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This paper investigates the finite horizon risk-sensitive portfolio opti-
mization in a regime-switching credit market with physical and information-
induced default contagion. It is assumed that the underlying regime-switching
process has countable states and is unobservable. The stochastic control prob-
lem is formulated under partial observations of asset prices and sequential
default events. By establishing a martingale representation theorem based on
incomplete and phasing out filtration, we connect the control problem to a
quadratic BSDE with jumps, in which the driver term is nonstandard and car-
ries the conditional filter as an infinite-dimensional parameter. By proposing
some truncation techniques and proving uniform a priori estimates, we obtain
the existence of a solution to the BSDE using the convergence of solutions
associated to some truncated BSDEs. The verification theorem can be con-
cluded with the aid of our BSDE results, which in turn yields the uniqueness
of the solution to the BSDE.

1. Introduction. Optimal portfolio allocation under risk-sensitive criteria has been an
important topic in quantitative finance. The problem formulation can integrate the expected
growth rate, the penalty term from the asymptotic variance as well as the risk sensitivity pa-
rameter into the dynamic decision making. To name but a few recent works on this topic,
Bielecki and Pliska [6] identify that the risk-sensitive portfolio optimization is related to
a mean-variance optimization problem; Nagai and Peng [33] study an infinite time risk-
sensitive portfolio optimization problem with an unobservable stochastic factor process; El-
Karoui and Hamadène [20] study the risk-sensitive control and the associated game problems
on stochastic functional games; Hansen et al. [24] reformulate it as a robust criteria in which
perturbations are penalized by a relative entropy; Hansen and Sargent [23] solve a decision-
making problem with hidden states and relate the prior distribution on the states to a risk-
sensitive operator; Davis and LIeo [16, 17] utilize the HJB equation approach to study the
risk-sensitive portfolio optimization problem in the jump diffusion model with full informa-
tion and without default contagion; Andruszkiewicz et al. [1] consider the risk-sensitive asset
management involving an observable regime switching process over finite states; Birge et
al. [8] examine a risk-sensitive credit asset management problem with an observable stochas-
tic factor; Bo et al. [11] recently investigate a risk-sensitive portfolio optimization problem
with both default contagion and regime switching over countable states.

This paper aims to study the risk-sensitive portfolio optimization among multiple credit
risky assets. Similar to [11], the default contagion is considered in the sense that the default
intensities of surviving names depend on the default events of all other assets as well as
regime states. In particular, the regime switching process is described by a continuous time
Markov chain with countable states and the default events of risky assets are depicted via
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some pure jump indicators. The joint impacts on the optimal portfolio by contagion risk and
changes of market and credit regimes can be analyzed in an integrated fashion. One reason
to consider possibly countable states is that the Markov chain is usually used to approxi-
mate the dynamics of stochastic factors. The standard discretization of sample space leads to
countable states of Markov chain (see, e.g., [2]), therefore our theoretical results can support
the numerical implementations of some credit portfolio optimization with stochastic factor
processes.

As opposed to [11], we further recast the problem into a more practical setting when the
regime-switching process is not observable, in which the filtering procedure becomes nec-
essary. Consequently, the contagion risk comes from two distinct sources: the “physical”
contagion that is from our way to model default intensity as a function depending on all other
default indicators and the “information-induced” contagion that is generated by our estima-
tion of the regime transition probability of the incoming default using observations of past de-
fault events. Despite abundant existing work in portfolio optimization under a hidden Markov
chain, see among [5, 9, 12, 30, 35, 37, 38] and many others, this paper appears as the first one
considering risk-sensitive control with both default contagion and partial observations based
on countable regimes states. Comparing with [11], the countable regime states results in an
infinite-dimensional filter process and we confront a more complicated infinite-dimensional
system of coupled nonlinear PDEs due to default contagion and the infinite-dimensional filter
process in Proposition 3.4. We lack adequate tools to tackle this infinite-dimensional system
by means of standard PDE theories such as operator method or fixed point method (see, e.g.,
[15] and [19]). On the other hand, the BSDE approach has become a powerful tool in financial
applications with default risk or incomplete information; see Jiao et al. [26] in the context of
utility maximization under contagion risk and complete information, and Papanicolaou [34]
on stochastic control under partial observations without default jumps. In the present paper,
we choose to employ the BSDE method to tackle the risk-sensitive control problem and it is
interesting to see that the associated BSDE in (55) has a nonstandard driver term that deserves
some careful investigations.

The mathematical contribution of this paper is twofold. First, a new martingale represen-
tation theorem is established under partial and phasing-out information. Second, we extend
the study of quadratic BSDE with jumps by considering a random driver induced from our
control problem. More detailed explanations are summarized as below:

(i) Regarding the aspect of partial observations, we are interested in the incomplete in-
formation filtration that possesses a phasing out feature due to sequential defaults of multiple
assets. That is, the information of the Brownian motion will be terminated after the associ-
ated risky asset defaults. This assumption can better match with the real life situation that
the investor can no longer perceive any information from the asset once it exits the market.
We therefore focus on the filtration FM defined in (7) that is generated by stopped Brownian
motions and the default indicator processes, and a new martingale representation theorem un-
der FM, that is, Theorem 3.2, is needed. By applying the changing of measure and technical
modifications of some arguments in Frey and Schmidt [22] together with the approximation
scheme and monotone class theorem, we can conclude Theorem 3.2, which is an interesting
new result.

(ii) There are many existing works on quadratic BSDE with jumps. Morlais [31] studies
the existence of a solution to the BSDE with jumps arising from an exponential utility max-
imization problem with a bounded terminal condition. Morlais [32] extends the work when
the jump measure satisfies the infinite-mass. Kazi-Tani et al. [28] apply a fixed point method
to study the quadratic BSDE with jumps given a small L∞-terminal condition. Antonelli
and Mancini [4] further refines the results of the previous work by considering a genera-
tor depending on all components and unbounded terminal conditions. All aforementioned
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work crucially rely on the same quadratic-exponential structure of the driver term, namely
quadratic growth in the Brownian component and exponential growth with respect to the
jump term, which entails a priori estimates of the solution. On the contrary, the random driver
in our quadratic BSDE (55) does not satisfy this property, which results from the risk sensi-
tive preference engaging contagion dependence and the filtering process, see Remark 5.1 for
detailed explanations. Consequently, the existence of a solution can not follow from the same
analysis in the literature. This is the main motivation for us to conduct this research, which
not only can contribute to the risk sensitive portfolio optimization under default contagion,
but will also enrich the study of quadratic BSDE with jumps by allowing some nonstandard
random drivers.

Note that Ankirchner et al. [3] consider a quadratic BSDE driven by Brownian motion
and a compensated default process, and the quadratic-exponential structure is not postulated
therein. Nevertheless, the arguments in [3] also can not be adopted in our setting because [3]
only considers a single default jump and their BSDE can eventually be split into two BSDE
problems without jumps, see Remark 5.1 for the detailed comparison. To overcome some new
difficulties caused by the random driver, we follow a two-step procedure. In the first step, we
propose some tailor-made truncations on the driver term to make it Lipschitz uniformly in
time and in sample path such that the existence and uniqueness of the solution can easily
follow. The challenging part is to derive uniform a priori estimates for all truncated solutions,
in which the bounded estimate of the jump solution of the truncated quadratic BSDE will
become helpful when the random driver does not exhibit the standard structure. In the second
step, we adopt and modify some approximation arguments in Kobylanski [29] to fit into our
setting with jumps and verify that the limiting process from step one solves the original BSDE
in an appropriate space. We believe that the analysis of BSDE (55) can be further extended
to tackle more general random drivers that stem from other default contagion models.

The rest of the paper is organized as follows. Section 2 introduces the model of credit risky
assets with regime-switching under partial information. Section 3 focuses on the filter pro-
cess and proves a new martingale representation theorem. Section 4 relates the risk-sensitive
portfolio optimization problem under partial information to a quadratic BSDE with jumps.
Section 5 is devoted to the proof of the existence of a solution to the BSDE problem. In
Section 6, the verification theorem is concluded by using our BSDE results, which further
implies the uniqueness of the solution to the BSDE problem. The technical proofs of some
auxiliary results are reported in the Appendix.

2. The model. We first introduce the market model consisting of credit risky assets with
default contagion and regime-switching. Let (�,F,F,P) be a complete filtered probability
space with the filtration F = (Ft )t≥0 satisfying the usual conditions. We consider n default-
able risky assets and one riskless bond, whose dynamics are F-adapted processes and are
defined via three components:

• Hidden regime-switching process. The hidden regime-switching process I is described by a
continuous time Markov chain with the generator matrix Q = (qij )1≤i,j≤m, where 2 ≤ m ≤
+∞. The state space of the regime-switching process I , denoted by SI = {1,2, . . . ,m},
may contain countably many states. It is assumed henceforth that the information of the
regime-switching process I is not observable by the investor.

• Default indicator process. Let H = (Hi(t); i = 1, . . . , n)t≥0 denote the default indica-
tor process with the state space SH = {0,1}n. It is assumed that the bivariate process
(I (t),H(t))t≥0 is a Markov process with the state space SI × SH , and moreover (I (t))t≥0
and (H(t))t≥0 do not jump simultaneously. With a stochastic rate 1{Hi(t)=0}λi(I (t),
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H(t)) = 1{Hi(t)=0}λi(I (t), (H1(t), . . . ,Hi−1(t),0,Hi+1(t), . . . ,Hn(t))), the default indi-
cator process H transits from a state

H(t) := (
H1(t), . . . ,Hi−1(t),Hi(t),Hi+1(t), . . . ,Hn(t)

)
in which the risky asset i is alive (Hi(t) = 0) to the neighbor state

Hi(t) := (
H1(t), . . . ,Hi−1(t),1 − Hi(t),Hi+1(t), . . . ,Hn(t)

)
in which the asset i has defaulted. The default contagion is allowed to occur among n risky
assets in view that the default intensity of the ith asset depends on the default state Hj(t)

for all j �= i in the market on the event {Hi(t) = 0}. From its construction, simultaneous
defaults are precluded because transitions from H(t) can only occur to a state differing
from H(t) in exactly one of the entries (see [10]). The intensity function λi(k, z) is as-
sumed to be strictly positive for all z ∈ SH . The default intensity of the ith risky asset may
change either if (i) a risky asset in the portfolio defaults (counterparty risk effect), or (ii)
there are transitions in the macro-economic environment (regime switching). The default
time of the ith risky asset with the initial time t ≥ 0 is then given by

τ t
i := inf

{
s ≥ t;Hi(s) = 1

}
, i = 1, . . . , n.(1)

For simplicity, we set τi := τ 0
i . Our default model belongs to a rich class of interacting

Markovian intensity models, introduced by Frey and Runggaldier [21]. Dynkin’s formula
yields that the process of pure jumps

ϒi(t) := Hi(t) −
∫ t∧τi

0
λi

(
I (s),H(s)

)
ds, t ≥ 0(2)

is a (P,F)-martingale, i = 1, . . . , n. Let us also denote ϒ = (ϒi(t); i = 1, . . . , n)�t≥0.
• Pre-default price dynamics. The price process of the riskless bond B(t) is given by

dB(t) = rB(t) dt with B(0) = 1, where r ≥ 0 is the interest rate. Let W = (Wi(t); i =
1, . . . , n)�t≥0 be an n-dimensional Brownian motion. The pre-default price dynamics of n

risky assets are given by

dP (t) = diag
(
P(t)

){(
μ
(
I (t)

) + λ
(
I (t),H(t)

))
dt + σ dW(t)

}
,(3)

where P(t) = (Pi(t); i = 1, . . . , n)�. For each regime state k ∈ SI , μ(k) is an Rn-valued
column vector, and λ(k, z) = (λi(k, z); i = 1, . . . , n)� stands for the vector of default in-
tensities. The volatility σ = diag((σi)i=1,...,n) is an Rn×n-valued constant diagonal matrix.
Here we assume σi > 0, i = 1, . . . , n, and the inverse of σ is denoted by σ−1.

Taking the default into consideration, we can write the price process P̃i(t) of the ith de-
faultable asset by P̃i(t) = (1 − Hi(t))Pi(t). Integration by parts yields that

dP̃ (t) = diag
(
P̃ (t−)

){
μ
(
I (t)

)
dt + σ dW(t) − dϒ(t)

}
.(4)

Recall that the information of the hidden regime-switching process I is not accessible
by the investor, who can only observe public prices of risky assets continuously and the
default events of assets (i.e., the information generated by P̃ and H ). It is our first task to
formulate the model dynamics under partial information filtration. To this end, for an adapted
process X = (X(t))t≥0, let FX

t = σ(X(s); s ≤ t) be the natural filtration generated by X. We
introduce the auxiliary process Wo = (Wo

1 (t), . . . ,Wo
n (t))�t≥0 defined by

Wo
i (t) := σ−1

i

∫ t

0

(
μi

(
I (s)

) + λi

(
I (s),H(s)

))
ds + Wi(t), t ≥ 0,(5)
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for i = 1, . . . , n. Let Wo,τ = (W
o,τ
1 (t), . . . ,Wo,τ

n (t))�t≥0 be the stopped process of Wo by the
default times (τ1, . . . τn) in the sense that

W
o,τ
i (t) := Wo

i (t ∧ τi), t ≥ 0, for i = 1, . . . , n.(6)

In view of (3) and (4), the available market information filtration FM := (FM
t )t≥0 satisfies

that

FM
t := F P̃

t ∨FH
t = FWo,τ

t ∨FH
t , t ≥ 0,(7)

where (FWo,τ

t )t≥0 and (FH
t )t≥0 are the filtration generated by Wo,τ and H respectively, that

is, FWo,τ

t = ∨n
i=1 F

W
o,τ
i

t and FH
t = ∨n

i=1 F
Hi
t for t ≥ 0.

From this point onwards, the next assumption is imposed especially when the number of
regime states is infinite, that is, m = +∞.

(H) For (i, k, z) ∈ {1, . . . , n}×SI ×SH , there exist positive constants ε and C independent
of k such that ε ≤ |λi(k, z)| + |μi(k)| ≤ C.

Note that if the number of regime states is finite, the assumption (H) holds trivially by taking

ε := min
(i,k,z)

{
λi(k, z)| + ∣∣μi(k)

∣∣} and C := max
(i,k,z)

{
λi(k, z)| + ∣∣μi(k)

∣∣}.
3. Filter processes and martingale representation. The goal of this section is to estab-

lish a martingale representation theorem for the filter process of the hidden regime-switching
process I = (I (t))t≥0 given the partial information FM defined by (7). This result can sim-
plify our risk-sensitive portfolio optimization problem, which will be elaborated in the next
section.

For k ∈ SI , we introduce the filter process of the hidden regime-switching process I by

pM
k (t) := P

(
I (t) = k|FM

t

)
, t ≥ 0.(8)

The state space of pM = (pM
k (t); k ∈ SI )

�
t≥0 is denoted by SpM. When m < +∞, it is shown

in Lemma B.1 in Capponi et al. [13] that SpM = {p ∈ (0,1)m; ∑m
i=1 pi = 1}. In our BSDE

approach, it is not important if the boundary point in the infinite-dimensional state space SpM

can be achieved or not.
Let us also introduce the enlarged filtration F̆ := FWo ∨ FH . We first apply a well-known

martingale representation (see, e.g., Proposition 7.1.3 in Bielecki and Rutkowski [7]) of the
filter process under the filtration F̆. Consider WM = (WM

1 (t), . . . ,WM
n (t))�t≥0 defined by

(9) WM
i (t) := W

o,τ
i (t) − σ−1

i

∫ t∧τi

0

(
μM

i

(
pM(s)

) + λM
i

(
pM(s),H(s)

))
ds, i = 1, . . . , n,

in which we define

μM(p) := ∑
k∈SI

μ(k)pk, λM(p, z) := ∑
k∈SI

λ(k, z)pk, (p, z) ∈ SpM × SH .(10)

Note that μM(pM(t)) and λM(pM(t), z) are conditional expectations of μ(I (t)) and
λ(I (t), z) given the filtration FM

t . The assumption (H) guarantees that μM(p) and λM(p, z)

defined in (10) are finite. Therefore, it is not difficult to verify that, under (H), the process
WM = (WM

i (t); i = 1, . . . , n)�t≥0 is a continuous (P,FM)-martingale. Also, we can show that,
for i = 1, . . . , n, the pure jump process defined by

ϒM
i (t) := Hi(t) −

∫ t

0
λM

i

(
pM(s),H(s)

)
ds, t ≥ 0(11)

is a (P,FM)-martingale.
First, we have the next auxiliary result.
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LEMMA 3.1. For t ≥ 0 and i = 1, . . . , n, let us denote F̆ i
t := FWo

i
t ∨ FHi

t and FMi
t :=

FW
o,τ
i

t ∨FHi
t . For any bounded R-valued r.v. ξ ∈ F̆ i

t , we have ξ1{τi≥t} ∈ FMi
t .

PROOF. Denote L the family of all bounded R-valued r.v.’s in the sense that

L := {
ξ ∈ B̆i

t ; ξ1{τi≥t} ∈ FMi
t

}
,

where B̆i
t stands for all bounded R-valued r.v.’s that are F̆ i

t -measurable. The class L is
nonempty as all constants are in L. Moreover, it holds that:

(i) Let ξk ∈ L for k ≥ 1 such that limk→∞ ξk = ξ , then ξ1{τi≥t} = limk→∞ ξk1{τi≥t} ∈
FMi

t .
(ii) Let ξi ∈ L with i = 1,2. Then, for all a, b ∈ R, {aξ1 + bξ2}1{τi≥t} = aξ11{τi≥t} +

bξ21{τi≥t} ∈ FMi
t .

We define another class of r.v.’s by

(12) M :=
{

k∏
	=1

1{[Wo
i (t	)]−1(A	)};0 ≤ t1 < · · · < tk ≤ t, A	 ∈ B(R), 	 = 1, . . . , k ∈ N

}
.

It is not difficult to see that M is a multiplicative class, and it holds that FWo
i

t = σ(M).
Furthermore, each ξ ∈ M admits the form that

ξ =
k∏

	=1

1{[Wo
i (t	)]−1(A	)}, where 0 ≤ t1 < · · · < tk ≤ t, A	 ∈ B(R), 	 = 1, . . . , k.

