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Amplification of optical Schrödinger cat states with an implementation
protocol based on a frequency comb
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We proposed and analyzed a scheme to generate large-size Schrödinger cat states based on linear operations
of Fock states, squeezed vacuum states, and conditional measurements. By conducting conditional measure-
ments via photon number detectors, two unbalanced small-amplitude Schrödinger kitten states combined by a
beam splitter can be amplified to a large-size cat state with the same parity. According to simulation results,
two Schrödinger odd kitten states with amplitudes of |β| = 1.06 and |β| = 1.11 generated from one-photon-
subtracted 3 dB squeezed vacuum states, are amplified to an odd cat state of |β| = 1.73 with a fidelity of
F = 99%. A large-size Schrödinger odd cat state with |β| = 2.51 and F = 97.30% is predicted when 5.91 dB
squeezed vacuum states are employed. According to the analysis on the impacts of experimental imperfections
in practice, Schrödinger odd cat states of |β| > 2 are available. A feasible configuration based on a quantum
frequency comb is developed to realize the large-size cat state generation scheme we proposed.
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I. INTRODUCTION

Optical Schrödinger cat states described as |β〉 + eiφ | − β〉
for even cats and odd cats corresponding to φ = 0 and φ = π ,
respectively, are the superposition of two distinguishable co-
herent states |β〉 and | − β〉 with opposite phases, where |β|
describes the size of Schrödinger cat states [1]. Odd (even)
cats are featured with odd (even) photon number distribu-
tion. Different from the mixture states, superposition states
reveal the interference between superposed components,
which play an important role in the verification of quantum
nonlocality [2], quantum communication [3–5], continuous-
variable quantum computation [6–10], and quantum metrol-
ogy [11,12]. The one-photon subtracted squeezed vacuum
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state is a standard method to generate Schrödinger cat states
with small size, so-called Schrödinger kitten states [1]. Kitten
states at baseband [13–16] and sidebands [17] have been gen-
erated, while the maximum amplitude of cat states generated
with such method is limited as |β| = 1.20 to keep the fidelity
as high as 99% [18,19]. Fidelity between an ideal cat state |φ〉
and a generated pure state |ψ〉 is usually defined as F(φ,ψ ) =
|〈φ|ψ〉|2 [18,20] (the definition in the form of square root,
i.e., 〈φ|ψ〉 is also used in some references such as [19,21]),
indicating the similarity of the generated state with an ideal cat
state, which is an important quality measure of the cat state.

However, the overlap between two superposed coherent
states in a Schrödinger cat state, i.e., 〈β| − β〉 = e−2|β|2 , is
required to approach zero to effectively work as qubits in
quantum information science, i.e., |β| � 2 [7]. Therefore,
large-size Schrödinger cat states generation has attracted in-
tense interest.

To create Schrödinger cat states with larger amplitudes,
theoretical and experimental investigations on multiphoton
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subtracted squeezed vacuum states were conducted [22–25].
An even cat state and an odd cat state of |β| = 1.40 and F =
60% as well as |β| = 1.70 and F = 59% were experimentally
created by subtracting two and three photons from squeezed
vacuum states [22,25], respectively. Based on a Fock state
and homodyne detection, a squeezed even cat state [23] with
|β| = √

2.6 ≈ 1.61 was experimentally demonstrated [20].
An iterative scheme to amplify Schrödinger kitten states was
proposed by conducting auxiliary-coherent-state-aided condi-
tional measurement on two combined kitten states by a 50:50
beam splitter [18], from which a high-fidelity (F � 99%)
cat state with |β| = 2.50 was predicted with four iterative
stages and inefficient photon detection. This approach was
extended to a homodyne heralding scheme later, in which
the conditional measurement with photon detectors and aux-
iliary coherent state was replaced with homodyne detection
[26]. Two balanced Schrödinger odd kitten states with |β| =
1.15 squeezed by 1.74 dB were amplified to a Schrödinger
even cat state of |β| = 1.85 squeezed by 3.04 dB with a
fidelity of F = 59.29% (in the definition of F = |〈φ|ψ〉|2)
based on the homodyne heralding scheme [21], which was
considered as the best experimental result till now [27]. A
sequential photon catalysis scheme was proposed to generate
large-size squeezed Schrödinger cat states [28], in which mul-
tistage photon catalyses are required to breed the cat state.
Large-size Schrödinger cat states of |β| > 2 with a fidelity
around F = 99% based on a two-mode nine-photon entan-
gled state were predicted [29]. Recently, an optical cat state
generation scheme based on the general photon subtraction
of two squeezed vacua was reported with high genera-
tion rate, in which a large-size squeezed cat state of |β| =√

10 ≈ 3.16 was predicted with a fidelity of F = 99.7% by
subtracting ten photons from one mode of the two-mode
squeezed vacuum states [27]. However, operations including
multiphoton subtraction, iterative and sequential process sig-
nificantly increase the complexity of the experimental setup in
practice.

