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Speckle-Based Optical Cryptosystem and its Application for
Human Face Recognition via Deep Learning
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Yuanjin Zheng, Honglin Liu, Jie Tian,* and Puxiang Lai*

Face recognition has become ubiquitous for authentication or security
purposes. Meanwhile, there are increasing concerns about the privacy of face
images, which are sensitive biometric data and should be protected.
Software-based cryptosystems are widely adopted to encrypt face images, but
the security level is limited by insufficient digital secret key length or
computing power. Hardware-based optical cryptosystems can generate
enormously longer secret keys and enable encryption at light speed, but most
reported optical methods, such as double random phase encryption, are less
compatible with other systems due to system complexity. In this study, a plain
yet highly efficient speckle-based optical cryptosystem is proposed and
implemented. A scattering ground glass is exploited to generate physical
secret keys of 17.2 gigabit length and encrypt face images via seemingly
random optical speckles at light speed. Face images can then be decrypted
from random speckles by a well-trained decryption neural network, such that
face recognition can be realized with up to 98% accuracy. Furthermore, attack
analyses are carried out to show the cryptosystem’s security. Due to its high
security, fast speed, and low cost, the speckle-based optical cryptosystem is
suitable for practical applications and can inspire other high-security
cryptosystems.

1. Introduction

The human face is a personal identifier, and
an adult can hardly change the appearance.
In modern society, numerous face recogni-
tion scenes have been set up for authenti-
cation or security purposes due to the in-
creasing concern for personal privacy and
public safety.!] The storage of human face
data is hence highly confidential. If the face
database is leaked, hackers may use this in-
formation to attack key sectors, including
bank accounts.?! Therefore, effective pro-
tection of face image data is essential for pri-
vacy and security.’]

Various  cryptosystems,  including
software-based and hardware-based, have
been put forward to protect private data. For
software-based cryptosystems, well-known
encryption algorithms have been devel-
oped, such as Rivest-Shamir-Adleman
encryption (RSA),*l Advanced Encryp-
tion Standards (AES),®] Message Digest
Algorithm (MD5),l% etc. These algorithms
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are all based on mathematical theories whose digital secret key
lengths range from tens to hundreds of bits. The selection of the
secret key lengths involves a trade-off or balance between security
level and processing speed. Such a limited key length seems to be
sufficiently secure for conventional attacks by general computers
but is vulnerable to attacks by the rapidly evolving quantum com-
puters, whose computing power is 10® times that of the general
ones.’l As a result, researchers keep exploiting novel cryptosys-
tems to achieve higher security, and hardware-based solutions are
therefore in demand.

Amongst current hardware-based solutions, optical cryptosys-
tems are of extensive interest with the development of optical
computing and computational imaging.[®°! The optical methods
may lead to breakthroughs in cryptosystems due to their superior
performance, such as fast speed, high security, low cost, etc.!!’l
Generally, optical cryptosystems use diffracted light to obtain the
ciphertext from the plaintext (data or images to be encrypted),
thus there is no computational cost and high-speed encryption
(i-e., speed of light) is guaranteed. Moreover, the large dimen-
sionality of the optical diffraction mechanism guarantees a long
length for digital secret keys, resulting in higher security.'!l In
contrast, to achieve comparable secret key length in software-
based cryptosystems, a high-performance computer is inevitable,
and the cost is demanding. In view of these advantages, re-
searchers have devised various optical cryptosystems, such as
double random phase encryption (DRPE)[1>13] and speckle-based
optical cryptosystems.['*1>] DRPE uses two phase masks at the
input plane and the plaintexts are then encrypted on the Fourier
plane. Although DRPE has been investigated for more than two
decades, it is not yet widely adopted as the optical design is
complicated to be integrated with other systems. A most recent
nonlinear optics-based encryption study reported in early 2022
faces such a limitation for extensions due to its interferometric
configuration.[1®]

Speckle-based approaches are therefore of interest, in which
optical speckles are utilized as ciphertext to encrypt plaintext.
Compared with DRPE, this method is much easier to implement
with a plain optical setup. In a strong scattering regime, the plain-
text (e.g., images) is optically scrambled, resulting in speckles fea-
tured by randomly distributed bright and dark regions, which can
be captured by regular digital cameras for further processing. The
random feature of the speckles seems meaningless and usually
annoying, but constitutes nearly infinite information channels!!”]
and hence the tremendously long physical secret key length in a
cryptosystem,!12] which can be exploited to yield high-level secu-
rity and information protection. Thus far, a few methods, such as
based on transmission matrix, 718 support vector regression,*’!
neural networks,['*] etc., have been developed to reconstruct im-
ages from the speckles. Among these approaches, neural net-
works can automatically learn the complex relationships between
the plaintext and the ciphertext, resulting in image reconstruc-
tion of higher fidelity than other methods can yield.?**! Since
the physical models in speckle-based optical cryptosystems are
similar to those for imaging through scattering media, neural
networks can also be applied in speckle-based optical cryptosys-
tems to decrypt speckles for higher-level applications like face
recognition.