Therefore, we obtain that

ξ1{τi≥t} =
k∏

	=1

1{[Wo
i (t	)]−1(A	)}1{τi≥t} =

k∏
	=1

1{[Wo,τ
i (t	)]−1(A	)}1{τi≥t} ∈ FMi

t .

This implies that M ⊂ L. Monotone class theorem entails that L contains all bounded σ(M)-
measurable r.v.’s. On the other hand, we have FHi

t ⊂ L by definition. We next consider

M̆ := {
1A(ω)1B(ω);A ∈ FWo

i
t ,B ∈ FHi

t

}
.

It holds that M̆ is a multiplicative class and F̆ i
t = σ(M̆). Moreover, for any η ∈ M̆, η admits

the form that η = 1A1B , where A ∈ FWo
i

t and B ∈ FHi
t . It has been proved that both 1A and

1B are in L, and hence

η1{τi≥t} = 1A1B1{τi≥t} = (1A1{τi≥t})(1B1{τi≥t}) ∈FMi
t ,

which shows that η ∈ L. By monotone class theorem again, it holds that L contains all
bounded F̆ i

t -measurable r.v.’s. �

We next present the main result of this section.

THEOREM 3.2. Let T > 0 be a terminal horizon and L = (Lt )t∈[0,T ] be a real-valued
(P,FM)-square integrable martingale with bounded jumps. There exist FM-predictable and
square integrable αM = (αM

1 (t), . . . , αM
n (t))�t∈[0,T ] and βM = (βM

1 (t), . . . , βM
n (t))�t∈[0,T ] such

that, for all t ∈ [0, T ],

Lt = L0 +
n∑

i=1

∫ t

0
αM

i (s) dWM
i (s) +

n∑
i=1

∫ t

0
βM

i (s) dϒM
i (s).(13)

Here, the (P,FM)-martingales WM and ϒM are given by (9) and (11).
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Note that the observable information FM is generated by Wo,τ and H , where Wo,τ is a
stopped Brownian motion under P. Our proof of the theorem can be outlined as two steps:
First, we prove a martingale representation w.r.t. FM using an auxiliary probability measure
P∗, under which the observed Wo,τ has zero drift and H has the unit default intensity. Sec-
ond, we change the measure and establish the martingale representation under the original
probability measure P.

Fix t ∈ [0, T ] and let u ∈ [t, T ]. We introduce

(14) �t(u) :=
n∑

i=1

∫ u

t

(
λ−1

i (s−) − 1
)
dϒi(s) −

n∑
i=1

σ−1
i

∫ u∧τ t
i

t

(
μi(s) + λi(s)

)
dWi(s),

where the simplified notation μi(t) := μi(I (t)) and λi(t) := λi(I (t),H(t)) are used. We
then define

dP∗

dP

∣∣∣∣
FT

= E
(
�0)

T ,(15)

where E denotes the Doléans–Dade exponential and �0 = (�0(t))t∈[0,T ]. The assumption
(H) guarantees that P∗ ∼ P is a probability measure. Moreover, Wo is an F-Brownian motion
under P∗, while the observed process Wo,τ is a stopped F-Brownian motion. The F-intensity
of H is 1, that is, for i = 1, . . . , n, we have that

ϒ∗
i (t) := Hi(t) −

∫ t

0

(
1 − Hi(s)

)
ds, t ∈ [0, T ](16)

is an F-martingale of pure jumps (it is in fact also an FM-martingale). The next result serves
as the first step to prove Theorem 3.2.

LEMMA 3.3. Let L = (Lt )t∈[0,T ] be a real-valued (P∗,FM)-square integrable mar-
tingale with bounded jumps. There exist FM-predictable processes αM = (αM

1 (t), . . . ,

αM
n (t))�t∈[0,T ] and βM = (βM

1 (t), . . . , βM
n (t))�t∈[0,T ] such that, for all t ∈ [0, T ],

Lt = L0 +
n∑

i=1

∫ t

0
αM

i (s) dW
o,τ
i (s) +

n∑
i=1

∫ t

0
βM

i (s) dϒ∗
i (s).(17)

PROOF. Let L be the family of all bounded FM
T -measurable r.v.’s that can be repre-

sented by stochastic integrals w.r.t. Wo,τ and ϒ∗, that is, ξ ∈ L if and only if there exist
FM-predictable processes (α,β) such that

ξ = E∗[ξ ] +
n∑

i=1

∫ T

0
αi(s) dW

o,τ
i (s) +

n∑
i=1

∫ T

0
βi(s) dϒ∗

i (s).(18)

Here, E∗ denotes the expectation under P∗.
It is easy to see that all constants are in L and L is a vector space. Moreover, let us consider

nonnegative increasing r.v.’s (ξk)k≥1 ⊂ L such that limk→∞ ξk = ξ a.s. and ξ is bounded.
Then, the bounded convergence theorem implies that ξk → ξ , in L2(�), as k → ∞. Hence,
for each k ≥ 1, there exist FM-predictable processes (α(k), β(k)) such that ξk admits (18). It
follows that, for all distinct k, l ≥ 1,

ξk − ξl = E∗[ξk − ξl] +
n∑

i=1

∫ T

0

(
α

(k)
i (s) − α

(l)
i (s)

)
dW

o,τ
i

+
n∑

i=1

∫ T

0

(
β

(k)
i (s) − β

(l)
i (s)

)
dϒ∗

i (s).
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Therefore, it holds that

4E∗[|ξk − ξl|2] ≥
∫ T

0
E∗[∣∣α(k)(s) − α(l)(s)

∣∣2 + ∣∣β(k)(s) − β(l)(s)
∣∣2]ds.

This implies that (α(k), β(k))k≥1 is a Cauchy sequence in L2(� × [0, T ]), and there exist
FM-predictable processes (α∗, β∗) such that (α(k), β(k)) → (α∗, β∗) in L2(� × [0, T ]), as
k → ∞. Let us define

ξ̃ := E∗[ξ ] +
n∑

i=1

∫ T

0
α∗

i (s) dW
o,τ
i (s) +

n∑
i=1

∫ T

0
β∗

i (s) dϒ∗
i (s).

It follows that ξk → ξ̃ in L2(�), as k → ∞. The uniqueness of L2-limit gives that ξ = ξ̃ and
hence ξ ∈ L.

We next define a multiplicative class of r.v.’s by

M :=
{

n∏
i=1

ξi; ξi ∈ FMi
T is bounded for i = 1, . . . , n

}
.(19)

It is easy to see that FM
T = σ(M). Consider bounded r.v.’s ξi ∈ FMi

T , i = 1, . . . , n. As FMi
T ⊂

F̆ i
T for i = 1, . . . , n, the classical martingale representation under F̆ i

T (see, e.g., Proposition
7.1.3 of [7]) gives the existence of F̆i-predictable processes ᾰi = (ᾰi(t))t∈[0,T ] and β̆i =
(β̆i(t))t∈[0,T ] such that

ξi = E∗[ξi] +
∫ T

0
ᾰi(s) dWo

i (s) +
∫ T

0
β̆i(s) dϒ∗

i (s).

For i = 1, . . . , n, and t ∈ [0, T ], it holds that W
o,τ
i (t), Hi(t) ∈ F̆ i

t∧τi
, hence FMi

T ⊂ F̆ i
T ∧τi

.
Then

ξi = E∗[ξi |F̆ i
T ∧τi

] = E∗[ξi] +
∫ T ∧τi

0
ᾰi(s) dWo

i (s) +
∫ T ∧τi

0
β̆i(s) dϒ∗

i (s)

= E∗[ξi] +
∫ T ∧τi

0
ᾰi(s) dW

o,τ
i (s) +

∫ T ∧τi

0
β̆i(s) dϒ∗

i (s).

By virtue of Lemma 3.1, we have that both αi(t) := ᾰi(t)1{τi≥t} and βi(t) := β̆i(t)1{τi≥t} are
FMi

t -predictable for t ∈ [0, T ] as 1{τi≥t} is FMi
t -predictable. Therefore, each ξi ∈ FMi

T enjoys
the representation given by

ξi = E∗[ξi] +
∫ T

0
αi(s) dW

o,τ
i (s) +

∫ T

0
βi(s) dϒ∗

i (s), i = 1, . . . , n.

For i = 1, . . . , n and t ∈ [0, T ], we define FM-predictable processes by

αM
i (t) := ∏

k �=i

ξM
k (t−)αi(t), βM

i (t) := ∏
k �=i

ξM
k (t−)βi(t),

where

ξM
i (t) := E∗[ξi] +

∫ t

0
αi(s) dW

o,τ
i (s) +

∫ t

0
βi(s) dϒ∗

i (s).

Itô’s formula gives that

n∏
i=1

ξi = E∗
[

n∏
i=1

ξi

]
+

n∑
i=1

∫ T

0
αM

i (s) dW
o,τ
i (s) +

n∑
i=1

∫ T

0
βM

i (s) dϒ∗
i (s).(20)
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The representation (20) then implies that M ⊂ L and monotone class theorem yields that L
contains all bounded FM

T -measurable r.v.’s. Note that the jumps of ϒ∗ are bounded. We can
hence apply the localization techniques to L and obtain the desired martingale representation
under P∗ as stated in (17). �

We then continue to complete the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. For fixed t ∈ [0, T ] and any u ∈ [t, T ], we define

�M,t (u) :=
n∑

i=1

∫ u

t

(
λM

i (s−)−1 − 1
)
dϒM

i (s)

−
n∑

i=1

σ−1
i

∫ u

t

(
μM

i (s) + λM
i (s)

)
dWM

i (s).

(21)

In view of the assumption (H), the process ψ(u) := E(�M,t )u, u ∈ [t, T ], is an FM-martingale
that satisfies the representation

dψ(u) = ψ(u−)

{
n∑

i=1

(
λM

i (u−)−1 − 1
)
dϒM

i (u) −
n∑

i=1

σ−1
i

(
μM

i (u) + λM
i (u)

)
dWM

i (u)

}
.

Consider an arbitrary bounded r.v. ξ ∈ FM
T . The process ζM,∗(t) := E∗[ψ(T )−1ξ |FM

t ] for
t ∈ [0, T ] is a square integrable (P∗,FM)-martingale by (H). By Lemma 3.3, there exist FM-
predictable processes αM = (αM

1 (t), . . . , αM
n (t))�t∈[0,T ] and βM = (βM

1 (t), . . . , βM
n (t))�t∈[0,T ]

such that

ζM,∗(T ) = ψ(T )−1ξ

= E∗[ψ(T )−1ξ
] +

n∑
i=1

∫ T

0
αM

i (s) dW
o,τ
i (s) +

n∑
i=1

∫ T

0
βM

i (s) dϒ∗
i (s).

Therefore, we deduce that

ξ = ψ(T )E∗[ψ(T )−1ξ
] + ψ(T )

n∑
i=1

∫ T

0
αM

i (s) dW
o,τ
i (s)

+ ψ(T )

n∑
i=1

∫ T

0
βM

i (s) dϒ∗
i (s).

(22)

On the other hand, we first have that

ψ(T )E∗[ψ(T )−1ξ
] = E∗[ψ(T )−1ξ

]
+E∗[ψ(T )−1ξ

] n∑
i=1

∫ T

0
ψ(s−)

(
λM

i (s−)−1 − 1
)
dϒM

i (s)(23)

−E∗[ψ(T )−1ξ
] n∑
i=1

∫ T

0
ψ(s)σ−1

i

(
μM

i (s) + λM
i (s)

)
dWM

i (s).



2364 L. BO, H. LIAO AND X. YU

Integration by parts yields that

ψ(T )

n∑
i=1

∫ T

0
αM

i (s) dW
o,τ
i (s)

=
n∑

i=1

∫ T

0
ψ(s)αM

i (s) dWM
i (s)

+
n∑

j=1

∫ T

0
ψ(s−)

(
n∑

i=1

∫ s

0
αM

i (u) dW
o,τ
i (u)

)(
λM

j (s−)−1 − 1
)
dϒM

j (s)

−
n∑

j=1

∫ T

0
ψ(s)

(
n∑

i=1

∫ s

0
αM

i (u) dW
o,τ
i (u)

)
σ−1

j

(
μM

j (s) + λM
j (s)

)
dWM

j (s),

(24)

and

ψ(T )

n∑
i=1

∫ T

0
βM

i (s) dϒ∗
i (s)

=
n∑

i=1

∫ T

0
ψ(s−)βM

i (s)λM
j (s−)−1 dϒM

i (s)

+
n∑

j=1

∫ T

0
ψ(s−)

(
n∑

i=1

∫ s−
0

βM
i (u) dϒ∗

i (u)

)(
λM

j (s−)−1 − 1
)
dϒM

j (s)

−
n∑

j=1

∫ T

0
ψ(s)

(
n∑

i=1

∫ s

0
βM

i (u) dϒ∗
i (u)

)
σ−1

j

(
μM

j (s) + λM
j (s)

)
dWM

j (s).

(25)

By (22)–(25), we deduce that any bounded r.v. ξ ∈ FM
T admits the representation as a stochas-

tic integral w.r.t P-martingales WM and ϒM. As the jumps of ϒ∗ are bounded, the localiza-
tion technique can be applied to L and the desired martingale representation under P in (29)
follows. �

As a by-product of Theorem 3.2, the dynamics of the filter pM
k can be explicitly character-

ized. This result is useful by itself and the proof is deferred to the Appendix.

PROPOSITION 3.4. Let k ∈ SI and t ∈ [0, T ]. Under the assumption (H), the filter pro-
cess pM

k defined in (8) admits that

dpM
k (t) = ∑

j∈SI

qjkp
M
j (t) dt + pM

k (t−)

n∑
i=1

{
λi(k,H(t−))∑

l∈SI
λi(l,H(t−))pM

l (t−)
− 1

}
dϒM

i (t)

+ pM
k (t)

n∑
i=1

{
σ−1

i

(
μi(k) + λi

(
k,H(t)

))
(26)

− ∑
l∈SI

pM
l (t)σ−1

i

(
μi(l) + λi

(
l,H(t)

))}
dWM

i (t).

Here, the (P,FM)-martingales WM and ϒM are given by (9) and (11).

Note that in the price dynamics (4), the volatility matrix σ is assumed to be diagonal, that
is, all defaultable assets are driven by independent Brownian motions. This assumption can
actually be relaxed as shown in the next remark.
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REMARK 3.5. Consider the price dynamics of the ith defaultable asset given by

dP̃i(t) = P̃i(t−)

{
μi

(
I (t)

)
dt +

n∑
j=1

σij dWj (t) − dϒi(t)

}
, i = 1, . . . , n,(27)

where the volatility matrix σ = (σij ) ∈ Rn×n is nondiagonal. We next transform (27) into the
one with a diagonal volatility matrix, but noises are no longer independent. More precisely,

define W̃i(t) := σ̃−1
i

∑n
k=1 σikWk(t) for t ∈ [0, T ], where σ̃i :=

√∑n
k=1 σ 2

ik for i = 1, . . . , n.

Then, for i = 1, . . . , n, W̃i = (W̃i(t))t∈[0,T ] is a Brownian motion satisfying the correlation
〈W̃i, W̃j 〉t = σ̃−1

i σ̃−1
j

∑n
k=1 σikσjkt for i �= j . The price process (27) can be written that

dP̃ (t) = diag
(
P̃ (t−)

){
μ
(
I (t)

)
dt + σ̃ dW̃ (t) − dϒ(t)

}
,(28)

where σ̃ := diag(σ̃1, . . . , σ̃n) is still diagonal and W̃ = (W̃1, . . . , W̃n)
� is an n-dimensional

correlated Brownian motion. That is, we can still consider the price dynamics (4) with corre-
lated Brownian motions (W1, . . . ,Wn). Note that we can still define Wo and Wo,τ as in (5)
and (6) that for i = 1, . . . , n,

Wo
i (t) := σ−1

i

∫ t

0

(
μi

(
I (s)

) + λi

(
I (s),H(s)

))
ds + Wi(t), W

o,τ
i (t) := Wo

i (t ∧ τi), t ≥ 0.

By the approximation argument and monotone class theorem, Lemma 3.1 still holds. How-
ever, it will be difficult to prove Lemma 3.3 and Theorem 3.2 when (W1, . . . ,Wn) are not
independent. Indeed, recall that the proof of Lemma 3.1 is based on the filtration gen-
erated by the price process and the default event of every asset i (i.e., the subfiltration

FMi
t := FW

o,τ
i

t ∨ FHi
t for t ≥ 0). When (W1, . . . ,Wn) are independent, we first establish

the martingale representation result under each subfiltration FMi
T . That is, any bounded r.v.’s

ξi ∈ FMi
T , i = 1, . . . , n, admits the representation that

ξi = E∗[ξi] +
∫ T

0
αi(s) dW

o,τ
i (s) +

∫ T

0
βi(s) dϒ∗

i (s),

where αi and βi are (FMi
t )t∈[0,T ]-predictable. Then, integration by parts can be applied to

yield a general representation result under the filtration FM
T , as the underlying driving mar-

tingales (W
o,τ
i ,ϒ∗

i ) are orthogonal for i = 1, . . . , n, and hence Lemma 3.3 can be proved by
the approximation scheme and monotone class theorem.

On the other hand, if (W1, . . . ,Wn) are not independent, the orthogonality of these mar-
tingales does not hold. But we can still make the same conclusion using an alternative ar-
gument. For i = 1, . . . , n, under each FMi , it first follows from the same techniques used
in Lemma 3.1, Theorem 3.2, and Lemma 3.3 with independent (W1, . . . ,Wn) that for any
real-valued FMi = (FMi

t )t∈[0,T ]-square integrable (P,FMi )-martingale L = (Lt )t∈[0,T ] with
bounded jumps, there exist FMi-predictable and square integrable processes αM

i and βM
i such

that

Lt = L0 +
∫ t

0
αM

i (s) dWM
i (s) +

∫ t

0
βM

i (s) dϒM
i (s), t ∈ [0, T ].(29)

We next prove Theorem 3.2 using the Jacod–Yor theorem (see, e.g., Theorem IV.57 in
[36] or Theorem III.4.29 in [25]). To this end, let us consider a filtered probability space
(�,G,G,P ). Let H2 be the space of (P,G)-special semimartingales with finite H2-norm.
The H2-norm for a special semimartingale with canonical decompostion X = N + A1 is

1N (resp. A) is a local P -martingale (resp. a predictable process of finite variation under P ).
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defined by

‖X‖H2 := ∥∥[N,N]1/2
T

∥∥
L2 +

∥∥∥∥
∫ T

0
|dAs |

∥∥∥∥
L2

.

