
https://doi.org/10.1007/s10664-021-10035-z

Reviewing rounds prediction for code patches

Yuan Huang1 ·Xingjian Liang2 ·Zhihao Chen2 ·Nan Jia3 ·Xiapu Luo4 ·
Xiangping Chen5 ·Zibin Zheng1 ·Xiaocong Zhou2

Accepted: 20 July 2021
© The Author(s) 2021

Abstract
Code review is one of the common activities to guarantee the reliability of software, while
code review is time-consuming as it requires reviewers to inspect the source code of each
patch. A patch may be reviewed more than once before it is eventually merged or aban-
doned, and then such a patch may tighten the development schedule of the developers and
further affect the development progress of a project. Thus, a tool that predicts early on how
long a patch will be reviewed can help developers take self-inspection beforehand for the
patches that require long-time review. In this paper, we propose a novel method, PMCost, to
predict the reviewing rounds of a patch. PMCost uses a number of features, including patch
meta-features, code diff features, personal experience features and patch textual features, to
better reflect code changes and review process. To examine the benefits of PMCost, we per-
form experiments on three large open source projects, namely Eclipse, OpenDaylight and
OpenStack. The encouraging experimental results demonstrate the feasibility and effective-
ness of our approach. Besides, we further study the why the proposed features contribute to
the reviewing rounds prediction.

Keywords Code review · Code patch · Reviewing rounds · Machine learning ·
Discriminative feature

1 Introduction

Code review is an essential software engineering practice to reduce software defects and
ensure the code quality of software, which is employed both in open source and industrial
contexts (McIntosh et al. 2016). In a regular code review, a code patch (i.e., a code change)
is submitted to the review tools such as Gerrit1 by a developer. Then, one or more code

1https://www.gerritcodereview.com/
Communicated by: Ali Ouni, David Lo, Xin Xia, Alexander Serebrenik and Christoph Treude

This article belongs to the Topical Collection: Recommendation Systems for Software Engineering

� Xiangping Chen
chenxp8@mail.sysu.edu.cn

Extended author information available on the last page of the article.

Published online: 23 October 2021

Empirical Software Engineering (2022) 27: 7

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10035-z&domain=pdf
http://orcid.org/0000-0001-8234-3186
https://www.gerritcodereview.com/
mailto: chenxp8@mail.sysu.edu.cn

reviewers will be assigned to inspect this code patch (Liu et al. 2019). Finally, the code
patch will be merged into the code base or returned to the developers for re-modification if
new defects or code conflicts are found by the reviewers (Zou et al. 2019).

In the software life cycle, code review provides good value in identifying defects in
patches (Fagan 2002; McIntosh et al. 2014). However, code review is a time-consuming
process since it requires reviewers to read, comprehend and critique the source code (Rigby
and Storey 2011; Fan et al. 2018; Baum et al. 2019). We note that a code change might be
inspected several rounds before it is eventually merged or abandoned. We investigated more
than 50,000 review cases in the review history of the projects Eclipse, OpenDaylight and
OpenStack. The distribution of the reviewing rounds is illustrated in Fig. 1. We can see that
about half of the patches go through one round review, while the rest of the patches need
more than two rounds review. 1% of the patches even need 20 or more rounds of review.

Obviously, a patch requiring multiple reviewing rounds will affect for developers (Fan
et al. 2018). For example, the patches requiring multiple reviewing rounds will be sus-
pended until the reviews are complete, which may affect the development progress of the
developers, and further make the project schedule get tighter. Thus, if we can early pre-
dict how many rounds a patch will be reviewed, it will help developers allocate more effort
beforehand to the patches for self-inspection and make a more effective arrangement for
development. If a patch is predicted to have a long reviewing rounds, developers can take
actions such as breaking the patch into smaller to speed up the review process.

However, accurately predicting the reviewing rounds is not an easy task. One main chal-
lenge is that a number of factors can affect the reviewing process. Existing research (Baysal
et al. 2013) has found that both technical and non-technical factors can influence the review-
ing process of a code patch. These factors include personal and organizational relationships,
patch size, component, reviewer/submitter’s experience, and reviewer load. Similarly, Jiang
et al. (2013a) also found from their empirical study that the reviewing round is impacted
by submission time, the number of affected components, and developer’s experience, etc.
Therefore, various factors need to be comprehensively considered and carefully selected
when we build a model for predicting the reviewing round of a patch.

In this paper, we propose a learning-based method, PMCost, to help developers predict
reviewing rounds of the patches. Specifically, we extract patch meta-features, code diff fea-
tures, personal experience features and textual features as discriminative features to measure

Fig. 1 The distribution of the reviewing rounds

7 Page 2 of 40 Empir Software Eng (2022) 27: 7

the reviewing rounds. Among them, the patch meta-features represent non-technical factors
in review process, such as reviewers, owners, subproject, etc. The code diff features rep-
resents the code churn via the number of modified methods, modified code lines, etc. The
personal experience features represent the collaboration experience of the developers and
the reviewers, which also indicates the activeness of a developer or reviewer in a project.
The textual features represent natural language comment of a patch.

Then, we model the prediction as a triple-classification problem, i.e., patches with one-
round reviewing (i.e., 1 round), patches with short-rounds reviewing (i.e., 2 to 6 rounds),
patches with long-rounds reviewing (i.e., large than 6 rounds). We also try to predict the
actual reviewing rounds of a patch by using the regression methods (in Section 7.3). How-
ever, the regression methods show a poor performance on the task of actual reviewing
round prediction. Hence, we focused on the round range instead of actual reviewing rounds,
because it can avoid giving the inaccurate prediction reviewing rounds (obtained by regres-
sion models) to developers. To evaluate the effective of PMCost for predicting reviewing
rounds in within-project and cross-project scenarios and further explore the effective of the
proposed features, we perform a case study on three large open-source projects to explore
the following research questions in this paper:

– RQ1: How effective is PMCost in predicting reviewing rounds?
– RQ2: How effective is each subset of features in predicting reviewing rounds?
– RQ3: What features contribute the most to the reviewing rounds prediction?
– RQ4: Can PMCost be generalized in a cross-project scenario?

The results show that: PMCost with Random Forest as classifier achieves accuracies of
79.83%, 72.97% and 71.81% for Eclipse, OpenDaylight and OpenStack, respectively, which
outperforms several baseline methods with other machine learning algorithms, such as
Decision Tree, Multilayer Perceptron, etc.

There are two contributions to this study: 1) Four types of discriminative features are
extracted to measure the reviewing rounds. 2) A case study on 3 open-source projects
demonstrates the effectiveness of our method. We have uploaded the source code and
datasets of the proposed method to the Github, and the URL is: https://github.com/liangxj8/
PMCost. We describe the basic requirements and steps for running the proposed method.

The rest of the paper is organized as follows. The overall framework and motivating
scenario are presented in Section 2; Section 3 describes the data we collected for further
study. Section 4 describes the features we extracted. The setups and results of experiment
are presented in Section 5. Section 6 discusses model limitation and solution. Section 7
discusses the results. The related work is presented in Section 8; Section 9 describes the
threats to validity, while Section 10 summarizes our approach and outlines directions of
future work.

2 Overall Framework andMotivating Scenario

2.1 Overall Framework

Figure 2 shows the overall framework of the proposed approach. The framework includes
two phases: the model building phase and the prediction phase. In the model building phase,
our goal is to build a prediction model based on the collected patch data. In the prediction
phase, the model is used to determine the reviewing round of a patch.

Page 3 of 40 7Empir Software Eng (2022) 27: 7

https://github.com/liangxj8/PMCost
https://github.com/liangxj8/PMCost

Fig. 2 The overall framework of the proposed approach

Our framework first collects the online patches from Gerrit, which includes the patch
meta data (e.g., patch message) and code files. Then, our framework extracts features from
the patches. Specifically, our framework analyzes the meta data to obtain the patch meta
features, and analyzes code files to obtain the code diff features. Besides, personal expe-
rience features are extracted from the collaboration network between the developers and
the reviewers, and the text features are extracted from the natural language comment of a
patch by our framework. Meanwhile, our framework labels the classification of each patch
(i.e., one-round, short-rounds and long-rounds reviewing) according to its actual reviewing
rounds.

Next, our framework builds a prediction model based on machine learning algorithm.
After the prediction model is constructed, it is used in the prediction phase to predict the
reviewing round of a patch. For each patch, we first extract features as we do in the model
building phase. Then, we input the features to the prediction model. This step outputs the
prediction results, which is a label corresponding to the reviewing rounds that a patch needs.

2.2 Motivating Scenario

In this section, we use a motivating scenario to illustrate how PMCost helps develop-
ers/reviewers in development. Suppose developer Alice try to submit a patch to Gerrit,
without the help of PMCost, Alice directly submits the patch to the Gerrit and waits for the
response of the reviewer, i.e., merged to repository or returned back to revise. In the mean-
time, Alice can do another development activities. With the help of PMCost, Alice will get
an estimated reviewing rounds. If the patch will cost a long time for reviewing, PMCost
can also give the factors that makes the patch take a long time for reviewing. For exam-
ple, PMCost hints that the length of the patch message makes the patch for a long time
reviewing. Then, Alice can write a more concise message and then submit to the Gerrit. For
reviewer Barry, without PMCost, he will choice a patch for reviewing according to the pri-
orities of all the patches. Suppose PMCost gives each patch an estimated reviewing time,
then Barry can consider a combination of patch priority and reviewing time to optimize the

7 Page 4 of 40 Empir Software Eng (2022) 27: 7

patch review order, and decide which patch to review first. In such way, Barry can conduct
code reviews in a more flexible way.

3 Data Collection

We collect ten thousands of patches from three open source projects in the Gerrit, including
Eclipse, OpenDaylight, and OpenStack. In detail, we can directly collect the information
of each patch from Gerrit, including patch meta data and code files. The patch meta data
includes: patch submit time, status, patch message, code files with path names, etc. The
status of each patch is labeled as “Merged” or “Abandoned”. We download these two types
of patches as our dataset, because both merged and abandoned patches need to undergo
reviews. Then, the reviewing rounds for both kinds of patches should be approximated.
Figure 3 shows a patch (ID: 26415) of Eclipse in Gerrit. There are many subprojects in the
three projects. To avoid studying inactive or dead subprojects, we choose those that contain
more than 50 patches. Meanwhile, we require each patch includes at least one source file,
otherwise, we will remove it from the dataset.

The patch code files are the exact inspecting object by reviewers, which reflect the code
churn of the current patch. For each reviewing round, the developer should submit a new
patch set to Gerrit (i.e., a reviewing round corresponds to a patch set). As a result, a patch
often contains multiple patch sets before it is merged or abandoned. As Fig. 4 shows, there
are two patch sets for the patch 26415. In our study, we only extract the diff files of the
first patch set of a patch since we focus on predicting how long a patch will be merged or
abandoned when it is submitted initially.

Fig. 3 A patch example

Page 5 of 40 7Empir Software Eng (2022) 27: 7

Fig. 4 Patch sets

In order to understand how long the new submitted patch will be reviewed, we count the
distribution of reviewing rounds shown in Fig. 1. We found that about 50% patches need
only one round of review, and the rounds of all patches are distributed in a long tail.

We also study the relevance between the reviewing rounds and average reviewing time
on the collected data set. To provide a concrete statistic analysis, we use the box plot (Fig. 5)
to show the distribution of reviewing rounds and reviewing time on the 3 projects, and the
vertical axis in these figures are the number of the actual reviewing days of the patches.