It must be clarified that optical cryptosystems with high-
security and fast-speed encryption have been investigated,
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and various applications in encrypting simple structural
images (e.g., characters, clothes, animals, etc.) have been
demonstrated.['>"151726] However, speckle-based optical cryp-
tosystems for complex tasks, such as encrypted face recognition,
have rarely been explored. The main challenge here is to decrypt
images from rapidly changing optical speckles and to recognize
faces from the decrypted images. Moreover, to achieve high
accuracy in face recognition, decryption with high fidelity in key
features and detailed structures is required. In this work, we
propose a scheme that utilizes optical speckles for face image
encryption and a deep neural network for speckle decryption,
and the decrypted images are then used for face recognition. The
concept, as illustrated in Figure 1, can be decomposed into three
stages: first, face images are optically scrambled into speckles
for encryption, which protects the data during transmission and
storage; then, a neural network is trained to decrypt the face
images with high fidelity from the ciphertext (i.e., speckles);
last, the decrypted images are compared with the known face
encodings and recognized. In this cryptosystem, face images
are encrypted into seemingly random speckles that are nearly
impossible to be decrypted without the knowledge of the physical
key (i.e., the scattering medium) or the learned digital key (i.e.,
the trained neural network). Moreover, only speckles but no face
images are stored in the database to avoid any potential private
information leakage. To the best of our knowledge, this is the
first demonstration of a speckle-based optical cryptosystem for
face recognition, and the accuracy in this study has reached more
than 98%, which is applicable in a wide range of applications.

2. Results

2.1. Speckle-Based Encryption

Figure 2 shows the experimental optical setup for information en-
cryption (see Experimental Section for details). Face images from
the “Flickr Faces High Quality” (FFHQ) database!?’! are displayed
on a phase-modulating spatial light modulator (SLM) to modu-
late the incident coherent light from a 532 nm single mode laser
source (300 mW, EXLSR-532-300-CDRH, Spectra-Physics, USA).
Thus, the information of the face images (i.e., plaintext) is carried
by the wavefront modulated laser beam. Then, the modulated
wavefront passes through a scattering medium (220-grid ground
glass, DG10-220-MD, Thorlabs, USA) and is multiply scattered
to form random speckles (i.e., ciphertext), which are captured by
a digital camera (FL3-U3-32S2M-CS, PointGrey, Canada). During
encryption, which is the process of generating speckles, a MAT-
LAB program synchronizes all devices to ensure each captured
speckle pattern (i.e., ciphertext) is paired with one exclusive face
image (i.e., plaintext) displayed on the SLM, as illustrated in Fig-
ure 2. As seen, the ciphertext appears random and exhibits no
direct relationship with the plaintext, and the mean Pearson cor-
relation coefficient (PCC) between them is as low as 0.02.

2.2. Learning-Based Decryption

For information decryption from speckles, a neural network is
constructed first. The structure of the neural network is shown in

2202407 (2 0f11) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 1. The flowchart of the proposed cryptosystem for face recognition. a) Speckle encryption: face images (plaintext) are loaded on a spatial light
modulator (SLM) to generate the corresponding speckles (ciphertext) when coherent light reflected by the SLM transmits through a scattering medium,
which serves as the unique physical secret key. The ciphertext is safely transferred and stored via the cloud. No face images need to be kept in the
database after encryption. b) Learning-based decryption: a neural network is trained in advance to link the plaintext with the ciphertext. After training,
new random speckle patterns (ciphertext) are directly fed into the neural network for decryption, and the decrypted face images are then utilized for
face recognition. c) Face recognition: the camera-recorded face images are encoded to unique 128-dimensional vectors of each known face image.
After decryption, the face encoding distances between the decrypted images and the known face encodings are computed: if the encoding distance
is less than a pre-set threshold, the face recognition result is “Match” (the same person), otherwise it is “Mismatch” (different people). Plaintext
image: Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at Second Home London, by Innotech Summit, Flickr

(https://www.flickr.com/photos/115363358 @N03/18260388752/). The original image is cropped and converted to gray-scale.

Figure 3a, which is a U-Net!?®] concatenated with a complex fully
connected layer!?! and a normalization layer, and the dimension
of the filters in each layer is denoted in a format of length x height
X amount (see Experimental Section for details). Then the neural
network is trained with 19 800 pairs of face images and their cor-
responding speckles (see Experimental Section for details). The
loss function used for training the neural network is:

loss function = MSE (3,y) — PCC (3,y) (1)

where y is the ground truth and j is the predicted output from
the neural network. Here, we adopt PCC to measure the overall
similarity and mean square error (MSE) to measure the pixel-
wise error. The experimental results of the neural network are
shown in Figure 3b-d. During the network training and evalu-
ation, PCC gradually increases (Figure 3d) and MSE gradually
decreases (Figure Sla, Supporting Information), indicating in-
creasing similarity between the decrypted images and the origi-
nal plaintext. Especially, PCC becomes greater than 0.9 after 30
training epochs, suggesting high fidelity in decryption. In addi-
tion, we also measure other commonly used criteria, including
the structural similarity index measure (SSIM) and the peak sig-
nal to noise ratio (PSNR), defined as Equations (2)—(5) in Exper-
imental Section. In Figure 3b, four groups of exampled plain-
texts, ciphertexts, and decrypted images during network testing
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are shown. The PCC, MSE, SSIM, and PSNR between the de-
crypted images and the original plaintexts are marked under the
decrypted images. Overall, the average PCC, MSE, SSIM, and
PSNR among all testing data (not included in network training)
are 0.9422, 0.0083, 0.6884, and 21.25, respectively, demonstrat-
ing high accuracy of information decryption, which is essential
for face recognition in the next stage. After network training, the
plaintexts can be deleted from the cryptosystem to avoid privacy
data leakage.