Let A ⊂ H2, which contains constant martingales. Denote by S(A) the stable subspace
of stochastic integrals generated by A, and M(A) the space of probability measures
making all elements of A square integrable martingales. We consider the space A =
{WM

1 , . . . ,WM
n ,ϒM

1 , . . . ,ϒM
n } and G = FM

T . It is easy to see that P ∈ M(A). By Theorem
IV.57 in Protter [36], to show the martingale representation property is equivalent to show that
P is an extremal point of M(A), that is, for any given probability measures Q,K ∈ M(A)

satisfying

λQ+ (1 − λ)K= P for some λ ∈ [0,1],(30)

it holds that Q =K = P. For i = 1, . . . , n, let us consider

Gi = FMi
T , Ai = {

WM
i ,ϒM

i

}
.

Let Pi , Qi and Ki be the restriction of P, Q and K on Gi , respectively. Consequently, Pi , Qi

and Ki ∈ M(Ai ) for i = 1, . . . , n, and Pi is an extremal point of M(Ai ). On the other hand,
it follows from (30) that

λQi + (1 − λ)Ki = Pi for some λ ∈ [0,1].
As Pi , Qi and Ki are the restriction of P, Q and K on Gi , it holds that Qi = Ki = Pi for
i = 1, . . . , n. Recall that FM

T = ∨n
i=1 FMi

T and Q = K = P on FMi
T for i = 1, . . . , n, we have

that Q= K= P on G, which verifies Theorem 3.2 when (W1, . . . ,Wn) are not independent.

4. Risk-sensitive control under partial information. We start to formulate the risk-
sensitive portfolio optimization under the partial information FM. Let us first introduce the
preliminary value function and transform it into an equivalent objective functional using the
martingale representation result in Section 3 and changing of measure. This formulation,
together with the appropriate set of admissible trading strategies, can link the control problem
to a nonstandard quadratic BSDE with jumps.

Let π = (πi(t); i = 1, . . . , n)�t∈[0,T ] be an FM-predictable process, which represents the

vector of proportions of wealth invested in n defaultable assets P̃ under partial observations.
The resulting wealth process Xπ = (Xπ(t))t∈[0,T ] evolves as

(31) dXπ(t) = Xπ(t−)π(t)�
{(

μ
(
I (t)

) − ren

)
dt + σ dW(t) − dϒ(t)

} + rXπ(t) dt,

where en = (1,1, . . . ,1)� is the n-dimensional identity column vector. As the price of the
ith asset jumps to zero when it defaults by (4), the corresponding fraction of wealth held by
the investor in this asset stays at zero after it defaults. It consequently follows that πi(t) =
(1 − Hi(t−))πi(t) for i = 1, . . . , n.

We next introduce the admissible set of all candidate dynamic investment strategies in our
framework.

DEFINITION 4.1. For t ∈ [0, T ], Uad
t denotes the set of admissible controls π(u) =

(πi(u); i = 1, . . . , n)�, u ∈ [t, T ], which are FM-predictable processes such that SDE (31)
admits a unique positive strong solution with Xπ(t) = x ∈ R+ and (E(�π,t )u)u∈[t,T ] is a
true (P∗,FM)-martingale, where P∗ is given by (15) and �π,t is defined later by (52). It also
follows that the process π should take values in U := (−∞,1)n.
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REMARK 4.2. The constraint on admissible investment strategies with the martingale
property is by no means restrictive. It will be shown in Section 6 that the first-order condition
leads to the optimal solution π∗ ∈ Uad

t as (E(�π∗,t )u)u∈[t,T ] can be verified to be a (P∗,FM)-
martingale. This additional constraint on admissibility can facilitate our future transformation
of the original control problem into a simplified form.

For π ∈ Uad
t , the wealth process can be rewritten equivalently by

Xπ(T ) = Xπ(t) exp

{∫ T

t

[
r + π(s)�

(
μ
(
I (s)

) − ren

)]
ds +

∫ T

t
π(s)�σ dW(s)

− 1

2

∫ T

t
π(s)�σσ�π(s) ds +

n∑
i=1

∫ T

t
ln
(
1 − πi(s)

)
dϒi(s)(32)

+
n∑

i=1

∫ T

t
λi

(
I (s),H(s)

)(
1 − Hi(s)

)[
πi(s) + ln

(
1 − πi(s)

)]
ds

}
.

Given π ∈ Uad
0 and (Xπ(0),H(0)) = (x, z) ∈ R+ × SH , the risk-sensitive objective func-

tional is defined by

J̃ (π;x, z) := −2

θ
lnE

[
exp

(
−θ

2
lnXπ(T )

)]
.(33)

The investor seeks to maximize J̃ over all admissible strategies π ∈ Uad
0 . We only fo-

cus on the case when θ ∈ (0,∞), which corresponds to a risk sensitive attitude. For
(Xπ(0),H(0)) = (x, z) ∈ R+ × SH , the value function of the control problem is given by

Ṽ (x, z) := sup
π∈Uad

0

{
−2

θ
lnE

[
exp

(
−θ

2
lnXπ(T )

)]}

= sup
π∈Uad

0

{
−2

θ
lnE

[(
Xπ

0
)− θ

2

(
Xπ(T )

Xπ(0)

)− θ
2
]}

= lnx − 2

θ
inf

π∈Uad
0

{
lnE

[(
Xπ(T )

Xπ(0)

)− θ
2
]}

= lnx − 2

θ
ln
{

inf
π∈Uad

0

E

[(
Xπ(T )

Xπ(0)

)− θ
2
]}

.

(34)

The control problem is then transformed to infπ∈Uad
0
E[(Xπ(T )/Xπ(0))− θ

2 ]. Hence, for
(t,p, z) ∈ [0, T ] × SpM × SH , it is equivalent to study the dynamic minimization problem

V (t,p, z) := inf
π∈Uad

t

J (π; t, p, z) := inf
π∈Uad

t

Et,p,z

[(
Xπ(T )

Xπ(t)

)− θ
2
]
,(35)

where Et,p,z[·] := E[·|pM(t) = p,H(t) = z] and Xπ(T )
Xπ (t)

can be expressed by (32).
We next rewrite the objective functional J in (35) under P∗. First, it is easy to see that (32)

is equivalent to(
Xπ(T )

Xπ(t)

)− θ
2 = exp

{
−θ

2

∫ T

t
r
(
1 − π(s)�en

)
ds − θ

2

∫ T

t
π(s)�σ dWo,τ (s)

+ θ

4

∫ T

t
π(s)�σσ�π(s) ds − θ

2

n∑
i=1

∫ T

t
ln
(
1 − πi(s)

)
dHi(s)

}
,

(36)
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where the last equality holds by virtue of πi(t) = (1 − Hi(t−))πi(t). We note that all terms
in (36) are FM-adapted. By (35), the objective functional is reformulated to

J (π; t, q, z) = Et,p,z

[(
Xπ(T )

Xπ(t)

)− θ
2
]

= E∗
t,p,z

[
η−1(t, T )

(
Xπ(T )

Xπ(t)

)− θ
2
]
.(37)

Here, the density process is defined by η(t, u) := E(�t )u with �t given in (14) and u ≥ t ,
and E∗ denotes the expectation operator under P∗ given in (15). Note that η(t, T ) is not
necessarily FM-adapted due to the presence of I in η(t, T ). In order to transform the objective
functional J in a fully observable form, let us introduce

ηM(t, u) := E
[
η(t, u)|FM

u

]
, u ∈ [t, T ].(38)

LEMMA 4.3. Let the assumption (H) hold. We have that

ηM(t, u) = E
(
φt )

u, u ∈ [t, T ],(39)

where we define

φt (·) :=
n∑

i=1

∫ ·
t

(
λM

i

(
pM(s−),H(s−)

)−1 − 1
)
dϒM

i (s)

−
n∑

i=1

∫ ·
t

σ−1
i

(
1 − Hi(s)

)
(μM

i

(
pM(s)

) + λM
i

(
pM(s),H(s)

)
dWM

i (s).

PROOF. It follows by definition that, for u ∈ [t, T ],

dη(t, u) = η(t, u−)

{
n∑

i=1

(
λi

(
I (u−),H(u−)

)−1 − 1
)
dϒi(u)

−
n∑

i=1

σ−1
i

(
1 − Hi(u)

)(
μi

(
I (u)

) + λi

(
I (u),H(u)

))
dWi(u)

}
.

As in the proof of Proposition 3.4, we still choose W
o,τ
i to be the test process for i =

1, . . . , n. Noting that W
o,τ
i is a stopped F-Brownian motion under P∗, we obtain that

ηM = (ηM(t, u))u∈[t,T ] and (ηW
o,τ
i )M = (E[η(t, u)W

o,τ
i (u)|FM

u ])u∈[t,T ] are both square-
integrable FM-martingales under P. In light of Theorem 3.2, there exist FM-predictable pro-
cesses αM = (αM

1 (t), . . . , αM
n (t))�t∈[0,T ] and βM = (βM

1 (t), . . . , βM
n (t))�t∈[0,T ] such that, for

u ∈ [t, T ],

ηM(t, u) = 1 +
n∑

i=1

∫ u

t
αM

i (s) dWM
i (s) +

n∑
i=1

∫ u

t
βM

i (s) dϒM
i (s).(40)

On the other hand, integration by parts gives that

ηM(t, u)W
o,τ
i (u) = W

o,τ
i (t) +

∫ u

t
W

o,τ
i (s) dηM(t, s) +

∫ u

t
ηM(t, s) dWM

i (s)

+ σ−1
i

∫ u

t
ηM(t, s)

(
1 − Hi(s)

)(
μM

i (s) + λM
i (s)

)
ds

+
∫ u

t

(
1 − Hi(s)

)
αM

i (s) ds.
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Note that the FM-adapted finite variation part in the canonical decomposition of (ηW
o,τ
i )M

vanishes. Using the equality (ηW
o,τ
i )M = ηMW

o,τ
i and comparing their finite variation parts,

we deduce that

αM
i (s) = −σ−1

i ηM(t, s)
(
μM

i (s) + λM
i (s)

)
, t ≤ s ≤ τ t

i .(41)

We next choose a test process φi(t) := Hi(t) − t ∧ τi for t ∈ [0, T ] to identify βM in (40).
By Girsanov’s theorem, ηφi is a (P,F)-martingale. Then, the FM-adapted finite variation part
of (ηφi)

M vanishes. Moreover, integration by parts yields that

ηM(t, u)φi(u) = φi(t) +
∫ u

t
φi(s−) dηM(t, s) +

∫ u

t

(
ηM(t, s−) + βM

i (s−)
)
dϒM

i (s)

+ σ−1
i

∫ u

t
ηM(t, s)

(
1 − Hi(s)

)(
λM

i (s) − 1
)
ds

+
∫ u

t

(
1 − Hi(s)

)
λM

i (s)βM
i (s) ds.

Comparing the finite variation parts of processes (ηφi)
M = (E[η(t, u)φi(u)|FM

u ])u∈[t,T ] and
ηMφi = (ηM(t, u)φi(u))u∈[t,T ], we have that

βM
i (s) = ηM(t, s−)

(
λM

i (s−)−1 − 1
)
, t ≤ s ≤ τ t

i .(42)

The proof is completed by plugging αM in (41) and βM in (42) back into (40). �

We next give the reformulation of the objective functional J in (37) under partial informa-
tion FM. The proof is deferred to the Appendix.

LEMMA 4.4. Let the assumption (H) hold and P∗ be the probability measure defined in
(15). Then, for (π; t, p, z) ∈ Uad

t × [0, T ] × SpM × SH , it holds that

J (π; t, p, z) = Et,p,z

[(
Xπ(T )

Xπ(t)

)− θ
2
]

= E∗
t,p,z

[
eQπ,t (T )].(43)

Here, the FM-adapted process Qπ,t (u) for u ∈ [t, T ] is defined by

Qπ,t (u) := −rθ

2
(u − t) +

n∑
i=1

∫ u

t

{
σ−1

i

(
μM

i (s) + λM
i (s)

) − θσi

2
πi(s)

}
dW

o,τ
i (s)

−
n∑

i=1

∫ u

t

{
θ

2
ln
(
1 − πi(s)

) − ln
(
λM

i (s−)
)}

dϒ∗
i (s)

+
n∑

i=1

∫ u∧τ t
i

t

{
1 − λM

i (s) + ln
(
λM

i (s)
) − 1

2
σ−2

i

(
μM

i (s) + λM
i (s)

)2
}

ds

+
n∑

i=1

∫ u∧τ t
i

t

{
rθ

2
πi(s) + θσ 2

i

4
π2

i (s) − θ

2
ln
(
1 − πi(s)

)}
ds,

(44)

where ϒ∗ = (ϒ∗
1 (t), . . . ,ϒ∗

n(t))�t∈[0,T ] is defined by (16).

We can now introduce a quadratic BSDE with jumps associated to the control problem
(35). Let (t,p, z) ∈ [0, T ] × SpM × SH , and (pM(t),H(t)) = (p, z). Consider the following



2370 L. BO, H. LIAO AND X. YU

BSDE defined on the filtered probability space (�,F,FM,P∗) with P∗ given in (15) that⎧⎪⎪⎨
⎪⎪⎩

dY (u) = f
(
pM(u),H(u),Z(u),V (u)

)
du

+ Z(u)� dWo,τ (u) + V (u)� dϒ∗(u), u ∈ [t, T );
Y(T ) = 0,

(45)

where, for (p, z, ξ, v) ∈ SpM × SH ×Rn ×Rn, the driver term of BSDE is given by

f (p, z, ξ, v) := sup
π∈(−∞,1)n

h(π;p, z, ξ, v),(46)

in which h(π;p, z, ξ, v) is given by

h(π;p, z, ξ, v) := hL(p, z, ξ, v) +
n∑

i=1

hi(πi;p, z, ξi, vi).(47)

Here, hL(p, z, ξ, v) is a linear strategy-independent function in (ξ, v), which is defined by

hL(p, z, ξ, v) := −
n∑

i=1

(1 − zi)ξiσ
−1
i

(
μM

i (p) + λM
i (p, z)

) +
n∑

i=1

(1 − zi)vi + rθ

2
,(48)

and for i = 1, . . . , n,

hi(πi;p, z, ξi, vi)

:= (1 − zi)

{
−θ

4
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi − 1

2

∣∣∣∣θ2σiπi − ξi

∣∣∣∣2

+ λM
i (p, z) − λM

i (p, z)(1 − πi)
− θ

2 evi

}
.

(49)

The functions μM(p) and λM(p, z) are given in (10). From this point onwards, we will write
the first component Y(u) of the solution of the BSDE (45) as Y(u; t, p, z) to emphasize its
dependence on the initial data (p, z) at time t .

The preliminary relationship between the value function and the solution of BSDE (45) is
built in the first verification result on the optimality as below.

LEMMA 4.5. Let the assumption (H) hold and (Y,Z,V ) be a solution of BSDE (45)
given the initial data (pM(t),H(t)) = (p, z) ∈ SpM × SH at time t . Then, for any π ∈ Uad

t ,
it holds that J (π; t, p, z) ≥ eY(t;t,p,z). Moreover, if there exists a process π∗ ∈ Uad

t such that
dP∗ ⊗ du-a.e.

(50) h
(
π∗(u);pM(u−),H(u−),Z(u),V (u)

) = f
(
pM(u−),H(u−),Z(u),V (u)

)
,

for u ∈ [t, T ], and π∗ is an optimal strategy for the risk sensitive control problem (34).

PROOF. By Lemma 4.4, we have that, for π ∈ Uad
t ,

J (π; t, p, z) = Et,p,z

[(
Xπ(T )

Xπ(t)

)− θ
2
]

= E∗
t,p,z

[
eQπ,t (T )],(51)

where Qπ,t is given by (44). For u ∈ [t, T ], let us define

�π,t (u) :=
n∑

i=1

∫ u

t

{
σ−1

i

(
μM

i (s) + λM
i (s)

) − θσi

2
πi(s) + Zi(s)

}
dW

o,τ
i (s)

+
n∑

i=1

∫ u

t

{(
1 − π(s)

)− θ
2 λM

i (s−)eVi(s) − 1
}
dϒ∗

i (s).

(52)
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As (Y,Z,V ) solves BSDE (45), a direct calculation yields that

J (π; t, p, z)e−Y (t;t,p,z) = E∗
t,p,z

[
eQπ,t (T )−Y (t;t,p,z)]

= E∗
t,p,z

[
E
(
�π,t )

T exp
(∫ T

t

(
f (u) − h

(
π(u);u))du

)]
.

Here, we have used the simplified notation f (u) := f (pM(u−),H(u−),Z(u),V (u)) and
h(π(u);u) := h(π(u);pM(u−),H(u−),Z(u),V (u)). By the definition of f in (46), it is
easy to see that f (u) − h(π(u);u) ≥ 0 for all u ∈ [t, T ]. Therefore, for all s ∈ [t, T ],
(53) eQπ,t (s)eY (s;t,p,z)−Y (t;t,p,z) = E

(
�π,t )

s exp
(∫ s

t

(
f (u) − h

(
π(u);u))du

)
≥ E

(
�π,t )

s .

Note that, for all admissible strategies π ∈ Uad
t , the process (E(�π,t )s)s∈[t,T ] is a (P∗,FM)-

martingale by Definition 4.1. This implies that, for any π ∈ Uad
t ,

J (π; t, p, z)e−Y (t;t,p,z) = E∗
t,p,z

[
eQπ,t (T )−Y (t;t,p,z)]

= E∗
t,p,z

[
E
(
�π,t )

T exp
(∫ T

t

(
f (u) − h

(
π(u);u))du

)]
(54)

≥ E∗
t,p,z

[
E
(
�π,t )

T

] = 1.

