 4 plane for q \geqslant 4 and with the \mu 3\mu 6

plane for q = 6, respectively, is of the form (2.17) with (\mu 1, \mu 2) replaced by (\mu 2, \mu 4)
and by (\mu 3, \mu 6), respectively.

2.2. On the construction of multipliers. In this part, we describe some
necessary conditions of multipliers for the six-step BDF method satisfying the A-
stability condition (A) and the relaxed positivity condition (P2). To begin with, we
show that no multiplier with \mu 3 = \cdot \cdot \cdot = \mu 6 = 0 exists.

Proposition 2.4. There is no multiplier for the six-step BDF method with \mu 3 =
\cdot \cdot \cdot = \mu 6 = 0, satisfying (A) and (P2).

Proof. The positivity condition (P2) is satisfied if and only if

1 - \mu 1x - \mu 2(2x
2  - 1) > 0 \forall x \in [ - 1, 1];

see (2.14). The A-stability condition (A) is in this case equivalent to (2.10) with

(2.19)
P (x) = (8 + 59x - 157x2)

\bigl( 
4x3  - \mu 1(2x

2  - 1) - 3x - \mu 2x
\bigr) 

+ (1 + x)(137x2  - 144x+ 22)(4x2  - 2\mu 1x - \mu 2  - 1).

First, the estimate | \mu 1| <
\surd 
2 in (2.18) and the nonnegativity of

P ( - 4/25) =  - 41.65312\mu 2 + 7.86979\mu 1  - 39.13478
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Fig. 2.4. Out of the interior points (\mu 1, \mu 2) of the ellipse, P (0.99), see (2.19), is nonnegative
only in the blue region; in the blue region, \mu 2 \geqslant  - 0.671118740185535. The points A and B are given
in (2.21). The points A and O = (0, 0) are visually not distinguishable.

lead to the estimate

(2.20) \mu 2 <
7.86979

\surd 
2 - 39.13478

41.65312
<  - 0.672343782385853.

On the other hand, for \mu 2 <  - 0.672343782385853, we have | \mu 2| > | \mu 1| /4, and thus
(\mu 1, \mu 2) must lie in the interior of the ellipse in (2.17). Now P (0.99) = a\mu 2 + b\mu 1 + c
with

a =
2086460708677967

35184372088832
, b =

1053766469372221

35184372088832
, c =

9685378027

109951162777600
,

and the intersection points of the line P (0.99) = 0 and the ellipse 4(\mu 2+1/2)2+\mu 2
1/2 =

1 are

(2.21)

\Biggl\{ 
A = (2.941186035762484 \cdot 10 - 6, - 1.08131109678632 \cdot 10 - 12),

B = (1.328818676149621, - 0.671118740185537).

It is easily seen that P (0.99) is nonnegative only in the part of the interior of the
ellipse to the right of the segment AB; cf. Figure 2.4. Therefore, P (0.99) \geqslant 0 implies

\mu 2 \geqslant  - 0.671118740185537.

This together with (2.20) leads to a contradiction; hence, no multiplier of the form
(\mu 1, \mu 2, 0, . . . , 0) exists for the six-step BDF method.

Our next attempt was to seek a multiplier for the six-step BDF method with
\mu 4 = \mu 5 = \mu 6 = 0. In this case, the A-stability condition (A) and the positivity
condition (P2) lead, respectively, to the conditions

(2.22)
P (x) = (8 + 59x - 157x2)

\bigl( 
4x3  - \mu 1(2x

2  - 1) - 3x - \mu 2x - \mu 3

\bigr) 
+ (1 + x)(137x2  - 144x+ 22)(4x2  - 2\mu 1x - \mu 2  - 1) \geqslant 0

for all x \in [ - 1, 1] and

(2.23) g(x) := 1 - \mu 1 cosx - \mu 2 cos(2x) - \mu 3 cos(3x) > 0 \forall x \in \BbbR .

Necessary conditions for (2.22) and (2.23) could be derived by evaluating P and
g at certain points. For instance, we claim the following necessary condition, which
helps us to construct multipliers.
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Proposition 2.5. If (\mu 1, \mu 2, \mu 3, 0, 0, 0) is a multiplier of the six-step BDF method,
then there holds

0.41990729 < \mu 1 <
\surd 
3,  - 1 < \mu 2 <  - 0.58852878, 0 < \mu 3 < 1, | \mu 1| + | \mu 2| + | \mu 3| > 1.

Proof. First, | \mu 2| < 1 follows immediately from the positivity of g(\pi /2) and of
g(0) and g(\pi ). Furthermore,

2g(2\pi /3) + g(0) = 3(1 - \mu 3) and 2g(\pi /3) + g(\pi ) = 3(1 + \mu 3),

whence | \mu 3| < 1. In view of

g(\pi /6) =
1

2

\bigl( 
 - 
\surd 
3\mu 1  - \mu 2 + 2

\bigr) 
and g(5\pi /6) =

1

2

\bigl( \surd 
3\mu 1  - \mu 2 + 2

\bigr) 
,

we have
\surd 
3| \mu 1| < 2 - \mu 2 and, in combination with \mu 2 >  - 1, infer that | \mu 1| <

\surd 
3.

Up to this point, we did not use the nonnegativity of P . Now we check P (0) \geqslant 0,
i.e.,

P (0) = 2
\bigl[ 
4(\mu 1  - \mu 3) - 11(1 + \mu 2)

\bigr] 
\geqslant 0.

Since 1 + \mu 2 > 0, we infer that \mu 3 < \mu 1. Furthermore, since \mu 1 <
\surd 
3 and | \mu 3| < 1,

11\mu 2 < 4
\bigl( \surd 

3 + 1
\bigr) 
 - 11 <  - 0.07179, whence \mu 2 <  - 0.65263636 \cdot 10 - 2.