Besides, the noise-resisting ability of the network is exam-
ined since noise always exists in experiments due to environ-
mental disturbances, vibration, airflow, et al.l??l In our study,
some computer-generated Gaussian noise with different stan-
dard deviations (i.e., different noise amplitudes)?’! is added to
the speckles for testing, and the decryption performance is up-
dated with the pre-trained neural network. The results are given
in Figure 4a and Table S1, Supporting Information. In Table S1,
Supporting Information, the PCCs are all greater than 0.9 when
the standard deviations of the noise are <0.3, which is consis-
tent with what can be seen in Figure 4a. The quality of the de-
crypted images deteriorates considerably when the standard de-
viation of the noise is >0.5 (i.e., noise amplitude is half of the
mean of the signal amplitude), and the face outline becomes in-
distinct. These results suggest that the neural network trained
in this study can handle low and moderate noise conditions to

2202407 (3 0f11) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 2. The optical setup for encryption. Face images (plaintext) are dis-
played on the SLM, which is illuminated by an expanded continuous coher-
ent laser beam (4 = 532 nm), generating speckles (ciphertext) through a
scattering medium. The speckles are recorded by a complementary metal-
oxide-semiconductor (CMOS) camera, which is synchronized by a Matlab
program to ensure one-to-one mapping with the displayed face image for
network training. Plaintext image: Reproduced under terms of the CC-BY
2.0 license. Copyright 2015, Lawrence Lessig at Second Home London,
by Innotech Summit, Flickr (https://www.flickr.com/photos/115363358 @
NO03/18260388752/). The original image is cropped and converted to gray-
scale.

the testing data, which is meaningful to the applicability of the
method.

Furthermore, due to multiple light scattering and the concep-
tualized infinite information channels(!®! within the scattering
medium, it is hypothesized that the information in the plaintext
is scrambled and distributes to the whole field of view (FOV)
of the speckle pattern. Spatially, this speckle pattern could be
large in practice, especially if the incident light is focused onto
the front sample surface or the detection plane is far away from
the sample. It is thus possible that only part of the speckle pat-
tern is captured by the detection camera in experiments.3% To
study whether this factor may affect the performance, an addi-
tional group of experiments is conducted by using a quarter FOV
of the speckle patterns for network training, evaluation, and test-
ing. That is, the dimension of the speckle patterns is reduced
from 256 X 256 to 128 x 128 under the same spatial sampling
condition. The experimental results are shown in Figure 4b, and
Tables S2 and S3, Supporting Information. As seen, partial FOV
leads to decryption results (Figure 4b) that are very comparable
to those obtained with larger FOV (Figure 3b), confirming the
hypothesis above. Such a non-point-to-point information map-
ping between the plaintext and the ciphertext is distinctive to
most existing cryptosystems. It allows smaller speckle FOVs to
be adopted in network training, evaluation, and testing, which
can relieve the burdens of data collection, storage, and process-
ing without compromising the decryption accuracy.

2.3. Face Recognition
During decryption, we utilize PCC and other criteria to test sim-

ilarities. However, these criteria are not suitable for face recog-
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nition as they may be affected by many factors other than face
features, such as backgrounds, orientations, and expressions of
faces.l?!) Therefore, at this stage the original and decrypted face
images are further processed with an open-source Python face-
recognition library.??l The neural network used for face recog-
nition is based on ResNet, 33 which is well-trained based on
3 million faces, with 99.38% accuracy on the Labeled Faces in
the Wild benchmark.3*35] The face recognition network encodes
each face image with a unique 128-dimensional vector, which ex-
tracts the specific features of human faces, including eyebrows,
eyes, noses, mouths, and cheeks. If the Fuclidean distancel*®! be-
tween two face vectors is lower than a pre-set threshold, two cor-
responding faces are defined as “Match” with each other; other-
wise, they are defined as “Mismatch”, as exampled in Figure 5c.
The commonly used pre-set threshold is 0.6 (for general situa-
tions) or 0.5 (for higher security scenes).

In our study, various thresholds between 0.5 and 0.6 are tested
with decrypted face images illustrated in Figure 3. As an exam-
ple, the results of face recognition with a threshold distance of
0.6 are shown in Figure 5. The key features of the original and
decrypted face images from Figure 3D are extracted by the face
recognition neural network and marked in the second row of Fig-
ures 5a and 5D, respectively.32] As seen, most of these decrypted
images appear akin to their corresponding original plaintext im-
ages (e.g., image pairs I-V, II-VI, and III-VII, whose PCC are all
more than 0.94) and hence are recognized as “Match.” Note that,
however, some image pairs seem visually alike, such as I[V-VIII
whose PCC = 0.96, but are still recognized as “Mismatch” since
the Euclidean distance is 0.61, being above the threshold of 0.6.
Nevertheless, it shows that the face recognition library can extract
key features and scale the differences between the decrypted and
original face images.