On the other hand, if (50) holds, then f (u) = h(π∗(u);u) = 0 for u ∈ [t, T ], a.s. This further
entails that the inequality (54) holds as an equality. Hence, for all π ∈ Uad

t , we get that

J (π; t, p, z) ≥ eY(t;t,p,z) = J
(
π∗; t, p, z

)
,

which confirms that π∗ ∈ Uad
t is an optimal strategy. �

5. Quadratic BSDE with jumps. This section focuses on the existence of solutions to
BSDE (45) under the partial information probability space (�,F,FM,P∗) with P∗ given by
(15). To this end, let us first introduce the next regularized form of BSDE (45) that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dỸ (u) = f̃

(
pM(u),H(u), Z̃(u), Ṽ (u)

)
du

+ Z̃(u)� dWo,τ (u) + Ṽ (u)� dϒ∗(u), u ∈ [t, T );
Ỹ (T ) =

∫ T

t
f
(
pM(u),H(u),0,0

)
du.

(55)

Here, f̃ (p, z, ξ, v) := f (p, z, ξ, v)−f (p, z,0,0) and hence f̃ (p, z,0,0) = 0 for all (p, z) ∈
SpM × SH . Note that the triplet (Y,Z,V ) solves (45) on [t, T ] if and only if (Y −∫ ·
t f (pM(u),H(u),0,0) du,Z,V ) solves (55) on [t, T ]. Therefore, it suffices to prove the

existence of FM-solutions of BSDE (55) with the random terminal condition.

REMARK 5.1. We stress that Wo,τ = (Wo
1 (t ∧τ1), . . . ,W

o
n (t ∧τn))

�
t∈[0,T ] is a martingale

under (�,F,FM,P∗), therefore the stopped feature by (τ1, . . . , τn) is actually hidden in the
proof of the existence of solution (Ỹ , Z̃, Ṽ ) to BSDE (55). The main challenges to analyze
BSDE (55) come from its random driver term G(t,ω, ξ, v) := f̃ (pM(ω, t),H(ω, t), ξ, v)

with (t,ω, ξ, v) ∈ [0, T ] × � × Rn × Rn. By the definition of f (p, z, ξ, v) in (46)–(49), it
is clear to see that f̃ (p, z, ξ, v) is quadratic in ξ ∈ Rn and it is exponentially nonlinear in
v ∈ Rn. Some standard arguments to obtain a priori estimates in the literature of quadratic
BSDEs with jumps, which usually enjoy a quadratic-exponential structure as in Assumption
3.1 of Kazi-Tani et al. [28] (see also the assumption (H) in [4]), can not be applied to BSDE
(55).
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Note that the quadratic-exponential structure is not enforced in [3], which instead consider
a class of locally Lipschitz assumption of the driver in their one-dimensional BSDE with
respect to the jump solution variable u ∈ R. However, the assumption (P1) in Ankirchner et
al. [3] assumes that the random driver f (s,ω, z,u) : [0, T ] × � ×Rd ×R satisfies a special
decomposition form in terms of a single default indicator, that is,

f (s,ω, z,u) = (
l(s, z) + j (s, u)

)(
1 − Ds−(ω)

) + m(s, z)Ds−(ω),(56)

where Dt := 1{τ1≤t} is the single default indicator and the default time τ1 is the single jump
in their BSDE. In the decomposition form (56), it can be observed that m(s, z) corresponds
to the driver of the post-default case, while l(s, z) + j (s, u) corresponds to the driver of the
pre-default case. Moreover, they also assume that l(·, z), m(·, z) and j (·, u) are predictable
w.r.t. the filtration generated by a Brownian motion W , and there exists a constant L ∈ R+
such that, for all z, z′ ∈ Rd ,∣∣l(s, z) − l

(
s, z′)∣∣ + ∣∣m(s, z) − m

(
s, z′)∣∣ ≤ L

(
1 + |z| + ∣∣z′∣∣)∣∣z − z′∣∣,(57)

and the jump function j ≥ 0 also satisfies the Lipschitz continuity on (−K,∞) for any
K > 0. The above assumptions allow them to split the BSDE into two BSDEs driven by
the Brownian motion W without jumps. As opposed to a single jump in [3], our paper stud-
ies sequential multiple defaults with default contagion and (common) unobservable regime-
switching on an infinite sate space (note that a single default does not raise any contagion is-
sue). It is clear that assumptions (56) and (57) are violated by our random driver G(t,ω, ξ, v).

In summary, some existing analysis can not be applied directly to show the existence of
solutions to BSDE (55) with the nonstandard random driver G(t,ω, ξ, v). We therefore apply
some tailor-made truncation techniques and then show that the solutions of truncated BSDEs
will eventually converge to the solution of BSDE (55).

5.1. Formulation of truncated BSDEs. Let us start to introduce the truncated BSDE un-
der (�,F,FM,P∗) as follows: for any N ≥ 1,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dỸN(u) = f̃ N (

u, Z̃N(u), Ṽ N(u)
)
du

+ Z̃N(u)� dWo,τ (u) + Ṽ N(u)� dϒ∗(u), u ∈ [t, T );
Ỹ N (T ) =

∫ T

t
f N(u,0,0) du.

(58)

For (ω,u, ξ, v) ∈ � × [t, T ] ×Rn ×Rn, the truncated random driver f̃ N is defined by

f̃ N (ω,u, ξ, v) := f N(ω,u, ξ, v) − f N(ω,u,0,0),(59)

where

f N(ω,u, ξ, v)

:= hL

(
pM(ω,u),H(ω,u), ξ

)
+

n∑
i=1

(
1 − Hi(ω,u)

)
sup

πi∈(−∞,1)

hN
i

(
πi;pM(ω,u),H(ω,u), ξ, v

);
hN

i (πi;p, z, ξi, vi)

:= −θ

4
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi − 1

2

∣∣∣∣θ2σiπi − ξi

∣∣∣∣2ρN(ξi)

+ λM
i (p, z) − λM

i (p, z)(1 − πi)
− θ

2 ρ̂N

(
evi

)
.

(60)
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Here, for N ≥ 1, ρN :R →R+ is a chosen truncation function whose first-order derivative is
bounded by 1, such that ρN(x) = 1 if |x| ≤ N , ρN(x) = 0 if |x| ≥ N + 2, and 0 ≤ ρN(x) ≤ 1
if N ≤ |x| ≤ N +2. Meanwhile ρ̂N :R+ →R+ is chosen as an increasing C1-function whose
first-order derivative is bounded by 1, such that ρ̂N (x) = x, if 0 ≤ x ≤ N , ρ̂N (x) = N + 1, if
x ≥ N + 2, and N ≤ ρ̂(x) ≤ N + 1, if N ≤ x ≤ N + 2.

We will show that for each N ≥ 1, the truncated random driver f̃ N (ω,u, ξ, v) is Lipschtiz
in (ξ, v) ∈ Rn × Rn uniformly in (ω,u) ∈ � × [t, T ]. To this end, we first present the next
auxiliary result, whose proof is given in the Appendix.

LEMMA 5.2. Let the assumption (H) hold and (p, z, ξi, vi) ∈ SpM × SH × R × R for
i = 1, . . . , n. For each N ≥ 1, there exists a constant RN > 0, only depending on N , such
that

sup
πi∈(−∞,1)

hN
i (πi;p, z, ξi, vi) = sup

πi∈[−RN,1)

hN
i (πi;p, z, ξi, vi).(61)

The next result helps to derive a priori estimate for the solution of the truncated BSDE
(58).

LEMMA 5.3. Let the assumption (H) hold. For each N ≥ 1, the (random) driver
f̃ N (ω,u, ξ, v) defined by (59) is Lipschtizian continuous in (ξ, v) ∈ Rn × Rn uniformly on
(ω,u) ∈ � × [t, T ].

PROOF. By virtue of (59) and (60) and Lemma 5.2, it suffices to prove that for each i =
1, . . . , n, h̄N

i (p, z, ξi, vi) := supπi∈[−RN,1) h
N
i (πi;p, z, ξi, vi) is Lipschtizian continuous in

(ξi, vi) ∈ R×R uniformly on (p, z) ∈ SpM ×SH . For each (p, z, ξi, vi) ∈ SpM ×SH ×R×R,
thanks to the first-order condition, the critical point π∗

i = π∗
i (p, z, ξi, vi) satisfies that

λM
i (p, z)

(
1 − π∗

i

)− θ
2 −1

ρ̂N

(
evi

)
= −

(
1 + θ

2
ρN(ξi)

)
σ 2

i π∗
i + μM

i (p) + λM
i (p, z) − r + σiξiρN(ξi).

(62)

With the aid of Lemma 5.2 and the strict convexity of πi → hN
i (πi;p, z, ξi, vi), we get that

π∗
i ∈ [−RN,1). Moreover, in view of (62), it follows that the positive term

(
1 − π∗

i

)− θ
2 ρ̂N

(
evi

)
= 1 − π∗

i

λM
i (p, z)

[
−
(

1 + θ

2
ρN(ξi)

)
σ 2

i π∗
i + μM

i (p) + λM
i (p, z) − r + σiξiρN(ξi)

]

≤ RN,1,

(63)

where the constant RN,1 > 0 satisfies that

RN,1 ≥ 1 + RN

ε
max

i=1,...,n

[(
1 + θ

2

)
σ 2

i RN + 2C + r + σi(N + 2)

]
,

where we recall that the constant C > 0 is given in the assumption (H). The implicit function
theorem yields that

∂

∂vi

h̄N
i (p, z, ξi, vi) = ∂

∂vi

hN
i

(
π∗

i (p, z, ξi, vi);p, z, ξi, vi

)

= ∂

∂vi

hN
i (πi;p, z, ξi, vi)

∣∣∣∣
πi=π∗

i (p,z,ξi ,vi )
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+ ∂π∗
i

∂vi

(p, z, ξi, vi)
∂

∂πi

hN
i (πi;p, z, ξi, vi)

∣∣∣∣
πi=π∗

i (p,z,ξi ,vi )

= ∂

∂vi

hN
i (πi;p, z, ξi, vi)

∣∣∣∣
πi=π∗

i (p,z,ξi ,vi )

= −λM
i (p, z)

(
1 − π∗

i

)− θ
2 evi ρ̂′

N

(
evi

)
,

in which we applied the first-order condition (62) for π∗
i in the last equality. Note that the

increasing function ρ̂N enjoys the property that

xρ̂ ′
N(x)

ρ̂N(x)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x ∈ (0,N];
∈

[
0,

N + 2

N

]
, if x ∈ [N,N + 2];

0, if x ≥ N + 2.

(64)

Taking into account the assumption (H) and (63), we arrive at∣∣∣∣ ∂

∂vi

h̄N
i (p, z, ξi, vi)

∣∣∣∣ = λM
i (p, z)

(
1 − π∗

i

)− θ
2 ρ̂N

(
evi

)evi ρ̂′
N(evi )

ρ̂N(evi )
≤ RN,2,(65)

where RN,2 := C N+2
N

RN,1 is a positive constant that only depends on N . On the other hand,
we have that

∂

∂ξi

h̄N
i (p, z, ξi, vi) = ∂

∂ξi

hN
i (πi;p, z, ξi, vi)

∣∣∣∣
πi=π∗

i (p,z,ξi ,vi )

=
(

θ

2
σiπ

∗
i − ξi

)
ρN(ξi) − 1

2

∣∣∣∣θ2σiπ
∗
i − ξi

∣∣∣∣2ρ′
N(ξi).

It then holds that∣∣∣∣ ∂

∂ξi

h̄N
i (p, z, ξi, vi)

∣∣∣∣
≤ θ

2
σi(RN ∨ 1) + |ξi |ρN(ξi)1|ξi |≤N+2 + θ2

4
σ 2

i (RN ∨ 1)2(66)

+ |ξi |2
∣∣ρ′

N(ξi)
∣∣1|ξi |≤N+2 ≤ RN,3,

where RN,3 := maxi=1,...,n[ θ
2σi(RN ∨ 1)+ θ2

4 σ 2
i (RN ∨ 1)2 +N + 2 + (N + 2)2] is a positive

constant that only depends on N . Combining (65) and (66), we obtain the desired result. �

By (60), it is easy to see that f N(u,0,0) = f (pM(u),H(u),0,0) for u ∈ [t, T ]. Hence,
the terminal condition of the truncated BSDE (58) coincides with the one of the regularized
BSDE (55), that is,

Ỹ N (T ) = Ỹ (T ) =: ζ for all N ≥ 1.(67)

The next auxiliary result further asserts that this random terminal condition is in fact bounded
and its proof is presented in the Appendix.

LEMMA 5.4. Let the assumption (H) hold. Then, for fixed t ∈ [0, T ], the random termi-
nal value ζ = ∫ T

t f (pM(u),H(u),0,0) du is bounded.

Building upon the martingale representation result in Theorem 3.2, Lemma 5.3 and
Lemma 5.4, we next prove that there exists a unique solution of the truncated BSDE (58)
under the assumption (H). In accordance with conventional notations, let us first introduce
the following spaces of processes: for fixed t ∈ [0, T ]:
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• Sp
t for 1 ≤ p < +∞: the space of FM-adapted r.c.l.l. real-valued processes Y =

(Y (u))u∈[t,T ] s.t. E∗[supu∈[t,T ] |Y(u)|p] < +∞.
• S∞

t : the space of FM-adapted r.c.l.l. real-valued processes Y = (Y (u))u∈[t,T ] s.t. ‖Y‖t,∞ :=
ess sup(u,ω)∈[t,T ]×� |Y(u,ω)| < ∞.

• L2
t : the space of FM-predictable Rn-valued processes X = (X(u))u∈[t,T ] s.t.∑n
i=1 E

∗[∫ T ∧τ t
i

t |Xi(u)|2 du] < ∞.
• H2

t,BMO: the space of FM-predictable Rn-valued processes Z = (Z(u))u∈[t,T ] s.t.

‖Z‖2
t,BMO := supζ∈T[t,T ]

∑n
i=1 E

∗[∫ T
ζ (1 − Hi(u))|Zi(u)|2 du|FM

ζ ] < ∞. Here, T[t,T ] de-

notes the set of all FM-stopping times taking values on [t, T ].
LEMMA 5.5. Let the assumption (H) hold. Then, for each N ≥ 1, the truncated

BSDE (58) admits the unique solution (Ỹ N , Z̃N , Ṽ N) ∈ S2
t × L2

t × L2
t .

PROOF. We can modify some arguments in Carbone et al. [14] to fit into our framework.
By Lemma 5.3, the driver f̃ N of BSDE (58) is uniformly Lipschitz. Moreover, the predictable
quadratic variation process of K(s) := (Wo,τ (s),ϒ∗(s)) with s ∈ [t, T ] is given by

〈K,K〉(s) =
∫ s

0
k(u)k(u)� du,

where k(u) = diag(1 − H(u),1 − H(u)) ∈ R2n×2n. Theorem 3.1 in [14] implies that there
exist a unique (Ỹ N , Z̃N , Ṽ N) ∈ S2

t × L2
t × L2

t and a square integrable (P∗,FM)-martingale
U = (U(u))u∈[t,T ] satisfying [U,W

o,τ
i ](u) = [U,ϒ∗

i ](u) = 0 for u ∈ [t, T ], i = 1, . . . , n,
such that

Ỹ N (T ) − Ỹ N (s) =
∫ T

s
f̃ N (

u, Z̃N(u), Ṽ N(u)
)
du +

∫ T

s
Z̃N(u)� dWo,τ (u)

+
∫ T

s
Ṽ N(u)� dϒ∗(u) + U(T ) − U(s), s ∈ [t, T ),

(68)

with Ỹ N (T ) = ∫ T
t f N(u,0,0) du. By the martingale representation result in Lemma 3.3,

there exist α ∈ L2
t and β ∈ L2

t such that, for s ∈ [t, T ],

U(s) = U(t) +
n∑

i=1

∫ s

t
αi(u) dW

o,τ
i (u) +

n∑
i=1

∫ s

t
βi(u) dϒ∗

i (u).(69)

A direct calculation yields that, for s ∈ [t, T ],

[U,U ](s) =
n∑

i=1

∫ s

t
αi(u)d

[
U,W

o,τ
i

]
(u) +

n∑
i=1

∫ s

t
βi(u)d

[
U,ϒ∗

i

]
(u) = 0.

This gives that U(T ) − U(s) = 0 for all s ∈ [t, T ], and it follows from (68) that (Ỹ N , Z̃N,

Ṽ N) ∈ S2
t × L2

t × L2
t is the unique solution of BSDE (58). �

5.2. A priori estimates and comparison result of truncated solutions. In this section, we
establish a priori estimates and a comparison result of the solution to the truncated BSDE
(58) under the assumption (H).

We start with a simple estimation depending on N .

LEMMA 5.6. For any N ≥ 1, let (Ỹ N , Z̃N , Ṽ N) ∈ S2
t × L2

t × L2
t be the solution of (58).

There exists a constant RT,N > 0, which depends on N and the bound of |ζ |, such that∥∥Ỹ N
∥∥
t,∞ ≤ RT,N, Ṽ N(u) ≤ RT,N, dP∗ ⊗ du-a.e.(70)
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PROOF. By applying Itô’s formula to eβu|Ỹ N (u)|2 with a constant β to be determined,
we get that, for any u ∈ [t, T ],

eβT ζ − eβu
∣∣Ỹ N (u)

∣∣2
=

∫ T

u
βeβs

∣∣Ỹ N (s)
∣∣2 ds + 2

∫ T

u
eβsỸ N(s)f̃ N (

s, Z̃N(s), Ṽ N(s)
)
ds

+ 2
∫ T

u
eβsỸ N(s)Z̃N(s)� dWo,τ (s) − 2

n∑
i=1

∫ T ∧τu
i

u
eβuỸ N(s)Ṽ N

i (s) ds

+
n∑

i=1

∫ T

u
eβs(∣∣Ỹ N (s) + Ṽ N

i (s)
∣∣2 − ∣∣Ỹ N (s)

∣∣2)dHi(s)

+
n∑

i=1

∫ T ∧τu
i

u
eβs

∣∣Z̃N
i (s)

∣∣2 ds.

(71)

Rearranging terms on both sides of (71), we can get that

eβu
∣∣Ỹ N (u)

∣∣2 +
∫ T

u
βeβs

∣∣Ỹ N (s)
∣∣2 ds +

n∑
i=1

∫ T ∧τu
i

u
eβs

∣∣Z̃N
i (s)

∣∣2 ds

= eβT ζ − 2
∫ T

u
eβsỸ N(s)f̃ N (

s, Z̃N(s), Ṽ N(s)
)
ds

− 2
∫ T

u
eβsỸ N(s)Z̃N(s)� dWo,τ (s)

−
n∑

i=1

∫ T

u
eβs(2Ỹ N (s)Ṽ N

i (s) + ∣∣Ṽi(s)
∣∣2)dϒ∗

i (s)

−
n∑

i=1

∫ T ∧τu
i

u
eβs

∣∣Ṽ N
i (s)

∣∣2 ds.

