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Abstract—The widely application of positioning technology
has made collecting the movement of people feasible and there-
fore plenty of trajectory data have been collected, published,
and analyzed in real-life applications. However, maintaining
privacy in the published data is a critical problem, because
known partial information of an individual can be used to de-
termine the specific record. For example, some trajectory points
may leak an individual’s sensitive spatial-temporal event, such
as “visiting one hospital last week” and “getting some kinds of
infectious disease”. To prevent record linkage, attribute linkage,
and similarity attacks based on the background knowledge of
trajectory data and protect the individuals’ information, we
propose a data privacy preservation with enhanced l-diversity.
First, determine those critical spatial-temporal sequences which
are more likely to result in privacy leakage. Then we perturb
these sequences by adding or deleting some spatial-temporal
points while ensuring the published data satisfy our (L,α, β)-
privacy, an enhanced privacy model from L-diversity. Our
experiments on both synthetic and real-life datasets suggest
that EDPP achieves better privacy while still ensuring high
utility, compared with existing privacy preservation schemes
on trajectory.

Keywords-Spatial Temporal, Sensitive Privacy Preservation,
Trajectory Data Publishing

I. INTRODUCTION

The popularity of smart mobile devices with positioning
technologies triggers the advent of location-based services,
such as ”where is the nearest China restaurant.” Mobile users
must share their current locations or a sequence of past
trajectory with the service provider. Therefore, vast amounts
of trajectory data are collected with other information. For
example, wearable devices have been generating tremen-
dous amounts of location-rich, real-time, and high-frequency
sensing data with the physical symptoms for remote mon-
itoring on patients of common chronic diseases including
diabetes, asthma, depression [22]. Data miners have also
shown great interest in analyzing these data to provide
plentiful serves for people. Recent studies [1][7] have shown
that tracking the environmental exposure of a person with
his daily trajectories helps to improve diagnose. However,
the public data may contain sensitive and private information
about individuals, such as health status. Therefore, protecting
user privacy when publishing data is a significant challenge
that goes beyond removing the identity identifier such as

the name. The critical problem is that the attacker can infer
an individual’s other sensitive information through some
background knowledge, such as frequently visited locations.
The focus of this paper is to preserve individual privacy
for publishing trajectory data which is associated with non-
sensitive and sensitive attributes.

Table I
ORIGINAL TABLE

ID. Name Trajectory Disease · · ·

1 Alice a1→ d2→ b3→ e4→ f6→ e8 HIV · · ·
2 Bob d2→ c5→ f6→ c7→ e9 Flu · · ·
3 Caesar b3→ f6→ c7→ e8 SARS · · ·
4 Daniel b3→ e4→ f6→ e8 Fever · · ·
5 Eden a1→ d2→ c5→ f6→ c7 Flu · · ·
6 Freeman c5→ f6→ e9 SARS · · ·
7 Georgia f6→ c7→ e8 Fever · · ·
8 Hugo a1→ c2→ b3→ c7→ e9 SARS · · ·
9 Ishtar e4→ f6→ e8 Fever · · ·

Table I [14] shows an original table without omitting
any attribute. In this table, there are four typical types
of attributes: explicit identifier, quasi-identifiers, sensitive
attribute, and non-sensitive attribute [19]. Explicit Identifier
(EI), such as the name, is used to identify an individual
uniquely, which is always removed from the published table
in the anonymization step. On the other hand, a single Quasi-
Identifier (QI) cannot uniquely identify an individual, but a
few QIs can be combined to identify him. In this paper, our
focused QI is Trajectory, which consists of a set of spatial-
temporal trajectory points, each with a location and a time
stamp. Sensitive Attribute (SA) contains private information
of users, such as Disease in Table I. Non-sensitive attribute
can be known by the public without any privacy concern.

The following types of attacks are mostly considered in
current approaches of preserving data privacy, record linkage
attack, attribute linkage attack, and similarity attack [14][9].
To illustrate them, we take Table II as an example.
• Record linkage attack. An adversary could identify

the unique record from the published table according
to a certain trajectory sequence of limited length. For
example, if an adversary has the background knowledge
of Alice’s trajectory sequence d2 → e4. Based on it,
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Table II
TABLE WITHOUT EXPLICIT IDENTIFIER

Trajectory Disease

a1→ d2→ b3→ e4→ f6→ e8 HIV
d2→ c5→ f6→ c7→ e9 Flu
b3→ f6→ c7→ e8 SARS
b3→ e4→ f6→ e8 Fever
a1→ d2→ c5→ f6→ c7 Flu
c5→ f6→ e9 SARS
f6→ c7→ e8 Fever
a1→ c2→ b3→ c7→ e9 SARS
e4→ f6→ e8 Fever

the adversary can infer that the 1st record belongs to
Alice. Thus, Alice’s disease privacy of HIV in Table II
is leaked.

• Attribute linkage attack. The adversary may not
precisely identify the victim’s record but could infer
his or her sensitive information such as SA from the
published data based on a trajectory sequence. For
example, an adversary knows that Bob has a trajectory
sequence of c5 → c7. Since only the 2nd and 5th
records contain it in Table II, he can infer that Bob
must have got Flu.

• Similarity attack. The adversary may not precisely
identify the victim’s record, but could infer his group
information from the published data based on the
intrinsic relationship between SA values. For example,
an adversary knows that Tom has a trajectory sequence
of c7. Based on Table II, he can infer that Tom may
suffer Flu, Fever, or SARS. By excluding Fever, he
can speculate that Tom has a probability of 4

5 to have
a lung infection Flu or SARS.