In this paper, we propose a scheme to generate large-size
odd cat states based on linear operations of squeezed vacuum
states and conditional measurements. Amplification of odd
kitten states that keeps the same parity is realized. Schrödinger
odd cat state of |β| > 2 is predicted with one-photon
subtraction through a single run. We also develop a quantum-
frequency-comb-based protocol to realize the scheme.

The paper is organized as follows. In Sec. II, a general
model for l-added-and-k-subtracted squeezed vacuum states
is introduced based on tensor operation. In Sec. III, an effec-
tive approach to producing large-size Schrödinger cat states is
developed. The impacts of imperfect kitten states and photon
number detectors are analyzed in Sec. IV. In Sec. V, a protocol
for the experimental implementation of the scheme based on
a quantum frequency comb is proposed. Concluding remarks
are provided in Sec. VI.

II. GENERAL MODEL FOR CAT STATE PRODUCTION
WITH l-ADDED-AND-k-SUBTRACTED SQUEEZED

VACUUM STATES

A. Schrödinger cat states

Optical Schrödinger cat states, i.e., the superposition of two
coherent states with opposite phases, |β〉 and | − β〉, can be

FIG. 1. Schematic diagram of Schrödinger cat state generation
based on l-added-and-k-subtracted squeezed vacuum states BS:
Beam splitter; PND: Photon number detector

written as [1]

|ψcat〉 = N±(|β〉 ± | − β〉), (1)

where,

N± = 1√
2(1 ± e−2|β|2 )

, (2)

|β〉 = e
−|β|2

2

∞∑
n=0

βn

√
n!

|n〉, (3)

in which |n〉 is a Fock state. “+” and “−” represent even
and odd Schrödinger cat states, respectively. N± are the cor-
responding normalization constants. Substituting Eq. (3) to
Eq. (1), it can be seen that only even (odd) photons are dis-
tributed in even (odd) cat states. To ensure two superposed
coherent states are orthogonal, the overlap between |β〉 and
| − β〉 should approach zero [7], i.e.,

〈β| − β〉 = e−|β|2
∞∑

n=0

(−β2)n

n!
= e−2|β|2 ≈ 0, (4)

when |β| � 2.

B. General model of l-added-and-k-subtracted
squeezed vacuum states

Similar to an even cat state, a squeezed vacuum state only
contains even photon number distribution, which is written as
[1,19],

Ŝ(ξ )|0〉 =
∞∑

n=0

α2n|2n〉, (5)

where

α2n = 1√
cosh ξ

√
(2n)! tanhn ξ

2nn!
, (6)

and ξ is the squeezing parameter. Thus, a squeezed vacuum
state is a high-fidelity (F � 99%) approximation to the even
kitten states (|β| � 0.75) [19]. Odd photon number distri-
bution can be obtained if odd photons such as 1 or 3 are
added or subtracted from a squeezed vacuum state. So it is
an effective approach to generating Schrödinger kitten states.
Here, we generalize the model to l-added-and-k-subtracted
squeezed vacuum states as shown in Fig. 1. Such model is
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a quantum linear system driven by multichannel multiphoton
states [30–32]. The total input state of the system can be
written as,

|�in〉 = |l〉 ⊗
∞∑

n=0

α2n|2n〉. (7)

According to tensor operation of quantum linear system
driven by multichannel multiphoton states [30–32], the gen-
erated state at the output of the beam splitter can be
derived as,

|�out〉 =
∞∑

n=0

α2n√
	!(2n)!

	∑
i=0

2n∑
j=0

(
	

i

)(
2n

2n − j

)

×
√

(	 + j − i)!(2n + i − j)!