We can see from Fig. 5, as the number of reviewing rounds increase, the reviewing time
is also increasing. The average reviewing time of the patches with 1 reviewing round is
about 0.33 day on the three datasets. The average reviewing time of the patches with 2 to
6 reviewing rounds are about 5.3 days and the average reviewing time of the patches with
more than 6 reviewing rounds are about 31.3 days on datasets. To investigate correlation
between the number of reviewing rounds and the reviewing time, we employ the Spearman
Correlation Coefficient (2008). The results show that the Spearman Correlation Coefficient
of three projects Eclipse, OpenDaylight and OpenStack are 0.68, 0.75 and 0.78, respectively,
meaning that there is a positive linear correlation between the number of reviewing rounds
and the reviewing time. Then, we divide the reviewing rounds of the patches into three
intervals: 1 round, 2-6 rounds, more than 6 rounds, and we call them one-round reviewing,
short-rounds reviewing and long-rounds reviewing patches in this paper.

Table 1 shows the detailed information of the data sets collected from the three projects.
These three projects contain several years of code review data related to different sub
projects. In this study we considered the code patches of the projects that can be collected
in recent time period. For example, we collect the code patches of Eclipse from October,
2020, and reverse-collect patches as the project evolves. Meanwhile, we need to make sure
that there are enough data to train the model. Hence, we collect a total of 19,964 patches
after removing the noise (i.e., the patches without source files) during the defined period,
i.e., January, 2017 to October, 2020.

4 Feature Extraction

We extract four types of features in total to characterize a patch, including patch meta
features (PMF), personal experience features (PEF), code diff features (CDF) and textual
features (TF). The detailed introduction of the feature extraction is described as follows.

7 Page 6 of 40 Empir Software Eng (2022) 27: 7

(a) Eclipse

(b) Opendaylight

(c) Openstack

Fig. 5 The reviewing time of patches with different reviewing rounds in the three projects

Page 7 of 40 7Empir Software Eng (2022) 27: 7

Table 1 Statistical characteristics of the datasets

Projects Time span # of Patches

One-round reviewing Short-rounds reviewing Long-rounds reviewing

Eclipse 2017.01-2020.10 12,484 6,622 858

OpenDaylight 2017.12-2020.10 10,201 7,898 1,856

OpenStack 2017.07-2020.10 10,351 7,559 1,982

4.1 PatchMeta Features

Patch meta data describes the basic attributes of a patch from the patch submitting time to
the patch message. A patch can be characterized by the meta data, and we regard the basic
attributes of a patch as PMF features.

We directly encode the length of a patch message (MessageLength) into the PMF fea-
tures. Meanwhile, Eyolfson et al. (2011) found that there is strong relevance between the
submitting time and the correctness of a patch. Inspired by this, we use SubmitHour to
characterize the submitting time by normalizing the original time (e.g., “May 13, 2014,
11:42 PM”) into 24-hour time format (i.e., “23”). Meanwhile, we also apply SubmitDay to
determine the date of submitting a patch, e.g., the day “May 13, 2014” is normalized as
“13”.

A code change may cause ripple effects in a system, which makes a patch usually contain
multiple entities (Kagdi et al. 2013; Huang et al. 2021). The diffusion of a patch represents
the impacted entities in a system, which also reflects the impact scope and the scale of a
patch. Then, the diffusion of a patch can be used to determine how long the patch will be
reviewed. Inspired by Kamei et al. (2012), we use multilevel-diffusion features to measure
the diffusion of a patch. As shown in Fig. 3, the modified files stored in Gerrit Repositories
have a definite storing path like “examples/org.eclipse. jface.snippets/ Eclipse JFace Snip-
pets/ org/eclipse/jface/ snippets/viewers/ Snippet025TabEditing.java”. We split the paths by
“/” and number them in the reverse order from the bottom “Snippet025TabEditing.java”.
Restricting the maximum level to 13, we totally extract 13 features by counting the number
of unique values of each path level, defined as FileNumLv0 ∼ FileNumLv12. We take
the maximum path level as 13 because it can cover more than 90% of the file paths in our
dataset. Especially, FileNumLv0 equal to 5 means that a newly submitted patch contains
5 unique .java files, while FileNumLv1 ∼ FileNumLv12 means the number of distinct
folders at the 1st ∼ 12nd level in the patch path. All PMF are shown in Table 2.

Table 2 Patch meta features

Category Features Description

Meta MessageLength The number of words involved in the

patch message

SubmitHour Submitting time normalized to 24-hour

format of the current patch

SubmitDay Submitting day of the current patch

FileNumLv0 ∼ FileNumLv12 The number of unique file (or folder)

in each level of the path in a patch

7 Page 8 of 40 Empir Software Eng (2022) 27: 7

4.2 Code Diff Features

The finding in our previous study (Huang et al. 2018) shows that a patch with more code
changes will take reviewers more time to comprehend it. Therefore, the change scale of a
patch is an important indicator for predicting the reviewing rounds. To describe how many
code changes occur in a patch, diff comparison between the two versions of a patch set is
necessary. Each patch set has two versions, and we can extract the diff code from them. As
mentioned, we only extract diff code in the first patch set since we focus on predicting how
long a patch will take to be reviewed when it is submitted initially. In general, we extract
two types of Code Diff Features (CDF) as follows.

Change-Type Features Code modification can be divided into inserting, updating and
deleting. All the software entities such as class, statement, attribute, method, parameter
and comment can be the modified objects. Then, we extract all types of modified soft-
ware entities by using a static analysis tool ChangeDistiller2. They are: “ClassAddition”,
“ClassDelete”, “MethodRenaming”, “StatementInsert”, “StatementUpdate” and so on. To
construct these features, we count the number of all types of the modifications for all code
files in a patch.

Change-Ratio Features Every type of modification has its directly influenced code range.
The change range can be described by ChangeDistiller as a two-tuple like < 144, 160 >,
in which the first element indicates the start line of change effected and the second element
indicates the end line of change affected. Then, we subtract the start line from the end line
to count the delta of the code lines. Finally, we add up all the delta of the code lines of all
code file in a patch, and divide the total number of the code lines in all the files of the patch
is the ChangedCodeRatio feature. All CDF are illustrated in Table 3.

4.3 Personal Experience Features

Baysal et al. (2013) and Jiang et al. (2013b) found that the experience of a patch owner
significantly impacts the code review outcomes. Referring to the conclusion of Kagdi et al.
(2008), the persons who are more active in the review system should have more knowledge
about the system. Then, to characterize the person experience, PEF are divided into count-
based and network-based features.

Count-Based Features We propose a number of count-based features to characterize the
personal experience such as OwnerPatchNum, OwnerFileNum, OwnerAvgReviewRonds,
ReviewerPatchNum, ReviewerFileNum, ReviewerAvgReviewRonds. OwnerPatchNum is the
number of patches that an owner has ever participated. Intuitively, the core developers
(i.e., patch owners) make more contributions to a project, and OwnerPatchNum reflects
the frequency of a developer making code changes. Besides, the familiarity to a project
for developers is different, as the number of code files they have read, created and mod-
ified is different. Therefore, we extract the number of files that a developer has involved
as one of the features. Similar to the feature FileNumLv, we split file paths by “/” and
numbered them in the reverse order from the bottom. Restricting the maximum path level

2https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

Page 9 of 40 7Empir Software Eng (2022) 27: 7

https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

Table 3 Code diff features

Category Features Description

Change-Type ClassAddition, ClassRenaming, ClassDelete The numbers of class-

ParentClassDelete, ParentClassAddition, involved modifications

ParentClassRenaming

StatementDelete, StatementInsert, The numbers of statement-

StatementUpdate, StatementOrderUpdate involved modifications

AttributeDelete, AttributeInsert, The number of Attribute-

AttributeRenaming, AttributeTypeUpdate involved modifications

ReturnTypeUpdate, ReturnTypeDelete, The numbers of return type-

ReturnTypeInsert involved modifications

ParameterDelete, ParameterInsert, The numbers of parameter-

ParameterOrderingUpdate, involved modifications

ParameterRenaming,

ParameterTypeUpdate

MethodAddition, MethodDelete, The numbers of method-

MethodRenaming involved modifications

CommentDelete, CommentInsert The numbers of comment-

CommentUpdate involved modifications

Change-Ratio ChangedCodeRatio The proportion of code lines

influenced by all types of

modification

to 13, we extract 13 levels of OwnerFileNum features named OwnerF ileNumLv0 ∼
OwnerF ileNumLv12. For instance, OwnerF ileNumLv0 is the number of files a devel-
oper has ever submitted, OwnerF ileNumLv1 is the number of penultimate path level (i.e.,
the direct parent folders of the files) he/she has ever been involved, and so on. More directly,
OwnerAvgReviewRonds calculates the average number of reviewing rounds of all patches
that a developer has participated in the past.

Meanwhile, we also pay attention to the influence of reviewer experience on the
reviewing rounds, and extract the features ReviewerPatchNum, ReviewerFileNum, Review-
erAvgReviewRonds. It should be noted that when a new patch is submitted, a project
moderator may assign multiple reviewers to the patch (Rigby and Bird 2013). In this case,
we first count the number of patches that each reviewer has ever reviewed, and then we add
all the patches that these reviewers have reviewed. At last, feature ReviewerPatchNum for
the patch equal to the average values of the total number of the patches. In a similar manner,
we can compute the values of features ReviewerFileNum and ReviewerAvgReviewRonds.
The detailed introduction of the count-based PEF can be found in Table 4.

Network-based Features Zanetti et al. (2013) proposed an approach to predict whether
a bug report is valid based on the collaborations of reporters. Following their studies,
we construct two modes of relational networks based on symbioses of patch owners and
reviewers.

7 Page 10 of 40 Empir Software Eng (2022) 27: 7

Table 4 Count-based PEF

Category Features Description

Count-Based OwnerPatchNum Number of patches that an owner

has ever participated.

OwnerF ileNumLv0 ∼ Lv12 Number of file path level that the

owner has ever been involved.

OwnerAvgReviewRonds The average number of reviewing rounds

of all patches that an owner has

participated in the past.

ReviewerPatchNum Average number of patches that

all reviewers has ever participated.

ReviewerF ileNumLv0 ∼ Lv12 Number of file path level that all

the reviewers have been involved in

the past.

ReviewerAvgReviewRonds The average number of reviewing

rounds of all patches that reviewers

have participated in the past

Direct Collaboration Mode If an owner appears together in a patch with a reviewer, we
declare that there is a direct collaboration relationship between them. We first take own-
ers/reviewers as nodes, and build edges according to the direct collaboration relationship
and finally construct a directed weighted graph. In the graph, each edge points to a reviewer
from an owner.

Indirect Symbioses Mode If two people are together involved in the same file/file folder,
no mater they are owners or reviewers, we declare that there is an indirect symbio-
sis relationship between them and build an undirected weighted edge between these two
person-nodes as their relationship has no intense directivity. Here, an indirect symbiosis
relationship refers to names and path levels of files or file folders, which can be split from
file paths in the way mentioned above. Here, we also restrict the maximum path level to 13.

The edge weights in both modes of networks refer to how many times two persons have
been both involved in a patch, a file or a folder. For example, when an owner and a reviewer
have ever collaborated in 10 patches, the weight of the directed edge between them is 10.
The examples of the two modes of networks are shown in Fig. 6, in which we use sets
of tuples like (P erson1, P erson2, EdgeWeight) to represent a weighted graph. Next, we
introduce three network-based operationalizations.

Degree centrality is the degree of a node, which is simply a count of how many connec-
tions (i.e., edges) a node has. E.g., when a node has 10 connections, it has a degree centrality
of 10.

Closeness centrality is to capture the average distance between a node and every other
node in a network. A low closeness centrality means that a person is directly connected or
“just a hop away” from most others in the network (Smith et al. 2011).

Betweenness centrality is a measure of how important the node is to the flow of infor-
mation through a network. In graph theory (Bollobas 1998), betweenness centrality is
calculated based on shortest paths. For every pair of nodes in a connected graph, there exists

Page 11 of 40 7Empir Software Eng (2022) 27: 7

(a) Direct Collaboration Mode

(b) Indirect Symbioses Mode

Fig. 6 Two modes of the networks

at least one shortest path between the nodes such that the sum of the weights of the edges
(for weighted graphs) is minimized.