These three attacks can cause identity disclosure, attribute
disclosure, and similarity disclosure respectively [14]. Iden-
tity disclosure refers to re-identifying a target user from
some background knowledge. Attribute disclosure occurs
when some QI values can link to a specific SA value with
a high probability. Similarity disclosure happens when some
similar QI values can link to a set of SA values with a high
probability.

To prevent the above three kinds of disclosure, some
anonymization operations should be taken to modify the
original table. The typical anonymization approaches [9]
include generalization, suppression, anatomization, permu-
tation, and perturbation. Generalization and suppression re-
place values of specific attributes with less specific values.
Anatomization and permutation de-associate the correlation
between QID and sensitive attributes by grouping and shuf-
fling sensitive values in a group including QID. In pertur-
bation, the data will be distorted by adding noise, swapping
values, or generating synthetic data. Most existing privacy-
preserving approaches in publishing trajectory data are main-
ly based on generalization and suppression, and perturbation

privacy [14]. While, generalization and suppression may
eliminate a certain number of moving points by replacing
some spatial-temporal points with a broader category or
wildcard “*”, which causes significant loss of data utility.
Comparatively, perturbation can protect privacy by distorting
the dataset while keeping some statistical properties [9].

To protect user privacy while ensuring data utility, we
propose an Enhanced l-diversity Data Privacy Preservation
for publishing trajectory data (called EDPP). Compared
with k-anonymity, l-diversity can provide stronger privacy
preservation by guaranteeing l different sensitive attributes
in a group [16]. However, it cannot resist attribute linkage
attack and similarity attack. To resist the three kinds of
attacks, we propose our (l, α, β)-privacy model. With the
trajectory sequence being background knowledge, l-diversity
ensures that each trajectory sequence matches more than l
types of SA values in the published table. α-privacy ensures
that the probability of determining each SA value is not
greater than α. β-privacy guarantees that the probability that
an attacker obtains similar SA values is not larger than β.
To summarize, this paper has the following contributions:
• We propose our (l, α, β)-privacy model to resist the

record linkage, attribute linkage and similarity attacks
without changing any sensitive attribute. The three
parameters, l, α and β, which are used to prevent
identity closure, privacy closure and similarity closure
respectively, can be set based on the requirements of
data owners.

• We design a novel perturbation approach by executing
addition or subtraction operation on the chosen critical
sequences based on which the attacker can infer some
sensitive information of an individual. Compared with
generalization and suppression, perturbation can keep
the statistical property of the original trajectory data.

• Privacy analysis prove that our EDPP scheme can meet
l, α and β privacy requirements of our model.

• We evaluate the performance through extensive simu-
lations based on a real-world data set. Compared with
PPTD [14], KCL-Local [5] and DPTD [15], our DPPP
is superior in terms of data utility ratio and privacy.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work. Privacy model is
given in Section III. In Section IV, we present the details
of our approach. Privacy analysis is given in Section V.
Simulations on data utility are presented in Section VI.
Finally, we conclude our work in Section VII.

II. RELATED WORK

Most existing privacy preserving approaches in publishing
trajectory data are based on generalization and suppression,
and perturbation [14].

Generalization and Suppression: Generalization re-
places some QI values with a broader category such as
a parent value in the taxonomy of an attribute. In [14],



sensitive attribute generalization and trajectory local sup-
pression were combined to achieve a tailored personalized
privacy model for trajectory data publication. In [11], an
effective generalization method was proposed to achieve
kτ,ε-anonymity in spatiotemporal trajectory data. Combining
suppression and generalization, the dynamic trajectory re-
leasing method based on adaptive clustering was designed to
achieve k-anonymity in [21]. In [8], a new approach that uses
frequent path to construct k-anonymity was proposed. In the
suppression method, a certain number of moving points are
eliminated from trajectory data. In [24], extreme-union and
symmetric anonymization were proposed to build anony-
mous groups and avoid a moving object being identified
through the correlation between anonymization groups. [5]
was the first paper to adopt suppression to prevent record
linkage and attribute linkage attacks. To thwart identity
record linkage, passenger flow graph was first extracted
from the raw trajectory data to satisfy the LK-privacy
model [10]. In [2], km-anonymity was proposed to suppress
the critical location points chosen from quasi-identifiers to
protect against the record linkage attack. In [18], location
suppression and trajectory splitting were used to prevent
privacy leaks and improve data utility of aggregate query
and frequent sequences.

Perturbation: Perturbation aims to protect the privacy
with limiting the upper bound of utility loss. Differential
privacy is a main form of data perturbation. In cryptography,
differential privacy aims to provide means to maximize
the accuracy of queries from statistical databases while
minimizing the chances of identifying its records. Differ-
ential privacy can protect the privacy of individual users
under any background knowledge of adversaries. In [3],
differential privacy was first adopted to protect the privacy
of trajectory data. It was also applied in sequential data by
extracting the essential information in the form of variable-
length n-grams [4]. Hua et al. proposed a generalization
algorithm for differential privacy to merge nodes based
on their distances [12]. In [15], a differentially private
trajectory data publishing algorithm with a bounded noise
generation algorithm was proposed. To solve the privacy of
continuous publication in population statistics, a monitoring
framework with w-event privacy guarantee was designed. It
includes adaptive budget allocation, dynamic grouping and
perturbation [20]. In [17], an n-body Laplace framework was
proposed to prevent social relations inference through the
correlation between trajectories. Nonetheless, differential-
based approaches add random and unbounded noises to the
original data, which may seriously degrade the utility of
released trajectory data. To provide better data utility, we
proposed a privacy model to resist background knowledge
attacks based on some trajectory sequences by adding or
subtracting some trajectory points in the published data [23].