Meanwhile, since 274/625 + 1154\mu 2/25 < 0, the nonnegativity of

P (0.8) =
274

625
+

1154

25
\mu 2 +

3572

125
\mu 1 +

1132

25
\mu 3

yields 3572\mu 1/125 + 1132\mu 3/25 > 0, which together with \mu 3 < \mu 1 leads to

3572

125
\mu 1 +

1132

25
\mu 1 >

3572

125
\mu 1 +

1132

25
\mu 3 > 0,

i.e., \mu 1 > 0. Therefore, we arrive at

0 < \mu 1 <
\surd 
3,  - 1 < \mu 2 <  - 0.65263636 \cdot 10 - 2 and 0 < | \mu 3| < 1.

Next, we prove \mu 3 > 0 by contradiction. If \mu 3 \leqslant 0, then the positivity of g(\pi /4)
yields

g(\pi /4) = 1 - 
\surd 
2

2
(\mu 1  - \mu 3) > 0 =\Rightarrow \mu 1 <

\surd 
2.

This and the nonnegativity of P ( - 4/25) imply \mu 2 <  - 0.672. Then we can derive a
lower bound \mu 1 > 1.3426 by examining P (0.999) \geqslant 0. However, with \mu 1 > 1.3426,
\mu 2 <  - 0.672, and \mu 3 \leqslant 0, it is easy to observe that

2g(\pi /3) =  - \mu 1 + \mu 2 + 2\mu 3 + 2 \leqslant  - 1.3426 - 0.672 + 2 <  - 0.0146,

which violates the positivity condition (2.23). Therefore, we conclude that \mu 3 > 0.
Moreover, from \mu 1 <

\surd 
3, \mu 3 > 0 and the nonnegativity of

P ( - 66/625) = 7.33518936\mu 1  - 34.64182239\mu 2  - 0.01883648\mu 3  - 33.09263039,

D
ow

nl
oa

de
d 

09
/2

1/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIX-STEP BDF METHOD 2459

Table 2.1
Multipliers for the six-step BDF method; see also (2.4).

\mu 1 \mu 2 \mu 3 \mu 4 \mu 5 \mu 6

1.6  - 0.92 0.3 0 0 0
0.8235  - 0.855 0.38 0 0 0
1.67  - 1 0.4  - 0.1 0 0
0.8  - 0.7 0.2 0.1 0 0

1.118  - 1 0.6  - 0.2 0.2 0
0.6708  - 0.2  - 0.2 0.6  - 0.2 0
0.735  - 0.2  - 0.4 0.8  - 0.4 0.2

we infer that

\mu 2 <
7.33518936

\surd 
3 - 33.09263039

34.64182239
<  - 0.58852878.

Then the nonnegativity of P (27/125) yields \mu 1 > 0.41990729. Thus, we arrive at

0.41990729 < \mu 1 <
\surd 
3,  - 1 < \mu 2 <  - 0.58852878, and 0 < \mu 3 < 1.

Finally, the property | \mu 1| + | \mu 2| + | \mu 3| > 1 is a special case of the more general
result of the next remark.

Remark 2.1 (nonexistence of Nevanlinna--Odeh multipliers for the six-step BDF
method). The multiplier (2.4) is not unique. In general, the A-stability condition
(A) and the positivity condition (P2) lead to the conditions

P (x) = ( - 80x5 + 208x4  - 122x3  - 82x2 + 98x - 22)

+ (40x4  - 104x3 + 71x2 + 15x+ 8)\mu 1

+ (20x3  - 52x2 + 114x - 22)\mu 2  - (8 + 59x - 157x2)\mu 3

+ (294x3  - 66x2  - 130x+ 22)\mu 4 + (588x4  - 132x3  - 417x2 + 103x+ 8)\mu 5

+ (1176x5  - 264x4  - 1128x3 + 272x2 + 146x - 22)\mu 6 \geqslant 0

and

p(x) = 1 - x\mu 1  - (2x2  - 1)\mu 2  - (4x3  - 3x)\mu 3  - (8x4  - 8x2 + 1)\mu 4

 - (16x5  - 20x3 + 5x)\mu 5  - (32x6  - 48x4 + 18x2  - 1)\mu 6 > 0,

respectively, for all x \in [ - 1, 1]. In Table 2.1, we list several multipliers satisfying
these conditions.

Furthermore, evaluating P at x = 3/40, we have

P
\Bigl( 3

40

\Bigr) 
<  - 15.1563 + 13.7341

6\sum 
i=1

| \mu i| .

Assuming | \mu 1| + \cdot \cdot \cdot + | \mu 6| \leqslant 1, we observe that

P
\Bigl( 3

40

\Bigr) 
<  - 1.4222 < 0

and infer that no Nevanlinna--Odeh multiplier exists for the six-step BDF method.
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3. Stability. In this section, we establish two stability estimates for the six-
step BDF method (1.3) by the energy technique which are discrete analogues of the
standard stability estimates for the continuous problem (1.1) that are obtained by the
energy technique when testing by u and u\prime , respectively; namely,

(3.1) | u(t)| 2 +
\int t

0

\| u(s)\| 2 ds \leqslant | u0| 2 +
\int t

0

\| f(s)\| 2 \star ds, 0 < t \leqslant T,

and

(3.2) \| u(t)\| 2 +
\int t

0

| u\prime (s)| 2 ds \leqslant \| u0\| 2 +
\int t

0

| f(s)| 2 ds, 0 < t \leqslant T.