We use NetworkX3 to construct the graphs, and further extract degree centrality,
closeness centrality, betweenness centrality of each node. Because of the one-by-one rela-
tionship between a patch and a specific owner in the networks, these network-based metrics
of owner nodes can directly be used as a patch feature. Since a patch may have multi-
ple reviewers, we calculate the mean of these metrics of the reviewers for a patch. All
network-based PEF are illustrated in Table 5.

4.4 Textual Features

A patch message usually describes how a bug is fixed or a software functionality is imple-
mented, which can partly reflect the importance and urgency of a patch (Huang et al. 2017).
Therefore, the semantics of a patch message may be used to estimate the reviewing rounds
of a patch, and we extract the textual features from the patch message to characterize its
semantic information.

In this study, we employ word embeddings to capture the semantics of a patch message.
Word embeddings are unsupervised word representations that only require large amounts of
unlabeled text to learn (Mikolov et al. 2013). In this work, we collect the patch messages as
software engineering text. First, we preprocess the patch message. This includes removing
punctuation symbols from the patch message, and filtering out meaningless words, such
as aaa and xxx. Additionally, we reduce the amount of vocabulary in the entire corpus.
Specifically, we apply the stem segmentation technique. Because English verbs may appear

3https://networkx.github.io/

7 Page 12 of 40 Empir Software Eng (2022) 27: 7

https://networkx.github.io/

Table 5 Network-based PEF

Category Features Description

Network- OwnerDegreeCentrality degree centrality, closeness

Based OwnerClosenessCentrality centrality and betweenness

OwnerBetweennessCentrality centrality of the owner in the

Direct Collaboration Network.

AvgReviewerDegreeCentrality The average degree centrality,

AvgReviewerClosenessCentrality closeness centrality and

AvgReviewerBetweennessCentrality betweenness centrality of the

reviewers in the Direct Collabo-

ration Network.

OwnerDegreeCentralityLv0 ∼ Lv12 degree centrality, closeness

OwnerClosenessCentralityLv0 ∼ Lv12 centrality and betweenness

OwnerBetweennessCentralityLv0 ∼ Lv12 centrality of the owner who has ever

been involved in the past,

calculated from bottom to the 13rd

path layer in the Indirect

Symbioses Network.

AvgReviewerDegreeCentralityLv0 ∼ Lv12 The average degree centrality,

AvgReviewerClosenessCentralityLv0 ∼ Lv12 closeness centrality and

AvgReviewerBetweennessCentralityLv0 ∼ Lv12 betweenness centrality of the

reviewers who has ever been involved

in the past, calculated from

bottom to the 13rd path layer in the

Indirect Symbioses Network.

in different tenses, such as past tense, future tense, and perfect tense, we transform verbs of
different tenses into their original forms.

To obtain the vector representation of a word, we use the continuous skip-gram model to
learn the word embedding of a central word (i.e., wi) (Mikolov et al. 2013). It is well known
that the required word embedding is an intermediate result of the continuous skip-gram
model. Continuous skip-gram is effective at predicting the surrounding words in a context
window of 2k+1 words (generally, k=2, and the window size is 5). The objective function
of the skip-gram model aims at maximizing the sum of log probabilities of the surrounding
context words conditioned on the central word (Mikolov et al. 2013):

n∑

i=1

∑

−k≤j≤k,j �=0

logp(wi+j |wi) (1)

where wi and wi+j denote the central word and the context word, respectively, in a con-
text window of length 2k+1 and n denotes the length of the word sequence. The term
logp(wi+j |wi) is the conditional probability, defined using the softmax function:

logp(wi+j |wi) = exp(v
′T
wi+j

vwi
)

∑
w∈W exp(v

′T
w vwi

)
(2)

Page 13 of 40 7Empir Software Eng (2022) 27: 7

where vw and v′
w are the input and output vectors of a word w in the underlying neural

model, andW is the vocabulary of all words. Intuitively, p(wi+j |wi) estimates the normal-
ized probability of a word wi+j appearing in the context of a central word wi over all words
in the vocabulary. Here, we employ the negative sampling method (Mikolov et al. 2013) to
compute this probability.

After training the model, each word in the corpus is associated with a vector representa-
tion and forms a word dictionary. To obtain the semantic information of a patch message,
we first identify the words in a patch message and then determined the corresponding vec-
tor representation of each word from the dictionary. Subsequently, we add the vectors of all
words dimension by dimension, and then average the sum of all the vectors.

5 Evaluation

5.1 Research Questions

To verify the effectiveness of the proposed method, we perform a case study on three large
open source projects, i.e., Eclipse, OpenDaylight and OpenStack, aiming to explore the
following research questions in this study:

RQ1: How effective is PMCost in predicting patch reviewing rounds?
We try to use the features extracted from the patches to help developers estimate if their

code changes can be reviewed with 1 reviewing round, or 2 to 6 rounds or more than 6
rounds. Then, we need to evaluate how effective of PMCost in predicting reviewing rounds.
For comparison, we employ the Random Guess (RG) algorithm as a baseline. Random
Guess randomly gives a classifying probability according to the proportion in the training
set for each reviewing rounds level and chooses the largest one as the final predicted level.
Meanwhile, we employ several popular machine learning algorithms as the classifier of
PMCost. They are: LightGBM (LGB) (Ke et al. 2017a), Support Vector Machines (SVM)
(Cortes and Vapnik 1995), Logistic Regression (LR) (Pregibon and et al 1981), Decision
Tree (DT) (Quinlan 1987), Random Forest (RF) (Breiman 2001a), Multilayer Perceptron
(MLP) (Pal and Mitra 1992).

RQ2: How effective each subset of features in predicting patch reviewing rounds?
In this study, four groups of features, that conceptually represent different social and

technical aspects relevant to the code review, are considered to train a prediction model.
With this analysis we can learn about whether each subset of features is usful in predicting
patch reviewing rounds.

RQ3: What features contribute the most to the reviewing rounds prediction?
In this research question, we would like to find out the most important features in esti-

mating the patch reviewing rounds. Meanwhile, we expect to know why the features are
useful in determining the reviewing rounds of a patch. Feature analysis is also important for
the developers. Since we find out which features are important in the prediction model, we
can give a suggestion to the developers for quickly reviewing their patches. For example, if
developers know what is causing the patch review to slow down, he can focus on that and
modify their patches accordingly so as to get a faster review.

RQ4: Can PMCost be generalized in a cross-project scenario?
We expect to build a prediction model that can be applied to different projects and

even the projects based on different program languages. So we conduct a cross-project and
cross-language evaluation. We define three ways of generalization: same-language-cross,
language-cross, union-training. The same-language-cross way indicates that we first train a

7 Page 14 of 40 Empir Software Eng (2022) 27: 7

model based on data of a project and then apply it to another project, while the two projects
are based on the same program language. The language-cross way indicates that we first
train a model based on data of a project and then apply it to another project, while the two
projects are based on different program languages. The union-training way indicates that
we first train a model based a union dataset of several projects and then apply the model to
test the dataset coming from each project.

5.2 Evaluation Criteria

To evaluate the effectiveness of PMCost, we employ the precision (P), recall (R), accu-
racy (ACC), and F1-score (F1) to measure the results. The precision, recall, F1-score are
computed as follows:

precision = T P

T P + FP
(3)

recall = T P

T P + FN
(4)

accuracy = T P + FN

T P + FN + T N + FP
(5)

F1 = 2 ∗ precision ∗ recall

precision + recall
(6)

F1(overall) = 1

3
∗ (F1(a) + F1(b) + F1(c)) (7)

where TP is the number of true positives, FP is the number of false positives, TN is the
number of true negatives, and FN is the number of false negatives. Therefore, the precision
is the percentage of positive instances identified by our classifier that are actually posi-
tive instances. The recall is the percentage of true positive instances that are successfully
retrieved by our classifier.

Accuracy is the proportion of true results (both true positives and true negatives) among
the total number of cases examined. These four metrics are also suitable for negative
instances. The F1 is the weighted harmonic mean of the precision and the recall and can be
used as a comprehensive indicator of the combined precision and recall values. There are
three types of instances in our dataset, and then number of each types of instances is differ-
ent. So we introduce the overall F1 shown in (7) to measure the performance of our model
in the multi-classification task. We firstly calculate F1 for each label such as a, b, and c,
and the calculate the unweighted mean of the three F1. In the evaluation, we use the 5-fold
cross-validation strategy and average 5-fold tested results as the final result.

5.3 Results and Discussion

5.3.1 RQ1: How effective is PMCost in predicting reviewing rounds?

To evaluate the performance of PMCost, we first extract 4 types of features from the dataset,
i.e., Eclipse, OpenDaylight, and OpenStack. Then, we label all patches according to the
actual reviewing rounds they had been through. At last, we calculate the average preci-
sion, recall and F1 for the one-round reviewing, short-rounds reviewing and long-rounds
reviewing patches.

Page 15 of 40 7Empir Software Eng (2022) 27: 7

Based on previous experience of parameter adjustment (Huang et al. 2020), the follow-
ing hyper-parameters are adjusted for LightGBM, including: the BoostingType is the gbdt,
and the LearningRate is 0.05. The feature selection ratio of building a tree (i.e., Feature-
Fraction) is 0.9. The sampling ratio of building a tree (i.e., FeatureFraction) is also 0.9.
Meanwhile, the hyper-parameter of Random Forest includes: BagSizePercent=30; for each
classifier of the Random Forest, 30% of the original training set is randomly selected for
training; NumFeatures=6. For each classifier of the Random Forest, 6 features of the fea-
ture set are randomly selected for training; NumIterations=300 means the Random Forest
contains 300 classifiers. For decision tree, we use a fast decision tree learner, which builds
a decision tree using information gain and prunes it using reduced-error pruning. For SVM,
we use radial basis function as the kernel function. To speed up the model training, we
set BathSize=200, CacheSize=100. In addition, the other hyper-parameters of the machine
learning algorithms are set to the default values. Table 6 shows the hyper-parameters for all
the machine learning algorithms.

Table 7 presents the evaluation results. RF and DT achieve better F1 values on the
one-round reviewing patches across the three datasets (i.e., Eclipse, OpenDaylight and
OpenStack), respectively, which shows the improvements compared with other machine
learning algorithms. Meanwhile, we can observe from Table 7 that RF achieve better preci-
sion values when being applied on the short-rounds reviewing patches on datasets Eclipse
and OpenStack compared with other machine learning algorithms.

Similarly, the precision of RF is higher than other machine learning algorithms on the
three datasets when being applied on the long-rounds reviewing patches, while the recall is
lower than the ones of some other algorithms. Improving the precision is the main purpose
of our method in the scenario of predicting the reviewing rounds, as telling developers the
accurate reviewing rounds is what we are pursuing.

Besides, RF outperforms other models in terms of the overall ACC and F1 metrics, which
shows that RF is probably more suitable to handle the mixed-type features and able to
handle reviewing time prediction better. Then, we choice RF algorithm to build PMCost in
the following experiments.