Summary Work: In this work, we aim to propose a
privacy model called (l, α, β)-privacy model to resist the

record linkage, attribute linkage and similarity attacks with-
out changing any sensitive attribute and further prevent
identity closure, privacy closure and similarity closure. Sim-
ilar to our previous work, we regard the critical sequences
which can determine the specific individuals as the attackers’
background knowledge and execute addition or subtraction
on them in order to eliminate these sequences. Different
from our previous work [23], on the one hand, the three
parameters, l, α and β, are not pre-defined, but can be
adjusted by the data owner based on his privacy requirement.
On the other hand, we consider the special case that the
addition operation may bring new critical sequences, which
has been ignored in our previous work.

III. PRIVACY MODEL

In this paper, we focus on publishing trajectory data
as in Table I while protecting the privacy of sensitive
attribute such as Disease against attackers with background
knowledge about the trajectory. Each individual may visit
different locations at different time. Consequently, a se-
quence of spatial-temporal records is generated in the form
(ID, loc, t), where ID represents the owner’ s unique
identifier and loc represents the owner’ s location and t
represents a time stamp. The set of locations are arranged
in the chronological order to form a trajectory Lt which is
defined as follows:

Definition 1 (Trajectory). A trajectory Lt is defined as a
sequence of spatiotemporal points,

Lt = (loc1, t1)→ (loc2, t2)→ · · · → (locn, tn). (1)

where n is the length of trajectory, ti is the time stamp and
loci represents the owner’ s location at ti.

A trajectory sequence is a non-empty subset of a tra-
jectory, and the length of the sequence is the number of
spatiotemporal points contained in the sequence.

To resist record linkage attack, attribute linkage attack
and similarity attack based on the trajectory sequence, we
define our (l, α, β)-privacy model in this paper. l-diversity
ensures that each trajectory sequence matches more than
l types of SA values in the published table. α-privacy
ensures that the probability of determining each SA value
is not greater than α. β-privacy guarantees that the prob-
ability of obtaining similar SA values is not larger than
β. Given the original trajectory table T and three privacy
parameters l, α and β, our goal is to anonymize T into
T ∗ that satisfies (l, α, β)-privacy model if each record in
T ∗ simultaneously satisfies l− diversity, α− sensitive−
association and β − similarity − association. First, we
define Q = {q1, q2, · · · , qn} as the sequence set of an
attacker’s background knowledge. For each qi ∈ Q, we have
qi ∈ T ∗ ∧ |qi| ≤ m, where m is the sequence upper limit of
the attacker’s background knowledge. For each qi 6∈ Q, we
have ¬(qi ∈ T ∗ ∧ |qi| ≤ m).



Definition 2. (l − diversity) T ∗ satisfies l-diversity if
the number of different SA values in ASA(qi) satisfies
|ASA(qi)| ≥ l, where qi represents a trajectory sequence
in Q, and ASA(q) represents all the SA values associated
with q.

For example, based on the knowledge of f6 → e8,
ASA(f6 → e8) ={HIV, SARS, FEVER} can hold in
Table II. The number of SA values is 3, i.e. |ASA(f6 →
e8)| = 3.

Definition 3. (α − sensitive − association) T ∗ satisfies
α− sensitive− association if the probability of inferring
the right SA of a record r satisfies Pr[ASA(r)] ≤ α with
the background knowledge ∀qi ∈ Q.

For example, an adversary has known that Bob and
Freeman possess the trajectory sequence f6 → e9. From
Table II, we can get Pr[ASA(Bob)] = Pr[Flu] = 1

2 and
Pr[ASA(Freeman)] = Pr[SARS] = 1

2 .

Definition 4. (β−similarity−association) All the records
can be divided into k groups T = {g1, g2, · · · , gk} ac-
cording to the SA value type, where gj represents the j-
th group. T ∗ satisfies β − similarity − association if the
probability of inferring the right group gj of a record r
satisfies Pr[r ∈ gj ] ≤ β for 0 ≤ β ≤ 1 with the background
knowledge ∀qi ∈ Q.

For example, the records in Table II are divided into two
groups: {{1,4,7,9},{2,3,5,6,8}} Given a trajectory sequence
d2, we can get Pr[Alice ∈ g1] = 1

2 and Pr[Eden ∈ g2] =
1
2 .

IV. ENHANCED L-DIVERSITY DATA PRIVACY
PRESERVATION (EDPP)

Our main research goal is to protect the SA privacy while
retaining the utility of published data. In this section, we first
introduce our basic framework and then elaborate the details
of EDPP. Major notations used in this section are listed in
Table III.

Table III
NOTATIONS

Notations Description

m Maximum sequence length of adversary knowledge.
QNL Set of sequences that do not satisfy l-diversity.
QCQ Set of critical sequences.
QNAB Set of sequences that do not satisfy α or β.
T (q) Records including q in T .
ASA(q) Set of SA values associated with q in T .
SU /AD Set of sequences that are subtracted or added in QNL.
maxα # records whose SA value has the most records in T (q).
maxβ # records whose category has the most records in T (q).
PriGain(q) Tradeoff metric of q between privacy and utility loss.