(72)

Taking into account (47) and (60), we have that the random driver f̃ N (u, ξ, v) satisfies that
f̃ N (u, ξ, v) = f̃ N (u, (1 − H(u))ξ, (1 − H(u))v). By Lemma 5.3, there exists a constant
LN > 0 depending only on N such that, for all ε > 0,∣∣∣∣2

∫ T

u
eβsỸ N(s)f̃ N (

s, Z̃N(s), Ṽ N(s)
)
ds

∣∣∣∣
≤ 2LN

n∑
i=1

∫ T ∧τu
i

u
eβs

∣∣Ỹ N (s)
∣∣(∣∣Z̃N

i (s)
∣∣ + ∣∣Ṽ N

i (s)
∣∣)ds

≤ nε−1LN

∫ T

u
eβs

∣∣Ỹ N (s)
∣∣2 ds

+ 2εLN

n∑
i=1

∫ T ∧τu
i

u
eβs(∣∣Z̃N

i (s)
∣∣2 + ∣∣Ṽ N

i (s)
∣∣2)ds.

(73)

By taking ε = (4LN)−1 and β = nε−1LN , we obtain from (72) and (73) that eβu|Ỹ N (u)|2 ≤
E[eβT |ζ |2|FM

u ], a.s. for u ∈ [t, T ]. Thanks to Lemma 5.4, it follows that ‖Ỹ N‖t,∞ ≤
eβT ‖ζ‖0,∞, which proves the first term in (70).

On the other hand, in view of �ỸN(u) = Ṽ N(u)��ϒ∗(u), we obtain |Ṽ N (u)��ϒ∗(u)| ≤
2‖Ỹ N‖t,∞. The fact that �ϒ∗

i (u) ∈ {0,1} for all i = 1, . . . , n leads to that Ṽ N(u)��ϒ∗(u) =
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V̂ N(u)��ϒ∗(u). For i = 1, . . . , n, let us define

V̂ N
i (u) := Ṽ N

i (u) ∧ (
2
∥∥Ỹ N

∥∥
t,∞

) ∨ (−2
∥∥Ỹ N

∥∥
t,∞

)
.(74)

Thus, the stochastic integral (Ṽ N − V̂ N) · ϒ∗ is a continuous martingale of finite variation,
which implies that (Ṽ N − V̂ N ) · ϒ∗ ≡ 0. Therefore, it follows from [(Ṽ N − V̂ N) · ϒ∗] ≡ 0
that (

1 − H(u)
)
Ṽ N (u) = (

1 − H(u)
)
V̂ N (u), dP∗ ⊗ du-a.e.(75)

Here, for any α ∈ Rn, (1 − H(u))α := ((1 − H1(u))α1, . . . , (1 − Hn(u))αn)
�. Therefore,

(Ỹ N , Z̃N, V̂ N) also solves the BSDE (58) in view of (75). As V̂ N ∈ L2
t , the uniqueness of

solution in Lemma 5.5 entails that Ṽ N(u) = V̂ N (u), dP∗ ⊗ du-a.e., which completes the
proof of (70). �

The next result improves the estimation by establishing a uniform bound of (Ỹ N , Z̃N,

Ṽ N)N≥1, which is independent of N . In particular, the BMO property plays an important
role in the proof of the verification theorem.

LEMMA 5.7. For any N ≥ 1, let (Ỹ N , Z̃N , Ṽ N) ∈ S2
t × L2

t × L2
t be the solution of (58).

There exists some constant CT > 0, which only depends on the bound of |ζ | defined by (67),
such that

max
{∥∥Z̃N

∥∥
t,BMO,

∥∥Ỹ N
∥∥
t,∞

} ≤ CT , Ṽ N(u) ≤ CT , dP∗ ⊗ du-a.e.(76)

PROOF. The key step of the proof is to construct an equivalent probability measure under
which Ỹ N = (Ỹ N(t))t∈[0,T ] is an FM-martingale. By Lemma 5.4, the boundedness property
of Ỹ N follows by the martingale property of Ỹ N = (Ỹ N(t))t∈[0,T ] under the new probability
measure and the fact that Ỹ N (T ) = ζ is bounded. It follows from Lemma 5.6 that, there exists
an FM-predictable Rn-valued (bounded) process V̂ N defined in (74) such that P∗ ⊗ du-a.e.,
(1 − H(u−))Ṽ N(u) = (1 − H(u−))V̂ N(u).

To construct the aforementioned equivalent probability measure, for i = 1, . . . , n, let us
define

Z̃N,i(u) := (
Z̃N

1 (u), . . . , Z̃N
i (u),0, . . . ,0

)
, V̂ N,i(u) = (

V̂ N
1 (u), . . . , V̂ N

i (u),0, . . . ,0
)
.

We also set Z̃N,0(u) = V̂ N,0(u) = 0. Consider the following processes that

γi(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̃ N (u, Z̃N,i(u), Ṽ N(u)) − f̃ N (u, Z̃N,i−1(u), Ṽ N(u))

Z̃N
i (u)

,

if
(
1 − Hi(u−)

)
Z̃N

i (u) �= 0;
0, if

(
1 − Hi(u−)

)
Z̃N

i (u) = 0,

(77)

and

(78) ηi(u) :=

⎧⎪⎪⎨
⎪⎪⎩

f̃ N (u,0, V̂ N,i(u)) − f̃ N (u,0, V̂ N,i−1(u))

V̂ N
i (u)

, if
(
1 − Hi(u−)

)
V̂ N

i (u) �= 0;
0, if

(
1 − Hi(u−)

)
V̂ N

i (u) = 0,

for i = 1, . . . , n. Note that f̃ N (u,0,0) = 0. Then, for t ∈ [0, T ], we have that, dP∗ ⊗ du-a.e.∫ T

t
Z̃N(u)�γ (u)du +

∫ T

t
V̂ N(u)�η(u)du =

∫ T

t
f̃ N (

u, Z̃N(u), V̂ N(u)
)
du.(79)
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On the other hand, Lemma 5.4 yields that the Rn-valued process γ = (γ (t))t∈[0,T ] is
bounded. Moreover, Lemma 5.6 states that the FM-predictable Rn-valued process V̂ N is
bounded by some constant CT,N > 0 depending on T and N . We next prove that there exists
some positive constant δT ,N depending on N such that

−1 + δT ,N ≤ −ηi(u) ≤ LN, a.e., i = 1, . . . , n,(80)

where LN > 0 is the Lipchitiz coefficient of the driver f̃ N (see Lemma 5.3). In fact, if
Hi(u−) = 1, then ηi(u) = 0. It suffices to assume that Hi(u−) = 0. For Ṽ N

i (u) �= 0, we
have from (64) that

f̃ N (u,0, V̂ N,i(u)) − f̃ N (u,0, V̂ N,i−1(u))

V̂ N
i (u)

=
∫ 1

0

∂

∂vi

f̃ N (
u,0, sV̂ N,i(u) + (1 − s)V̂ N,i−1(u)

)
ds

= 1 −
∫ 1

0

(
1 − π∗

i (u)
)− θ

2 ρ̂N

(
esV̂ N

i (u))esV̂ N
i (u)ρ̂′

N(euV̂ N
i (u))

ρ̂N(esV̂ N
i (u))

ds

≤ 1 − (1 + RN)−
θ
2

∫ 1∧R−1
T ,N lnN

0
ρ̂N

(
esV̂ N

i (u))esV̂ N
i (u)ρ̂′

N(esV̂ N
i (u))

ρ̂N(esV̂ N
i (u))

ds

= 1 − (1 + RN)−
θ
2

∫ 1∧R−1
T ,N lnN

0
ρ̂N

(
esV̂ N

i (u))ds

≤ 1 − (1 + RN)− θ
2

RT,N

{
1 − e−(RT,N∧lnN)} =: 1 − δT ,N .

Here, the positive constants RN and RT,N are given in Lemma 5.2 and Lemma 5.6 respec-
tively.

We next define the probability measure Q ∼ P∗ by

dQ

dP∗
∣∣∣∣
FM

s

= E
(
−

∫ ·
0

γ (u)� dWo,τ (u) −
∫ ·

0
η(u)� dϒ∗(u)

)
s

.(81)

In view of (80) and the boundedness of γ = (γ (s))s∈[0,T ], we have that Ŵ o,τ =
(Ŵ o,τ (s))s∈[0,T ] and ϒ̂∗ = (ϒ̂∗(s))s∈[0,T ] are both (Q,FM)-martingales, where we define

(82) Ŵ o,τ (s) := Wo,τ (s) +
∫ s

0
γ (u)du, ϒ̂∗(s) := ϒ∗(s) +

∫ s

0
η(u)du, s ∈ [0, T ].

It follows from (58) and (79) that, for u ∈ [t, T ],
Ỹ N (u) − Ỹ N (T ) = −

∫ T

u
Z̃N(s)� dŴo,τ (s) −

∫ T

u
Ṽ N(s)� dϒ̂∗(s), Q-a.e.(83)

Let θ t
k ≥ t be a localizing sequence as FM stopping times satisfying limk→∞ θ t

k = T , a.e. By
(83), it holds that Ỹ N (u) = EQ[Ỹ N (T ∧ τk)|FM

u ] for all k ≥ 1. Lemma 5.6 and the bounded
convergence theorem lead to that Ỹ N (u) = EQ[ζ |FM

u ] for all u ∈ [t, T ]. This, together with
Lemma 5.4, implies the uniform bound of Ỹ N , that is, ‖Ỹ N‖t,∞ ≤ ‖ζ‖0,∞.

We again construct V̂ N(u) as in (74), which gives that |V̂ N(u)| ≤ 2‖Ỹ N‖t,∞. We con-
sequently have that ‖V̂ N‖t,∞ ≤ 2‖ζ‖0,∞ by the argument above. Following the same proof
of Lemma 5.6, the uniqueness of the solution to BSDE (58) entails the second estimation in
(76).
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We next apply Itô’s formula to eβỸN (u) on u ∈ [t, T ], where β is a constant to be deter-
mined, and get that

eβζ − eβỸN (u)

=
n∑

i=1

∫ T

u

{
eβ(ỸN (s−)+V̂ N

i (s)) − eβỸN (s−)}dHi(s)

−
n∑

i=1

∫ T ∧τu
i

u
βeβỸN (s−)V̂ N

i (s) ds

+
∫ T

u
βeβỸN (s)f̃ N (

s, Z̃N(s), V̂ N(s)
)
ds +

∫ T

u
βeβỸN (s)Z̃N(s)� dWo,τ (s)

+ β2

2

n∑
i=1

∫ T ∧τu
i

u
eβỸN (s)

∣∣Z̃N
i (s)

∣∣2 ds.

(84)

Note that ‖(1 − H)V̂ N‖t,∞ ≤ 2‖ζ‖0,∞. Then, for all N ≥ 1 and s ∈ [0, T ], we claim here
that there exist positive constants R4 and R5 independent of (N, s) such that

|f̃ N (
s,ZN(s), V̂ N(s)

)| ≤ R4 + R5

n∑
i=1

(
1 − Hi(s)

)∣∣Z̃N
i (s)

∣∣2.(85)

To see this, note that the following estimates are independent of N :

−
∣∣∣∣θ2σiπi

∣∣∣∣2 − ξ2
i ≤ −1

2

∣∣∣∣θ2σiπi − ξi

∣∣∣∣2ρN(ξi) ≤ 0,

and

0 ≥ −λM
i (p, z)(1 − πi)

− θ
2 ρ̂N

(
evi

) ≥ −λM
i (p, z)(1 − πi)

− θ
2 evi

≥ −|λM
i (p, z)|2(1 − πi)

−θ + e2vi

2
.

It then follows that

−ξ2
i − 1

2
e2vi + h

(1)
i (πi;p, z) ≤ hN

i (πi;p, z, ξi, vi) ≤ h
(2)
i (πi;p, z),(86)

where the lower and upper bound functions are given by

h
(1)
i (πi;p, z) := −θ

2
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi + λM

i (p, z)

− 1

2

∣∣λM
i (p, z)

∣∣2(1 − πi)
−θ ,

h
(2)
i (πi;p, z) := −θ

4
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi + λM

i (p, z).

Note that h
(1)
i (πi;p, z) and h

(2)
i (πi;p, z) are independent of (N, ξi, vi). Consequently, under

the assumption (H), there exists a constant C independent of N , such that

sup
πi∈(−∞,1)

∣∣h(1)
i (πi;p, z)

∣∣ + sup
πi∈(−∞,1)

∣∣h(2)
i (πi;p, z)

∣∣ ≤ C.(87)



2380 L. BO, H. LIAO AND X. YU

By (86) and (87), we have that∣∣∣∣∣
n∑

i=1

(
1 − Hi(ω,u)

)
sup

πi∈(−∞,1)

hN
i

(
πi;pM(ω,u),H(ω,u), ξ, v

)∣∣∣∣∣
≤ C1

n∑
i=1

(
1 − Hi(ω,u)

)(
ξ2
i +

n∑
i=1

evi + 1

)
.

Similarly, we have the estimate of hL that

∣∣hL(p, z, ξ, v)
∣∣ ≤ C2

n∑
i=1

(
1 − Hi(ω,u)

)(
ξ2
i + |vi | + 1

)
,(88)

where C2 is independent of N. Plugging (87) and (88) into (60), we obtain

∣∣f N(ω,u, ξ, v)
∣∣ ≤ C3

n∑
i=1

(
1 − Hi(ω,u)

)(
ξ2
i + |vi | +

n∑
i=1

evi + 1

)
,

in which C3 is hence independent of N . As a result, we get that∣∣f̃ N (
s,ZN(s), V̂ N(s)

)∣∣
= ∣∣f N (

ω, s,ZN(s), V̂ N(s)
) + f N(ω, s,0,0)

∣∣
≤ C3

n∑
i=1

(
1 − Hi(ω,u)

)(∣∣ZN
i (s)

∣∣2 + ∣∣V̂ N
i (s)

∣∣ + n∑
i=1

eV̂ N
i (s) + 1

)

+ C3(n + 1)

n∑
i=1

(
1 − Hi(ω,u)

)
.

(89)

Therefore, the existence of R4 and R5 in the claim (85) follows from (89) and the fact that
‖(1 − H)V̂ N‖t,∞ ≤ 2‖ζ‖0,∞.

Plugging (85) into (84) and taking the conditional expectation under FM
u , we attain that(

β2

2
− R5β

) n∑
i=1

E∗
[∫ T ∧τu

i

u
eβỸN (s)

∣∣Z̃N
i (s)

∣∣2 ds

∣∣∣∣FM
u

]

≤ E∗[eβζ
∣∣FM

u

] − eβỸN (u) + R4βE
∗
[∫ T

u
eβỸN (s) ds|FM

u

]

−
n∑

i=1

E∗
[∫ T ∧τu

i

u

{
eβ(ỸN (s)+V̂ N

i (s)) − eβỸN (s)}ds

∣∣∣∣FM
u

]

+
n∑

i=1

E∗
[∫ T ∧τu

i

u
βeβỸN (s)V̂ N

i (s) ds

∣∣∣∣FM
u

]
, u ∈ [t, T ].

(90)

For any constant R0 > 0 independent of N , there exists a constant β0 > 0 such that
β2

0
2 −

R5β0 = R0. Note that each term in r.h.s. of (90) is bounded by a positive constant, uniformly
in N , say R6. We then arrive at

n∑
i=1

E∗
[∫ T ∧τu

i

u
e−β0‖ζ‖0,∞ ∣∣Z̃N

i (s)
∣∣2 ds

∣∣∣∣FM
u

]
≤

n∑
i=1

E∗
[∫ T ∧τu

i

u
eβ0Ỹ

N (s)
∣∣Z̃N

i (s)
∣∣2 ds

∣∣∣∣FM
u

]

≤ R−1
0 R6, a.e.
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This implies that
n∑

i=1

E∗
[∫ T

u

∣∣Z̃N
i (s)

∣∣2 ds

∣∣∣∣FM
u

]
≤ eβ0‖ζ‖0,∞R−1

0 R6, a.e.,

which concludes the desired estimation (76). �

We also state here a comparison result for the truncated BSDE that will be used in later
sections. Its proof is deferred to the Appendix.

LEMMA 5.8. For any N ≥ 1, let (Ỹ N , Z̃N , Ṽ N) ∈ S2
t × L2

t × L2
t be the solution of (58).

There exists a constant N0 > 0 such that, for u ∈ [t, T ], Ỹ N (u) is increasing for all N ≥ N0,
P∗-a.s.

5.3. Convergence of solutions of truncated BSDEs. Aiming to prove the existence of
a solution to the original BSDE (55), we continue to show that the solutions associated to
truncated BSDEs (58) converge as N → ∞ and the limit process is the desired solution of
BSDE (55) in an appropriate space.

For any compact set C ⊂ Rn, we choose N large enough such that e|y| ≤ N for all y ∈ C. By
virtue of (60), we have that, P-a.s., f N(u, ξ, v) = f (u, ξ, v) for all u ∈ [t, T ] and ξ, v ∈ C.
This implies the locally uniform (almost surely) convergence of f N to f , that is, it holds
that sup(u,ξ,v)∈[t,T ]×C2 |f N(u, ξ, v) − f (u, ξ, v)| → 0, N → ∞, a.s. We first have the next

convergence result of the truncated solutions (Ỹ N , Z̃N, Ṽ N) given in Lemma 5.5. Thanks to
Lemma 5.7, it is known that Ṽ N is dP∗ ⊗ du-a.e. bounded by a constant CT for all N ≥ 1.

LEMMA 5.9. There exist an FM-adapted process Ỹ = (Ỹ (u))u∈[t,T ] and processes
(Z̃, Ṽ ) ∈ L2

t × L2
t such that, for u ∈ [t, T ], Ỹ N (u) → Ỹ (u), P∗-a.s., Z̃N → Z̃ weakly in

L2
t , and Ṽ N → Ṽ weakly in L2

t , as N → ∞.