(−1) jT 2n+	−i− jRi+ j |	 + j − i〉 ⊗ |2n + i − j〉,
(8)

where, R2 and T 2 are the reflectivity and transmittance of the
beam splitter. When conditional measurement is conducted
with a Fock state |k〉, we have

|�out, lk〉 =
∞∑

n=0

γn, lk|2n + l − k〉, (9)

where,

γn, lk = α2n√
l!(2n)!

min(k,2n)∑
j=max(k−l,0)

(
l

l − k + j

)(
2n

2n − j

)

√
k!(2n + l − k)!(−1) jT 2n+k−2 jRl−k+2 j . (10)

The density matrix of the heralded state in Eq. (9) is described
as ρout, lk = |�out, lk〉〈�out, lk|. The successful probability to
obtain k photons on the conditional measurement is expressed
as [33],

S(k) = Tr[ρout,lk], (11)

which is normalized as
∑∞

k=0 S(k) = 1 and ρout, lk is the un-
normalized density matrix.

The fidelity between two mixed states with density matri-
ces ρ1 and ρ2 is generally defined as

F (ρ1, ρ2) = (Tr[(
√

ρ1ρ2
√

ρ1)
1
2 ])2, (12)

where, Tr[ ] denotes the trace of a matrix [34]. In the case of
Schrödinger cat state generation, an ideal pure cat state |ψcat 〉
is always used to calculate the fidelity. Thus. Eq. (12) can be
rewritten as,

F (ρout, lk, ψcat ) � 〈ψcat|ρ̃out, lk|ψcat〉, (13)

where ρ̃out, lk is the normalized density matrix of the heralded
state shown in Eq. (9).

When l − k is odd, an odd cat state is produced, while
an even cat state is generated when l − k is even. The case,
l = 0 and k = 1, i.e., one-photon subtracted squeezed vacuum
state, has become the standard approach to generating odd
kitten states [13–16]. Here, we analyzed the performance of
l-added-and-k-subtracted 5 dB (i.e., ξ = 0.576) squeezed vac-
uum states with different l and k. We change the reflectivity of
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FIG. 2. Fidelity between an ideal odd cat state and the generated
cat states from l-added-and-k-subtracted 5 dB squeezed vacuum
states for different l and k.

the beam splitter and find the maximum fidelity between the
generated cat state and an ideal cat state for different β. The
variations of the fidelity with β are shown in Fig. 2, where
βmax is taken as the maximum value of |β| when F = 99%. It
is verified that the size of high-fidelity (F � 99%) kitten states
generated from one-photon subtracted squeezed vacuum state
is limited as |β| = 1.20 [18,19], even though 5 dB squeezed
vacuum state is utilized. In addition, the performance of one-
photon subtracted squeezed vacuum state is verified to be
similar to that of one-photon added squeezed vacuum state.
Moreover, high-fidelity kitten states with |β| > 1.20 can be
obtained in the higher-order photon manipulation schemes
such as l = 1 and k = 2 as well as l = 2 and k = 1, which
break the limit, |β| = 1.20 [18,19], of the standard approach
with l = 0 and k = 1.

III. MODEL FOR LARGE-SIZE SCHRÖDINGER CAT
STATE GENERATION

An approach to generating large-size Schrödinger cat states
based on l-added-and-k-subtracted squeezed vacuum states is
proposed as shown in Fig. 3. Two in-phase Schrödinger kitten
states generated with l-added-and-k-subtracted squeezed vac-
uum states are combined on the third beam splitter (BS3). The
total input state to BS3 is described as,

∣∣�1
out, l1k1

〉 ⊗ ∣∣�2
out, l2k2

〉 =
∞∑

n=0

∞∑
m=0

γ 1
n, 	1k1

γ 2
m, 	2k2

|2n + 	1 − k1〉1 ⊗ |2m + 	2−k2〉2,

(14)

where, γ 1
n, 	1k1

and γ 2
m, 	2k2

have the same formats to γn, lk

in Eq. (10). The total input state is a linear combination
of products |2n + 	1 − k1〉1 ⊗ |2m + 	2 − k2〉2, where n, m =
0, . . . ,∞. According to the general theory in Refs. [30–32],
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BS3 implements the following mapping:

|2n + 	1 − k1〉1 ⊗ |2m + 	2 − k2〉2

→
1√

(2n + 	1 − k1)!(2m + 	2 − k2)!