The second stability result for the six-step BDF method is new, while the first is well
known; the novelty in the first case lies in the simplicity of the proof. The analogue of
the second stability estimate played a key role in the analysis of fully discrete methods
for mean curvature flow of closed surfaces in [17] and for the Landau--Lifshitz--Gilbert
equation in [3], where linearly implicit variants of BDF methods up to order 5 are
used for the discretization in time. Proofs of the first stability estimate for the six-
step BDF method by other stability techniques are significantly more involved. For a
proof by a spectral technique in the case of self-adjoint operators, we refer the reader
to [24, chapter 10]; for a proof in the general case, under a sharp condition on the
non--self-adjointness of the operator as well as for nonlinear parabolic equations, by
a combination of spectral and Fourier techniques, see, e.g., [2] and references therein.
For a long-time estimate in the case of self-adjoint operators and an application to
the Stokes--Darcy problem, see [18]. We also extend the first stability estimate to the
case of nonautonomous equations.

For simplicity, we denote by \langle \cdot , \cdot \rangle the inner product on V, \langle v, w\rangle := (A1/2v,A1/2w).
Before we proceed, for the reader's convenience, we recall the notion of the gen-

erating function of an n \times n Toeplitz matrix Tn as well as an auxiliary result, the
Grenander--Szeg\H o theorem, which plays a key role in our analysis.

Definition 3.1 ([10, p. 13]; the generating function of a Toeplitz matrix). Con-
sider the n\times n Toeplitz matrix

Tn = (tij)i,j=1,...,n \in \BbbC n,n

with diagonal entries t0, subdiagonal entries t1, superdiagonal entries t - 1, and so
on and (n, 1) and (1, n) entries tn - 1 and t1 - n, respectively; i.e., the entries tij =
ti - j , i, j = 1, . . . , n, are constant along the diagonals of Tn. Let t - n+1, . . . , tn - 1 be the
Fourier coefficients of the trigonometric polynomial g of degree less than or equal to
n - 1, i.e.,

tk =
1

2\pi 

\int \pi 

 - \pi 

g(x)e - ikx dx, k = 1 - n, . . . , n - 1.

Then g(x) =
\sum n - 1

k=1 - n tke
ikx is called the generating function of Tn.

If the generating function g is real-valued, then the matrix Tn is Hermitian; if g
is real-valued and even, then Tn is symmetric.

Lemma 3.2 ([10, pp. 13--14]; the Grenander--Szeg\H o theorem). Let Tn be a sym-
metric Toeplitz matrix as in Definition 3.1 with generating function g. Then the small-
est and largest eigenvalues \lambda min(Tn) and \lambda max(Tn), respectively, of Tn are bounded as

gmin \leqslant \lambda min(Tn) \leqslant \lambda max(Tn) \leqslant gmax,
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with gmin and gmax the minimum and maximum of g, respectively. In particular, if
gmin is positive, then the symmetric matrix Tn is positive definite.1

Notice, in particular, that the generating function of a symmetric band Toeplitz
matrix Tn of bandwidth 2m + 1, i.e., with tm+1 = \cdot \cdot \cdot = tn - 1 = 0, is a real-valued,
even trigonometric polynomial of degree m, g(x) = t0 +2t1 cosx+ \cdot \cdot \cdot +2tm cos(mx),
for all n \geqslant m+ 1.

In the proofs of the stability Theorems 3.3 and 3.5, we shall use the fact that
the positive function g of (2.12) is the generating function of seven-diagonal, m =
3, symmetric Toeplitz matrices. According to the Grenander--Szeg\H o theorem, these
matrices are positive definite; this is the point where the positivity property (P2) for
the multiplier (2.4) of the six-step BDF method will play a crucial role.

3.1. First stability estimate. Here we establish a discrete analogue of the
stability estimate (3.1) for the six-step BDF method by the energy technique.

Theorem 3.3 (stability of the six-step BDF method). Let u0, u1, . . . , u5 \in V .
The six-step BDF method (1.3) is stable in the sense that

(3.3) | un| 2 + \tau 

n\sum 
\ell =6

\| u\ell \| 2 \leqslant C

5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
+ C\tau 

n\sum 
\ell =6

\| f \ell \| 2 \star , n = 6, . . . , N.

Here C denotes a generic constant depending only on the numerical method, i.e.,
independent of T and the operator A as well as of f, \tau , and n.

Proof. Taking in (1.3) the inner product with un+6  - 13
9 un+5 + 25

36u
n+4  - 1

9u
n+3

(cf. (2.2) and (2.4)), we have

(3.4)
\Bigl( 6\sum 

i=0

\alpha iu
n+i, un+6  - 

3\sum 
j=1

\mu ju
n+6 - j

\Bigr) 
+ \tau An+6 = \tau Fn+6

with

An+6 :=
\Bigl\langle 
un+6, un+6 - 

3\sum 
j=1

\mu ju
n+6 - j

\Bigr\rangle 
and Fn+6 :=

\Bigl( 
fn+6, un+6 - 

3\sum 
j=1

\mu ju
n+6 - j

\Bigr) 
;

cf. (2.3).
With the notation \scrU n := (un - 5, un - 4, un - 3, un - 2, un - 1, un)\top and the norm | \scrU n| G

given by

| \scrU n| 2G =

6\sum 
i,j=1

gij
\bigl( 
un - 6+i, un - 6+j

\bigr) 
,

using (G), we have

(3.5)
\Bigl( 6\sum 

i=0

\alpha iu
n+i, un+6  - 

3\sum 
j=1

\mu ju
n+6 - j

\Bigr) 
\geqslant | \scrU n+6| 2G  - | \scrU n+5| 2G.