Furthermore, we test the accuracy of face recognition. The 128-
dimension face encodings from the decrypted images are com-
pared with the corresponding encodings from the original face
images, as shown in Figure 5d. The results with different distance
thresholds are shown in Table 1 and compared with other face
recognition algorithms.?”~*!] 1t is not surprising that different
thresholds result in different recalls, precisions, and accuracies
(Equations (9)—(12) in Experimental Section). It can be observed
that our accuracy reaches greater than 98% when the threshold is
below 0.58. Compared with FaceNet and VGGFace, the method
proposed in this work has higher accuracy and is therefore more
suitable for practical applications.’®3°] Moreover, the precision
is 100% when the threshold is set at 0.5, indicating high confi-
dence during face recognition. However, the recall and F1 score
obtained in this study are not as good as those from FaceNet and
VGGFace, which can be attributed to the fact that there are more
negative samples than positive samples in the data we use. The
performance can be further improved by adjusting the threshold
in face recognition according to the sample distribution in the
dataset, or tuning the structure or parameters of the neural net-
work.

3. Discussions

In this study, a speckle-based optical cryptosystem is proposed,
implemented, and demonstrated, by exploiting a ground glass
scattering medium as the physical secret key to generate speckle

2202407 (4 0f11) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 3. Neural network structure and the decryption performance. a) Architectures of the neural network based on U-Net with an additional layer of a
complex fully connected layer and normalization layer. The U-Net mainly contains 4 layers, with 4 down-sampling blocks for encoders (marked in blue)
and 4 up-sampling blocks for decoders (marked in orange).[?8] The final outputs are face images decrypted from speckles, which are then used for face
recognition. The dimensions of the filters are described as length X height x amount, and the filters shown here are visualized by inputting one speckle pat-
tern into the neural network. b) Four groups of exampled plaintexts, ciphertexts, and decrypted plaintext images during network testing. The ciphertexts
are all from the same scattering medium, and the decrypted plaintext images are the results of inputting ciphertexts to the pre-trained neural network for
decryption. The PCC, MSE, SSIM, and PSNR between the decrypted and original images are marked under the corresponding decrypted images. c) Loss
function during training and evaluation. The inset shows the learning rate during network training. d) The average PCC between the decrypted and orig-
inal plaintexts during network training and evaluation. b) Plaintext image |: Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence
Lessig at Second Home London, by Innotech Summit, Flickr (https://www.flickr.com/photos/115363358 @N03/18260388752/). P laintext image II: Re-
produced under terms of the Public Domain Mark 1.0 license. Copyright 2018, ki yéu 12c, by khanhkhokhao201, Flickr (https://www.flickr.com/photos/
154663983 @N08/28538465128/). P laintext image I1I: Reproduced under terms of the Public Domain Mark 1.0 license. Copyright 2016, Future Leaders
of the Pacific 2016 by US Embassy, Flickr (https://www.flickr.com/photos/us_embassy_newzealand/29355772191/). Plaintext image IV: Reproduced
under terms of the CC-BY 2.0 license. Copyright 2018, Ekaterina by Wonder Woman, Flickr (https://www.flickr.com/photos/zamerzla/28685633938/).
The original images were cropped and converted to gray-scale.
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Figure 4. a) Decryption performance with noisy speckles: the speckles
with computer-generated random noise are fed into the pre-trained neu-
ral network for decryption. The noisy speckles and the corresponding de-
crypted images are marked with the corresponding noise standard devi-
ation (SD) and similarity criteria. b) Decryption performance with partial
speckle patterns: only the top left corners (i.e., quarter field of view, marked
in red box) of the speckle patterns are used to train, evaluate, and test the
neural network. a) The plaintext image I-IV: Reproduced under terms of
the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at Second Home
London, by Innotech Summit, Flickr (https://www.flickr.com/photos/
115363358 @N03/18260388752/). b) The plaintext image |: Reproduced
under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig
at Second Home London, by Innotech Summit, Flickr (https://www.flickr.
com/photos/115363358 @N03/18260388752/). Plaintext image II: Repro-
duced under terms of the Public Domain Mark 1.0 license. Copyright 2018,
ki yéu 12¢, by khanhkhokhao201, Flickr (https://www.flickr.com/photos/
154663983 @N08/28538465128/). Plaintext image IlI: Reproduced under
terms of the Public Domain Mark 1.0 license. Copyright 2016, Future Lead-
ers of the Pacific 2016 by US Embassy, Flickr (https://www.flickr.com/
photos/us_embassy_newzealand/29355772191/). Plaintext image IV: Re-
produced under terms of the CC-BY 2.0 license. Copyright 2018, Ekate-
rina by Wonder Woman, Flickr (https://www.flickr.com/photos/zamerzla/
28685633938/). The original images were cropped and converted to gray-
scale.
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Figure 5. Face recognition results based on face images from FFHQ
and the corresponding decrypted images from speckles. a) The origi-
nal face images (i.e., plaintext) and their key features for face recogni-
tion. b) The decrypted face images by feeding speckle patterns into the
trained neural network and their key features. The face encoding dis-
tances between the decrypted and original face images with a thresh-
old = 0.6 are marked under the decrypted images. c) Face encoding dis-
tances between the decrypted and original images in the test dataset. If
the distance is less than or equal to the threshold = 0.6, the recogni-
tion result is “Match”; otherwise, it is “Mismatch.” d) The face recog-
nition results of the decrypted images. True positives are marked in
red, true negatives are marked in blue, while false positives and false
negatives are marked in black. a) First-row plaintext image I: Repro-
duced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence
Lessig at Second Home London, by Innotech Summit, Flickr (https:
/ [www.flickr.com/photos/115363358 @N03/18260388752/). The first-row
plaintext image Il: Reproduced under terms of the Public Domain Mark
1.0 license. Copyright 2018, ki yéu 12c, by khanhkhokhao201, Flickr
(https://www.flickr.com/photos /154663983 @ N08/28538465128/). First-
row plaintext image Ill: Reproduced under terms of the Public Do-
main Mark 1.0 license. Copyright 2016, Future Leaders of the Pacific
2016 by US Embassy, Flickr (https://www.flickr.com/photos/us_embassy_
newzealand/29355772191/). First-row plaintext image IV: Reproduced un-
der terms of the CC-BY 2.0 license. Copyright 2018, Ekaterina by Wonder
Woman, Flickr (https://www.flickr.com/photos/zamerzla/28685633938/).
The original images were cropped and converted to gray-scale.
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Table 1. Face recognition results by our method and other algorithms with
optimal thresholds.