2n+	1−k1∑
j=0

2m+	2−k2∑
l=0

(
2n + 	1 − k1

j

)(
2m + 	2 − k2

l

)
(−1)l

T 2m+	2−k2+ j−l
3 R2n+	1−k1− j+l

3

√
( j + l )!(2n + 	1 − k1 + 2m + 	2 − k2 − j − l )!

| j + l〉1|2n + 	1 − k1 + 2m + 	2 − k2 − j − l〉2.

=
2n+	1−k1∑

j=0

2m+	2−k2∑
l=0

γn,m, j,l | j + l〉1|2n + 	1 − k1 + 2m + 	2 − k2 − j − l〉2, (15)

where

γn,m, j,l �
(−1)lT 2m+	2−k2+ j−l

3 R2n+	1−k1− j+l
3√

(2n + 	1 − k1)!(2m + 	2 − k2)!

(
2n + 	1 − k1

j

)(
2m + 	2 − k2

l

)

√
( j + l )!(2n + 	1 − k1 + 2m + 	2 − k2 − j − l )!. (16)

Consequently, the final output state of BS3 is

|�〉 =
∞∑

n=0

∞∑
m=0

γ 1
n, 	1k1

γ 2
m, 	2k2

2n+	1−k1∑
j=0

2m+	2−k2∑
l=0

γn,m, j,l

| j + l〉1|2n + 	1 − k1 + 2m + 	2 − k2 − j − l〉2. (17)

When k photons are detected, the heralded output state is

|�k〉 =
∞∑

n=0

∞∑
m=0

γ 1
n, 	1k1

γ 2
m, 	2k2

2n+	1−k1∑
j=0

γn,m, j,k− j

|2n + 	1 − k1 + 2m + 	2 − k2 − k〉. (18)

Therefore, odd (even) cats could be generated when l1 − k1 +
l2 − k2 − k is odd (even). In what follows, we will focus
on the simplest case, l1 = l2 = 0, k1 = k2 = 1, and k = 1 by
considering the experimental feasibility of the scheme.

A. Amplification of Schrödinger kitten states

As one-photon subtracted squeezed vacuum state is a
standard approach to generating kitten states [13–16], which
corresponds to the case of l = 0, k = 1 in Fig. 1, we inves-
tigate the amplification effect of the scheme shown in Fig. 3
when two unbalanced kitten states are inputs. Two unbalanced
kitten states with amplitudes of |β| = 1.11 and |β| = 1.06 are
generated from one-photon subtracted 3 dB squeezed vacuum
states (corresponding to ξ = 0.346) via BS1 and BS2 with
reflectivities of R2

1 = 0.05 and R2
2 = 0.15, respectively. Fig-

ures 4(a), 4(b) and 4(c) depict the photon number distribution
and Wigner function of two input unbalanced kitten states and
the amplified cat state when R2

3 = 0.49. The features of odd
photon number distribution in two input kitten states and the
amplified state reveal that the cat parity is remained during the
amplification. The fidelity of the input kitten states, BS3IN1
and BS3IN2, as well as the amplified state (BS3OUT) to an
ideal odd cat state are represented by the dotted black line,
dashed orange line, and dashed blue line in Fig. 4(d). It can be

seen that two input Schrödinger odd kitten states of |β| = 1.11
and |β| = 1.06 with F = 99% are amplified to a Schrödinger
cat state of |β| = 1.80 and F = 99% with the same parity.
In addition, the dotted magenta line in Fig. 4(d) implies the fi-
delity between the amplified cat state and a squeezed cat state,
which indicates that the amplified cat state has a fidelity of
F = 99% with a cat state of |β| = 2.05 squeezed by 1.39 dB.
The amplification is also revealed by the Wigner function of
the input kitten states and the generated state shown in the
insets of Figs. 4(a)–4(c). Different from the Wigner function
of the input kitten states, two positive Gaussian peaks related
to the individual coherent state components can be clearly ob-
served in the Wigner function of the amplified cat state shown
in the inset of Fig. 4(c). The notable distance between two
Gaussian peaks implying the large size of the generated cat
state, which guarantees the distinguishability of two coherent-
state components from the nonclassical interference fringes.
Therefore, different from homodyne heralding scheme [21],

FIG. 3. Schematic diagram for large-size Schrödinger cat state
generation BS: Beam splitter; PND: Photon number detector.
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FIG. 4. Photon number distribution and Wigner function (insets) of two input kitten states (a) |β| = 1.11 (b) |β| = 1.06 as well as the
amplified cat state (c) |β| = 1.80. (d) Comparison of fidelity variation for input states and output states and the corresponding |β| when
F = 99%, dotted black line: fidelity between BS3IN1 and an ideal odd cat state, dashed orange line: fidelity between BS3IN2 and an ideal odd
cat state, dashed blue line: fidelity between the amplified cat state BS3OUT and an ideal odd cat state, dotted magenta line: fidelity between
the amplified cat state BS3OUT and an ideal cat state squeezed by 1.39 dB.

parity-preserving cat state amplification is realized in the
scheme shown in Fig. 3.