5.3.2 RQ2: How effective is each subset of features in predicting reviewing round?

Furthermore, we evaluated the effect of different features (i.e., CDF, TF, PMF and PEF) on
the prediction accuracy, as presented in Table 8. The results shown in Table 8, is testing CDF
alone and then gradually add up another group of features until all the features. Meanwhile,

Table 6 The hyper-parameters of the machine learning algorithms

Algorithms Hyper-parameters

LightGBM BoostingType=gbdt, LearningRate=0.05,

FeatureFraction=0.9

Random Forest BagSizePercent=30, NumFeatures=6, NumIterations=300

Decision Tree Fast Learner, Reduced-error Pruning

SVM Radial Basis Function, BathSize=200, CacheSize=100

Logistic Regression Default

Multilayer Perceptron Default

7 Page 16 of 40 Empir Software Eng (2022) 27: 7

Ta
bl
e
7

T
he

pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
di
ff
er
en
tm

ac
hi
ne

le
ar
ni
ng

al
go
ri
th
m
s

M
od
el
s

O
ne
-r
ou
nd

re
vi
ew

in
g

sh
or
t-
ro
un
ds

re
vi
ew

in
g

L
on
g-
ro
un
ds

re
vi
ew

in
g

O
ve
ra
ll

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

R
G

61
.1
7

33
.6
5

42
.8
0

33
.8
9

32
.1
9

31
.6
3

4.
06

34
.4
3

7.
07

55
.5
0

27
.1
7

L
R

92
.7
1

28
.7
4

38
.5
2

50
.8
4

59
.4
5

52
.9
0

15
.0
2

57
.2
0

23
.5
8

69
.9
5

38
.3
3

SV
M

59
.9
8

16
.5
1

20
.5
9

49
.0
1

51
.7
2

44
.5
4

13
.9
2

64
.2
6

21
.9
1

66
.0
0

29
.0
1

M
L
P

83
.6
3

52
.4
4

63
.1
0

52
.2
2

66
.8
5

58
.4
3

18
.5
0

43
.1
1

24
.7
4

75
.8
6

48
.7
6

D
T

72
.1
5

69
.3
3

70
.6
0

46
.9
0

47
.9
9

47
.3
2

14
.2
2

29
.8
1

18
.9
9

74
.6
1

45
.6
4

R
F

79
.6
0

67
.0
8

72
.5
6

57
.4
0

54
.0
5

55
.5
7

25
.8
5

23
.0
3

23
.8
2

79
.8
3

50
.6
5

L
G
B

34
.9
8

8.
01

12
.7
8

29
.9
8

23
.7
2

25
.5
1

10
.7
2

12
.4
0

10
.6
3

68
.9
9

16
.3
1

O
pe
nD

ay
lig

ht
R
G

49
.6
2

32
.8
9

39
.4
2

39
.8
2

32
.2
6

35
.5
6

9.
65

32
.3
1

14
.5
8

55
.4
1

29
.8
5

L
R

72
.6
9

43
.9
2

54
.2
7

52
.3
9

16
.9
7

24
.4
7

26
.0
5

52
.6
4

33
.4
1

68
.3
7

37
.3
8

SV
M

69
.6
4

28
.4
5

37
.8
3

10
.9
3

1.
32

2.
16

30
.0
3

47
.6
4

35
.9
8

67
.3
5

25
.3
2

M
L
P

73
.4
5

54
.7
9

60
.3
3

54
.6
2

33
.4
9

38
.0
2

25
.6
2

49
.3
5

33
.0
2

69
.8
5

43
.7
9

D
T

58
.5
8

63
.6
6

60
.6
8

47
.0
2

41
.6
5

43
.8
5

22
.3
6

31
.5
4

25
.5
2

66
.5
5

43
.3
5

R
F

69
.4
5

62
.7
7

65
.2
1

55
.7
4

35
.1
8

42
.5
7

38
.7
6

26
.2
8

29
.6
1

72
.9
7

45
.8
0

L
G
B

59
.6
8

31
.3
2

38
.1
7

24
.9
2

10
.6
4

14
.5
7

31
.0
9

27
.6
2

26
.7
8

68
.8
8

26
.5
1

O
pe
nS

ta
ck

R
G

54
.4
7

33
.6
6

41
.3
4

37
.2
8

33
.7
9

35
.2
9

8.
90

33
.2
5

13
.6
5

55
.5
2

30
.0
9

L
R

71
.9
4

22
.9
3

31
.6
5

63
.2
3

1.
17

2.
13

24
.3
3

33
.3
9

27
.1
3

66
.6
7

20
.3
0

SV
M

82
.7
9

12
.8
0

19
.6
2

34
.3
6

0.
40

0.
78

39
.8
3

21
.7
2

26
.2
3

67
.6
7

15
.5
4

M
L
P

74
.2
3

44
.2
3

49
.9
2

45
.5
3

15
.3
3

18
.3
4

26
.9
6

53
.0
5

32
.9
9

68
.1
4

33
.7
5

D
T

62
.4
3

58
.6
0

59
.8
8

41
.9
1

40
.1
0

40
.6
3

20
.2
3

32
.8
4

24
.5
7

66
.0
8

41
.6
9

R
F

70
.6
4

54
.7
5

61
.1
9

47
.5
1

25
.7
0

33
.2
4

41
.0
4

28
.3
5

32
.2
7

71
.8
1

42
.2
3

L
G
B

37
.4
7

23
.7
5

28
.9
9

35
.1
5

4.
29

7.
24

20
.7
7

17
.0
5

17
.6
5

69
.7
6

17
.9
6

Page 17 of 40 7Empir Software Eng (2022) 27: 7

Ta
bl
e
8

T
he

pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
ac
cu
m
ul
at
in
g
di
ff
er
en
tf
ea
tu
re

gr
ou
ps

Pr
oj
ec
ts

Fe
at
ur
es

O
ne
-r
ou
nd

re
vi
ew

in
g

Sh
or
t-
ro
un
ds

re
vi
ew

in
g

L
on
g-
ro
un
ds

re
vi
ew

in
g

O
ve
ra
ll

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

C
D
F

55
.5
2

15
.7
3

24
.3
7

40
.3
1

4.
46

7.
68

6.
37

2.
78

3.
70

67
.2
6

11
.9
2

C
D
F+

T
F

77
.1
8

51
.1
5

61
.0
8

50
.3
9

42
.1
9

44
.1
0

13
.1
9

11
.2
9

10
.3
8

74
.5
7

38
.5
2

T
F+

PM
F

80
.5
2

46
.4
7

57
.9
2

48
.3
2

56
.9
6

51
.2
6

16
.0
2

38
.3
3

22
.2
4

72
.9
3

43
.8
1

C
D
F+

T
F+

PM
F

82
.7
7

60
.0
0

69
.2
9

55
.6
2

51
.0
7

52
.5
6

28
.1
8

22
.8
7

24
.3
6

78
.6
0

48
.7
4

C
D
F+

T
F+

PE
F

82
.4
7

62
.5
7

70
.9
1

54
.7
1

50
.6
4

52
.0
1

27
.8
1

25
.4
2

25
.4
5

78
.6
8

49
.4
6

C
D
F+

T
F+

PM
F+

PE
F

79
.6
0

67
.0
8

72
.5
6

57
.4
0

54
.0
5

55
.5
7

25
.8
5

23
.0
3

23
.8
2

79
.8
3

50
.6
5

O
pe
nD

ay
lig

ht
C
D
F

43
.0
1

4.
99

8.
84

47
.6
9

7.
54

12
.9
9

17
.3
0

3.
15

5.
15

65
.9
1

8.
99

C
D
F+

T
F

68
.4
2

42
.5
1

51
.9
7

49
.7
3

22
.0
1

30
.3
5

23
.9
9

8.
07

11
.8
9

69
.9
7

31
.4
0

T
F+

PM
F

69
.9
0

39
.1
2

49
.6
3

49
.6
4

43
.9
6

46
.3
1

24
.0
0

33
.6
1

27
.1
5

68
.0
3

41
.0
3

C
D
F+

T
F+

PM
F

73
.7
5

49
.3
8

58
.9
0

53
.3
8

30
.3
6

38
.4
2

35
.2
8

21
.0
7

25
.4
2

72
.0
6

40
.9
1

C
D
F+

PM
F+

PE
F

65
.4
1

63
.1
8

63
.5
1

56
.4
1

33
.8
8

41
.9
2

33
.8
8

23
.8
5

26
.7
1

71
.9
1

44
.0
5

C
D
F+

T
F+

PM
F+

PE
F

69
.4
5

62
.7
7

65
.2
1

55
.7
4

35
.1
8

42
.5
7

38
.7
6

26
.2
8

29
.6
1

72
.9
7

45
.8
0

O
pe
nS

ta
ck

C
D
F

45
.0
4

2.
02

3.
85

41
.4
1

6.
23

10
.7
7

23
.4
0

7.
35

10
.8
8

65
.7
3

8.
50

C
D
F+

T
F

71
.3
0

31
.0
8

42
.6
5

42
.0
6

19
.6
3

26
.5
1

27
.7
8

12
.6
6

17
.1
9

68
.8
9

28
.7
8

T
F+

PM
F

68
.0
4

44
.8
4

53
.8
9

42
.0
4

38
.4
0

39
.8
0

26
.3
8

20
.9
0

23
.2
3

68
.1
5

38
.9
7

C
D
F+

T
F+

PM
F

75
.6
5

37
.3
3

49
.6
0

46
.6
9

21
.2
0

29
.0
2

38
.6
1

22
.5
6

28
.0
2

70
.8
6

35
.5
5

C
D
F+

PM
F+

PE
F

69
.0
7

52
.0
1

58
.6
6

47
.0
5

25
.6
2

33
.0
7

36
.5
4

26
.0
8

29
.4
8

70
.8
8

40
.4
0

C
D
F+

T
F+

PM
F+

PE
F

70
.6
4

54
.7
5

61
.1
9

47
.5
1

25
.7
0

33
.2
4

41
.0
4

28
.3
5

32
.2
7

71
.8
1

42
.2
3

7 Page 18 of 40 Empir Software Eng (2022) 27: 7

we also test the random combinations of the features such as ”TF + PMF”. Each result in
Table 8 represents the value of a metric obtained with the RF algorithm.

Generally, every type of features is useful. We can see that when only applying CDF to
train the learning model, PMCost achieves accuracies of 67.26%, 65.91% and 65.73% for
Eclipse, OpenDaylight and OpenStack, respectively. When combining CDF with TF, the
accuracies increase to 74.57%, 69.97%, and 68.89%, respectively. Then, when taking PMF
(i.e., ”CDF + TF + PMF”) into the learning model, the accuracies on the three datasets
exhibit obvious improvements, and this result reveals that the patch meta features provide a
good indication on the reviewing round prediction. Lastly, when adding PEF (i.e., ”CDF +
TF + PMF + PEF”) into the learning model, the accuracies have increased considerably.

In summary, we can observe that the prediction accuracy presents a continuous step-
like increase when adding new types of features into the learning model. This continuous
accuracy increase can also confirm that the four types of features are useful in characterizing
the patch reviewing round from four different perspectives.

5.3.3 RQ3: What features actually contributes to the prediction?

To further understand the discriminative power of the extracted features, we ranked the 15
most significant features according to their information gain values in Fig. 7. The informa-
tion gain computation is based on the dataset of the 3 projects, hence the information gain
value of each feature reflects the contribution to the class in the global dataset.

It can be seen clearly from the Fig. 7 that the most significant feature is AvgOwnerRe-
viewRounds, which is used to character the average reviewing rounds for all the patches of a
developer in the dataset. Because AvgOwnerReviewRounds directly reflects the past review
efficiency of the patches written by a developer, it plays a most important role in determining
the reviewing rounds. To reveal the reasons that make the feature AvgOwnerReviewRounds
to be significant, we will further discuss it in Section 7.2.

Fig. 7 The top 15 most important features

Page 19 of 40 7Empir Software Eng (2022) 27: 7

Another worth mentioning features are MaxReviewerReviewRounds and AvgReviewer-
ReviewRounds. As the name suggests, AvgReviewerReviewRounds shows the max reviewing
rounds in all the patches of a reviewer, which reflects the upper limit of the reviewing rounds
by a reviewer. AvgReviewerReviewRounds represents the average reviewing rounds for all
the patches of a reviewer in the dataset.

Meanwhile, the network-based PEF also play an import role in determining the reviewing
rounds, such as AvgReviewerClosenessCentrality and AvgReviewerDegreeCentrality. These
two features represent the degree of collaboration between the reviewers.

In addition, a patch meta feature is found in the 15 most important features, e.g., Mes-
sageLength.MessageLength usually describes how a bug is fixed or a software functionality
is implemented, then the message length may reflect the priority level and scale of a patch,
and further determines the reviewing round. More reasons that make the feature significant
will be discussed in Section 7.2.