Threshold Recall Precision Accuracy F1 score

This work 0.60 66.18% 64.02% 97.87% 65.08%
0.58 62.73% 69.66% 98.49% 66.01%

0.56 61.65% 78.10% 98.93% 68.91%

0.54 61.34% 87.95% 99.19% 72.28%

0.52 56.07% 92.31% 99.25% 69.77%

0.50 46.53% 100.00% 99.22% 63.51%

FaceNet!?%] 0.90 96.42% 100.00% 98.21% 98.18%
VGGFacel*] 0.79 80.71% 97.41% 89.28% 88.28%
OpenFacel“] 0.47 16.42% 95.83% 57.85% 28.04%
DeepFacel*] 0.51 9.28% 100.00% 54.64% 16.99%

patterns that uniquely encrypt information. As for a cryptosys-
tem, security is the topmost concern, and we will discuss the se-
curity of the proposed method from three aspects.

3.1. Length of the Secret Key

The equivalent key length of the scattering medium can be mod-
elled by the transmission matrix, whose dimension in this work
is (256 x 256) X (64 X 64), and each element is 64 bits (for com-
plex float numbers) in the computer. Thus, the digital key of this
cryptosystem is of length 64 X [(256 X 256) X (64 X 64)] = 1.72
x 100 bits, that is, 17.2 gigabits, which is enormous for brute
force attacks even with a quantum computer. In comparison, for
pure software-based encryption approaches, such as Advanced
Encryption Standard (AES)P! and Compression Friendly Encryp-
tion Scheme (CFES),*?] the digital cryptosystems are all based
on matrix manipulations. As the size of the matrix (i.e., digital se-
cret key length) increases, more multiplicative manipulations are
needed, and the computational complexity grows exponentially.
Therefore, to balance the computational efficiency and security,
the digital secret key lengths in digital cryptosystems are usually
limited to hundreds of bits. However, in our speckle-based physi-
cal encryption process, no mathematical algorithms are involved,
so the computational burden can be ruled out during encryption
and users can achieve high security without compromising en-
cryption speed. Note that, when it comes to decryption, our opti-
cal cryptosystem involves a large amount of computation. Fortu-
nately, these decryption processes can be accelerated by using a
high-performance graphics processing unit (GPU).

3.2. Unclonable Feature of the Secret Key

As for the optical setup, it is nearly impossible to generate the
same speckles with a different scattering medium (i.e., the phys-
ical secret key), in which the scatterers are randomly distributed.
The light-medium interactions are very complicated, and the re-
sultant optical propagation involves intricate multipath scatter-
ing; minor variations in the scattering medium can influence the
optical field considerably, resulting in a totally different transmis-
sion matrix of the scattering medium. Therefore, compared with
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existing digital encryption matrix-based approaches (i.e., relays
only on digital secret keys),!*] it is nearly impossible to duplicate
the inhomogeneous refractive index distribution of the scatter-
ing medium to crack the cryptosystem, except for a self-defined
medium such as a metasurface.[***! Therefore, the speckles can
be viewed as nearly unclonable, and the decryption process is ex-
clusive to the quantification of the scattering medium, that is, a
deep neural network (DNN) trained with ciphertext (i.e., speck-
les) as the input and plaintext as the output. If speckles generated
from another scattering medium (i.e., wrong physical secret keys)
are input to the pre-trained neural network for decryption, as ex-
ampled in Figure 6, the decrypted results (XIII to XVIII) are ob-
scure and very different from the plaintext (I to VI). Consequen-
tially, the decrypted images cannot be used for face recognition,
and thus the security of the proposed system can be guaranteed.