1For real-valued g and z = (z0, . . . , zn - 1)\top \in \BbbC n, we have (Tnz, z) =
1
2\pi 

\int \pi 
 - \pi g(x)| 

\sum n - 1
k=0 zke

ikx| 2 dx and (z, z) = 1
2\pi 

\int \pi 
 - \pi | 

\sum n - 1
k=0 zke

ikx| 2 dx, and the result is evi-
dent.
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Thus, (3.4) yields

(3.6) | \scrU n+6| 2G  - | \scrU n+5| 2G + \tau An+6 \leqslant \tau Fn+6.

Summing in (3.6) from n = 0 to n = m - 6, we obtain

(3.7) | \scrU m| 2G  - | \scrU 5| 2G + \tau 

m\sum 
n=6

An \leqslant \tau 

m\sum 
n=6

Fn.

The sum on the right-hand side can be easily estimated by the generalized Cauchy--
Schwarz inequality and the arithmetic--geometric mean inequality with a suitable
weight. We next focus on the estimation of the sum A6 + \cdot \cdot \cdot + Am from below; we
have

(3.8)

m\sum 
n=6

An =

m\sum 
n=6

\Bigl\langle 
un, un  - 

3\sum 
j=1

\mu ju
n - j

\Bigr\rangle 
.

First, motivated by the positivity of the function g of (2.12), to take advantage of the
positivity property (P2), we introduce the notation \mu 0 :=  - 31/32 and rewrite (3.8)
as

(3.9)

m\sum 
n=6

An =
1

32

m\sum 
n=6

\| un\| 2 + Jm with Jm :=  - 
3\sum 

j=0

\mu j

m - 5\sum 
i=1

\langle u5+i, u5+i - j\rangle .

Our next task is to rewrite Jm in a form that will enable us to estimate it from
below in a desired way. To this end, we introduce the lower triangular Toeplitz matrix
L = (\ell ij) \in \BbbR m - 5,m - 5 with entries

\ell i,i - j =  - \mu j , j = 0, 1, 2, 3, i = j + 1, . . . ,m - 5,

and all other entries equal zero. With this notation, we have

m - 5\sum 
i,j=1

\ell ij\langle u5+i, u5+j\rangle =  - 
3\sum 

j=0

\mu j

m - 5\sum 
i=j+1

\langle u5+i, u5+i - j\rangle ,

i.e.,

(3.10)

m - 5\sum 
i,j=1

\ell ij\langle u5+i, u5+j\rangle = Jm + \langle u6, \mu 1u
5 + \mu 2u

4 + \mu 3u
3\rangle 

+ \langle u7, \mu 2u
5+\mu 3u

4\rangle + \langle u8, \mu 3u
5\rangle .

At this point, we shall use the positivity property (P2) to show that the term on
the left-hand side of (3.10) is nonnegative and then obtain a suitable lower bound for
Jm. Indeed, the symmetric part

Ls := (L+ L\top )/2

of the matrix L is a symmetric seven-diagonal Toeplitz matrix, and its generating
function g (see (2.12)) is positive. Hence, according to the Grenander--Szeg\H o theorem
(see Lemma 3.2), the Toeplitz matrix Ls is positive definite. Consequently, since

(Lx, x) = (Lsx, x) \forall x \in \BbbR m - 5,
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the matrix L is also positive definite. Therefore, the expression on the left-hand side
of (3.10) is nonnegative; thus, (3.10) yields the desired estimate for Jm from below,
i.e.,

(3.11) Jm \geqslant  - \langle u6, \mu 1u
5 + \mu 2u

4 + \mu 3u
3\rangle  - \langle u7, \mu 2u

5+\mu 3u
4\rangle  - \langle u8, \mu 3u

5\rangle .

From (3.7), (3.9), and (3.11), we obtain

(3.12)
| \scrU m| 2G +

1

32
\tau 

m\sum 
n=6

\| un\| 2 \leqslant | \scrU 5| 2G + \tau 

m\sum 
n=6

Fn + \tau \langle u6, \mu 1u
5 + \mu 2u

4 + \mu 3u
3\rangle 

+ \tau \langle u7, \mu 2u
5 + \mu 3u

4\rangle + \tau \langle u8, \mu 3u
5\rangle .

Now, with c1 and c2 the smallest and largest eigenvalues of the matrix G, we have

(3.13) | \scrU m| 2G \geqslant c1| um| 2 and | \scrU 5| 2G \leqslant c2

5\sum 
j=0

| uj | 2.

Furthermore, the terms involving the forcing term or the starting approximations can
be estimated by elementary inequalities in the form

(3.14) Fn \leqslant 
1

4\varepsilon 1

\Bigl( 
1 +

3\sum 
j=1

| \mu j | 
\Bigr) 
\| fn\| 2 \star + \varepsilon 1

\Bigl( 
\| un\| 2 +

3\sum 
j=1

| \mu j | \| un - j\| 2
\Bigr) 

and

(3.15) | \langle ui, uj\rangle | \leqslant \varepsilon 2\| ui\| 2 + 1

4\varepsilon 2
\| uj\| 2, i = 6, 7, 8, j = 3, 4, 5,

with sufficiently small \varepsilon 1 and \varepsilon 2. Inserting (3.13), (3.14), and (3.15) into (3.12), we
easily obtain the desired stability estimate (3.3).

Remark 3.1. Let us also note that, due to the fact that \mu 4 = \mu 5 = \mu 6 = 0, the
terms \| u2\| 2, \| u1\| 2, and \| u0\| 2 are actually not needed on the right-hand side of (3.3).
In other words, it suffices to assume that u0, u1, u2 \in H and u3, u4, u5 \in V.

Proposition 3.4 (error estimate). Assume that the solution u of (1.1) is suf-
ficiently smooth and that the starting approximations u0, u1, . . . , u5 \in V to u(t0), . . . ,
u(t5) are such that

(3.16) max
0\leqslant j\leqslant 5

\Bigl( 
| u(tj) - uj | + \tau 1/2\| u(tj) - uj\| 

\Bigr) 
\leqslant C\tau 6.