A. Overview

Our EDPP scheme includes two processes: (1) determin-
ing the critical sequences for a given length of trajectory
segment, and (2) performing the anonymization operation.
A critical sequence is a part of trajectory which meets the
predefined length but the matched SA values do not meet the
(l, α, β)-privacy model. The anonymization operation aims
to make each SA value satisfy (l, α, β)-privacy model by
adding or deleting moving points in each sequence. EDPP
includes the following procedures:

1) Explicit Identifier (EI) is first removed from the orig-
inal table to generate Table I.

2) To determine critical sequences, we find all possible
sequences of length no more than m whose SA values
do not satisfy (l, α, β)-privacy model.

3) By adding or subtracting points in each sequence ob-
tained from Step (2), we either make the correspond-
ing SA values of this sequence satisfy l − diversity
or eliminate this sequence.

4) By adding trajectory points in each sequence obtained
from Step (2), we make the corresponding SA value
of each sequence satisfy α−sensitive−association
and β−similarity−association. Similarly, we make
all the sequences of length no more than m satisfy α
or β by adding points.

B. Privacy Requirements

As mentioned before, our (l, α, β)-privacy model can
guarantee the published data T ∗ satisfies l, α and β privacy
requirements to resist record linkage attack, attribute linkage
attack and similarity attack. In this subsection, we aim to
give the definitions of l, α and β requirements.
l Requirement: Based on any trajectory sequence qi ∈ Q,

the inferred total number of distinct SA values |ASA(qi)|
is larger than l.

We define cis as the inferred total number of distinct SA
values based on qi. We can get the probability of inferring
the target individual’s record r, Pr[r], must be smaller than
the inverse of cis,

Pr[r] ≤ 1

cis
s.t. qi ⊂ tra(r)

. To satisfy l − diversity, cis should satisfy

Max(
1

c1s
,

1

c2s
, · · · , 1

cns
) ≤ 1

l
, (2)

where the function Max always returns the biggest value
among the elements.
α Requirement: For each trajectory sequence qi ∈ Q,

the probability of inferring the target individual’s SA in a
specific record, Pr[ASA(r)], is less than α.

We define cif as the maximum number of the same SA
values and cit as the number of inferred records based on



qi. We can get that the probability of inferring the right SA
value, Pr[ASA(r)], is less than the ratio between cif and
cit,

Pr[ASA(r)] ≤
cif
cit
.

To satisfy α − sensitive − association, each cif should
satisfy

Max(
c1f
c1t
,
c2f
c2t
, · · · ,

cnf
cnt

) ≤ α. (3)

β Requirement: For each trajectory sequence qi ∈ Q, the
probability of inferring the right group gj which the target
individual’s record r belongs to, Pr[r ∈ gj ], is smaller than
β.

We define cig as the maximum number of the same type
of SA values inferred according to qi. We can get the
probability of inferring the right group of r, Pr[r ∈ gj ],
must satisfy

Pr[r ∈ gj ] ≤
cig
cit
.

To satisfy β − similarity − association, each cig should
satisfy

Max(
c1g
c1t
,
c2g
c2t
, · · · ,

cng
cnt

) ≤ β. (4)

C. Detailed Algorithms

In what follows, we give the detailed algorithm for each
step in the above EDPP scheme.

1) Determining the critical sequences: Recall that m is
the upper bound of the attacker’s background knowledge on
the trajectory sequence, our goal is to identify all the critical
sequences of length m in T . Critical sequence is defined as
follows:

Definition 5. Critical sequence A trajectory sequence q is
a critical sequence if and only if it satisfies

|ASA(q)| < l ∧ |ASA(qi)| ≥ l, (5)

where qi is a subsequence of q with ∀qi ⊂ q.

Based on the above definition, we can get the two asser-
tions:

Assertion 1: For an anonymized table T ∗, it satisfies l−
diversity requirement if and only if it satisfies

CS(q)→ |q| > m s.t.∀q ∈ T ∗,

where CS(q) represents that q is a critical sequence.
Proof. Let T ∗ satisfy CS(q) → |q| > m with ∀q ∈

T ∗ and q be a sequence in T ∗ with |q| ≤ m. Based on
Definition 5, q is obviously not a critical sequence. Then,

we can get ASA(q) ≥ l according to Definition 5. In this
case, T ∗ satisfies l − diversity according to Definition 2.

Conversely, let q be a critical sequence in T ∗ with
|q| ≤ m. We can get T ∗ does not satisfy the l − diversity
requirement according to Definition 2.

Assertion 2: For a critical sequence q, it is no longer a
critical sequence after eliminating a spatial-temporal point p
with p ∈ q.
Proof. Let q be a critical sequence and p a spatial-

temporal point in q. After eliminating p from the original
sequence q, we can get a new sequence qi with qi ⊂ q.
Obviously, we can have |ASA(qi)| ≥ l. Based on Definition
5, qi is not a critical sequence.

According to the two assertions, we can anonymize T
into T ∗ to satisfy l-diversity requirement by eliminating all
critical sequences of length no more than m. The following
steps are used to determine the critical sequences:

Step 1: First, we obtain all the sequences of length no
more than m from T .