3.3. Uniqueness of the Optical Setup

Under extreme situations when hackers have obtained the scat-
tering medium (i.e., the physical secret key), to produce the same
speckle patterns, the error in duplicating the optical system align-
ment and the light-medium interaction should be within the op-
tical wavelength scale.[* That is, the optical setup ensures that
the interaction between the light and medium is hard to be re-
produced due to the “narrow” range (approximately milliradians
for tilt and submicron for shift) of the “memory effect.” What’s
more, within memory effect, neural networks can be built to re-
trieve images from speckle autocorrelations, and the trained neu-
ral networks can be generalized to unknown scattering media,
that is, the trained neural networks based on speckle autocor-
relations can be used for a ciphertext-only attack. However, be-
yond the memory effect, it is theoretically impossible to build and
train neural networks based on speckle autocorrelations to de-
crypt complex-structured face images from an unknown scatter-
ing medium, due to weak relations between speckle autocorrela-
tions and image autocorrelations.[**#’] In this work, the memory
effect range is less than a quarter of the face image size, thus the
cryptosystem is safe under ciphertext-only attacks. Furthermore,
chosen-plaintext and known-plaintext attacks are possible only
when attackers can get access to at least 10 000 image-speckle
sets, as discussed in Figure S2, Supporting Information. In the
proposed cryptosystem, obtaining such a large number of image-
speckle sets is possible only when attackers have access to the
optical setup and the unique physical secret key simultaneously,
which, however, is already beyond the scope of the topic. Even in
that situation, if the unique physical secret key is stolen, it can be
replaced with a new secret key to protect data.

3.4. Others

The intervention of optics further boosts the efficiency of en-
cryption (i.e., at the speed of light), which overwhelms the
software-based cryptosystems. Optical solutions, including the
proposed speckle-based method and the DRPE method, can en-
able highly efficient encryption and generate high-dimensional
secret keys.®!l Notably, compared with DRPE, the proposed
method is advantageous due to its simpler optical design. DRPE
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Plaintext
(original
image)
Ciphertext
(speckles)
Decrypted
plaintext
image
X1 X1V XV XVI XV XV
PCC =0.1063 PCC=0.1928  PCC=0.1934 PCC=0.1712 PCC=0.0496  PCC = 0.3496
MSE=0.0812 MSE=0.1002 MSE=0.0419 MSE=0.1266 MSE=0.1967  MSE = 0.0459
SSIM=0.1701  SSIM=0.1079  SSIM=0.1549  SSIM=0.1115 SSIM=0.1384  SSIM=0.1411
PSNR =10.89 PSNR =9.98 PSNR =13.76 PSNR = 8.97 PSNR =7.06 PSNR =13.37

Figure 6. Wrong physical secret key attack: the same plaintext images are used, but another scattering medium is utilized to generate the speckles
(i.e., ciphertext), which are input to the pre-trained neural network to yield the decrypted plaintext images. The PCC, MSE, SSIM, and PSNR between
the decrypted and the corresponding original face images are marked. The transmission matrix similarity, as measured by PCC, between the correct
and wrong physical secret keys is 0.00012. Plaintext image I: Reproduced under terms of the CC-BY 2.0 license. Copyright 2015, Lawrence Lessig at
Second Home London, by Innotech Summit, Flickr (https://www.flickr.com/photos/115363358 @N03/18260388752/). Plaintext image II: Reproduced
under terms of the Public Domain Mark 1.0 license. Copyright 2018, ki yéu 12¢, by khanhkhokhao201Flickr (https://www.flickr.com/photos/ 154663983 @
NO08/28538465128/). Plaintext image I11: Reproduced under terms of the Public Domain Mark 1.0 license. Copyright 2016, Future Leaders of the Pacific
2016 by US Embassy, Flickr (https://www.flickr.com/photos/us_embassy_newzealand/29355772191/). Plaintext image IV: Reproduced under terms of
the CC-BY 2.0 license. Copyright 2018, Ekaterina by Wonder Woman, Flickr (https://www.flickr.com/photos/zamerzla/28685633938/). Plaintext image
V: Reproduced under terms of the Public Domain Mark 1.0 license. 2015, Resiliency Day, Sept. 11, Copyright 2015 by Presidio of Monterey, Flickr
(https://www.flickr.com/photos/presidioofmonterey/21442846325/). Plaintext image VI: Reproduced under terms of the CC-BY 2.0 license. Copyright
2008, P1020227 by Kyle Peyton, Copyright 2008, Flickr (https://www.flickr.com/photos/kylepeyton/2779218214/). The original images were cropped and

converted to gray-scale.

requires two SLMs in the optical setup since the information is
encrypted by two random phase masks.!*}! In our cryptosystem,
the encryption can be performed with a scattering medium only.
This not only facilitates the integration with other systems, but
also reduces the cost of the cryptosystem. The most expensive
component in the current system is the SLM, which is only re-
sponsible for loading the images and is indeed replaceable in
practice since direct illumination of human faces can be used as
input images for the cryptosystem. As a result, the cost of the pro-
posed cryptosystems becomes comparable to the software-based
cryptosystems, which only require computers for encryption and
decryption.

When it comes to system latency, although well-known edge
computing can help to recognize face images and protect privacy
through computing in cloudlets, its scalability is refrained by the
computing power, leading to applications of limited database.[*3!
In comparison, the proposed light-based system can achieve fast
encryption speed and high scalability. Moreover, with the devel-
opment of high throughput communication networks, such as
5G, the latency of the proposed system can also be comparable to
edge computing-based face recognition.[*’!