B. Large-size Schrödinger cat state generation

The larger the amplitude of a cat state is, the bigger average
photon number is generated since 〈n〉 = |β|2. Thus squeezed
vacuum states with stronger squeezing level are required to
generate cat states with |β| � 2. The variation of fidelity and
the corresponding β of the amplified cat state with the squeez-
ing parameter ξ of the squeezed vacuum states are shown in
Fig. 5 when the reflectivities of three BSs are same to the
case shown in Fig. 4, i.e., R2

1 = 0.05, R2
2 = 0.15 and R2

3 =
0.49, which indicates that large-size cat states are available
with stronger squeezed vacuum states, but the fidelity will
decrease. Currently, 15 dB squeezed vacuum states have been
generated for metrology [35]. To generate a cat state of |β| �
2 with sufficient fidelity, we select 5.91 dB squeezed vacuum
states (corresponding to ξ = 0.68), which is easy to produce
in the laboratory. To obtain large-size cat state with high-
fidelity, numerical optimization was conducted by changing
the reflectivities of BS1, BS2, and BS3 and finding the

maximum |β| with a fidelity higher than 99%. Then reflectiv-
ities of BS1, BS2, and BS3 are optimized as R2

1 = 0.11, R2
2 =

0.01, and R2
3 = 0.505, which result in two unbalanced kitten

states with success probability of 4.49% and 0.47%. The
photon number distribution, Wigner function, and the corre-
sponding variation of fidelity for two unbalanced input kitten
states and the generated cat state are shown in Figs. 6(a)–
6(c), and 6(d). As is shown in Fig. 6(d), when two kitten
states of |β| = 1.39 with F = 97.17% and |β| = 1.52 with
F = 95.47% are input, a large-size Schrödinger cat state of
|β| = 2.51 can be generated with the fidelity of F = 97.30%.
In this case, the success probability is 0.27%. The large size
of the generated cat state is also revealed by the prominent
distance between two distinguishable Gaussian peaks in the
Wigner function shown in the inset of Fig. 6(c). The total
success probability is around 5.7 × 10−7, where we detect
three photons in total. In general, the success probability is an
exponential function of the number of total photons detected
(not necessarily the number of photon detectors). In the ex-
periments where three photons were detected to generate a cat
state, the success probabilities were ∼10−9 with |β| ≈ 1.70
in Ref. [25], and ∼10−7 with |β| ≈ 1.60 in Ref. [36]. In
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FIG. 5. Impact of squeezing parameter ξ of the input squeezed
vacuum states on the fidelity F and the size of the amplified cat
state |β|.

Ref. [21] where two photons were detected with the additional
homodyne conditioning, the success probability was ∼10−8

with |β| ≈ 1.85. Thus the success probability of our scheme
is comparable with the existing experiments, while we expect
the large-size Schrödinger cat state with |β| � 2. We also
note that the experimental imperfections do not necessarily
reduce the success probability while the imperfections signif-
icantly reduce the fidelity as we will see in the next section.
Therefore, the proposed scheme in Fig. 3 provides an effective
approach to generating large-size Schrödinger cat states with
|β| � 2.

IV. MODEL WITH SYSTEM IMPERFECTIONS

A. Imperfections in the kitten states generation

When a Schrödinger kitten state is generated by subtracting
one photon from a squeezed vacuum state, it is necessary to

consider various imperfections such as impurity of the in-
put squeezed vacuum state, dark counts, detection efficiency,
and the non-photon-number-resolving ability of the single
photon detector, and so on. The impacts and physical mech-
anism of all these imperfections are analyzed in detail in
Ref. [37]. While the development of photon-number-resolving
single-photon detectors such as superconducting transition-
edge sensors (TESs) provides single-photon detectors with
quantum detection efficiency as high as 0.98 and negligible
dark counts [38], which significantly facilitates Schrödinger
cat state generation based on photon subtraction. Therefore,
we can use TESs as the PNDs in Fig. 3 and just consider the
impurity of the squeezed vacuum states (equivalent to the loss)
and the detection efficiency of the photon-number-resolving
single-photon detectors here. According to the Schrödinger
kitten state model reported in Ref. [37], the generated kitten
states from BS1 and BS2 are mixed states, described as ρ1

and ρ2, which are functions of the squeezing parameter ξ , the
loss of the squeezed vacuum states, γsqzvac, reflectivities of
BS1 and BS2, R2