Then we have the error estimate

(3.17) max
0\leqslant n\leqslant N

| u(tn) - un| \leqslant C\tau 6

with a constant C independent of \tau .

Proof. Let d\ell denote the consistency error of the six-step BDF method (1.3) (with
q = 6) for the initial value problem (1.1), i.e., the amount by which the exact solution
u of (1.1) misses satisfying the numerical method:

(3.18) \tau dn+6 =

6\sum 
i=0

\alpha iu(t
n+i) + \tau Au(tn+6) - \tau fn+6, n = 0, . . . , N  - 6.
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In view of the differential equation in (1.1), we can write (3.18) in the form

\tau dn+6 =

6\sum 
i=0

\alpha iu(t
n+i) - \tau u\prime (tn+6), n = 0, . . . , N  - 6.

The order of the six-step method is 6, i.e.,

(3.19)

q\sum 
i=0

i\ell \alpha i = \ell 6\ell  - 1, \ell = 0, 1, . . . , 6.

Now, by Taylor expanding about tn and using the order conditions (3.19), we obtain

\tau dn+6 =
1

6!

\Biggl[ 
6\sum 

i=0

\alpha i

\int tn+i

tn
(tn+i  - s)6u(7)(s) ds - 6\tau 

\int tn+6

tn
(tn+6  - s)5u(7)(s) ds

\Biggr] 
,

n = 0, . . . , N  - 6. Thus, under obvious regularity requirements, we obtain the desired
optimal order consistency estimate

(3.20) max
6\leqslant \ell \leqslant N

\| d\ell \|  \star \leqslant C\tau 6.

Subtracting the six-step BDF method (1.3) from (3.18), we obtain the error equa-
tion

(3.21)

6\sum 
i=0

\alpha ie
n+i + \tau Aen+q = \tau dn+q, n = 0, . . . , N  - 6,

for the error e\ell := u(t\ell ) - u\ell , \ell = 0, . . . , N.
The stability estimate (3.3), for the error equation (3.21), in combination with the

consistency estimate (3.20) and our assumption (3.16) on the starting approximations,
leads to the claimed error estimate (3.17).

3.2. Second stability estimate. Here we establish a discrete analogue of the
stability estimate (3.2) for the six-step BDF method by the energy technique. Stability
estimates of this form for BDF methods of order up to 5 are derived in [17, 3] via
Nevanlinna--Odeh multipliers; these estimates played a key role in the analyses in
[17, 3].

For simplicity of notation, we indicate by a dot the application of the six-step
backward difference operator to a sequence v0, . . . , vN ,

(3.22) \.vn+6 :=
1

\tau 

6\sum 
i=0

\alpha iv
n+i, n = 0, . . . , N  - 6,

and write the six-step BDF method (1.3), with q = 6, in the form

(3.23) \.un +Aun = fn, n = 6, . . . , N.

Theorem 3.5 (stability of the six-step BDF method). Let u0, u1, . . . , u5 \in V .
The six-step BDF method (3.23) is stable in the sense that

(3.24) \| un\| 2 + \tau 

n\sum 
\ell =6

| \.u\ell | 2 \leqslant C

5\sum 
j=0

\| uj\| 2 + C\tau 

n\sum 
\ell =6

| f \ell | 2, n = 6, . . . , N.

Here C denotes a generic constant depending only on the numerical method, i.e.,
independent of T and the operator A as well as of f, \tau , and n.

D
ow

nl
oa

de
d 

09
/2

1/
22

 to
 1

58
.1

32
.1

61
.6

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIX-STEP BDF METHOD 2465

Proof. For n \geqslant 9, to take advantage of the properties of the multiplier (2.4), we
consider method (3.23) with n replaced by n  - j, multiply it by \mu j , j = 1, 2, 3, and
subtract the resulting relations from (3.23) to obtain

(3.25) \.un  - 
3\sum 

j=1

\mu j \.u
n - j +A

\Bigl( 
un  - 

3\sum 
j=1

\mu ju
n - j

\Bigr) 
= fn  - 

3\sum 
j=1

\mu jf
n - j , n = 9, . . . , N.

Taking in (3.25) the inner product with \.un, we obtain

(3.26) In +
\Bigl\langle 
\.un, un  - 

3\sum 
j=1

\mu ju
n - j

\Bigr\rangle 
= \widetilde Fn, n = 9, . . . , N,

with

In :=
\Bigl( 
\.un, \.un  - 

3\sum 
j=1

\mu j \.u
n - j

\Bigr) 
and \widetilde Fn :=

\Bigl( 
fn  - 

3\sum 
j=1

\mu jf
n - j , \.un

\Bigr) 
.

With the notation \scrU n := (un - 5, un - 4, un - 3, un - 2, un - 1, un)\top and the norm \| \scrU n\| G
given by

\| \scrU n\| 2G =

6\sum 
i,j=1

gij\langle un - 6+i, un - 6+j\rangle ,

using (G), in view of (3.22), we have

\tau 
\Bigl\langle 
\.un, un  - 

3\sum 
j=1

\mu ju
n - j

\Bigr\rangle 
\geqslant \| \scrU n\| 2G  - \| \scrU n - 1\| 2G;

cf. (3.5).
Therefore, (3.26) yields

(3.27) \| \scrU n\| 2G  - \| \scrU n - 1\| 2G + \tau In \leqslant \tau \widetilde Fn.

Summing up in (3.27) from n = 9 to n = m \leqslant N , we obtain

\| \scrU m\| 2G  - \| \scrU 8\| 2G + \tau 

m\sum 
n=9

In \leqslant \tau 

m\sum 
n=9

\widetilde Fn.