When it comes to the quality of decrypted images, the pro-
posed neural network delivers high similarity between decrypted
and original images, resulting in accurate face recognition (i.e.,
98%) that is comparable to other state-of-art methods.~*! That
said, some high-frequency information (i.e., detailed structures,
such as hair) in images may still be lost after the speckle-based
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encryption in experiments, due to non-ideal experimental setups
such as aberrations from the SLM curvature, optical lens, and
camera. The lost high-frequency information is therefore diffi-
cult to be restored by neural networks during decryption. Further-
more, to simplify the optical setup, we have just recorded speckle
intensity during experiments. The missing phase of the speckle
field also results in information loss. These all lead to moderate
PSNR of decrypted images, which will be improved in the next
phase of study by optimizing the optical setup and/or the neural
network structures.

Last but not least, let us highlight the novelty of the proposed
speckle-based optical cryptosystem from three aspects. First, al-
though some literature has mentioned speckle-based encryption
recently,[1*1] they have mainly focused on the encryption of sim-
ple digits and characters, but not complex-structured images
such as face images in this work. The cryptosystem for face recon-
struction and recognition is considerably more complicated than
that for digits and characters. Second, although learning-based
decryption has also been demonstrated,['*!?) our efforts have
gone beyond. After decryption with high fidelity, face recognition
is demonstrated with 98% accuracy, which is comparable to the
state-of-art algorithms in the field. Third and most importantly,
the proposed speckle-based optical cryptosystem has a very high
level of security. The length of the physical security key is more
than 17 gigabits, being many magnitudes longer than that of pure
software-based encryption approaches and sufficiently secure for
brute force attacks. Due to the nature of the speckle-based mech-
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anism, there is no computational burden or compromised speed
during encryption. Meanwhile, the complicated light-medium
interaction assures every physical secret key (i.e., the scattering
medium) is unique and nearly unclonable. Furthermore, the nar-
row memory effect range of the optical system determines that
the interaction between the light and the medium is hard to be re-
produced, keeping the cryptosystem from ciphertext-only attacks,
chosen-plaintext attacks, and known-plaintext attacks. The only
exception is when the optical setup and the physical secret key
are both leaked, which, however, is beyond what a cryptosystem
can handle.

4, Conclusion

In this work, we demonstrate a speckle-based optical cryptosys-
tem for face recognition, and the accuracy in this study has
reached more than 98%, which is comparable to that of other
state-of-art methods. With the proposed speckle-based optical
cryptosystem, the encrypted private data (e.g., face images) is dif-
ficult to crack and reduces the risk of information leakage. The
speckle-based optical cryptosystem is suitable for practical appli-
cations due to its high security, fast speed, low cost, insensitivity
to the FOV, as well as immunity to low and moderate noise to the
ciphertexts. That said, the accuracy of face recognition can still be
further improved by constructing more complex neural networks
that lead to an all-speckle-based optical cryptosystem for decryp-
tion and face recognition,’*>!) where there is no need to decrypt
optical speckles to face images. Moreover, to further enhance the
security of the encryption processes, multi-channel laser diffrac-
tion by high-dimensional scattering media can be adopted to in-
crease the speckle randomness. On the other hand, binary speck-
les can be used to reduce data storage space and increase data
transmission speed.[>?] Collectively, although this study contains
only a proof-of-principle demonstration for face encryption and
recognition, we believe that with further optimization, the pro-
posed speckle-based optical cryptosystem may find or inspire
wide applications in high-security information encryption and
decryption.

5. Experimental Section

Optical Setup: The experimental setup during speckle encryption is
shown in Figure 2. First, the human face images were loaded onto the
SLM (HOLOEYE PLUTO VIS056 1080p, German). The human face images
used here were taken from the thumbnails of FFHQ database, a dataset of
human face images.[?’] The original FFHQ database contains 70 000 im-
ages, from which the first 20 000 images were selected for demonstrations
in this study. Light from a continuous wave 532 nm laser (EXLSR-532-300-
CDRH, Spectra-Physics, Excelsior Scientific Continuous-wave laser, Single
mode, 300 mW, USA) was expanded by a 4-f system (L1and L2 in Figure 2)
so that the SLM was fully illuminated to modulate the incident light. In ex-
periments, the resolution of the SLM was 1920 x 1080, and the 128 x
128 thumbnails were up-sampled (8-time nearest interpolation) to 1024
X 1024 and loaded onto the SLM to fully utilize the modulation capability.
The grey-scale intensity of the image (distributed from 0 to 255) on the
SLM was then converted to a phase delay (0 to 27). Finally, the wavefront-
modulated beam light was focused by an objective lens (RMS20X, Olym-
pus, Japan) onto and propagated through a scattering medium (220-grid
ground glass, diameter of 1.0 inch, DG10-220-MD, Thorlabs, USA). In
these experiments, 20 000 images were sequentially loaded onto the SLM,
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and the corresponding speckle patterns were captured by a CMOS camera
(FL3-U3-32S2M-CS, PointGrey, Canada) with a resolution of 256 X 256.