1 and R2
2, as well as the detection efficiency

of the photon-number-resolving PND, ηPND. A general model
involving experimental imperfections for the kitten state am-
plification scheme is developed. Two input kitten states with
experimental imperfections ρ1 and ρ2, can be written as

ρ1 =
∞∑

m,n=0

amn|m〉〈n|, ρ2 =
∞∑

p,q=0

bpq|p〉〈q|, (19)

where anm = amn
∗, and bqp = bpq

∗. amn
∗ and bpq

∗ are conju-
gates of amn and bpq, respectively. Then the input state to BS3
is described as,

ρin = ρ1 ⊗ ρ2 =
∞∑

m,n=0

∞∑
p,q=0

amnbpq|mp〉〈qn|. (20)

The output from BS3 is derived as

ρout =
∞∑

m,p=0

∞∑
n,q=0

amnbpq√
m!n!p!q!

m∑
j1=0

p∑
i1=0

n∑
j2=0

q∑
i2=0

(
m

j1

)(
p

i1

)(
n

j2

)(
q

i2

)
(−1)i1+i2

T p+q+ j1+ j2−i1−i2
3 Rm+n+i1+i2− j1− j2

3

√
( j1 + i1)!( j2 + i2)!(m + p − j1 − i1)!(n + q − j2 − i2)!

| j1 + i1〉1|m + p − j1 − i1〉22〈n + q − j2 − i2|1〈 j2 + i2|. (21)

If we conduct conditional measurement by a Fock state |k〉, then the unnormalized heralded state is

ρout, k � 〈k|ρout|k〉 =
∞∑

m=0

∞∑
p=max(0,k−m)

∞∑
n=0

∞∑
q=max(0,k−n)

amnbpqk!√
m!n!p!q!

√
(m + p − k)!(n + q − k)!

×
min(m,k)∑

j1=max(0,k−p)

min(n,k)∑
j2=max(0,k−q)

(
m

j1

)(
p

k − j1

)(
n

j2

)(
q

k − j2

)
(−1) j1+ j2 T p+q+2( j1+ j2−k)

3

× Rm+n−2( j1+ j2−k)
3 |m + p − k〉〈n + q − k|. (22)

Similar to Eq. (11), we can get the success probability to
obtain k photons in the conditional measurement as Samp(k) =
Tr[ρout,k].

B. Detection inefficiency of PND at BS3

As analyzed in Ref. [37], when k photons are actually sub-
tracted in the conditional measurement, m (m � k) photons
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FIG. 6. Photon number distribution and Wigner function (insets) of two input kitten states with (a) |β| = 1.39, (b) |β| = 1.52, and the
amplified cat state with (c) |β| = 2.51. (d) Corresponding curves of fidelity varying with |β| dashed orange line: fidelity between BS3IN1 and
an ideal odd cat state, dotted black line: fidelity between BS3IN2 and an ideal odd cat state, dotted blue line: fidelity between the amplified cat
state BS3OUT and an ideal odd cat state.

may be detected due to the impact of detection inefficiency
of PND. Assume that m photons are detected by the photon-
number detector with a detection efficiency of ηPND, the
density matrix of the output state is

ρIMPND(m) =
∞∑

k=1

Q(k|m)ρout,k, (23)

where Q(k|m) is the probability that m photons are detected
while k photons are actually subtracted and ρout, k is the
density matrix when k photons are actually subtracted as
described in Eq. (22). Q(k|m) can be written as

Q(k|m) = P(m|k)Samp(k)∑
i P(m|i)Samp(i)

, (24)

where Samp(k) is the probability that k photons have been
subtracted and P(m|k) is the probability that m photons have
been detected when k photon are actually subtracted, which is
expressed as

P(m|k) = k!ηm
PND(1 − ηPND)k−m

m!(k − m)!
, (25)

in which ηPND is the quantum efficiency of the photon-
number-resolving detector [39].