Therefore, based on the results we observed, we can draw a conclusion that the review
efficiency of a patch depends heavily on factors of participants.

5.3.4 RQ4: Can PMCost be generalized in a cross-project scenario?

In our experiment setting in RQ1, for each project, we train a model by leveraging the histor-
ical patches with known reviewing round within the project (i.e., within-projects scenario).
However, for a new project, it may not have sufficient data to build a prediction model. Here,
we would like to investigate the performance of our approach in the cross-project scenario.

To do a cross-project evaluation, we build three generalization modes. For same-
language-cross, we first train a Random Forest model based on the dataset of OpenDaylight
and then apply it to Eclipse, while the two projects are both implemented by Java. For
language-cross, we also train a model on the dataset of OpenDaylight and then apply the
model to the test set of OpenStack, and OpenStack is based on Python. For union-training,
we first equally and randomly split the 3 projects into training set and testing set. Next, we
train a model based on the training set and then apply it to the testing set. Meanwhile, we
also apply the union-training model to the three projects for testing, respectively.

The results are shown in Table 9. PMCost achieves a lower overall F1 in the same-
language-cross evaluation. In the language-cross evaluation, PMCost shows a higher F1
values on the one-round, short-rounds and long-rounds reviewing patches compared with
the ones in the same-language-cross scenario. However, the performance of PMCost in both
same-language-cross and language-cross scenarios are inferior to ones in within-projects
scenarios. The reason may be that different projects have their special collaborating and
maintaining schemes and it is difficult to generalize them from one project to another.

Besides, we can observe that all the union evaluations show decline in overall F1 com-
pared with the ones in same-language-cross and language-cross scenarios, and the F1 values
on the datasets of Eclipse, OpenDaylight and OpenStack are 28.40%, 34.81% and 27.41%,
respectively. Considering the training set in the union evaluation includes the patches com-
ing from three different projects, and training a model on such union dataset will be much
more difficult than the one in a within-projects scenario.

Therefore, based on the results we observed, we can draw a conclusion that the perfor-
mance of PMCost shows some degradation in the same-language-cross, language-cross and
union training scenarios.

7 Page 20 of 40 Empir Software Eng (2022) 27: 7

Ta
bl
e
9

G
en
er
al
iz
at
io
n
ev
al
ua
tio

n

T
ra
in

Te
st

O
ne
-r
ou
nd

re
vi
ew

in
g

Sh
or
t-
ro
un
ds

re
vi
ew

in
g

L
on
g-
ro
un
ds

re
vi
ew

in
g

O
ve
ra
ll

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

O
pe
nD

ay
lig

ht
E
cl
ip
se

63
.8
2

58
.4
2

61
.0
0

27
.4
5

20
.9
6

23
.7
7

2.
67

32
.0
5

4.
93

51
.8
5

29
.9
0

O
pe
nD

ay
lig

ht
O
pe
nS

ta
ck

51
.0
4

87
.1
2

64
.3
7

40
.4
4

23
.5
7

29
.7
9

16
.4
7

10
.4
4

12
.7
8

64
.4
6

35
.6
5

U
ni
on

E
cl
ip
se

62
.9
2

99
.1
2

76
.9
7

23
.8
2

2.
75

4.
93

10
.6
9

1.
98

3.
34

74
.2
8

28
.4
0

O
pe
nD

ay
lig

ht
51
.1
1

99
.9
2

67
.6
3

46
.0
9

2.
09

4.
00

18
.9
2

1.
51

2.
79

67
.2
1

24
.8
1

O
pe
nS

ta
ck

52
.0
5

99
.9
8

68
.4
6

46
.6
8

6.
51

11
.4
2

16
.3
4

1.
26

2.
34

67
.7
4

27
.4
1

Page 21 of 40 7Empir Software Eng (2022) 27: 7

6 Model Limitation and Solution

Our findings in RQ3 reveal that owner’s experience (e.g., OwerAvgMergedRounds, Ower-
PatchNum) is one of the most important factors to determine the reviewing round of a
patch. It indicates that PMCost may have a bias against new developers. The information
gain score reflects the contribution of each feature to the classification in the datasets, the
higher the value, the greater the contribution. Therefore, features AvgOwnerReviewRounds
and OwnerPatchNum play important role in the reviewing round prediction. In general, the
new developers have less experience for submitting patches, and there will be very little
data available to represent the developers experience. As a result, the important feature (e.g.,
OwnerPatchNum) will play a diminished role in prediction. In this section, we first investi-
gate whether PMCost has such a shortcoming. Then, we investigate how to overcome this
possible shortcoming of PMCost.

To investigate whether PMCost has a bias against new developers, we need to evaluate
the performance of our approach on the patches submitted by new developers. To do this, we
randomly use the 80% of dataset as training set to build model, and the rest of dataset (i.e.,
20%) as test set. Then, we will check the testing set that howmany correct prediction coming
from the patches owned by new developers and how many correct prediction coming from
the patches owned by experienced developers. To determine the patches owned by new or
experienced developers, we rank the owners in the test set in a descending order according
to the number of patches they submitted, and then we divide the test set into set 1 and set 2.
We add the patches from the owners who submitted the least patches to the set 1 until the
number of patches reaches 50% of the total test set. The remaining 50% of the patches are
added into set 2. We consider the patches in set 1 as the ones submitted by new developers.
At last, we calculate the accuracy of the patches in set 1.

Table 10 shows the performance of PMCost for the patches owned by new develop-
ers. We can observe that PMCost achieves a F1 of only 41.24%, 40.80% and 33.42%
on the Eclipse, OpenDaylight and OpenStack, respectively. As shown in Table 7, for all
patches (submitted by new and experienced developers), PMCost achieves a F1 of 54.12%,
47.92% and 48.44% by using Random Forest algorithm on the Eclipse, OpenDaylight and
OpenStack datasets respectively. Thus, PMCost achieves a much lower F1 score for new
developers’ patches compared to all patches. It means that PMCost inclines to incorrectly
predict the labels of new developers’ patches.

To deal with the bias of our approach against new developers, a specialized model for
new developers patches is needed. We consider two methods to build the model:

– Model 1: From the above analysis, the features in the owner experience dimensions
cause the bias of our approach against new developers. To deal with the bias, we can
remove these features and train a model based on the remaining features. To do this, we
first remove the owner related features from PEF in the training and testing dataset and
we build the prediction model on the training dataset. Then, we use the model to predict
the labels of new developers’ patches in the testing dataset. Table 11 presents precision,
recall and F1 of the model for new developers’ patches. By comparing the results shown
in Tables 10, this model achieves a higher ACC and F1 for the three datasets. This
method thus achieves acceptable performance for the new developers’ patches.

– Model 2: We notice that half of the patches in the test set are regarded as the new
developers submitted patches. We conjecture that the training set induces the bias of
PMCost against new developers. To verify our conjecture, we only use the new devel-
opers’ patches to build the prediction model. Then, we use this model to predict the

7 Page 22 of 40 Empir Software Eng (2022) 27: 7

Ta
bl
e
10

T
he

pe
rf
or
m
an
ce

of
P
M
C
os
to

w
ne
d
by

ne
w
de
ve
lo
pe
rs

Pr
oj
ec
ts

on
e-
ro
un
d
re
vi
ew

in
g

sh
or
t-
ro
un
ds

re
vi
ew

in
g

lo
ng
-r
ou
nd
s
re
vi
ew

in
g

ov
er
al
l

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

64
.2
9

78
.8
0

70
.7
1

58
.4
3

30
.4
7

39
.1
6

16
.9
0

12
.7
0

13
.8
5

74
.7
3

41
.2
4

O
pe
nD

ay
lig

ht
59
.6
6

80
.6
6

68
.1
6

57
.7
7

20
.1
4

28
.3
5

49
.3
8

19
.1
2

25
.9
0

71
.6
3

40
.8
0

O
pe
nS

ta
ck

50
.9
0

81
.3
6

62
.2
1

43
.8
1

8.
45

13
.9
7

57
.3
8

17
.7
1

24
.0
9

67
.3
1

33
.4
2

Page 23 of 40 7Empir Software Eng (2022) 27: 7

Ta
bl
e
11

T
he

pe
rf
or
m
an
ce

of
P
M
C
os
tb

ui
lt
on

th
e
fe
at
ur
es

ex
ce
pt

PE
F

Pr
oj
ec
ts

on
e-
ro
un
d
re
vi
ew

in
g

sh
or
t-
ro
un
ds

re
vi
ew

in
g

lo
ng
-r
ou
nd
s
re
vi
ew

in
g

ov
er
al
l

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

81
.6
5

50
.5
9

61
.9
6

56
.3
6

58
.9
5

56
.5
7

19
.3
1

19
.9
3

19
.2
1

75
.1
3

45
.9
1

O
pe
nD

ay
lig

ht
74
.3
9

49
.8
0

59
.3
3

54
.3
8

31
.4
3

39
.6
0

34
.0
5

21
.2
7

25
.3
3

72
.2
8

41
.4
2

O
pe
nS

ta
ck

76
.3
9

38
.4
4

50
.6
7

44
.5
0

21
.8
9

29
.1
8

39
.8
7

23
.4
0

28
.9
4

70
.8
2

36
.2
6

7 Page 24 of 40 Empir Software Eng (2022) 27: 7

labels of new developers’ patches in testing dataset. As shown in Table 12, the model
achieves F1 values of 43.63%, 36.70% and 36.76% on the Eclipse, OpenDaylightand,
OpenStack, which shows a slight improvements on datasets of Eclipse and OpenStack
when comparing with the ones in Table 10.

By comparing the results of the two models, we choose the first model to predict the
reviewing round for new developers’ patches. Then, to deal with the bias of our approach
against new developers, we retain two models to predict the reviewing round, and one is
the model trained using all features and the another built on the features except PEF. When
applying our models in the practice, we choose one of the model to predict the reviewing
round, i.e., if a patch is submitted by a new developer (determining by the number of the
patches he/she submitted), we use the model built on the features except PEF. Otherwise,
we use the model built on all features.

7 Discussion

7.1 Feature Selection and Imbalanced Dataset

In this paper, we try to select the useful features. Inspired by Shivkumar et al. (Shivaji et al.
2013), we use the information gain to select a subset of features that are useful for making
prediction. The information gain score reflects the contribution of each feature to the classi-
fication in the datasets. If the information gain score of a feature is greater than 0, it indicates
that this feature plays a positive role in the classification. After calculating the information
gain score of each feature, we found that the information gain scores of 16 features are less
than or equal to 0. Then, we filter out these 16 features. Table 13 shows the performance of
PMCost built on total features and selected features (after filtering the 16 features). We can
observe a performance improvement when PMCost builds on the selected features. Then,
we do all the experiments by applying the selected features (i.e., after removing the 16
features).

We divide the reviewing rounds into three classes, i.e., one-round reviewing, short-rounds
reviewing and long-rounds reviewing. As shown in Table 1, each classes in the dataset has
different number. Therefore, to balance the instances in each class, we employed SMOTE
(Chawla et al. 2002) to create synthetic instances. As a result, the three classes (i.e., one-
round, short-rounds and long-rounds patches) had an equal number of data instances in the
training set. It is worth noting that the proportion of the three types of instances in the test set
always remained unchanged. Figure 8 shows the overall F1 values before and after applying
the SMOTE on the three datasets by using the Random Forest algorithm. We observed
that the overall F1 values after applying SMOTE are higher than that of before applying
SMOTE, and this indicates that using SMOTE to deal with imbalanced dataset can improve
the performance of the proposed model. Then, we do all the experiments by applying the
SMOTE to balance the classes.