Training Dataset: The speckles used as the network input were 256
X 256 speckle images captured by the CMOS camera, and the images
used as the network output were 64 X 64 images that were down-sampled
through two-pixel-binning from the FFHQ dataset (128 x 128) to avoid
using up the GPU memory.I?’] These resolutions were chosen to make
full use of the experimental setup and achieve high fidelity image de-
cryption, as discussed in Figure S3, Supporting Information. The amount
of the whole dataset was 20 000: 19 800 image-speckle pairs for train-
ing, 100 image-speckle pairs for testing, and 100 image-speckle pairs
for evaluation. Before the speckle data was input to the neural network,
the input data were linearly normalized to [0,1] for better neural network
performance.[>3]

Neural Network for Decryption: The detailed structure of the neural
network for decryption is shown in Figure 3a. Overall, the architecture
of the neural network was based on the commonly used U-Net[?®] with
an additional complex fully connected layer[?'] and a normalization layer.
The encoders in the U-Net contained 4 down-sampling blocks and the de-
coders in the U-Net contained 4 up-sampling blocks. In addition, the fully
connected layer was based on complex numbers. In Figure 3a, the blue ar-
rows and filters represented the encoders in the U-Net, and the orange
arrows and filters represented the decoders in the U-Net. The encoder
tended to extract low-dimensional features from the speckles and encoded
them, and the decoder then tended to extract high-dimensional features
and decoded them.[?8] As a result, the encoder and decoder-shaped neural
network could extract features of different dimensions. The fully connected
layer was used as the last layer to transform extracted features into images.
The normalization layer limited the output range to [0,1]. At last, the final
output was the face images decrypted from random speckles, which were
then used for face recognition. During neural network training, the opti-
mizer used in training the neural network was stochastic gradient descent
(SGD),>4! and the learning rate was 0.15, with cosine annealing. During
the experiments, the neural network was trained for 30 epochs, and the
neural network was then tested. The software framework used was Pytorch
1.8.0 with Python 3.7.6 and Compute Unified Device Architecture (CUDA)
10.1 for GPU acceleration. The hardware used was Dell Precision Tower
5810 with Intel Xeon E5-1650 V3 CPU, 64 GB RAM, and Nvidia GeForce
RTX 2080Ti 11GB GPU. During the training, one epoch took ~30 min, and
the whole training process takes ~15 h.

Image Similarity Criteria:  During neural network training, evaluation,
and testing, PCC, MSE, PSNR, and SSIM were used as the image similarity
criteria, which are defined in Equations (2)—(5):

mean [(y — mean (y)) X (V_ mean (V))]

pec= std (y) x std (9) @

MSE = mean[(§ —y)’] @)

PSNR = 20 x |og10max—(y'Y) “)
\/MSE

SSIM=1(9,y) xc(3.y) xs(y) ©)

) = 2 x mean (y) X mean () + ¢, ©6)

mean(y)® + mean(?)2 + ¢

n 2 xstd (y) x std (9) + ¢
c(py) = ” A(z : Y
std(y)” +std(9)” + ¢,

cov (y,9) + c3
" std (y) x std () +¢

s(Wy) (®)
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In the equations above, y and § are the original and decrypted images,
respectively; mean(y) and mean(y) are the mean values of y and §, respec-
tively; std(y) and std(p) are the standard deviation of y and , respectively;
cov(y, §) is the covariance of y and §; ¢, ¢,, and ¢; are three very small con-
stants (107°) to prevent division by 0 in SSIM;[>°1 I(§, y) is the luminance
similarity; ¢(9, y) is the contrast similarity; s(, y) is the structure similarity.
Among these criteria, only MSE and PCC were used in the loss function
during network training, and the other criteria were just used during net-
work evaluation and testing.

Face Recognition Criteria:  The decrypted images were input to an open-
source face recognition program for face recognition.[3% Before testing the
neural network, some images with sunglasses and babies were excluded
since some of their facial key points were ambiguous. The most impor-
tant criterion during network testing was face recognition accuracy. First,
the face recognition program encodes each face image’s specific features
(including eyebrows, eyes, noses, mouths, and cheeks, as illustrated in
Figure 5a,b) with one special 128-dimension encoding,3 which took less
than 1s. Then, the target is that if the Euclidean distances!3®! between the
encoding vectors of two original images are smaller than the preset thresh-
old (indicating that they are the same person), the distances between the
two corresponding decrypted images are also expected to be smaller than
the preset threshold, indicating that the people in the decrypted images
and the original images are “match.” Here, mainstream computers to date
(e.g., Xeon E5-1650 V3 with 6 cores in experiments) could handle more
than 10 000 face encoding distances within 1's. The encodings of the de-
crypted images were also compared with each encoding of the original
images. If the two original images’ encoding distances were smaller than
the preset threshold, the two samples were treated as positive samples.
And if the corresponding two decrypted images’ encoding distances are
also smaller than the preset threshold, the results are true positives, oth-
erwise, they are false negatives. On the contrary, if the two original images’
encoding distances are larger than the preset threshold, the two samples
are treated as negative samples. And if the corresponding two decrypted
images’ encoding distances are also larger than the preset threshold, the
results are true negatives; otherwise, they are false positives. During net-
work testing, precision, recall, F1-score, and accuracy were used to test the
performance, as defined in Equations (9)—(12).

True Positive
Recall = — - )
True Positive + False Negative

.. True Positive
Precision = — — (10)
True Positive + False Positive

True Positive + True Negative

Accuracy =
7= True Negative + True Positive + False Negative + False Positive

(1

Flscore = 2 x Prec,s,on X Recall (12)
Precision + Recall

As one person might be recognized as two different people, while two dif-

ferent people should not be recognized as the same person, accuracy is
more meaningful than the other three criteria in this study.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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