Proceeding as in the proof of Theorem 3.3, we arrive at the estimate

(3.28)
\| \scrU m\| 2G +

1

32
\tau 

m\sum 
n=9

| \.un| 2 \leqslant \| \scrU 8\| 2G + \tau 

m\sum 
n=9

\widetilde Fn + \tau ( \.u9, \mu 1 \.u
8 + \mu 2 \.u

7 + \mu 3 \.u
6)

+ \tau ( \.u10, \mu 2 \.u
8 + \mu 3 \.u

7) + \tau ( \.u11, \mu 3 \.u
8),

m = 9, . . . , N. Notice that the differences in the upper indices in the last three terms
on the right-hand sides of (3.12) and (3.28) are due to the fact that the summation
in (3.12) and (3.28) starts at n = 6 and n = 9, respectively.

Now, with c1 and c2 the smallest and largest eigenvalues of the matrix G, we have

(3.29) \| \scrU m\| 2G \geqslant c1\| um\| 2 and \| \scrU 8\| 2G \leqslant c2

8\sum 
j=3

\| uj\| 2.
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Furthermore, the terms involving the forcing term or the starting approximations can
be estimated by elementary inequalities in the form

(3.30) \widetilde Fn \leqslant 
1

4\varepsilon 1

\Bigl( 
| fn| 2 +

3\sum 
j=1

| \mu j | | fn - j | 2
\Bigr) 
+ \varepsilon 1

\Bigl( 
1 +

3\sum 
j=1

| \mu j | 
\Bigr) 
| \.un| 2

and

(3.31) | ( \.ui, \.uj)| \leqslant \varepsilon 2| \.ui| 2 + 1

4\varepsilon 2
| \.uj | 2, i = 9, 10, 11, j = 6, 7, 8,

with sufficiently small \varepsilon 1 and \varepsilon 2. Inserting (3.29), (3.30), and (3.31) into (3.28), we
easily obtain

\| um\| 2 + \tau 

m\sum 
\ell =6

| \.u\ell | 2 \leqslant C

8\sum 
j=3

\| uj\| 2 + C\tau 

8\sum 
j=6

| \.uj | 2 + C\tau 

m\sum 
\ell =6

| f \ell | 2, m = 9, . . . , N.

To complete the proof of the desired stability estimate (3.24), it remains to show
that

(3.32) \| um\| 2 + \tau | \.um| 2 \leqslant c

5\sum 
j=0

\| uj\| 2 + c\tau 

m\sum 
\ell =6

| f \ell | 2, m = 6, 7, 8.

This can be done via elementary inequalities; cf. [3, Appendix]. Testing (3.23) for
n = 6 by \.u6, we have

| \.u6| 2 + \alpha 6

\tau 
\| u6\| 2 =  - 1

\tau 

5\sum 
i=0

\alpha i\langle u6, ui\rangle + (f6, \.u6).

Estimating the terms on the right-hand side in the form | \langle u6, ui\rangle | \leqslant \varepsilon \prime \| u6\| 2 +
\| ui\| 2/(4\varepsilon \prime ) with sufficiently small \varepsilon \prime and 2(f6, \.u6) \leqslant | f6| 2 + | \.u6| 2, we easily obtain
(3.32) for m = 6. Then, using (3.32) for m = 6, we similarly obtain the desired result
for m = 7 and subsequently also for m = 8.

Remark 3.2 (error estimate). The stability estimate (3.24) applied to the error
equation (3.21), in combination with the analogue of the consistency estimate (3.20)
in the H-norm | \cdot | , leads to the optimal order error estimate

max
6\leqslant n\leqslant N

\| u(tn) - un\| \leqslant C\tau 6

with a constant C independent of \tau , provided that the errors of the starting values
u0, . . . , u5 also satisfy such an estimate; cf. Proposition 3.4.

3.3. Nonautonomous equations. In this section, we use the stability result
of Theorem 3.3 to establish stability of the six-step BDF method for nonautonomous
equations.

We consider the initial value problem, for simplicity for a homogeneous equation,

(3.33)

\Biggl\{ 
u\prime (t) +A(t)u(t) = 0, 0 < t < T,

u(0) = u0,

with positive definite self-adjoint operators A(t) : V \rightarrow V \prime , t \in [0, T ].
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For concreteness, we define the norm on V in terms of A(0), i.e., \| v\| := | A(0)1/2v| .
Our structural assumptions are that all operators A(t), t \in [0, T ], share the same
domain and produce equivalent norms on V,

(3.34) | A(t)1/2v| \leqslant c| A(\~t)1/2v| \forall t, \~t \in [0, T ] \forall v \in V,

and that A(t) : V \rightarrow V \prime is of bounded variation with respect to t,

(3.35) | A(s) - 1/2
\bigl( 
A(t) - A(\~t)

\bigr) 
v| \leqslant [\sigma (t) - \sigma (\~t)]| A(s)1/2v| , 0 \leqslant \~t \leqslant t \leqslant T \forall v \in V,

for every s \in [0, T ], with an increasing function \sigma : [0, T ] \rightarrow \BbbR .
Clearly, c \geqslant 1 in (3.34), and the analogue of (3.34) holds true also for the dual

norms | A(t) - 1/2 \cdot | with the same constant c. Let us also note that (3.35) takes the
form

\| 
\bigl( 
A(t) - A(\~t)

\bigr) 
v\|  \star \leqslant [\sigma (t) - \sigma (\~t)]\| v\| , 0 \leqslant \~t \leqslant t \leqslant T \forall v \in V

for s = 0. Furthermore, if (3.35) is valid for a fixed s \in [0, T ], then, in view of (3.34),
it is valid for any s \in [0, T ] with the right-hand side, that is, with \sigma , multiplied by c2.