PROOF. By Lemma 5.8, we have that N → Ỹ N (u) is increasing, P∗-a.e. for u ∈ [t, T ].
Lemma 5.7 gives that Ỹ N = (Ỹ N(u))u∈[t,T ] is uniformly bounded in S∞

t . Then, there ex-
ists an FM-adapted process Ỹ = (Ỹ (u))u∈[t,T ] such that, for u ∈ [t, T ], Ỹ N (u) → Ỹ (u),
as N → ∞, P∗-a.e. It follows from Lemma 5.7 that the sequence of FM-predictable so-
lutions Z̃N = (Z̃N(u))u∈[t,T ] for N ≥ 1 is bounded in L2

t . Hence, there exists a process
Z̃ = (Z̃(u))u∈[t,T ] ∈ L2

t such that Z̃N → Z̃ weakly in L2
t . Moreover, by Lemma 5.5, the

sequence of
∫ ·
t Ṽ N (u)� dϒ∗(u) for N ≥ 1 is bounded in L2

t . Thanks to the martingale rep-
resentation theorem in Protter [36] and the weak compactness of L2, there exists a process
Ṽ = (Ṽ (u))u∈[t,T ] ∈ L2

t such that Ṽ N → Ṽ (up to a subsequence) weakly in L2
t as N → ∞.

We claim that Ṽ is predictable. Indeed, by using Mazur’s lemma, we deduce the existence
of a sequence of convex combinations of Ṽ N for N ≥ 1, which converges to Ṽ pointwise.
Because every convex combination of Ṽ N is predictable, Ṽ is also predictable. �

Let us continue to prove the strong convergence result of the truncated solutions
(Ỹ N , Z̃N, Ṽ N) for N ≥ 1 given in Lemma 5.5 to the limit process (Ỹ , Z̃, Ṽ ) given in
Lemma 5.9.

LEMMA 5.10. The sequence (Z̃N)N≥1 converges to Z̃ in L2
t as N → ∞.

PROOF. To ease the notation in the rest of the proof, we set f̃ N (u) := f̃ N (u, Z̃N(u),

Ṽ N(u)) for u ∈ [t, T ]. Let N2 ≥ N1 ≥ 1 be two integers and φ : R → R+ be a smooth func-
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tion that will be determined later. For Y d(u) := Ỹ N2(u)− Ỹ N1(u) ≥ 0, a.e., using Lemma 5.5
and Itô’s formula, we have that

φ(0) − φ
(
Y d(t)

)
=

∫ T

t
φ′(Y d(u)

)(
f̃ N2(u) − f̃ N1(u)

)
du

+
∫ T

t
φ′(Y d(u)

)(
Z̃N2(u) − Z̃N1(u)

)�
dWo,τ (u)

−
n∑

i=1

∫ T ∧τ t
i

t
φ′(Y d(u)

)(
Ṽ

N2
i (u) − Ṽ

N1
i (u)

)
du

+ 1

2

n∑
i=1

∫ T ∧τ t
i

t
φ′′(Y d(u)

)∣∣Z̃N2
i (u) − Z̃

N1
i (u)

∣∣2 du

+
n∑

i=1

∫ T

t

{
φ
(
Y d(u−) + Ṽ

N2
i (u) − Ṽ

N1
i (u)

) − φ
(
Y d(u−)

)}
dHi(u).

(91)

In view of (59) and Lemma 5.7, for all u ∈ [t, T ], there exist positive constants Ri with
i = 1,2,3 which are independent of N and u such that, a.e.

∣∣f̃ N2(u) − f̃ N1(u)
∣∣ ≤ R1 + R2

n∑
i=1

(
1 − Hi(u)

){∣∣Z̃N1
i (u)

∣∣2 + ∣∣Z̃N2
i (u)

∣∣2}

≤ R1 + R3

n∑
i=1

(
1 − Hi(u)

){∣∣Z̃N1
i (u) − Z̃

N2
i (u)

∣∣2

+ ∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 + ∣∣Z̃i(u)
∣∣2}.

(92)

We choose φ(x) = eβx −βx −1 for x ∈ R, where β is a positive constant satisfying β > 4R3.
Then φ enjoys the properties that φ(x) ≥ 0 for all x ∈ R, φ(0) = φ′(0) = 0, φ′(x) ≥ 0 for
x ∈ R+, and φ′′(x) − 4R3φ

′(x) = (β2 − 4R3β)eβx + 4R3β > 0 for all x ∈ R. Plugging (92)
into (91) and manipulating terms on both sides, we obtain that

1

2

n∑
i=1

∫ T ∧τ t
i

t
φ′′(Y d(u)

)∣∣Z̃N1
i (u) − Z̃

N2
i (u)

∣∣2 du

− R3

n∑
i=1

∫ T ∧τ t
i

0
φ′(Y d(u)

)∣∣Z̃N1
i (u) − Z̃

N2
i (u)

∣∣2 du

≤ φ(0) − φ
(
Y d(t)

) + R3

n∑
i=1

∫ T ∧τ t
i

t
φ′(Y d(u)

)∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

+ R1

∫ T

t
φ′(Y d(u)

)
du + R3

n∑
i=1

∫ T ∧τ t
i

t
φ′(Y d(u)

)∣∣Z̃i(u)
∣∣2 du

−
∫ T

t
φ′(Y d(u)

)(
Z̃N2(u) − Z̃N1(u)

)�
dWo,τ (u)

+
n∑

i=1

∫ T ∧τ t
i

t
φ′(Y d(u)

)(
Ṽ

N2
i (u) − Ṽ

N1
i (u)

)
du

−
n∑

i=1

∫ T

t

{
φ
(
Y d(u−) + Ṽ

N2
i (u) − Ṽ

N1
i (u)

) − φ
(
Y d(u−)

)}
dHi(u).

(93)
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On the other hand, it follows from Lemma 5.9 that Z̃N2 converges weakly to Z̃ in L2
t as

N2 → ∞. We next prove that, for i = 1, . . . , n, as N2 → ∞,√(
1

2
φ′′ − R3φ′

)(
Y d(u)

)
(1 − Hi)

(
Z̃

N1
i − Z̃

N2
i

)

→
√(

1

2
φ′′ − R3φ′

)(
Ỹ − Ỹ N1

)
(1 − Hi)

(
Z̃

N1
i − Z̃i

)
,

weakly in L2([t, T ] × �;P∗).

(94)

Thanks to the fact that (Ỹ N)N≥1 and Ỹ are bounded, we have that, for u ∈ [t, T ],

δYN2(u) :=
(

1

2
φ′′ − R3φ

′
) 1

2 (
Ỹ N2(u) − Ỹ N1(u)

) −
(

1

2
φ′′ − R3φ

′
) 1

2 (
Ỹ (u) − Ỹ N1(u)

)
is also bounded and tends to 0 as N2 → ∞. Moreover, the weak convergence of (Z̃N)N≥1 in
L2

t implies that they are uniformly bounded in L2
t by the resonance theorem, which can also

be deduced from (Z̃N)N≥1 ∈ H2
t,BMO by Lemma 5.7. The Cauchy–Schwarz inequality then

gives that, for all X ∈ L2([t, T ] × �;P∗),

lim
N2→∞E∗

[∫ T ∧τ t
i

t
δYN2(u)

(
Z̃

N1
i (u) − Z̃

N2
i (u)

)
X(u)du

]
= 0.

Hence, it holds that

lim
N2→∞E∗

[∫ T ∧τ t
i

t

(
1

2
φ′′ − R3φ

′
) 1

2 (
Y d(u)

)(
Z̃

N1
i (u) − Z̃

N2
i (u)

)
X(u)du

]

= lim
N2→∞E∗

[∫ T ∧τ t
i

t

(
1

2
φ′′ − R3φ

′
) 1

2 (
Y(u) − YN1(u)

)(
Z̃

N1
i (u) − Z̃

N2
i (u)

)
X(u)du

]

+ lim
N2→∞E∗

[∫ T ∧τ t
i

t
δYN2(u)

(
Z̃

N1
i (u) − Z̃

N2
i (u)

)
X(u)du

]

= E∗
[∫ T ∧τ t

i

t

(
1

2
φ′′ − R3φ

′
) 1

2 (
Y(u) − YN1(u)

)(
Z̃

N1
i (u) − Z̃i(u)

)
X(u)du

]
,

which proves (94). By using the property of convex functional and weak convergence (see
Theorem 1.4 in [18]), as N2 → ∞, we deduce that the l.h.s. of (93) satisfies that

lim inf
N2→∞

n∑
i=1

E∗
[∫ T ∧τ t

i

t

(
1

2
φ′′ − R3φ

′
)(

Y d(u)
)∣∣Z̃N1

i (u) − Z̃
N2
i (u)

∣∣2 du

]

≥
n∑

i=1

E∗
[∫ T ∧τ t

i

t

(
1

2
φ′′ − R3φ

′
)(

Ỹ (u) − Ỹ N1(u)
)∣∣Z̃N1

i (u) − Z̃i(u)
∣∣2 du

]
.

(95)

For the jump term in the r.h.s. of (93), as φ(x) ≥ 0 for all x ∈ R, we get that
n∑

i=1

E∗
[∫ T ∧τ t

i

t
φ′(Y d(u)

)(
Ṽ

N2
i (u) − Ṽ

N1
i (u)

)
du

]

−
n∑

i=1

E∗
[∫ T

t

(
φ
(
Y d(u−) + Ṽ

N2
i (u) − Ṽ

N1
i (u)

) − φ
(
Y d(u−)

))
dHi(u)

]
(96)

= −
n∑

i=1

E∗
[∫ T ∧τ t

i

t
eβY d(u)φ

(
Ṽ

N2
i (u) − Ṽ

N1
i (u)

)
du

]
≤ 0.
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Thanks to (95), (96) and dominated convergence theorem, it follows from (93) that
n∑

i=1

E∗
[∫ T ∧τ t

i

t

(
1

2
φ′′ − R3φ

′
)(

Ỹ (u) − Ỹ N1(u)
)∣∣Z̃N1

i (u) − Z̃i(u)
∣∣2 du

]

≤ R3

n∑
i=1

E∗
[∫ T ∧τ t

i

t
φ′(Ỹ (u) − Ỹ N1(u)

)∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

]

+ R3

n∑
i=1

E∗
[∫ T

t
φ′(Ỹ (u) − Ỹ N1(u)

)∣∣Z̃i(u)
∣∣2 du

]

+ R1E
∗
[∫ T

t
φ′(Ỹ (u) − Ỹ N1(u)

)
du

]
.

Thanks to Lemma 5.7 and Lemma 5.9, we have that ‖Ỹ‖t,∞ ≤ ‖ζ‖0,∞. By choosing R4 :=
1
2(β2 − 4R3β)e−2β|ζ |∞ > 0, we obtain that

R4

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

]

≤ 1

2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

{
φ′′ − 4R3φ

′}(Ỹ (u) − Ỹ N1(u)
)∣∣Z̃N1

i (u) − Z̃i(u)
∣∣2 du

]

≤ R3

n∑
i=1

E∗
[∫ T ∧τ t

i

t
φ′(Ỹ (u) − Ỹ N1(u)

)∣∣Z̃i(u)
∣∣2 du

]

+ R1E
∗
[∫ T ∧τ t

i

t
φ′(Ỹ (u) − Ỹ N1(u)

)
du

]
.

(97)

Note that φ′(0) = 0 and that for each u ∈ [t, T ], Ỹ N (u) ↑ Ỹ (u) as N → ∞. The dominated
convergence theorem gives that the r.h.s. of (97) tends to zero as N1 → ∞. Then, the estimate
(97) implies that

lim
N1→∞

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

]
= 0,

which completes the proof. �

LEMMA 5.11. The sequence (Ṽ N)N≥1 converges to Ṽ in L2
t as N → ∞. Therefore, Ṽ

is also dP∗ ⊗ du-a.e. bounded by some constant CT .

PROOF. Let us take φ(x) = x2 for x ∈ R. Then (91) can be reduced to

−E
[∣∣Y d(t)

∣∣2] = 2E∗
[∫ T

t
Y d(u)

(
f̃ N2(u) − f̃ N1(u)

)
du

]

− 2
n∑

i=1

E∗
[∫ T ∧τ t

i

t
Y d(u)

(
Ṽ

N2
i (u) − Ṽ

N1
i (u)

)
du

]

+
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N2
i (u) − Z̃

N1
i (u)

∣∣2 du

]

+
n∑

i=1

E∗
[∫ T ∧τ t

i

t

(∣∣Y d(u−) + Ṽ
N2
i (u) − Ṽ

N1
i (u)

∣∣2 − ∣∣Y d(u−)
∣∣2)du

]
.
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It follows from (92) that
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ṽ N2
i (u) − Ṽ

N1
i (u)

∣∣2 du

]

≤ 2R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Y d(u)
∣∣(∣∣Z̃N1

i (u)
∣∣2 + ∣∣Z̃N2

i (u)
∣∣2)du

]

−E∗[∣∣Y d(t)
∣∣2] + 2R1E

∗
[∫ T

t

∣∣Y d(u)
∣∣du

]

−
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N2
i (u) − Z̃

N1
i (u)

∣∣2 du

]
.

(98)

Moreover, for i = 1, . . . , n, we also have that

E∗
[∫ T ∧τ t

i

t

∣∣Y d(u)
∣∣∣∣Z̃N2

i (u)
∣∣2 du

]

≤ 2E∗
[∫ T ∧τ t

i

t

∣∣Y d(u)
∣∣∣∣Z̃N2

i (s) − Z̃i(u)
∣∣2 du

]
+ 2E∗

[∫ T ∧τ t
i

t

∣∣Y d(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]

≤ 4‖ζ‖0,∞E∗
[∫ T ∧τ t

i

t

∣∣Z̃N2
i (u) − Z̃i(u)

∣∣2 du

]
+ 2E∗

[∫ T ∧τ t
i

t

∣∣Y d(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]
.

(99)

We can derive from (98) and (99) that
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ṽ N2
i (u) − Ṽ

N1
i (u)

∣∣2 du

]

≤ 2R1E
∗
[∫ T

t

∣∣Y d(u)
∣∣du

]
+ 2R2

n∑
i=1

E

[∫ T ∧τ t
i

t

∣∣Y d(u)
∣∣∣∣Z̃N1

i (u)
∣∣2 du

]

+ 4R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Y d(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]

+ 8R2‖ζ‖0,∞E∗
[∫ T ∧τ t

i

t

∣∣Z̃N2
i (u) − Z̃i(u)

∣∣2 du

]
.

Letting N2 → ∞ and using the dominated convergence theorem and Lemma 5.10, we obtain
that

lim inf
N2→∞

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ṽ N2
i (u) − Ṽ

N1
i (u)

∣∣2 du

]

≤ 2R1E
∗
[∫ T

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣du

]
+ 2R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣∣∣Z̃N1

i (u)
∣∣2 du

]

+ 4R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]

≤ 2R1E
∗
[∫ T

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣du

]
+ 8R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]

+ 8R2‖ζ‖0,∞
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

]
.
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Thanks to the property of convex functional and weak convergence (see, e.g., Theorem 1.4 in
[18]), one can get that

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ṽi(u) − Ṽ
N1
i (u)

∣∣2 du

]

≤ 2R1E
∗
[∫ T

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣du

]

+ 8R2

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ỹ (u) − Ỹ N1(u)
∣∣∣∣Z̃i(u)

∣∣2 du

]

+ 8R2‖ζ‖0,∞
n∑

i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N1
i (u) − Z̃i(u)

∣∣2 du

]
.

(100)

The desired convergence that Ṽ N → Ṽ in L2
t can be derived by the dominated convergence

theorem and Lemma 5.10 as N1 → ∞. The boundedness of Ṽ is consequent on the uniform
boundedness of Ṽ N , N ≥ 1. �

We finally present the main result of this section on the existence of a solution to the
original BSDE (55).

THEOREM 5.12. Let (Ỹ , Z̃, Ṽ ) be the limiting process given in Lemma 5.9. Then,
(Ỹ , Z̃, Ṽ ) ∈ S∞

t ×H2
t,BMO × L2

t is a solution of BSDE (55).

PROOF. We first prove that Ỹ N converges to Ỹ in the uniform norm as N → ∞, a.s. In
fact, for the fixed t ∈ [0, T ] and any u ∈ [t, T ], we first have that

sup
u∈[t,T ]

∣∣Ỹ N1(u) − Ỹ N2(u)
∣∣ ≤ ∫ T

t

∣∣f̃ N1(s) − f̃ N2(s)
∣∣ds

+ sup
u∈[t,T ]

∣∣∣∣
∫ T

u

(
Z̃N1(s) − Z̃N2(s)

)�
dWo,τ (s)

∣∣∣∣(101)

+ sup
u∈[t,T ]

∣∣∣∣
∫ T

u

(
Ṽ N1(s) − Ṽ N2(s)

)�
dϒ∗(s)

∣∣∣∣.
Taking into account Lemma 5.10 and Lemma 2.5 in [29], we obtain that, for each i =
1, . . . , n, there exists a subsequence {Nl} such that

(1 − H)Z̃Nl → (1 − H)Z̃, dP∗ ⊗ du-a.e., and Ẑ = (Ẑ1, . . . , Ẑn) ∈ L2
t ,(102)

where Ẑi(u) := supl≥1 |(1 − Hi(u))Z̃
Nl

i (u)| for u ∈ [t, T ]. Moreover, Lemma 5.11 implies
that for some subsequence {Nlk } ⊂ {Nl}, it holds that (1 −H)Ṽ Nlk → (1 −H)Ṽ , as k → ∞,
dP∗ ⊗ du-a.e. To ease the notation, the subsequence is still denoted by {N}. By the definition
of f̃ N and the fact that the random function f̃ is a.s. continuous in its domain, we have that

lim
N→∞ f̃ N (

u, Z̃N(u), Ṽ N(u)
)
du = f̃

(
u, Z̃(u), Ṽ (u)

)
, dP∗ ⊗ du-a.e.(103)
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In light of (59) and Lemma 5.7, for all u ∈ [t, T ], there exist constants R1,R2 > 0 indepen-
dent of N and u such that

∣∣f̃ N (
u, Z̃N(u), Ṽ N(u)

)∣∣ ≤ R1 + R2

n∑
i=1

(
1 − Hi(u)

)∣∣Z̃N
i (u)

∣∣2

≤ R1 + R2

n∑
i=1

(
1 − Hi(u)

)∣∣Ẑi(u)
∣∣2.