Step 2: For each sequence q, if |ASA(q)| ≥ l does not
hold, q is added into a list called QNL and is given a
false mark, i.e. l − diversity is not satisfied. Else if α −
sensitive− association or β − similarity − association
is not satisfied, q is added into a list called QNAB.

Step 3: We find a sequence q of the shortest length in
QNL whose mark is false and then move q into a list QCQ
if QCQ does not have any subsequence of q. Else, we set
the mark of q to be true.

Step 4: Step 3 is repeated until the mark of all sequences
in QNL is true. Then, we get the set of critical sequences
in QCQ.

2) Anonymization for l-diversity: To achieve l-diversity
better, we try to eliminate a common spatial-temporal point
from sequences in QCQ. Therefore, we should make statis-
tics of each point in all sequences of QCQ and determine
which point should be deleted.

Step 1: We make statistics on the spatial-temporal points
in all the sequences of QCQ and get a rank list of these
points based on their occurrence frequency. Then, we elim-
inate the point p ranking the first from sequences including
p in QCQ.

Step 2: Last step can ensure that newly generated se-
quences in QCQ are not critical ones and are removed
from QCQ. We also delete p from the sequences including
it in QNL, where the generated critical sequences are
moved to QCQ and the non-critical sequences satisfying
l requirement are removed from QNL.

In this step, the key issue is how to determine the newly
generated critical sequences in QNL. If we adopt Steps 3
and Step 4 of last section, all the sequences in QNL should
be considered. In fact, only the sequences deleting p in QNL
will be affected. To reduce the computational overhead, we
only execute Steps 3 and Step 4 of last section for those
sequences deleting p in QNL.



Step 3: Step 1 and Step 2 are repeated until both QNL
and QCQ are empty.

Every time Step 1 to Step 3 are executed, the total
number of sequences in QNL and QCQ will decrease.
Consequently, our algorithm is strictly convergent no matter
what l is.

Step 4: If α requirement or β requirement is not satisfied,
q will be added into QNAB.

3) Anonymization for α and β requirements: Before
publishing T ∗, we adopt addition operation to achieve α
requirement and β requirement on those sequences who
satisfy l-diversity. For a sequence q in QNAB, the steps
of addition operation are as follows:

First, we choose the records whose SA values do not
belong to ASA(q) to execute addition. In order to insert a
trajectory point at a time stamp, we must ensure that no point
in the selected record is associated with the time already,
as a person cannot appear in two different places at the
same time. Otherwise, the record cannot be modified will
not be chosen. Besides, adding a new point in a record may
produce more than one new sequence with a limited length
of m. Consequently, we must strictly choose the records
that generate new critical sequences belonging to Q after
addition operation.

Then, we sort the chosen records in descending order of
Longest Common Subsequence (LCS). LCS is a sequence
of points common to q and a chosen record. For example,
the LCS of a sequence a1→ d2→ b3 and a record a1→
d2→ c5→ f6→ c7 is a1→ d2.

Step 1: For each q, we first pick up some records to
execute the addition operation. To satisfy α requirement
and β requirement, a record satisfying the following two
conditions will be chosen: 1) Its SA value is not associated
with the one which has the maximum number of records,
maxα, in T (q); and 2) It does not belong to the category
which possesses the maximum number of records, maxβ ,
in T (q). These two conditions ensure that the worst-case
meets α requirement and β requirement. For example, a
sequence f6→ e8 has five corresponding records in Table I,
the 1st, 3rd, 4th, 7th and 9th ones. The corresponding SA
values are HIV , SARS, Fever, Fever and Fever. Fever
possesses the maximum number of records. If we set α
to 50%, we should select another record, such as the 2nd
one, to construct q to reduce the probability of inferring
Fever. After adding e8 in the 2nd record, the probability is
50%. Similarly, we prefer the records not belonging to the
category which possesses the maximum number of records.

Furthermore, all the chosen records will be sorted in a
descending order of LCS between q and itself.

Step 2: For each q, we compute nump, the number
of records which need the addition operation to satisfy α
requirement, and numg , the number of records to be added
to satisfy β requirement. We use max(nump, numg) to
represent the maximum of nump and numg .

According to the first max(nump, numg) chosen records,
we compute the metric PriGain to get a balance between
privacy protection and utility loss. PriGain(q) is defined
as follows:

PriGain(q) =
λ∆Hs(q) + (1− λ)∆Hc(q)

W (q)
(λ ∈ [0, 1])

∆Hs(q) = Hs
T∗(q)−Hs

T (q)

=

|ASA(q)|∑
i=1

pi log pi −
|ASA(q)|∑
i=1

p∗i log p∗i

∆Hc(q) = Hc
T∗(q)−Hc

T (q)

=

k∑
i=1

pi log pi −
k∑
i=1

p∗i log p∗i

Hs
T∗(q) and Hs

T (q) represent the entropy of SA values in
T ∗(q) and T (q) respectively. ∆Hs(q) represents the entropy
difference. Hc

T∗(q) and Hc
T (q) represent the entropy of

categories in T ∗(q) and T (q) respectively. ∆Hc(q) repre-
sents the difference in category entropy. k is the number of
categories. λ is a weight constant representing the impact
factor of ∆Hs(q). Bigger λ∆Hs(q) + (1 − λ)∆Hc(q)
brings more privacy protection. The utility loss W (q) after
anonymization is defined as follows:

W (q) =

|q|∑
i=1

winumi,

where numi represents the number of times that the i-th
point needs to be added, and wi is the weight value of
the i-th point. wi is defined as reciprocal of the number
of the i-th point in all the critical sequences of QNAB.
If one point occurs more frequently, it means the point is
required by more sequences to add to meet their privacy
requirements. So, its addition may benefit more sequences,
and fewer overall points need to be added to make the table
meet the privacy requirement. As an example, we have the
sequences a1→ b3, a1→ c5 and a1→ e4. To process the
1st sequence, a1 may be added into several records. This
may make some records contain a1 → c5 or a1 → e4,
which avoids modifying more records specific for the two
sequences. Thus, adding a1 can bring more usability and
cause lower utility loss.