Now the six-step BDF method for the initial value problem (3.33) is

(3.36)

6\sum 
i=0

\alpha iu
n+i + \tau A(tn+6)un+6 = 0, n = 0, . . . , N  - 6,

assuming that starting approximations u0, . . . , u5 \in V are given. The next theorem
provides a stability estimate of the scheme (3.36).

Theorem 3.6 (stability of the six-step BDF method for nonautonomous equa-
tions). Let u0, u1, . . . , u5 \in V . Assume that the time-dependent, positive definite
self-adjoint operators A(t) : V \rightarrow V \prime , t \in [0, T ], satisfy the conditions (3.34) and
(3.35). Then the six-step BDF method (3.36) is stable in the sense that

(3.37) | un| 2 + \tau 

n\sum 
\ell =6

\| u\ell \| 2 \leqslant \widetilde C 5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
, n = 6, . . . , N.

Here, \widetilde C is a constant independent of s,A(t), \tau , and n that depends exponentially on
T .

Proof. Let us fix an 6 \leqslant m \leqslant N. From (3.36), we obtain

6\sum 
i=0

\alpha iu
n+i + \tau A(tm)un+6 = \tau 

\bigl[ 
A(tm) - A(tn+6)

\bigr] 
un+6, n = 0, . . . ,m - 6.

Since the time t is frozen at tm in the operator A(tm) on the left-hand side, we
can apply the already-established stability estimate (3.3), for the time-independent
operator A := A(tm), with perturbation terms f \ell := [A(tm) - A(t\ell )]u\ell and obtain

(3.38) | um| 2 + \tau 

m\sum 
\ell =6

| A(tm)1/2u\ell | 2 \leqslant C

5\sum 
j=0

\bigl( 
| uj | 2 + \tau | A(tm)1/2uj | 2

\bigr) 
+ CMm

with a constant C independent of \tau and m and

Mm := \tau 

m\sum 
\ell =6

| A(tm) - 1/2[A(tm) - A(t\ell )]u\ell | 2.
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Using (3.34) and its analogue for the dual norms, we infer from (3.38) that

(3.39) | um| 2 + \tau 

m\sum 
\ell =6

\| u\ell \| 2 \leqslant C1

5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
+ C1M

m

with the constant C1 := c4C. Now, with

E\ell := \tau 

\ell \sum 
j=6

\| uj\| 2, \ell = 6, . . . ,m, E5 := 0,

estimate (3.39) yields

(3.40) Em \leqslant C1

5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
+ C1M

m.

Furthermore, in view of the bounded variation condition (3.35),

Mm \leqslant \tau 

m - 1\sum 
\ell =6

\bigl[ 
\sigma (tm) - \sigma (t\ell )

\bigr] 2\| u\ell \| 2 =

m - 1\sum 
\ell =6

\bigl[ 
\sigma (tm) - \sigma (t\ell )

\bigr] 2
(E\ell  - E\ell  - 1),

whence, by summation by parts, we have

(3.41) Mm \leqslant 
m - 1\sum 
\ell =6

a\ell E
\ell ,

with a\ell :=
\bigl[ 
\sigma (tm) - \sigma (t\ell )

\bigr] 2  - \bigl[ 
\sigma (tm) - \sigma (t\ell +1)

\bigr] 2
\geqslant 0, and (3.40) yields

(3.42) Em \leqslant C1

5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
+ C1

m - 1\sum 
\ell =6

a\ell E
\ell .

Note that the sum
\sum m - 1

\ell =6 a\ell is uniformly bounded by a constant independent of m
and the time step \tau :

m - 1\sum 
\ell =6

a\ell =
\bigl[ 
\sigma (tm) - \sigma (t6)

\bigr] 2
\leqslant 

\bigl[ 
\sigma (T ) - \sigma (0)

\bigr] 2
.

Therefore, a discrete Gronwall-type argument applied to (3.42) leads to

(3.43) Em \leqslant C2

5\sum 
j=0

\bigl( 
| uj | 2 + \tau \| uj\| 2

\bigr) 
.

Combining (3.39) with (3.41) and (3.43), we obtain the desired stability estimate
(3.37) for the case of nonautonomous equations.

4. Numerical results. We applied three time-stepping methods, the six-step
BDF method, and two popular Runge--Kutta methods, namely, the three-stage (fifth-
order) Radau IIA and (sixth-order) Gauss methods, to initial and boundary value
problems for the equation

(4.1) ut  - \Delta u+ u = f in \Omega \times [0, T ],
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with \Omega = ( - 1, 1)2 and T = 1, subject to periodic and to Dirichlet boundary condi-
tions, respectively. In both cases, in space, we discretized by the spectral collocation
method with the Chebyshev--Gauss--Lobatto points.

For the reader's convenience, we present the Butcher tableaus of the three-stage
Radau IIA and Gauss methods, respectively:

(4.2)

88 - 7
\surd 
6

360
296 - 169

\surd 
6

1800
 - 2+3

\surd 
6

225
4 - 

\surd 
6

10
296+169

\surd 
6

1800
88+7

\surd 
6

360
 - 2 - 3

\surd 
6

225
4+

\surd 
6

10
16 - 

\surd 
6

36
16+

\surd 
6

36
1
9 1

16 - 
\surd 
6

36
16+

\surd 
6

36
1
9

=:
\scrO \iota c

b\top 

and

(4.3)

5
36

2
9 - 

\surd 
15
15

5
36 - 

\surd 
15
30

1
2 - 

\surd 
15
10

5
36+

\surd 
15
24

2
9

5
36 - 

\surd 
15
24

1
2

5
36+

\surd 
15
30

2
9+

\surd 
15
15

5
36

1
2+

\surd 
15
10

5
18

4
9

5
18

=:
\scrO \iota c

b\top 
.