Note that Ẑ ∈ L2
t . Together with above inequality and (103), the dominated convergence

theorem gives that

lim
N→∞E

[∫ T

t

∣∣f̃ N (
u, Z̃N(u), Ṽ N(u)

) − f̃
(
u, Z̃(s), Ṽ (u)

)∣∣du

]
= 0.(104)

The BDG inequality then implies the existence of constants R3,R4 > 0 independent of N

such that

E∗
[

sup
u∈[t,T ]

∣∣∣∣
∫ T

u

(
Z̃N(s) − Z̃(s)

)�
dWo,τ (s)

∣∣∣∣2
]

≤ 2E∗
[∣∣∣∣
∫ T

t

(
Z̃N(s) − Z̃(s)

)�
dWo,τ (s)

∣∣∣∣2
]

+ 2E∗
[

sup
u∈[t,T ]

∣∣∣∣
∫ u

t

(
Z̃N(s) − Z̃(s)

)�
dWo,τ (s)

∣∣∣∣2
]

≤ R3

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Z̃N
i (s) − Z̃i(s)

∣∣2 ds

]
.

In a similar fashion, we also attain that

E∗
[

sup
u∈[t,T ]

∣∣∣∣
∫ T

u

(
Ṽ N(s) − Ṽ (s)

)�
dϒ∗(s)

∣∣∣∣2
]

≤ R4

n∑
i=1

E∗
[∫ T ∧τ t

i

t

∣∣Ṽ N
i (s) − Ṽi(s)

∣∣2 ds

]
.

Because of Lemma 5.10 and Lemma 5.11, we have that

lim
N→∞E∗

[
sup

u∈[t,T ]

∣∣∣∣
∫ T

u

(
Z̃N(s) − Z̃(s)

)�
dWo,τ (s)

∣∣∣∣2
]

= lim
N→∞E∗

[
sup

u∈[t,T ]

∣∣∣∣
∫ T

u

(
Ṽ N (s) − Ṽ (s)

)�
dϒ∗(s)

∣∣∣∣2
]

= 0.

(105)

Consequently, there exists a subsequence (still denoted by N ) such that (104) holds and

lim
N→∞ sup

u∈[t,T ]

∣∣∣∣
∫ T

t

(
Z̃N(s) − Z̃(s)

)�
dWo,τ (s)

∣∣∣∣ = 0, a.e.,(106)

lim
N→∞ sup

u∈[t,T ]

∣∣∣∣
∫ T

t

(
Ṽ N (s) − Ṽ (s)

)�
dϒ∗(s)

∣∣∣∣ = 0, a.e.(107)

We deduce by (101), (106) and (107) that (Ỹ N)N≥1 is a Cauchy sequence a.e. un-
der the uniform norm, and its limiting process coincides with Ỹ by Lemma 5.9. Thus,
limN→∞ supu∈[t,T ] |Ỹ N (u)− Ỹ (u)| = 0, a.e. By taking the limit on both sides of the equation,
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we obtain

ζ − YN(t) =
∫ T

t
f̃ N (

u, Z̃N(u), Ṽ N(u)
)
du +

∫ T

t
Z̃N(u)� dWo,τ (u)

+
∫ T

t
Ṽ N(u)� dϒ∗(u),

and applying the established convergence results in (104), (106) and (107), we can conclude
that (Ỹ , Z̃, Ṽ ) ∈ S∞

t ×H2
t,BMO × L2

t is indeed a solution of BSDE (55). �

6. Optimal investment strategy. At last, we characterize the optimal control strategy
using the verification result in Lemma 4.5, our newly established BSDE results and some
properties of BMO martingales. It is noted that if (Ỹ , Z̃, Ṽ ) ∈ S∞

t × H2
t,BMO × L2

t is the

solution of BSDE (55) given in Theorem 5.12, then (Ỹ + ∫ ·
t f (pM(s),H(s),0,0) ds, Z̃, Ṽ )

solves the original BSDE (45). We also recall that by Lemma 5.11, Ṽ is dP∗ ⊗ du-a.e.
bounded by some constant CT .

The next theorem gives the existence of an optimal investment strategy for the original risk
sensitive portfolio optimization problem.

THEOREM 6.1. Let the assumption (H) hold and let (Ỹ , Z̃, Ṽ ) ∈ S∞
t ×H2

t,BMO × L2
t be

a solution of BSDE (55) in Theorem 5.12. Define that

π∗(u) := arg max
π∈U

h
(
π;pM(u−),H(u−), Z̃(u), Ṽ (u)

)
, u ∈ [t, T ],(108)

where the function h(π;p, z, ξ, v) is given by (47). Then, we have π∗ ∈ Uad
t and π∗ is an

optimal investment strategy for the risk sensitive control problem (34).

PROOF. The main body of the proof is to show that the first assertion π∗ ∈ Uad
t holds.

According to Definition 4.1, it remains to verify that (E(�π∗,t )u)u∈[t,T ] is a true (P∗,FM)-
martingale. In view of (108), it clearly holds that

h
(
π∗(u);pM(u−),H(u−), Z̃(u), Ṽ (u)

)
≥ h

(
0;pM(u−),H(u−), Z̃(u), Ṽ (u)

)
, u ∈ [0, T ].

Similar to the proof of Lemma 5.2, we can manipulate the r.h.s of the above inequality and
attain the existence of constants R1,R2 > 0 depending on the essential upper bound of Ṽ

such that ∣∣π∗(u)
∣∣2 ≤ R1

∣∣(1 − H(u−)
)
Z̃(u)

∣∣2 + R2, u ∈ [t, T ].(109)

For u ∈ [t, T ], let us define

�
π∗,t
1 (u) :=

n∑
i=1

∫ u

t

{
σ−1

i

(
μM

i (s) + λM
i (s)

) − θσi

2
π∗

i (s) + Z̃i(s)

}
dW

o,τ
i (s).(110)

Thanks to the fact that Z̃ ∈ H2
t,BMO and (109), it follows that �

π∗,t
1 = (�

π∗,t
1 (u))u∈[t,T ] is a

continuous BMO (P∗,FM)-martingale. By Theorem 3.4 in Kazamaki [27], there exists ρ > 1
such that

E∗
t,p,z

[
E
(
�

π∗,t
1

)ρ
T

]
< +∞.(111)
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On the other hand, the first-order condition gives that, for i = 1, . . . , n,

μM
i (u−) + λM

i (u−) − r + σi

(
1 − Hi(u−)

)
Z̃i(u)

=
(

1 + θ

2

)
σ 2

i π∗
i (u) + λM

i (u−)
(
1 − π∗

i (u)
)− θ

2 −1
eṼi(u).

(112)

We next prove the existence of constants R3,R4 > 0 depending on the essential upper
bound of Ṽ such that, for i = 1, . . . , n,

λM
i (u−)

(
1 − π∗

i (u)
)− θ

2 −1
eṼi (u) ≤ R3

∣∣(1 − Hi(u−)
)
Z̃i(u)

∣∣ + R4.(113)

In fact, for i = 1, . . . , n, if π∗
i (u) ≤ 0, the l.h.s. of (113) is bounded by the constant Rλe

|Ṽi |t,∞ ,
where the positive constant Rλ := max(i,k,z)∈{1,...,n}×SI ×SH

λi(k, z) is finite thanks to the as-
sumption (H). If π∗

i (u) ∈ (0,1), it follows from (112) that

λM
i (u−)

(
1 − π∗

i (u)
)− θ

2 −1
eṼi(u) ≤

(
1 + θ

2

)
σ 2

i π∗
i (u) + λM

i (u−)
(
1 − π∗

i (u)
)− θ

2 −1
eṼi(u)

= μM
i (u−) + λM

i (u−) − r + σi

(
1 − Hi(u−)

)
Z̃i(u).

This shows (113) again by the assumption (H).
To continue, the estimate (113) in turn entails the existence of constants R5,R6 > 0 such

that, for i = 1, . . . , n,∣∣λM
i (u−)

∣∣2(1 − π∗
i (u)

)−θ
e2Ṽi (u) ≤ R5

(
1 − Hi(u−)

)∣∣Z̃i(u)
∣∣2 + R6.(114)

For u ∈ [t, T ], we define

(115) �
π∗,t
2 (u) :=

n∑
i=1

�
π∗,t
2,i (u) :=

n∑
i=1

∫ u

t

{(
1 − π∗

i (s)
)− θ

2 λM
i (s−)eṼi (s) − 1

}
dϒ∗

i (s).

Moreover, we also define a probability measure P(0) ∼ P∗ via dP(0)

dP∗ |FM
T

= E(�
π∗,0
1 )T . Then,

for i = 1, . . . , n, Hi admits the P(0)-intensity given by 1. It holds that

E
(
�

π∗,t
2,1

)
u = exp

(∫ u

t

{
1 − (

1 − π∗
1 (s)

)− θ
2 λM

1 (s)eṼ1(s)
}
ds

) ∏
s≤u

(
1 + ��

π∗,t
2,1 (s)

)

≤ eT −t

{
1 +

∫ T

t

(
1 − π∗

1 (s)
)− θ

2 λM
1 (s−)eṼ1(s) dH1(s)

}
, u ∈ [t, T ].

(116)

Let RT > 0 be a constant depending on T that may refer to different values from line to line.
Then, it follows from (111) and (114) that, for (t,p, z) ∈ [0, T ] × SpM × SH ,

E
(0)
t,p,z

[
E
(
�

π∗,t
2,1

)2
u

] ≤ RT E
(0)
t,p,z

[
1 +

∫ T

t

(
1 − π∗

1 (s)
)−θ ∣∣λM

1 (u−)
∣∣2e2Ṽ1(s) dH1(s)

]

≤ RT

{
1 +E∗

t,p,z

[
E
(
�

π∗,t
1

)
T

∫ T ∧τ t
1

t

∣∣Z̃1(u)
∣∣2 du

]}
(117)

≤ RT

{
E∗

t,p,z

[
E
(
�

π∗,t
1

)ρ
T

]} 1
ρ

{
E∗

t,p,z

[(∫ T ∧τ 1
t

t

∣∣Z̃1(u)
∣∣2 du

)q]} 1
q + RT

≤ RT ,

where q > 1 satisfies that 1
ρ

+ 1
q

= 1, and we have used Corollary 2.1 in [27] for BMO

(P∗,FM)-martingales in the last inequality. This yields that (E(�
π∗,t
2,1 )u)u∈[t,T ] is uniformly
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integrable (U.I.) under P(0). By using the orthogonality of P∗-martingales �
π∗,t
1 and �

π∗,t
2,1 ,

it holds that

E
(0)
t,p,z

[
E
(
�

π∗,t
2,1

)
T

] = E∗
t,p,z

[
E
(
�

π∗,t
1

)
T E

(
�

π∗,t
2,1

)
T

] = 1.(118)

We next define a probability measure P(1) ∼ P∗ via dP(1)

dP∗ |FM
T

= E(�
π∗;t
1 )T E(�

π∗;t
2,1 )T . Note

that H1 and H2 do not jump simultaneously. Then, H2 admits the unit intensity under P(1).
Therefore, in the light of (114) and (117), we can derive that

E
(1)
t,p,z

[
E
(
�

π∗,t
2,2

)2
u

] ≤ RT E
(1)
t,p,z

[
1 +

∫ T

t

(
1 − π∗

2 (s)
)−θ ∣∣λM

2 (u−)
∣∣2e2Ṽ2(s) dH2(s)

]

≤ RT

{
1 +E

(0)
t,p,z

[
E
(
�

π∗,t
2,1

)
T

∫ T ∧τ t
2

t

∣∣Z̃2(u)
∣∣2 du

]}
(119)

≤ RT

{
E

(0)
t,p,z

[
E
(
�

π∗,t
2,1

)2
T

]} 1
2

{
E

(0)
t,p,z

[(∫ T ∧τ t
2

t

∣∣Z̃2(u)
∣∣2 du

)2]} 1
2 + RT

≤ RT

{
E

(0)
t,p,z

[(∫ T ∧τ t
2

t

∣∣Z̃2(u)
∣∣2 du

)2]} 1
2 + RT .

The term E
(0)
t,p,z[(

∫ T ∧τ t
2

t |Z̃2(u)|2 du)2] can be estimated by

E
(0)
t,p,z

[(∫ T ∧τ t
2

t

∣∣Z̃2(u)
∣∣2 du

)2]

≤ {
E∗

t,p,z

[
E
(
�

π∗,t
1

)ρ
T

]} 1
ρ

{
E∗

t,p,z

[(∫ T ∧τ t
2

t

∣∣Z̃2(u)
∣∣2 du

)2q]} 1
q

.

Thus, there exists a constant R
(1)
T > 0 depending on T such that, for all u ∈ [t, T ],

E
(1)
t,p,z

[
E
(
�

π∗,t
2,2

)2
u

] = E∗
t,p,z

[
E
(
�

π∗;t
1

)
uE

(
�

π∗;t
2,1

)
uE

(
�

π∗,t
2,2

)2
u

] ≤ R
(1)
T .(120)

Up to now, we have proved the following estimate with l = 2: there exists a constant R
(l−1)
T >

0 depending on T such that, for all u ∈ [t, T ],

E∗
t,p,z

[
E
(
�

π∗,t
1

)
uE

(
l−1∑
i=1

�
π∗,t
2,i

)
u

E
(
�

π∗,t
2,l

)2
u

]
≤ R

(l−1)
T .(121)

We next verify (121) for all l ≤ n using the mathematical induction argument. To this end,
suppose (121) holds for all l ≤ k (where 2 ≤ k ≤ n). The goal is to validate (121) for l = k+1.
First, following similar lines of argument to prove (118), we can obtain inductively that, for
all 2 ≤ l ≤ k,

E∗
t,p,z

[
E
(
�

π∗,t
1

)
T

l∏
i=1

E
(
�

π∗,t
2,i

)
T

]
= 1.(122)

Let us define a probability measure P(l) ∼ P∗ by

dP(l)

dP∗ |FM
T

:= E
(
�

π∗,t
1

)
T

l∏
i=1

E
(
�

π∗,t
2,i

)
T , for 2 ≤ l ≤ k.(123)
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Note again that H1, . . . ,Hk,Hk+1 do not jump simultaneously and hence Hk+1 admits the
unit intensity under P(k). By virtue of (114) and (121) with l ≤ k, we can further deduce that

E
(k)
t,p,z

[
E
(
�

π∗,t
2,k+1

)2
u

]

≤ RT

{
1 +E

(k−1)
t,p,z

[
E
(
�

π∗,t
2,k

)
T

∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

]}

≤ RT

{
E

(k−1)
t,p,z

[
E
(
�

π∗,t
2,k

)2
T

]} 1
2

{
E

(k−1)
t,p,z

[(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)2]} 1
2 + RT

≤ RT

{
E

(k−1)
t,p,z

[(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)2]} 1
2 + RT

= RT

{
E

(k−2)
t,p,z

[
E
(
�

π∗,t
2,k−1

)
T

(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)2]} 1
2 + RT

≤ RT

{
E

(k−2)
t,p,z

[(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)22]} 1
22 + RT

· · · · · · · · ·

≤ RT

{
E

(0)
t,p,z

[(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)2k]} 1
2k + RT

≤ RT

{
E∗

t,p,z

[
E
(
�

π∗,t
1

)ρ
T

]} 1
ρ2k

{
E∗

t,p,z

[(∫ T ∧τ t
k+1

t

∣∣Z̃k+1(u)
∣∣2 du

)q2k]} 1
q2k + RT

≤ RT .

(124)

This confirms the estimate (121) with l = k + 1. As a result of the previous induction and the
orthogonality of �

π∗,t
1 , �

π∗,t
2,1 , . . . ,�

π∗,t
2,n , we have

E∗
t,p,z

[
E
(
�π∗,t )

T

] = E∗
t,p,z

[
E
(
�

π∗,t
1

)
T

n∏
i=1

E
(
�

π∗,t
2,i

)
T

]
= 1.(125)

This shows that (E(�π∗,t )u)u∈[t,T ] is a U.I. (P∗,FM)-martingale, which verifies the first as-
sertion that π∗ ∈ Uad

t .
Next, the first-order condition in the definition of π∗ and Theorem 5.12 can entail that (50)

in Lemma 4.5 holds valid. We can readily conclude the second assertion that π∗ is indeed an
optimal strategy using Lemma 4.5. �

It is worth noting that Theorem 5.12 only gives the existence of a solution (Ỹ , Z̃, Ṽ ) ∈
S∞

t × H2
t,BMO × L2

t to BSDE (55) while the uniqueness of the solution remains open. The
next result finally confirms that our constructed solution in Theorem 5.12 is unique that is, a
consequence of Lemma 4.5 and Theorem 6.1, which in turn implies that π∗ constructed in
(108) is the unique optimal portfolio.

PROPOSITION 6.2. The limiting process (Ỹ , Z̃, Ṽ ) in Lemma 5.9 is the unique (in the
sense of dP∗ ⊗ du-a.e.) solution of BSDE (55) in the space S∞

t ×H2
t,BMO × L2

t . Moreover,

the portfolio process π∗ defined in (108) by (Ỹ , Z̃, Ṽ ) is the unique (in the sense of dP∗ ⊗ du-
a.e.) optimal investment strategy for the risk-sensitive control problem (34).
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PROOF. In Theorem 5.12, we proved that there exists one solution (Ỹ , Z̃, Ṽ ) ∈ S∞
t ×

H2
t,BMO ×L2

t to BSDE (55) such that (Ỹ + ∫ ·
t f (pM(s),H(s),0,0) ds, Z̃, Ṽ ) solves the orig-

inal BSDE (45). Recall U = (−∞,1)n, and we next define the set, for t ∈ [0, T ],

Ûad
t :=

{
π = (

πi(u); i = 1, . . . , n
)�
u∈[t,T ] ∈ U ;π is FM-predictable such that both

n∑
i=1

∫ u

t
πi(s) dW

o,τ
i (s) and

n∑
i=1

∫ u

t

(
1 − πi(s)

)− θ
2 dW

o,τ
i (s), u ∈ [t, T ],

are
(
P∗,FM)

-BMO martingales

}
.