7.2 Significant Features Analysis

To understand why these features have strong discriminability in Section 5.3.3, we further
analyze the reasons that make them discriminative. We notice that the feature Message-
Length is included in the 15 most important features, and we analyze the reasons that make

Page 25 of 40 7Empir Software Eng (2022) 27: 7

Ta
bl
e
12

T
he

pe
rf
or
m
an
ce

of
P
M
C
os
tb

ui
lt
on

th
e
pa
tc
he
s
su
bm

itt
ed

by
ne
w
de
ve
lo
pe
rs

Pr
oj
ec
t

on
e-
ro
un
d
re
vi
ew

in
g

sh
or
t-
ro
un
ds

re
vi
ew

in
g

lo
ng
-r
ou
nd
s
re
vi
ew

in
g

ov
er
al
l

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

65
.8
3

83
.0
0

73
.2
2

67
.7
4

26
.5
8

36
.3
7

94
.8
7

15
.5
5

21
.2
9

76
.1
5

43
.6
3

O
pe
nd
ay
lig

ht
58
.2
8

86
.9
0

66
.7
6

61
.4
3

18
.3
5

26
.7
6

89
.0
3

11
.2
2

16
.5
7

69
.5
8

36
.7
0

O
pe
nS

ta
ck

54
.2
8

80
.2
7

61
.8
9

58
.5
0

13
.0
6

19
.3
5

88
.8
8

23
.1
7

29
.0
3

67
.2
2

36
.7
6

7 Page 26 of 40 Empir Software Eng (2022) 27: 7

Ta
bl
e
13

T
he

pe
rf
or
m
an
ce

of
P
M
C
os
tb

ui
lt
on

to
ta
la
nd

se
le
ct
ed

fe
at
ur
es

Pr
oj
ec
ts

O
ne
-r
ou
nd

re
vi
ew

in
g

Sh
or
t-
ro
un
ds

re
vi
ew

in
g

L
on
g-
ro
un
ds

re
vi
ew

in
g

O
ve
ra
ll

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

A
C
C
(%

)
F1

(%
)

E
cl
ip
se

to
ta
l

77
.7
7

60
.1
9

67
.2
5

51
.0
0

52
.7
9

51
.6
6

20
.2
9

24
.5
9

21
.6
7

76
.7
3

46
.8
6

se
le
ct
ed

79
.6
0

67
.0
8

72
.5
6

57
.4
0

54
.0
5

55
.5
7

25
.8
5

23
.0
3

23
.8
2

79
.8
3

50
.6
5

O
pe
nD

ay
lig

ht
to
ta
l

62
.1
6

60
.8
4

61
.1
0

53
.2
6

33
.0
3

39
.7
4

30
.1
1

29
.1
8

28
.4
2

70
.1
4

43
.0
9

se
le
ct
ed

69
.4
5

62
.7
7

65
.2
1

55
.7
4

35
.1
8

42
.5
7

38
.7
6

26
.2
8

29
.6
1

72
.9
7

45
.8
0

O
pe
nS

ta
ck

to
ta
l

68
.8
7

44
.7
2

53
.9
6

42
.0
3

35
.8
8

38
.3
4

32
.4
9

22
.8
0

26
.4
7

68
.7
8

39
.5
9

se
le
ct
ed

70
.6
4

54
.7
5

61
.1
9

47
.5
1

25
.7
0

33
.2
4

41
.0
4

28
.3
5

32
.2
7

71
.8
1

42
.2
3

Page 27 of 40 7Empir Software Eng (2022) 27: 7

Fig. 8 The overall F1 values before and after applying the SMOTE on the three datasets

it significant. Figure 9 shows the average reviewing round of the patches with different mes-
sage length in the three projects. The message length represents the number of the words
contained in a patch. We use 10 words to build the interval, e.g., (40,50] means that the
number of the words contained in a patch is greater than 40 and less than or equal to 50. In
the project Eclipse, the number of the words contained in the patches ranges from 0 to 720.
We can see from Fig. 9 (a) that more than 99% of the messages are less than 160 words.
Meanwhile, there is no patch located in some intervals, such as the interval [360, 370). We
also notice that the patches with different message length have different average reviewing
rounds, e.g., the average reviewing round of the patches whose message length locates in the
interval of [130, 140) is 5.36, while the ones whose message length locates in the interval of
[210, 220) is 2.83. Obviously, the average reviewing rounds for the patches with different
message length has significant difference, hence featureMessageLength is very informative
for the reviewing round prediction.

Figure 9 (b) show the average reviewing round of the patches with different message
length in the project OpenDaylight. We notice that the message length of some patches is
larger than 500 words, and these patch messages usually describe the complete process of
how a bug occurs, as the example shown in patch 249764 in OpenDaylight. Meanwhile, we
can also observe that the average reviewing rounds for the patches with different message
length is different, which is consistent with one in Fig. 9 (a). Figure 9 (c) shows the average
reviewing round of the patches with different message length in the project OpenStack. The
message length of the patches locate in the interval of [850, 860) need the longest average
reviewing round, i.e., 11, while the one locates in the interval of [520, 530), [670, 680),
[740, 750) need the shortest average reviewing round, i.e., 1. Therefore, the variations of
the average reviewing round can be observed in the three projects, which make the feature
MessageLength be discriminative.

We learn about why MessageLength is so discriminative, while we don’t know whether
a patch with longer message or shorter message is more likely to be quickly reviewed.
Then, we analyze the relationship between the reviewing rounds and the length of the patch
message. We found that the patches having longer messages tend to be reviewed longer, as
shown in Fig. 10. So, to speed up patch review, we can give a suggestion to the developers
to avoid writing a longer and redundant patch message.

4https://git.opendaylight.org/gerrit/c/neutron/+/24976/1

7 Page 28 of 40 Empir Software Eng (2022) 27: 7

https://git.opendaylight.org/gerrit/c/neutron/+/24976/1

(a) Average reviewing rounds of the patches with different message length in Eclipse

(b) Average reviewing rounds of the patches with different message length in OpenDaylight

(c) Average reviewing rounds of the patches with different message length in OpenStack

Fig. 9 Average reviewing rounds of the patches with different message length in the three projects

Page 29 of 40 7Empir Software Eng (2022) 27: 7

Fig. 10 The reviewing round of the patches with different message length

In addition, we observe from Fig. 7 that the most significant feature is AvgOwnerRe-
viewRounds, which is used to character the average rounds for all the patches of a developer
in the dataset. To further explore the implicit information reflected by this feature, we ana-
lyze the developers with most average reviewing rounds (called top developers) and the ones
with least average reviewing rounds (called bottom developers). To make a fair comparison,
we select the 100 top developers with the most average reviewing rounds and 100 bottom
developers with least average reviewing rounds, respectively. Then, for the 100 top and bot-
tom developers, we count the average Java files, code lines, and changed code lines involved
by their patches, respectively. Table 14 shows the difference between the patch scale owned
by the top and bottom 100 developers. We can observe that the average reviewing rounds
shows the significant difference in the three datasets. For example, the average reviewing
rounds of the top 100 developers are 17.09 on dataset OpenStack, while this number is 1
for the bottom 100 developers. Meanwhile, we also observe that the average Java files and
the average code lines involved in the patches owned by the top and bottom 100 developers
are significantly different. Besides, the average changed code lines in the patches owned by
the top 100 developers are also greater than the ones of the bottom 100 developers. There-
fore, we can conclude that the patch scale can directly affect its reviewing rounds, and lager
patches have more code and require more rounds for reviewing by the reviewers. Hence,
to speed up patch reviewing, we recommend that programmers patch logically unrelated
changes separately as much as possible to reduce the size of a single patch.

Table 14 The patch scale owned by the top and bottom 100 developers

Developers Avg Reviewing Avg Java Avg Code Avg Changed

Rounds files lines code lines

Eclipse Top 100 5.68 80.6 679.46 85.45

Bottom 100 1 10.09 331.04 81.85

OpenDaylight Top 100 8.47 12.2 237.39 49.01

Bottom 100 1 5.81 134.64 48.8

OpenStack Top 100 17.09 7.11 813.05 98.79

Bottom 100 1 3.37 447.75 59.6

7 Page 30 of 40 Empir Software Eng (2022) 27: 7

We also study the cyclomatic complexity (Gill and Kemerer 1991) of the patches owned
by the top and bottom 100 developers. Specifically, we calculated the cyclomatic complexity
of the Java files in each patch, then calculated the average cyclomatic complexity of each
patch. The results in Table 15 show that the patches with more reviewing rounds means
more code complexity. It is common sense that the more complex the code, the more rounds
it takes to understand and review by the reviewers. We can also give some suggestions that
developers can reduce the number of patch reviewing rounds by writing less complex code,
e.g., using less nesting of loops or conditional statements.

7.3 Actual Reviewing Round Prediction

We try to train a model to predict the actual reviewing round. Specifically, we firstly collect
the actual reviewing round of each patch. Then, since each patch has an actual reviewing
round, we treat the prediction of actual reviewing round as a regression problem.We employ
5 learning-based regression models (including: SVR (Chang and Lin 2011), MLP (Hinton
1989), DT (Li et al. 1984), RF (Breiman 2001b), LGB (Ke et al. 2017b)) for the prediction
on the 3 datasets, i.e., Eclipse, OpenDaylight, and OpenStack. To measure the effectiveness
of the regression models, we employ MSE, MAE and R2 to evaluate the results. MSE and
MAE are mean squared error and mean absolute error, which are measure of errors, and
the optimization goal of the model is to make it as small as possible until zero. R2 is the
coefficient of determination, the proportion of the variance in the dependent variable that is
predictable from the independent variable. The closer the value of R2 is to 1, the better the
model fits the data.

Table 16 shows that LGB achieves the better results in predicting the actual reviewing
round in the 3 datasets when comparing with other four models. Even so, the MSE value
achieved by LGB is much bigger than 0 and the R2 value is much less than 1, indicating that
LGB shows a poor performance in the task of the actual reviewing round prediction. So, all
these regression models achieve poor performance in the task of the actual reviewing round
prediction on the 3 datasets.

In this paper, we use three intervals to represent the reviewing round span, i.e., patches
with 1 reviewing round, patches with 2 to 6 reviewing rounds, patches with more than 6
reviewing rounds. Defining the intervals of reviewing rounds has following advantage. It
can avoid to give the inaccurate prediction results (obtained by regression models) to devel-
opers. Since the regression models achieve poor performance when predicting the actual
reviewing round, in this case, it is better to give the developers a time span than an inex-
act reviewing round. Therefore, we predict the intervals of reviewing rounds instead of the
actual reviewing round in this paper.

Table 15 The cyclomatic
complexity of the patches owned
by the top and bottom 100
developers

Developers Avg Cyclomatic Complexity

Eclipse Top 100 87.01

Bottom 100 26.53

OpenDaylight Top 100 51.43

Bottom 100 11.21

OpenStack Top 100 112.65

Bottom 100 62.37

Page 31 of 40 7Empir Software Eng (2022) 27: 7

Table 16 Performance of
regression models Projects Algorithm MSE MAE R2

Eclipse SVR 9.23 0.38 −0.67

MLP 64.48 1.42 −5.65

DT 153.40 1.46 −29.12

RF 68.79 1.46 −6.51

LGB 4.83 0.17 −0.10

OpenDaylight SVR 612.00 3.96 −0.73

MLP 625.70 5.33 −1.05

DT 861.20 5.15 −2.47

RF 571.80 4.97 −1.15

LGB 79.66 0.88 −0.14

OpenStack SVR 45.90 1.23 −1.15

MLP 60.33 1.83 −4.10

DT 100.90 1.75 −9.12

RF 58.82 1.77 −3.11

LGB 6.91 0.33 −0.55

7.4 Prediction for Reviews with Multiple Rounds

As we can see in Fig. 1, 70% of the reviews take about 1 or 2 rounds. When we pay attention
to the actual reviewing time (days) of the patches only needing 1 or 2 reviewing rounds,
they represent only a small fraction of the reviewer’s total review time, as shown in Fig. 5,
while the reviews with multiple rounds cost a lot of time, i.e., most of the patches with
1-2 reviewing rounds cost less than 7 days, while most of the patches with more than 2
reviewing rounds span 7 to 120 days reviewing time. Therefore, from a reviewer’s point of
view, patches with multiple rounds are important to them, as they take up the majority of
their total reviewing time.