Finally, q is put into a list in which the elements are sorted
in descending order of PriGain.

Step 3: In this step, we aim to add points in the above
selected records to achieve α requirement and β require-
ment. We choose a sequence from the list generated in
Step 1 to add points to form q until max(nump, numg)
records have been processed. During this process, we will



not add points into a record if the number of records which
possess the same SA value is up to maxα or the number of
records associated with a category is up to maxβ . Then, q is
moved from QNAB. If any revised record cannot be further
modified to construct a new record for next sequence(s),
it will be deleted from the candidate record list of the
corresponding sequences, and a new candidate needs to be
selected as done in Step 1. For example, e5 has been added
into one record for the 1st sequence. This record cannot be
used by another sequence if a different location needs to
be attached, with the time stamp 5. The above process is
repeated until none is left in the list.

Step 4: Eventually, we get the anonymous data T ∗

satisfying (l, α, β)-privacy model.

V. PRIVACY ANALYSIS

In this section, we prove that our EDPP can both satisfy
three privacy requirements of our (l, α, β)-privacy model and
resist the corresponding attack. These three parameters can
be set based on the data owner’s privacy requirement.

A. Privacy Proof for l − diversity
We divide sequences of length no more than m into two

types in the original table T . One type of sequences without
satisfying l requirement are put into QNL to execute the
subtraction operation and critical sequences of length no
more than m should be eliminated. The second type of se-
quences can satisfy l requirement. After our anonymization
approach, there is no critical sequence of length more than m
in T ∗. According to Assertion 1, T ∗ can satisfy l-diversity.

For record linkage attack, the attacker aims to infer the
accurate record of the target individual(e.g., Alice) based
on the trajectory sequence qi with |qi| ≤ m. l-diversity
guarantees that at least l different records include qi (i.e.
|ASA(qi) ≥ l|). Then, the probability of inferring Alice’s
record is less than 1

l , i.e. the probability of identity closure
is less than 1

l .
As a conclusion, our EDPP scheme can satisfy l privacy

requirement and resist record linkage attack.

B. Privacy for α-sensitive-association and β-similarity-
association

To satisfy α-sensitive-association and β-similarity-
association, we perform addition for nump and numg

records including q of length no more than m based on
Definition 2 and 3.

To simplify our algorithm, the max(nump, numg)
records are selected to construct q. Because maxα and
maxβ are constant, the following equations will hold,

maxα
|T (q)|+ max(nump, numg)

≤ maxα
|T (q)|+Nump

≤ α

and
maxβ

|T (q)|+ max(nump, numg)
≤ maxβ
|T (q)|+Numg

≤ β,

where the equations can prove that all the sequences of
length no more than m in T ∗ can satisfy both α −
sensitive−association and β−similarity−association.
For attribute linkage attack, the attacker aims to infer the sen-
sitive information of the target individual(e.g., Alice) based
on the trajectory sequence q with |qi| ≤ m. The probability
of inferring Alice’s SA value of record r, Pr[ASA(r)],
is no more than

cif
cit

. Based on α requirement, we have

Pr[ASA(r)] ≤ cif
cit
≤ Max(

c1f
c1t
,
c2f
c2t
, · · · , c

n
f

cnt
) ≤ α, which

implies that the probability of attribute disclosure is no more
than α.

For similarity attack, the attacker aims to infer the ac-
curate group of the target individual(e.g., Alice) based on
the background knowledge of a trajectory sequence qi with
|qi| ≤ m. The probability of inferring the right group gj

of Alice’s record r, Pr[r ∈ gj ], is no more than
cig
cit

.

Based on β requirement, we have Pr[r ∈ gj ] ≤
cig
cit
≤

Max(
c1g
c1t
,
c2g
c2t
, · · · , c

n
g

cnt
) ≤ β, which implies that the risk that

the probability of similarity disclosure is no more than β.

VI. PERFORMANCE EVALUATION

Setup: We implement our DPPP algorithm in Python.
We conduct all experiments on a PC with an Intel Core
i7 2.5GHz CPU and 8 GB RAM.

Dataset: To evaluate the performance of our DPPP, we
use a real-world dataset that joins the Foursquare dataset
and MIMIC-III dataset. Foursquare dataset [6] is a real-
world trajectory dataset containing the routes of 140,000
users in a certain area with 92 venues in 24 hours, forming
2,208 dimensions. MIMIC-III [13] is a freely accessible
critical care database. The SA is Disease which contains
36 possible values and 9 of them are considered as sensitive
values. The SA values are divided into 6 categories, one of
which is private. We compare our DPPP with PPTD [14],
KCL-Local [5] and DPTD [15].