C. Simulation results

As highly efficient single-photon detectors such as TESs
with photon-number-resolving ability and negligible dark
counts are available [38], we can replace PNDs in the cat
state amplification scheme with TESs. Without losing the gen-
erality, we take ηPND = 0.95 and γsqzvac = 0.01. The photon
number distribution and Wigner functions (WF) of the am-
plified cat state heralded with a perfect and imperfect PND3
are analyzed in the case of ξ = 0.68 (i.e., 5.91 dB squeezed
vacuum states). Comparing with the photon number distribu-
tion of the amplified cat state heralded with an ideal PND3
shown in Fig. 7(a), P(n) with n = 2, 4, 6,. . . in the photon
number distribution of the amplified cat state heralded with
an imperfect PND3 are increased as shown in Fig. 7(b). At the
same time, significant negativities in the Wigner function are
kept in both cases as shown in Figs. 7(c) and 7(d), which in-
dicate the nonclassicality of the generated state. Furthermore,
the negativity in the origin of the Wigner function, WF(0,0), in
the generated state also shows the odd parity of the amplified
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FIG. 7. Amplified cat states heralded with a perfect (left) and imperfect (right) PND3. (a) and (b) Photon number distribution; (c) and
(d) Wigner function. (e) and (f) Fidelity variation with the amplitude of an ideal cat state.

state, which verifies the odd parity preservation of the scheme.
Therefore, different from the parity change in Ref. [21], the
input odd kitten states are amplified to an odd cat state in
the scheme we proposed. Figures 7(e) and 7(f) imply that the
amplified cat state of |β| = 2.07 and F = 66.25% as well as
|β| = 2.06 and F = 60.67% (the fidelity is comparable with
F = 59.29% reported in Ref. [21] when the same format of
fidelity is employed) can be generated with a perfect and
imperfect PND3. The success probability is 1.08%. It is noted
that the generated cat state is sensitive to the loss of the

squeezed vacuum states and the detection efficiency of PND3.
With the best TES (i.e., ηPND = 0.98) cat states with larger
size and higher fidelity can be predicted.

V. PROPOSAL OF EXPERIMENTAL REALIZATION
BASED ON A QUANTUM FREQUENCY COMB

Similar to homodyne heralding cat state amplification
scheme [21], two kitten states are required to obtain a
large-size cat state in our proposal. Such kitten states are
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FIG. 8. Quantum-frequency-comb-based large-size cat state generation scheme OPO: Optica parametric oscillator; SBS: Sideband
beam splitter; EOM: Electro-optic modulator; FBS: Frequency beam splitter; PND: Photon-number detector; LO: Local oscillator; PD:
Photodetector.

traditionally generated with one-photon subtracted squeezed
vacuum states from an optical parametric oscillator (OPO).
Thus, two OPOs are required, which makes the system
quite complicated. To simplify the experimental setup, we
propose a quantum-frequency-comb-based protocol to real-
ize the scheme shown in Fig. 3 by extending the sideband
Schrödinger cat state generation scheme reported in Ref. [17].
As a specific example, we just focus on the case discussed
in the previous part, i.e., l1 = l2 = 0, k1 = k2 = 1, and k = 1
in Fig. 3, which can be realized by the quantum-frequency-
comb-based protocol shown in Fig. 8. It is worth noting that
arbitrary-number-photon subtraction can be realized, i.e., k1,
k2, and k could be arbitrary integers.

A series of entangled photon pairs at ω0 ± n� (n =
1, 2, 3 . . .), can be generated by an OPO or optical parametric
amplifier, which form a comblike shape [40–42]. For simplic-
ity, we set the baseband at ω0 = 0 Hz and then the sidebands
can be described as ±�. Different from the quantum fre-
quency comb used in quantum teleportation in Ref. [43], the
resonant frequency of the OPO in Fig. 8 is set at the sidebands,
i.e. ±�, rather than the baseband, which provides a vacuum
state at 0 Hz due to the antiresonance. A double sideband
(DBS) mode is defined as (eiθ â+� + e−iθ â−�)/

√
2, where

â±� is the annihilation operator at frequency ±� and θ is an
arbitrary phase. A DSB mode can be decomposed into two
quadrature-phase components, cos sideband and sin sideband
[42],

âcos
� = â+� + â−�√

2
(26)