Then, if a patch requires long-rounds for reviewing determined by our prediction method,
we can tell the developers to do two things ahead of time. Firstly, developers take self-
inspection on the patch to found what reasons make the patch need so much time for
reviewing. Secondly, if a long-rounds reviewing is inevitable, developers can plan other soft-
ware development activities ahead of time instead of waiting for this patch to be reviewed.
Therefore, it is necessary to predict the number of reviewing rounds as well as the patches
with multiple reviewing rounds.

7.5 Can Reviewing Rounds Reflect Reviewing Effort?

We found that some patches have less reviewing rounds, but takes a very long time to review.
For example, in Fig. 11 a patch 5 coming from Eclipse has only 3 reviewing rounds, but
it takes about one years to finish the reviewing. We can see from the change log that the
first patch starts on Mar 08, 2019, and the last patch is on Mar 04, 2020. In this case, the
discussion and the reviewing rounds are not proportional to each other.

5https://git.eclipse.org/r/c/scout/org.eclipse.scout.rt/+/138383

7 Page 32 of 40 Empir Software Eng (2022) 27: 7

https://git.eclipse.org/r/c/scout/org.eclipse.scout.rt/+/138383

Fig. 11 A example of patch with less reviewing rounds but long reviewing time

However, in most cases the number of reviewing rounds and the reviewing effort are
roughly positive correlated. Figure 12 shows the distributions between the reviewing rounds
and the reviewing effort on the 3 datasets. The vertical axis in these figures are the number
of the messages (they come out of a discussion between developers and reviewers, as shown
in Fig. 11) in the discussions, which reflects the actual reviewing effort cost in the reviewing
process.

To investigate correlation between the number of reviewing rounds and the reviewing
effort, we apply the Spearman Correlation Coefficient. The results in Table 17 shows that the
Spearman Correlation Coefficient of three projects Eclipse, OpenDaylight and OpenStack
are 0.775, 0.834 and 0.788, respectively, which means that there is indeed a positive linear
correlation between the number of reviewing rounds and the discussion rounds. From this
perspective, the number of rounds can reflect the actual reviewing effort implied in the
discussions.

7.6 Time Constraints of Training and Test Sets

In the experiment, we employ a 5-fold cross validation metric. To avoid the future patches
are used to predict past patches, we follow time constraints in the 5-fold cross validation.
To achieve this goal, we sort the patches by their submission time through using the Time-
SeriesPlit of Scikit-Learn (Cerqueira et al. 2020). Scikit-Learn is designed to deal with time
series data by the related studies (Cerqueira et al. 2020).

Then, we employ TimeSeriesPlit to divide the dataset into 6 parts, from 0 to 5, as follow-
ing shows. In the first time, the part 0 is used as training set, and part 1 is used as test set.
At the second time, the parts 0 and 1 is used as training set, and part 2 is used as test set. By
analogy, we can guarantee that the future patches cannot use to predict past patches at each
time.

Case 1: TRAIN: [0] TEST: [1]
Case 2: TRAIN: [0 1] TEST: [2]
Case 3: TRAIN: [0 1 2] TEST: [3]
Case 4: TRAIN: [0 1 2 3] TEST: [4]
Case 5: TRAIN: [0 1 2 3 4] TEST: [5]
When we construct the network-based features, we also consider the time constraints

to guarantee that the future data cannot be used to predict past data. Taking Case 1 as an
example, when we construct the network-based features for the patches in the training set,

Page 33 of 40 7Empir Software Eng (2022) 27: 7

Fig. 12 The distribution of
reviewing rounds and discussion
time in the three projects

(a) Eclipse

(b) Opendaylight

(c) Openstack

7 Page 34 of 40 Empir Software Eng (2022) 27: 7

Table 17 Spearman correlation
coefficient on the three datasets Datasets Spearman Correlation Coefficient

Eclipse 0.775

Opendaylight 0.834

Openstack 0.788

we only take the owners and reviewers appearing together in a patch or folder in ”TRAIN:
[0]”, and the cases that they appear together in a patch or folder in the ”TEST: [1]” are not
considered. Thus, we can guarantee that the future data cannot be used to predict past data.

8 RelatedWork

Studies on factors impacting code review A large body of work has qualitatively analyzed
the modern code review process. Kononenko et al. (2015) explored a set of factors impact-
ing code review quality from the personal and social perspectives. Their findings showed
that both personal factors (such as reviewer workload and experience) and participation fac-
tors (such as the number of involved developers) are associated with the quality of the code
review. Thongtanunam et al. (2017) took a case study of 196,712 reviews spread across the
open-source projects of Android, Qt and OpenStack and found that the amount of review
participation in the past is a significant indicator of patches that will suffer from poor review
participation. Moreover, the length of a patch message shares a relationship with the likeli-
hood of receiving poor reviewer participation or discussion. Baysal et al. (2013) investigated
the influence of non-technical factors on code review. They described an empirical study of
the code review process for WebKit and their findings suggested that nontechnical factors
can significantly impact code reviews, such as patch size, priority and component. Rigby
et al. (2014) studied on six large and mature OSS (i.e., Open Source Software) projects to
make an empirical understanding of OSS peer review. They found that OSS peer reviews
are conducted asynchronously by empowered experts who focus on changes that are in their
area of expertise. Meanwhile, they also found that reviewers trend to provide timely, regu-
lar feedback on small changes, and the OSS review is drastically different from traditional
inspection. These research results inspired us to consider multiple influence factors (such
as: reviewer experience, patch message, patch size, etc) in predicting the reviewing rounds
in code review.

Studies on prediction of code patches There are many studies that focus on predicting
the merged code patches. Fan et al. (2018) proposed an approach to predict whether a patch
will eventually get merged or not. They extracted 34 features to characterize a code patch.
Some of their proposed features are same with us, while some are different, such as patch
meta feature, reviewer experience, etc. In the experiment, Fan et al. employed Random For-
est to build a prediction model and performed evaluation on three open source projects
containing a total of 166,215 patches. Jeong et al. (2009) proposed a set features to pre-
dict whether a given bug-fix patch in two open source project (i.e., Firefox and Mozilla
Core) will be accepted. Their features included number of occurrences of certain keywords
in the patch and features extracted from bug reports. Thus, they focused on predicting the
acceptance of bug-fix patches written in a specific programming language. Gousios et al.

Page 35 of 40 7Empir Software Eng (2022) 27: 7

(2014) proposed 12 features to predict whether a pull request will be merged and these fea-
tures are grouped into three dimensions: pull request, project and developer. Their study
focused on pull-requests while ours focuses on code patches coming from Gerrit. There
are two obvious differences between our study and the previous ones. First, we try to pre-
dict how long a patch will be reviewed, while existing studies try to determine whether a
patch is eventually merged or abandoned. Second, we model the reviewing round prediction
as triple-classification problem, i.e., one-round reviewing , short-rounds reviewing, long-
rounds reviewing, while the existing studies model their problem as binary-classification,
i.e., merged or abandoned.

Kikas et al. (2016) proposed a method to predict whether or not a pull requests issue will
close after a given time horizon. The proposed method is different from the existing ones
that it considers the dynamic features evolving throughout an issue’s lifetime. van der Veen
et al. (2015) applied the issue lifetime prediction to the pull request prioritization. They
trained a machine learning-based model to predict the probability of current pull requests
will receive user updates in the following time window. They thought the pull requests with
the highest probability should be ranked at the top of the integrated list of the pull requests.
The difference between these studies and our study is that: we try to predict how long a
patch will be reviewed after submitting, while these studies tries to predict whether a pull
requests will close at a given time window.

Studies on prediction of reopened bugs Theoretically, the reviewing round prediction is
somewhat similar to the issue of reopened bugs prediction. Generally, bugs are reported,
fixed, verified and closed. However, in some cases, bugs have to be re-opened (Shihab et al.
2013). For example, the unclear description given by the bug reporter, the developer misun-
derstood the root cause of the bug, the bug reappeared in the current version of the system
although it was fixed in the previous system (Xia et al. 2013). Similarly, if a patch submit-
ted by developers is not accepted by reviewers, the patch will be sent back to developers.
In this sense, the patch is “reopened” to developers. Many researchers have pay attention
to the issue of reopened bug such as Xia et al. (2013), they presented a high-level view of
how to use learning algorithms to predict reopened bug reports. Later, Xia et al. (2015) pro-
posed ReopenPredictor, which is an automatic predictor of reopened bugs. ReopenPredictor
uses a number of features, such as textual features, to achieve high accuracy prediction of
reopened bugs. In addition, they proposed two algorithms that are used to automatically esti-
mate various thresholds to maximize prediction performance. Mi and Keung (2016) drew
a conclusion that it is quite possible to reduce the bug reopening rate through the adoption
of appropriate methods, such as promoting effective and efficient communication among
bug reporters and developers. Souza et al. (2013) provided another idea that if rapid release
cycles impact the bug reopening rate. Their result showed that the bug reopening rate of
versions developed in rapid cycles was about 7% higher.

9 Threats to Validity

In this section we focus on the threats that could affect the results of our case studies. The
main threat to validity is the scale of the dataset. Since we need to extract reviewing data
from the open-source projects, it requires the reviewing data in the selected projects should
be public. We have collected 3 projects from Gerrit, and these projects include more than
ten thousand patches in total. In the future, we need to collect more high-quality projects to
extend our repository.

7 Page 36 of 40 Empir Software Eng (2022) 27: 7

Another threat to validity is the suitability of our evaluation measure. We use a conven-
tional measure to evaluate the effectiveness of the proposed approach in this paper. Because
the issue in this study can be modeled as a multi-classification, we introduce the precision,
recall, accuracy, F-measure to evaluate the effectiveness of our method. Meanwhile, we
compare the performances of our method with different machine learning models. All these
metrics can evaluate the effectiveness of our method. Thus, we believe there is little threat
to suitability of our evaluation measure.

The last threat to validity is the generalizability of our model. Our method is used to
predict the reviewing round. The selected projects are written by Java and Python language.
The features we designed in this study is programming language-independent. Therefore,
when applying our approach to the projects written by other programming languages, such
as C++, there is little threat to generalizability of our model.

10 Conclusion and FutureWork

In this paper, we aim to construct a machine learning based model to predict the reviewing
round that a newly submitted patch takes to be reviewed. We formulate this problem as a
triple-classification task. We extract 4 types of features such as patch meta features, code
diff features, personal experience features and textual features, and input them into Random
Forest to train a triple-classes prediction model. Comprehensive experiments on three open-
source projects show that our approach outperforms baselines that based on other machine
learning algorithms. Our comparative experiments and analysis show that some factors can
affect the reviewing round significantly, such as the experience of participants. The future
research agenda mainly focuses on the accuracy improvement of our approach. For example,
taking more dimensions of features relating to code changes or review into consideration.