KCL-Local adopts local suppression to achieve the pri-
vacy of sensitive information by anonymizing the trajec-
tory data. (k,C)m-privacy model is proposed to adopt k-
anonymity to prevent record linkage attack, where C is the
confidence threshold to resist attribute linkage attack and
the probability of each SA value is not greater than C.
In PPTD, the sensitive attribute generalization and trajec-
tory local suppression are combined to achieve a tailored
personalized privacy model for the publication of trajectory
data. In DPTD, a novel differentially private trajectory data
publishing algorithm is proposed with bounded Laplace
noise generation, and trajectory points are merged based on
trajectory distances.

A. Information Loss

The aim of DPPP is to implement the privacy of published
data while preserving the data utility. We use information



loss to evaluate the utility. In this section, the following
metrics are used to evaluate it:
• Trajectory Information Loss (TIL), the loss rate of

the original trajectory data, is defined as

|N(T ∗)−N(T )|+ |N(T )−N(T ∗)|
|N(T )|

,

where N(T ∗) and N(T ) are the sets of trajectory points
in T ∗ and T .

• Frequent Sequences Loss (FSL), the loss rate of the
frequent trajectory sequences, is defined as

|F (T ∗)− F (T )|+ |F (T )− F (T ∗)|
|F (T )|

,

where F (T ∗) and F (T ) are the sets of the frequent
items in T ∗ and T .

We validate the effectiveness of our anonymization algo-
rithm in terms of l, α and β. In this set of experiments, we
define K ′ = 50 as the threshold of the frequent sequences
and do experiments for the three random number of records,
50K, 100K and 140K.

1) Effect of l: l varies from 3 to 8 for different com-
binations of parameters α, β, and m. Table IV shows that
the trajectory information loss and frequent sequences loss
increase slowly with l, because the substraction or addition
operation aims to minimize the number of changed points in
order to satisfy l− diversity, which makes the information
loss not increase much. In addition, both types of loss
increase with m. However, when the number of records
change from 50K, 100K to 150K, both types of loss stay
relatively stable.

2) Effect of α: α varies from 0.1 to 0.5 for different
combinations of l, β, and m. Table V shows that the
information loss increases with the decrease of α, because
more sequences do not satisfy α-sensitive-association. As
discussed before, we select records based on LCS and add
points based on PriGain, which can reduce the number of
points to be added. As such, the information loss increases
slowly. In addition, Table V shows the information loss
increases with m, while both types of loss have relatively
stable values as the number of records change from 50K,
100K to 150K.

3) Effect of β: Under different number of records, for
selected parameters l, α, and m, we vary β from 0.1 to 0.5.
Similar to the effect of α, Table VI shows the information
loss increases slowly with the decrease of β and increase of
m.

4) Effect of K ′: K ′ varies from 50 to 130 with a set
of random parameters l = 3, α = 0.4, and β = 0.5.
Fig.1 shows the frequent sequences loss decreases with the
increase of K ′, because the number of frequent sequences
not satisfying (l, α, β) begins to drop with the increase of
K ′.
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Figure 1. Frequent sequences loss vs. K′ (l = 3, α = 0.4, β = 0.5)

B. Disclosure Risk

We use the disclosure risk as a metric to measure the
probability of privacy breach for each sequence q:

Pdis(q) = max(
1

|ASA(q)|
,
maxα
|T (q)|

,
maxβ
|T (q)|

),

where 1
|ASA(q)| ,

maxα
|T (q)| , and maxβ

|T (q)| represent the probability
of identity disclosure, that of attribute disclosure, and that
of similarity disclosure, respectively.

We randomly select 50K sub-trajectories of length no
more than m from the anonymous database, and calculate
the probability of privacy disclosure for these sequences.
Fig.2 shows that the average disclosure probability decreases
with the increase of l and decrease of α or β, because the
privacy requirements become higher. Moreover, the average
disclosure probability increases with m.
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Figure 2. Disclosure risk

C. Comparison

We also compare our DPPP with KCL-Local, PPTD and
DPTD on trajectory information loss, frequent sequences



Table IV
EFFECT OF l AND m ON THE INFORMATION LOSS IN PERCENT.(α = 0.5, β = 0.5)

Metric Dataset
m = 2 m = 3 m = 4

l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

TIL
50K 4.19 4.40 5.15 5.67 6.00 6.27 4.50 4.75 5.45 5.82 6.03 6.32 4.77 5.03 5.79 6.08 6.37 6.65
100K 4.15 4.34 5.08 5.53 5.79 6.12 4.61 4.69 5.37 5.71 5.97 6.24 4.75 4.96 5.54 6.07 6.25 6.57
140K 4.50 4.69 5.39 5.67 6.00 6.25 4.52 4.76 5.50 5.93 6.09 6.42 4.56 4.93 5.65 6.16 6.52 6.74

FSL
50K 2.73 2.84 3.12 3.51 3.62 4.39 2.84 2.99 3.20 3.44 3.69 4.53 3.19 3.27 3.52 3.60 3.97 4.59
100K 2.63 2.74 3.12 3.52 3.72 4.39 2.79 2.88 3.17 3.35 3.58 4.44 3.07 3.21 3.46 3.60 4.11 4.45
140K 2.75 2.89 3.14 3.34 3.65 4.25 2.76 2.94 3.12 3.43 3.73 4.33 3.06 3.17 3.33 3.49 3.92 4.49

Table V
EFFECT OF α AND m ON THE INFORMATION LOSS IN PERCENT.(l = 3, β = 0.5)