Let (Ỹ , Z̃, Ṽ ) ∈ S∞
t ×H2

t,BMO × L2
t be a solution of BSDE (55) and let π∗ = (π∗(u))u∈[t,T ]

be defined by (108) using (Z̃, Ṽ ) from this solution. Then, it follows from (109), (114) and
Z̃ ∈ H2

t,BMO that π∗ ∈ Ûad
t . Now, for any π ∈ Ûad

t , let us define, for i = 1, . . . , n,

Ẑi(u) := ∣∣πi(u)
∣∣ + (

1 − πi(u)
)− θ

2 , u ∈ [t, T ].
Then Ẑ = (Ẑi(u); i = 1, . . . , n)�u∈[t,T ] ∈H2

t,BMO, and we can obtain the same estimates (109)

and (114) with (π∗, Z̃) replaced by (π, Ẑ). Moreover, by applying a similar induction to
prove (125), we deduce that Ûad

t ⊂ Uad
t . This implies that π∗ constructed by (Z̃, Ṽ ) satisfies

that

inf
π∈Ûad

t

J (π; t, p, z) = eY(t;t,p,z) = J
(
π∗; t, p, z

)
,(126)

where J (π; t, p, z) is given by (43) and Y(t; t, p, z) = Ỹ (t) as we have Y := Ỹ +∫ ·
t f (pM(s),H(s),0,0) ds in the proof of Lemma 4.5. That is, we have constructed an ad-

missible control subset Ûad
t ⊂ Uad

t independent of (Ỹ , Z̃, Ṽ ) such that the optimal strategy
π∗ given by (108) is still in Ûad

t .
We next apply this subset Ûad

t to conclude the uniqueness of solutions to BSDE (55). To
this end, let (Ỹ i , Z̃i, Ṽ i) ∈ S∞

t ×H2
t,BMO × L2

t , i = 1,2 be two solutions of BSDE (55) with

the same terminal condition. We can then define πi,∗ ∈ Ûad
t as in (108) by using (Ỹ i, Z̃i, Ṽ i)

respectively for i = 1,2. The verification of optimality in Lemma 4.5, together with (126),
yields that

eỸ 1(t) = eỸ 2(t) = inf
π∈Ûad

t

J (π; t, p, z).

This implies that

J
(
π1,∗; t, p, z

)
e−Ỹ 2(t) = E∗

t,p,z

[
E
(
�π1,∗,t )

T exp
(∫ T

t

(
f
(
pM(u−),H(u−), Z̃2(u), Ṽ 2(u)

)

− h
(
π1,∗(u);pM(u−),H(u−), Z̃2(u), Ṽ 2(u)

))
du

)]
= 1,

where �π,t = (�π,t (u))u∈[t,T ] for π ∈ Uad
t is defined by (52). Therefore, it holds that, dP∗ ⊗

du-a.e.

f
(
pM(u−),H(u−), Z̃2(u), Ṽ 2(u)

) = h
(
π1,∗(u);pM(u−),H(u−), Z̃2(u), Ṽ 2(u)

)
.
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Let J (π;u) := E[(Xπ(T )
Xπ (u)

)− θ
2 |FM

u ] for u ∈ [t, T ]. Then, for u ∈ [t, T ], we have that

J
(
π1,∗;u)e−Ỹ 2(u)+∫ u

t f (pM(s−),H(s−),0,0) ds

= E∗
[
E
(
�π1,∗,u)

T exp
(∫ T

u

(
f
(
pM(s−),H(s−), Z̃2(s), Ṽ 2(s)

)
(127)

− h
(
π1,∗(s);pM(s−),H(s−), Z̃2(s), Ṽ 2(s)

))
ds

) ∣∣∣∣FM
u

]
= 1.

On the other hand, by Lemma 4.5, we have that, for u ∈ [t, T ],
J
(
π1,∗;u)e−Ỹ 1(u)+∫ u

t f (pM(s−),H(s−),0,0) ds

= E∗
[
E
(
�π1,∗,u)

T exp
(∫ T

u

(
f
(
pM(s−),H(s−), Z̃1(s), Ṽ 1(s)

)
(128)

− h
(
π1,∗(s);pM(s−),H(s−), Z̃1(s), Ṽ 1(s)

))
ds

) ∣∣∣∣FM
u

]
= 1.

It follows from (127) and (128) that, for u ∈ [t, T ], Ỹ (1)(u) = Ỹ (2)(u), P∗-a.e. Note that
(Ỹ i, Z̃i, Ṽ i) ∈ S∞

t ×H2
t,BMO × L2

t , i = 1,2 satisfy BSDE (55). Together with Theorem 3.2,

the unique canonical decomposition of the semimartingale Ỹ = (Ỹ (u))u∈[t,T ] ∈ S∞
t under P∗

(see Theorem 34 in Chapter III of [36]) implies that, for u ∈ [t, T ], P∗-a.e.,∫ u

t
Z̃1(s)� dWo,τ (s) =

∫ u

t
Z̃2(s)� dWo,τ (s),

∫ u

t
Ṽ 1(s)� dϒ∗(s) =

∫ u

t
Ṽ 2(s)� dϒ∗(s),

which proves the uniqueness of the solution to BSDE (55) in the sense of dP∗ ⊗ du-a.e.
For the unique solution (Ỹ , Z̃, Ṽ ) ∈ S∞

t ×H2
t,BMO ×L2

t of BSDE (55), we then claim that
the constructed strategy π∗ in (108) is the unique optimal portfolio for the original control
problem. In fact, for an arbitrary optimal strategy π̂ ∈ Uad

t , from the proof of Lemma 4.5, we
can see that

J (π̂; t, p, z)e−Ỹ (t) = E∗
t,p,z

[
E
(
�π̂,t )

T exp
(∫ T

t

(
f
(
pM(u−),H(u−), Z̃(u), Ṽ (u)

)

− h
(
π̂ (u);pM(u−),H(u−), Z̃(u), Ṽ (u)

))
du

)]
= 1.

Therefore, dP∗ ⊗ du-a.e.

h
(
π̂(u);pM(u−),H(u−), Z̃(u), Ṽ (u)

) = f
(
pM(u−),H(u−), Z̃(u), Ṽ (u)

)
= max

π∈U
h
(
π;pM(u−),H(u−), Z̃(u), Ṽ (u)

)
.

It then follows from the strict convexity of U � π → h(π;p, z, ξ, v) that π̂ = π∗, dP∗ ⊗ du-
a.e. This verifies the uniqueness of the admissible optimal strategy π∗, which completes the
whole proof. �

APPENDIX: PROOFS OF SOME AUXILIARY RESULTS

This section collects the technical proofs of some auxiliary results that have been used in
previous sections of the paper.
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PROOF OF PROPOSITION 3.4. For t ∈ [0, T ], let us define ζk(t) := 1{I (t)=k} for k ∈ SI .
It is clear that Jk(t) := ζk(t) − ζk(0) − ∫ t

0
∑

i∈SI
qikζi(s) ds, t ∈ [0, T ], is a (P,F)-martingale

with bounded jumps. Taking the P-conditional expectation under FM
t on both sides, we obtain

that J M
k (t) = pM

k (t) − pM
k (0) − ∑

i∈SI

∫ t
0 qikp

M
i (s) ds for t ∈ [0, T ] is a square-integrable

(P,FM)-martingale with bounded jumps. Theorem 3.2 gives the existence of FM-predictable
processes αM = (αM

1 (t), . . . , αM
n (t))�t∈[0,T ] and βM = (βM

1 (t), . . . , βM
n (t))�t∈[0,T ] such that,

for t ∈ [0, T ],

J M
k (t) = J M

k (0) +
n∑

i=1

∫ t

0
αM

i (s) dWM
i (s) +

n∑
i=1

∫ t

0
βM

i (s) dϒM
i (s),

and hence

pM
k (t) = pM

k (0) + ∑
j∈SI

∫ t

0
qjkp

M
j (s) ds +

n∑
i=1

∫ t

0
αM

i (s) dWM
i (s)

+
n∑

i=1

∫ t

0
βM

i (s) dϒM
i (s).

(A.1)

We next identify αM and βM by taking Wo,τ defined by (6) as a test process. By (9), we
have that W

o,τ
i (t) = WM

i (t) + σ−1
i

∫ t∧τi

0 (μM
i (pM(s)) + λM

i (pM(s),H(s))) ds for t ∈ [0, T ]
which is FM-adapted. Then, for i = 1, . . . , n, it holds that

(
ζk(t)W

o,τ
i (t)

)M = ζM
k (t)W

o,τ
i (t) = pM

k (t)W
o,τ
i (t), k ∈ SI .(A.2)

Note that Jk is a semimartingale of pure jumps while W
o,τ
i is continuous. It is clear that

[ζk,W
o,τ
i ] = [Jk,W

o,τ
i ] ≡ 0. Using integration by parts, we arrive at

ζk(t)W
o,τ
i (t) =

∫ t

0
W

o,τ
i (s)

∑
j∈SI

qjkζj (s) ds

+
∫ t

0
W

o,τ
i (s) dJk(s) +

∫ t∧τi

0
ζk(s) dWi(s)(A.3)

+ σ−1
i

∫ t∧τi

0

(
μi(k) + λi

(
k,H(s)

))
ζk(s) ds.

Note that both W
o,τ
i and Jk are square-integrable semimartingales under P. Then, the second

and the third terms on r.h.s. of (A.3) are true F-martingales. Taking the P-conditional expec-
tation under FM on both sides of (A.3), we can write the FM-semimartingale (ζkW

o,τ
i )M :=

(E[ζk(t)W
o,τ
i (t)|FM

t ])t∈[0,T ] by

(
ζk(t)W

o,τ
i (t)

)M = E

[∫ t

0
W

o,τ
i (s) dJk(s) +

∫ t∧τi

0
ζk(s) dWi(s)

∣∣∣∣FM
t

]

+
∫ t

0
W

o,τ
i (s)

∑
j∈SI

qjkp
M
j (s) ds(A.4)

+ σ−1
i

∫ t∧τi

0

(
μi(k) + λi

(
k,H(s)

))
pM

k (s) ds,

where the first term on the r.h.s. of (A.4) is a (P,FM)-martingale, and the rest of the terms are
finite variation processes in the canonical decomposition of (ζkW

o,τ
i )M. On the other hand,
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we also have that

pM
k (t)W

o,τ
i (t)

=
∫ t

0
W

o,τ
i (s)

∑
j∈SI

qjkp
M
j (s) ds +

∫ t

0
W

o,τ
i (s) dJ M

k (s) +
∫ t∧τi

0
pM

k (s) dWM
i (s)

+ σ−1
i

∫ t∧τi

0
pM

k (s)
(
μM

i

(
pM(s)

) + λM
i

(
pM(s),H(s)

))
ds +

∫ t∧τi

0
αM

i (s) ds,

where the second and the third terms of the r.h.s. of the above equation are true FM-martingale
due to the square integrability of W

o,τ
i and pM

k . By virtue of (A.2), we can compare the finite
variation parts of (ζk(t)φi(t))

M and pM
k (t)W

o,τ
i (t) to obtain that, on {0 < t ≤ τi},

αM
i (t) = σ−1

i pM
k (t)

{
μi(k) + λi(k) − μM

i

(
pM(t)

) − λM
i

(
pM(t),H(t)

)}
= σ−1

i pM
k (t)

{
(μi(k) + λi

(
k,H(t)

) − ∑
j∈SI

μi(j)pM
j (t) − ∑

j∈SI

λi

(
j,H(s)

)
pM

j (t)

}
.

Finally, we replace the test process W
o,τ
i by the test process Hi(t). Note that the Markov

chain I does not jump simultaneously with the default indicator process H . It holds that
[ζk,Hi] ≡ 0. By applying a similar argument to identify αM, one can show that, on {0 < t ≤
τi},

βM
i (t) = λM

i

(
pM(t−),H(t−)

)−1
pM

k (t−)λi

(
k,H(t−)

) − pM
k (t−)

= pM
k (t−)

{
λi(k,H(t−))∑

l∈SI
λi(l,H(t−))pM

l (t−)
− 1

}
.

By substituting (αM, βM) in (A.1), we arrive at the desired dynamics in (26). �

PROOF OF LEMMA 4.4. We can see from (36) that Xπ(T )
Xπ(t)

is FM
T -measurable. A direct

computation using (36) and (39) yields that

J (π; t, p, z) = Et,p,z

[(
Xπ(T )

Xπ(t)

)− θ
2
]

= E∗
t,p,z

[
ηM(t, T )−1

(
Xπ(T )

Xπ(t)

)− θ
2
]

= E∗
t,p,z

[
eQπ,t (T )],

which completes the proof. �

PROOF OF LEMMA 5.2. With the aid of (60) and the assumption (H), we can see that,
for i = 1, . . . , n,

hN
i (0;p, z, ξi, vi) ≥ −1

2
|ξi |2ρN(ξi)1{|ξi |≤N+2} − λM

i (p, z)evi ρ̂N

(
evi

)

≥ −
{
(N + 2)2

2
+ C(N + 1)

}
.

On the other hand, for πi ∈ (−∞,1),

hN
i (π;p, z, ξ, v) ≤ −θ

4
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi + λM

i (p, z)

≤ −θ

4
σ 2

i π2
i + θ

2
(2C + r)|πi | + C.
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For i = 1, . . . , n, we can take a constant RN > 0 only depending on N such that, for all
πi ∈ (−∞,1) satisfying |πi | > RN , we have that

−θ

4
σ 2

i π2
i + θ

2
(2C + r)|πi | + C < −

{
(N + 2)2

2
+ C(N + 1)

}
.

Therefore, for all πi ∈ (−∞,−RN), it holds that hN
i (πi;p, z, ξi, vi) < hN

i (0;p, z, ξi, vi),
which further implies that (61) holds. �

PROOF OF LEMMA 5.4. By virtue of (49), we have that, for (p, z,πi) ∈ SpM × SH ×
(−∞,1),

hi(πi;p, z,0,0) = −
(

θ

4
+ θ2

8

)
σ 2

i π2
i + θ

2

(
μM

i (p) + λM
i (p, z) − r

)
πi + λM

i (p, z)

−λM
i (p, z)(1 − πi)

− θ
2 , i = 1, . . . , n.

In light of the assumption (H), we have that, for i = 1, . . . , n, | θ2 (μM
i (p) + λM

i (p, z) −
r)πi | ≤ θ

4 {π2
i + (2C + r)2}. On the other hand, for πi ∈ (−∞,1), we have that R2(πi) ≤

hi(πi;p, z,0,0) ≤ R1, where R1 := θ
4 (2C + r)2 + θ

4 + C, and for πi ∈ (−∞,1),

R2(πi) := −
(

θ

4
+ θ2

8
+ θ

4σ 2
i

)
σ 2

i π2
i − C(1 − πi)

− θ
2 − θ

4
(2C + r)2 + ε.

Note that R3 := | supπi∈(−∞,1) R2(πi)| < +∞. Then, for all (p, z) ∈ SpM × SH ,∣∣∣ sup
πi∈(−∞,1)

hi(πi;p, z,0,0)
∣∣∣ ≤ R1 ∨ R3, i = 1, . . . , n.

Thanks to (47), we deduce that hL(p, z,0,0) = rθ
2 for all (p, z) ∈ SpM × SH . This verifies

that ζ is a bounded r.v.. �

PROOF OF LEMMA 5.8. For u ∈ [t, T ] and i = 1, . . . , n, we define that

Z̃N+1,N,i(u) := (
Z̃N+1

1 (u), . . . , Z̃N+1
i (u), Z̃N

i+1(u), . . . , Z̃N
n (u)

)
,

Ṽ N+1,N,i(u) := (
Ṽ N+1

1 (u), . . . , Ṽ N+1
i (u), Ṽ N

i+1(u), . . . , Ṽ N
n (u)

)
.

Here, Ṽ N is the FM-predictable Rn-valued bounded process satisfying (76) in Lemma 5.7.
We also set Z̃N+1,N,0(u) = Z̃N(u), Z̃N+1,N,n(u) = Z̃N+1(u), Ṽ N+1,N,0(u) = Ṽ N(u) and
Ṽ N+1,N,n(u) = Ṽ N+1(u). For i = 1, . . . , n, let us define that

γi(u) := f̃ N+1(u, Z̃N+1,N,i(u), Ṽ N+1(u)) − f̃ N+1(u, Z̃N+1,N,i−1(u), Ṽ N+1(u))

Z̃N+1
i (u) − Z̃N

i (u)
,

if (1 − Hi(u−))Z̃N+1
i (u) �= (1 − Hi(u−))Z̃N

i (u), and it is 0 otherwise. Let us also define

ηi(u) := f̃ N+1(u, Z̃N(u), Ṽ N+1,N,i(u)) − f̃ N+1(u, Z̃N(u), Ṽ N+1,N,i−1(u))

Ṽ N+1
i (u) − Ṽ N

i (u)
,

if (1 − Hi(u−))Ṽ N+1
i (u) �= (1 − Hi(u−))Ṽ N

i (u), and it is 0 otherwise. Moreover, let us
consider the probability measure Q ∼ P∗ defined in (81) with (γi(u), ηi(u)) given above. By
Lemma 5.7, for any s ∈ [0,1] and u ∈ [t, T ], it holds that

sṼ N+1
i (u) + (1 − s)Ṽ N

i (u) ≤ CT , a.e.,(A.5)
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for some constant CT > 0 depending on T > 0 only. By taking constant N0 > CT , we have
that, for all N ≥ N0,

f̃ N+1(u, Z̃N(u), Ṽ N+1,N,i(u)) − f̃ N+1(u, Z̃N(u), Ṽ N+1,N,i−1(u))

Ṽ N+1
i (u) − Ṽ N

i (u)

≤ 1 − (1 + RN+1)
− θ

2 e−CT .

Hence, Ŵ o,τ = (Ŵ o,τ (s))s∈[0,T ] and ϒ̂∗ = (ϒ̂∗(s))s∈[0,T ] defined by (82) are (Q,FM)-
martingales. It follows from (59) that f̃ N (ω,u, ξ, v) ≥ f̃ N+1(ω,u, ξ, v) for all (ω,u, ξ, v).
By putting all the pieces together, (58) implies that, for u ∈ [t, T ],

Ỹ N+1(u) − Ỹ N (u) ≥ −
∫ T

u

(
Z̃N+1(s) − Z̃N(s)

)�
dŴo,τ (s)

−
∫ T

u

(
Ṽ N+1(s) − Ṽ N (s)

)�
dϒ̂∗(s).

This confirms the desired comparison result that Ỹ N+1(u) ≥ Ỹ N (u), P∗-a.e., as we have
Q∼ P∗. �
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