Acknowledgments The work is supported by the Key-Area Research and Development Program of Guang-
dong Province (No. 2020B010164002), the National Natural Science Foundation of China (Nos. 61902441,
61902105, 62032025), HK RGC Project (No. PolyU 152239/18E), Guangdong Basic and Applied Basic
Research Foundation(No. 2020A-1515010973), the Fundamental Research Funds for the Central Universities
(No. 20lgpy129). Xiangping Chen is the corresponding author.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

(2008) Spearman rank correlation coefficient. In: The concise encyclopedia of statistics. Springer New York,
New York, pp 502–505. https://doi.org/10.1007/978-0-387-32833-1 379

Baum T, Schneider K, Bacchelli A (2019) Associating working memory capacity and code change ordering
with code review performance. Empir Softw Eng 24(4):1762–1798

Baysal O, Kononenko O, Holmes R, Godfrey MW (2013) The influence of non-technical factors on code
review. In: 2013 20th working conference on reverse engineering (WCRE). IEEE, pp 122-131

Page 37 of 40 7Empir Software Eng (2022) 27: 7

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-0-387-32833-1_379

Bollobas B (1998) Modern graph theory. Graduate Texts in Mathematics 184
Breiman L (2001a) Random forests. Mach Learn 45(1):5–32
Breiman L (2001b) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Cerqueira V, Torgo L, Mozeti I (2020) Evaluating time series forecasting models: an empirical study on

performance estimation methods. Mach Learn 109(11):1–32
Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol

2(3). https://doi.org/10.1145/1961189.1961199
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: Synthetic minority over-sampling

technique. J Artif Int Res 16(1):321–357
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Eyolfson J, Tan L, Lam P (2011) Do time of day and developer experience affect commit bugginess? In:

Proceedings of the 8th working conference on mining software repositories. ACM, pp 153–162
FaganM (2002) Design and code inspections to reduce errors in program development. In: Software pioneers.

Springer, pp 575–607
Fan Y, Xia X, Lo D, Li S (2018) Early prediction of merged code changes to prioritize reviewing tasks.

Empir Softw Eng 23(6):3346–3393. https://doi.org/10.1007/s10664-018-9602-0
Gill GK, Kemerer CF (1991) Cyclomatic complexity density and software maintenance productivity. IEEE

Trans Softw Eng
Gousios G, Pinzger M, Av Deursen (2014) An exploratory study of the pull-based software development

model. In: Proceedings of the 36th International conference on software engineering, ICSE 2014. Asso-
ciation for Computing Machinery, New York, pp 345-355. https://doi.org/10.1145/2568225.2568260

Hinton GE (1989) Connectionist learning procedures. Artif Intell 40(1–3):185–234. https://doi.org/10.1016/
0004-3702(89)90049-0

Huang Y, Zheng Q, Chen X, Xiong Y, Liu Z, Luo X (2017) Mining version control system for automati-
cally generating commit comment. In: 2017 ACM/IEEE international symposium on empirical software
engineering and measurement (ESEM). pp 414–423. https://doi.org/10.1109/ESEM.2017.56

Huang Y, Jia N, Chen X, Hong K, Zheng Z (2018) Salient-class location: Help developers understand code
change in code review. In: Proceedings of the 2018 26th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering. ACM, pp 770–774

Huang Y, Hu X, Jia N, Chen X, Xiong Y, Zheng Z (2020) Learning code context information to predict
comment locations. IEEE Trans Reliab 69(1):88–105. https://doi.org/10.1109/TR.2019.2931725

Huang Y, Jiang J, Luo X, Chen X, Huang G (2021) Change-patterns mapping: A boosting way for change
impact analysis. IEEE Trans Softw Eng PP(99):1–1

Jeong G, Kim S, Zimmermann T, Yi K (2009) Improving code review by predicting reviewers and acceptance
of patches. In: Research on software analysis for error-free computing center Tech-Memo (ROSAEC
MEMO 2009-006), pp 1–18

Jiang Y, Adams B, German DM (2013a) Will my patch make it? and how fast? case study on the linux kernel.
In: 2013 10th IEEE working conference on mining software repositories (MSR 2013). IEEE Computer
Society, Los Alamitos, pp 101–110. https://doi.org/10.1109/MSR.2013.6624016

Jiang Y, Adams B, German DM (2013b) Will my patch make it? and how fast?: Case study on the linux
kernel. In: Proceedings of the 10th working conference on mining software repositories. IEEE Press,
pp 101–110

Kagdi H, Hammad M, Maletic JI (2008) Who can help me with this source code change? In: 2008 IEEE
international conference on software maintenance. IEEE, pp 157–166

Kagdi H, Gethers M, Poshyvanyk D (2013) Integrating conceptual and logical couplings for change impact
analysis in software, vol 18, pp 933–969. https://doi.org/10.1007/s10664-012-9233-9

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017a) Lightgbm: A highly efficient
gradient boosting decision tree. In: Advances in neural information processing systems. pp 3146–3154

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017b) Lightgbm: A highly efficient gra-
dient boosting decision tree. In: Proceedings of the 31st international conference on neural information
processing systems, NIPS’17. Curran Associates Inc., Red Hook, pp 3149–3157

Kikas R, Dumas M, Pfahl D (2016) Using dynamic and contextual features to predict issue lifetime in github
projects. In: Proceedings of the 13th international conference on mining software repositories, MSR
’16. Association for Computing Machinery, New York. pp 291–302. https://doi.org/10.1145/2901739.
2901751

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating code review quality: Do
people and participation matter? In: 2015 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 111-120

7 Page 38 of 40 Empir Software Eng (2022) 27: 7

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/s10664-018-9602-0
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1016/0004-3702(89)90049-0
https://doi.org/10.1016/0004-3702(89)90049-0
https://doi.org/10.1109/ESEM.2017.56
https://doi.org/10.1109/TR.2019.2931725
https://doi.org/10.1109/MSR.2013.6624016
https://doi.org/10.1007/s10664-012-9233-9
https://doi.org/10.1145/2901739.2901751
https://doi.org/10.1145/2901739.2901751

Li B, Friedman J, Olshen R, Stone C (1984) Classification and regression trees (CART). vol 40.
https://doi.org/10.2307/2530946

Liu Z, Xia X, Treude C, Lo D, Li S (2019) Automatic generation of pull request descriptions, IEEE
McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review

participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
working conference on mining software repositories. ACM, pp 192–201

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146–2189

Mi Q, Keung J (2016) An empirical analysis of reopened bugs based on open source projects. In: Proceedings
of the 20th international conference on evaluation and assessment in software engineering. ACM, p 37

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases
and their compositionality. In: Proceedings of the 26th international conference on neural information
processing systems, NIPS’13. Curran Associates Inc., pp 3111–3119. http://dl.acm.org/citation.cfm?
id=2999792.2999959

Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy sets, and classification. IEEE Trans Neural Netw
3(5):683

Pregibon D et al (1981) Logistic regression diagnostics. Ann Stat 9(4):705–724
Quinlan JR (1987) Simplifying decision trees. Int J Man-mach Stud 27(3):221–234
Rigby PC, Bird C (2013) Convergent software peer review practices. In: Proceedings of the the joint meeting

of the European software engineering conference and the ACMSIGSOFT symposium on the foundations
of software engineering (ESEC/FSE). ACM. https://www.microsoft.com/en-us/research/publication/
convergent-software-peer-review-practices/, preprint available upon request to cbird@microsoft.com or
peter.rigby@concordia.ca

Rigby PC, Storey M (2011) Understanding broadcast based peer review on open source software projects.
In: 2011 33rd international conference on software engineering (ICSE). pp 541–550

Rigby PC, German DM, Cowen L, Storey MA (2014) Peer review on open-source software projects:
Parameters, statistical models, and theory. ACM Trans Softw Eng Methodol (TOSEM) 23(4):35.1–35.33

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Ki Matsumoto (2013) Studying
re-opened bugs in open source software. Empir Softw Eng 18(5):1005–1042

Shivaji S, Whitehead EJ, Akella R, Kim S (2013) Reducing features to improve code change-based bug
prediction. IEEE Trans Softw Eng 39(4):552–569. https://doi.org/10.1109/TSE.2012.43

Smith M, Shneiderman B, Milic-Frayling N, Rodrigues E, Barash V, Dunne C (2011) Analyzing (social
media) networks with nodexl. In: Proceedings on communities and technologies 2009, pp 255–264.
https://doi.org/10.1002/9781118257463.ch9

Souza R, Chavez C, Bittencourt R (2013) Patterns for cleaning up bug data. In: 2013 1st international
workshop on data analysis patterns in software engineering (DAPSE). IEEE, pp 26-28

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2017) Review participation in modern code review. Empir
Softw Eng 22(2):768–817

van der Veen E, Gousios G, Zaidman A (2015) Automatically prioritizing pull requests. In: Proceedings of
the 12th working conference on mining software repositories, MSR ’15. IEEE Press, pp 357–361

Xia X, Lo D, Wang X, Yang X, Li S, Sun J (2013) A comparative study of supervised learning algo-
rithms for re-opened bug prediction. In: 2013 17th European conference on software maintenance and
reengineering. IEEE, pp 331–334

Xia X, Lo D, Shihab E, Wang X, Zhou B (2015) Automatic, high accuracy prediction of reopened bugs.
Autom Softw Eng 22(1):75–109

Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F (2013) Categorizing bugs with social networks: a case
study on four open source software communities. In: Proceedings of the 2013 international conference
on software engineering. IEEE Press, pp 1032-1041

Zou W, Xuan J, Xie X, Chen Z, Xu B (2019) How does code style inconsistency affect pull request
integration? an exploratory study on 117 github projects. Empir Softw Eng

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 39 of 40 7Empir Software Eng (2022) 27: 7

https://doi.org/10.2307/2530946
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.microsoft.com/en-us/research/publication/converge nt-software-peer-review-practices/
https://www.microsoft.com/en-us/research/publication/converge nt-software-peer-review-practices/
https://doi.org/10.1109/TSE.2012.43
https://doi.org/10.1002/9781118257463.ch9

Affiliations

Yuan Huang1 ·Xingjian Liang2 ·Zhihao Chen2 ·Nan Jia3 ·Xiapu Luo4 ·
Xiangping Chen5 ·Zibin Zheng1 ·Xiaocong Zhou2

Yuan Huang
huangyuan5@mail.sysu.edu.cn

Xingjian Liang
liangxj8@mail2.sysu.edu.cn

Zhihao Chen
chenzhh95@mail2.sysu.edu.cn

Nan Jia
jianan 0101@163.com

Xiapu Luo
csxluo@comp.polyu.edu.hk

Zibin Zheng
zhzibin@mail.sysu.edu.cn

Xiaocong Zhou
isszxc@mail.sysu.edu.cn

1 School of Software Engineering, Sun Yat-sen University, Zhuhai 510006, China
2 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
3 School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
4 Department of Computing, The Hong Kong Polytechnic University, Hongkong, China
5 Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion,

School of Communication and Design, Sun Yat-sen University, Guangzhou 510006, China

7 Page 40 of 40 Empir Software Eng (2022) 27: 7

http://orcid.org/0000-0001-8234-3186
mailto: huangyuan5@mail.sysu.edu.cn
mailto: liangxj8@mail2.sysu.edu.cn
mailto: chenzhh95@mail2.sysu.edu.cn
mailto: jianan_0101@163.com
mailto: csxluo@comp.polyu.edu.hk
mailto: zhzibin@mail.sysu.edu.cn
mailto: isszxc@mail.sysu.edu.cn

	Reviewing rounds prediction for code patches
	Abstract
	Introduction
	Overall Framework and Motivating Scenario
	Overall Framework
	Motivating Scenario

	Data Collection
	Feature Extraction
	Patch Meta Features
	Code Diff Features
	Change-Type Features
	Change-Ratio Features

	Personal Experience Features
	Count-Based Features
	Network-based Features
	Direct Collaboration Mode
	Indirect Symbioses Mode

	Textual Features

	Evaluation
	Research Questions
	Evaluation Criteria
	Results and Discussion
	RQ1: How effective is PMCost in predicting reviewing rounds?
	RQ2: How effective is each subset of features in predicting reviewing round?
	RQ3: What features actually contributes to the prediction?
	RQ4: Can PMCost be generalized in a cross-project scenario?

	Model Limitation and Solution
	Discussion
	Feature Selection and Imbalanced Dataset
	Significant Features Analysis
	Actual Reviewing Round Prediction
	Prediction for Reviews with Multiple Rounds
	Can Reviewing Rounds Reflect Reviewing Effort?
	Time Constraints of Training and Test Sets

	Related Work
	Studies on factors impacting code review
	Studies on prediction of code patches
	Studies on prediction of reopened bugs

	Threats to Validity
	Conclusion and Future Work
	References
	Affiliations