Let us also briefly recall some well-known facts about Radau IIA and Gauss
methods; for details, we refer the reader to [13]. Both classes of methods are of
collocation type; i.e., the stage order of their q-stage members is q. The order p of
the q-stage Radau IIA and Gauss methods is p = 2q  - 1 and p = 2q, respectively;
the weights b1, . . . , bq are positive; and the q \times q symmetric matrices M with entries
mij := biaij + bjaji  - bibj , i, j = 1, . . . , q, are positive semidefinite; actually, in the
case of the Gauss methods, M = 0. In particular, the methods are algebraically stable
and thus also A- and B-stable. The stability functions r,

r(z) := 1 + zb\top (I  - z\scrO \iota ) - 1
1 with 1 := (1, . . . , 1)\top \in \BbbR q,

vanish at infinity in the case of the Radau IIA methods, r(\infty ) = 1  - bT\scrO \iota  - 1
1 = 0,

whence these methods are strongly A-stable, while in the case of the q-stage Gauss
method, we have r(\infty ) = ( - 1)q. The first members of the Radau IIA and Gauss
families, respectively, for q = 1, are the implicit Euler and the implicit midpoint (or
Crank--Nicolson) methods. Note that the computational cost of implicit Runge--Kutta
methods increases fast with the stage number; we refer the reader to [9, 15, 14] and
the references therein for efficient implementations.

We numerically verified the theoretical results including convergence orders in
the discrete L2-norm. We express the space discrete approximation un

I in terms of its
values at Chebyshev--Gauss--Lobatto points:

un
I (x, y) =

Nx\sum 
i=0

Ny\sum 
j=0

un
ij\ell i(x)\ell j(y), \ell i(x) =

Nx\prod 
j=0
j \not =i

x - xj

xi  - xj
,

where un
ij := un

I (xi, yj) at the mesh points (xi, yj). Here,  - 1 = x0 < x1 < \cdot \cdot \cdot <
xNx

= 1 and  - 1 = y0 < y1 < \cdot \cdot \cdot < yNy
= 1 are nodes of Lobatto quadrature rules
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Table 4.1
Example 4.1: The discrete L2-norm errors and numerical convergence orders with Nx = Ny = 20.

\tau BDF6 Rate Gauss Rate Radau IIA Rate

1/30 5.8572e-08 7.8948e-09 1.5660e-07
1/60 9.1075e-10 6.0070 1.2465e-10 5.9849 5.0927e-09 4.9425
1/90 8.0012e-11 5.9983 1.0966e-11 5.9948 6.7881e-10 4.9702
1/120 1.4235e-11 6.0014 1.9549e-12 5.9945 1.6202e-10 4.9798

Table 4.2
Example 4.2: The discrete L2-norm errors and numerical convergence orders with Nx = Ny = 20.

\tau BDF6 Rate Gauss Rate Radau IIA Rate

1/30 3.7026e-08 5.7181e-07 3.2137e-07
1/60 5.7732e-10 6.0030 3.1237e-08 4.1942 1.7868e-08 4.1688
1/90 5.0674e-11 6.0005 5.6615e-09 4.2123 3.3155e-09 4.1542
1/120 9.0168e-12 6.0008 1.6781e-09 4.2270 1.0053e-09 4.1479

for the weight function w(x) = 1/(1 - x2)1/2. In order to test the temporal error, we
fix Nx = Ny = 20; the spatial error is negligible since the spectral collocation method
converges exponentially; see, e.g., [23, Theorem 4.4, section 4.5.2].

Example 4.1 (periodic boundary conditions). Here, the initial value and the
forcing term were chosen such that the exact solution of (4.1) is

(4.4) u(x, y, t) = (t7 + 1) sin(\pi x) sin(\pi y),  - 1 \leqslant x, y \leqslant 1, 0 \leqslant t \leqslant 1.

For this case, we present in Table 4.1 the L2-norm of the errors as well as the corre-
sponding convergence orders (rates) for the six-step BDF (BDF6) scheme and for the
three-stage Gauss and Radau IIA methods.

Example 4.2 (Dirichlet boundary conditions). Here, the initial value, the non-
homogeneous Dirichlet boundary conditions, and the forcing term were chosen such
that the exact solution of (4.1) is

(4.5) u(x, y, t) = (t7 + 1) sin(x) sin(\pi y),  - 1 \leqslant x, y \leqslant 1, 0 \leqslant t \leqslant 1.

Notice that u is not periodic in x.
For the solution u given in (4.5), we present in Table 4.2 the L2-norm of the errors

as well as the corresponding convergence orders for the six-step BDF scheme and for
the three-stage Gauss and Radau IIA methods. Notice the order reduction, due to
the lack of restrictive compatibility conditions, in the cases of the three-stage Gauss
and Radau IIA methods; although the solution is very smooth, the computational
order is slightly higher than 4 (i.e., q + 1) rather than the classical orders 6 and 5,
respectively, of these methods. See [24, chapter 8] and references therein. In the case
of periodic boundary conditions, smooth solutions satisfy the required compatibility
conditions, and no order reduction occurs. In contrast to Runge--Kutta methods,
multistep methods do not suffer from order reduction because their consistency errors
can be expressed in terms of the solution u only; neither the elliptic operator nor the
forcing terms enter into their consistency errors. Of course, implicit Runge--Kutta
methods are superior to multistep methods for certain classes of parabolic equations,
as they can combine excellent stability properties, such as A- or B-stability, with an
arbitrarily high order of accuracy.
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