âsin
� = â+� − â−�√

2i
, (27)

corresponding to θ = 0 and θ = −π/2, respectively, from
which independent squeezed states are available. Schrödinger

kitten states can be obtained by subtracting one photon from
both cos sideband and sin sideband [17], in which one-photon
subtraction from the DBS is realized through a unit composed
of an electro-optic modulator (EOM), an optical cavity and a
PND. The EOM plays the role of sideband beam splitter (SBS)
via phase modulation. After EOM1, the signal from the OPO,
âω, becomes

âmod
ω ∼

√
1 − �2

2
âω + �

2
(eiθ âω+� + e−iθ âω−�), (28)

where � � 1 indicates the modulation depth and θ is deter-
mined by the modulation phase [17]. While T 2 = 1 − �2

2 is
equivalent to the transmittance of a beam splitter. The optical
cavity following the EOM plays as a frequency beam splitter
(FBS) separating and filtering different frequency components
by transmitting all baseband and reflecting all sideband sig-
nals. Thus the signal from the PND works as a trigger, which
heralds [17],

trigger〈1| ∼sig 〈0|
(

â0 + �√
2

eiθ â+� + e−iθ â−�√
2

)
. (29)

Note that Eq. (29) is unnormalized and valid only under the
condition of � � 1. As a vacuum state at 0 Hz is provided
due to the antiresonance of the OPO, the trigger shown in
Eq. (29) will subtract a photon from the DSB mode with the
phase θ . The cos sideband and sin sideband can be accessed
by selecting the parameters of two EOMs,

θ1 = 0, T 2
1 = 1 − �2

1

2
(30)

θ2 = −π

2
, T 2

2 = 1 − �2
2

2
, (31)

in which T 2
i (i = 1 and 2) determined by the modulation depth

�i (i = 1 and 2) of two EOMs in Fig. 8 correspond to the
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transmittance of BS1 and BS2 shown in Fig. 3. Ti can be
adjusted by tuning the modulation depth of EOMs. Therefore,
two unbalanced kitten states in both cos sideband and sin side-
band are generated before entering into FBS3. Different from
FBS1 and FBS2, FBS3 is designed as a beam splitter of the
DBS by separating component +� from −� since we have,

â+� = âcos
� + iâsin

�√
2

, (32)

â−� = âcos
� − iâsin

�√
2

. (33)

A trigger signal at +� is generated from PND3. The function
of BS3 with T 2

3 = 1
2 in Fig. 3 is realized by shifting the local

oscillator in the homodyne detection to the frequency of
−�. If PND3 is replaced with homodyne detection, the cat
amplification scheme based on homodyne heralding reported
in Ref. [21] could be realized. By designing FBS3 to reflect
partial +� and transmit a part of −�, T3 is adjustable to meet
the requirement of cat amplification discussed in Secs. III
and IV. Thus, the implementation of scheme l1 = l2 = 0,
k1 = k2 = 1, and k = 1 shown in Fig. 3 is successfully
achieved with a quantum frequency comb.

In addition, if other sidebands, such as ±n� in the
frequency comb are used, multiple large-size cat states
are available. It is also possible to amplify the cat state
further by an iterative structure. Therefore, the quantum-
frequency-comb-based protocol provides a different approach
to producing real coherent-state superposed quantum light
source for quantum information processing. We also note that
the imperfection analysis developed in Sec. IV is applied
to the quantum frequency comb realization, where the finite

transmission of the frequency beam splitter is accumulated to
the detection efficiency of the corresponding PND.

VI. CONCLUSION

In conclusion, a scheme to amplify Schrödinger kitten
states based on linear operation and conditional measure-
ment with photon number detection is proposed and analyzed.
According to the general model of l-added-and-k-subtracted
squeezed vacuum states developed based on tensor operation,
the generated kitten states with l = 1 and k = 2 as well as
l = 2 and k = 1 break the limit of |β| = 1.20 produced in
the standard way, i.e., l = 0 and k = 1. Combining two kitten
states and conducting conditional measurement via photon
number detection, Schrödinger cat states with |β| > 2 are
predicted in both theory and practice. A protocol for exper-
imental implementation based on a quantum frequency comb
is proposed. Multiple large-size Schrödinger cat states are
possible to be generated by taking full advantages of the side-
bands in a quantum frequency comb, which offers a new way
of producing large-scale superposed coherent states to meet
the demanding requirements of continuous-variable quantum
computation and quantum communication.
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