Metric Dataset
m = 2 m = 3 m = 4

α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5

TIL
50K 8.59 5.65 5.41 4.77 4.19 8.98 5.80 5.43 5.01 4.50 10.04 7.21 6.44 5.38 4.77

100K 8.26 5.51 4.97 4.56 4.15 8.88 5.75 5.35 5.00 4.61 10.74 7.61 6.32 5.09 4.75
140K 8.47 5.84 5.14 4.82 4.50 8.91 5.73 5.27 4.81 4.52 10.39 7.10 6.03 5.01 4.56

FSL
50K 10.30 7.30 5.03 3.10 2.73 10.42 7.35 5.37 3.74 2.84 10.77 7.46 5.91 4.57 3.19

100K 10.20 7.31 5.24 3.51 2.63 10.47 7.43 5.57 4.03 2.79 11.32 8.00 5.71 4.29 3.07
140K 10.42 7.14 4.83 2.92 2.75 10.48 7.10 5.97 4.07 2.76 11.35 7.58 6.23 4.32 3.06

Table VI
EFFECT OF β AND m ON THE INFORMATION LOSS IN PERCENT.(l = 3, α = 0.5)

Metric Dataset
m = 2 m = 3 m = 4

β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.1 β=0.2 β=0.3 β=0.4 β=0.5

TIL
50K 6.04 5.15 4.79 4.41 4.19 6.33 5.57 5.10 4.93 4.50 6.53 5.70 5.43 5.02 4.77
100K 5.84 5.02 4.63 4.34 4.15 6.20 5.46 5.17 5.02 4.61 6.41 5.85 5.39 4.89 4.75
140K 6.25 5.42 5.08 4.81 4.50 6.09 5.53 5.20 4.76 4.52 6.49 5.88 5.50 4.89 4.56

FSL
50K 6.51 5.12 3.83 2.94 2.73 6.84 5.29 3.95 3.14 2.84 7.23 5.69 4.10 3.75 3.19
100K 6.68 5.10 3.71 2.73 2.63 6.79 5.28 3.97 3.35 2.79 7.10 5.72 4.10 3.63 3.07
140K 6.47 5.55 3.57 2.80 2.75 6.76 5.45 3.90 3.43 2.76 7.03 5.70 4.05 3.63 3.06

loss and run time. Since these schemes adopt different priva-
cy models, we cannot directly compare them. To have a fair
comparison, we modify our algorithm DPPP to implement
(k,C)m-privacy model as used in KCL-Local, called DPPP-
KC. ε used in the differential privacy method DPTD is
assigned as follows to keep the disclosure risk at the same
level as that of other three schemes:

Pdis(q) = max(
1

|ASA(q)|
,
maxα
|T (q)|

)

and

Pdis(k,C) = Pdis(ε),

where Pdis(k,C) represents the disclosure probability under
different k and C, and Pdis(ε) represents the disclosure
probability under different ε which is determined according
to the disclosure risk level. 1

|ASA(q)| and maxα
|T (q)| represent

the probability of identity disclosure and attribute disclosure
respectively.

1) Effect of k: k varies from 5 to 25 with C = 0.5,
m = 3 and K ′ = 50 under 140K records. Fig.3 shows
both kinds of loss increases with k because more sequences
not satisfying k-anonymity causes the higher information

loss. Our DPPP-KC has the best performance because we
aim to minimize the number of the changed points. KCL-
Local has the worst performance loss because too much
moving points are eliminated from the trajectory data in
the global suppression. DPTD generates Laplace noise to
achieve differential privacy. As ε decreases in Fig.3, DPTD
can get better privacy. However, the larger noise causes
more trajectory information and frequent sequences loss
than PPTD. PPTD only handles the sensitive records which
may cause the privacy disclosure, thus PPTD has a lower
information loss than DPTD.
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Figure 3. Information loss vs. k (C = 0.5,m = 3,K′ = 50)
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Figure 4. Information loss vs. C (k = 5,m = 3,K′ = 50)

2) Effect of C: C varies from 0.1 to 0.5 with k = 5,
m = 3 and K ′ = 50 under 140K records. In Fig.4, both
types of information loss decreases with the increase of
C because fewer sequences do not satisfy the confidence
threshold C, making the loss lower. Similar to the above
discussion, DPPP-KC has the best performance. KCL-Local
possesses the worst performance. As ε decreases, trajectory
information loss and frequent sequences loss of DPTD
become greater, which is slight better than KCL-Local.

Compared with KCL-Local, PPTD, and DPTD the tra-
jectory information loss of DPPP can be improved by up to
71.57%, 42.77% and 67.6% respectively and the frequent
sequences loss can be improved by up to 69.91%, 35.79%
and 60.59% respectively.
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Figure 5. Run Time vs. records (k = 20, C = 0.4)

3) Run Time: Fig.5 shows the run time increases with the
number of records. With the simplicity of generating Laplace
noise, DPTD has the lowest run time. DPTD spends most of
its time on constraint inference to guarantee the data utility.
KCL-Local also has the good performance on run time
because only suppression is adopted. In PPTD, the sensitive
attribute generalization and trajectory local suppression are
combined to achieve the privacy, which causes the most run
time. In DPPP-KC, it takes much time to determine the
critical sequences.

VII. CONCLUSION

We design and implement an anonymous technique named
DPPP to protect the sensitive attribute during the publication
of trajectory data. To resist record linkage, attribute linkage

and similarity attack based on the background knowledge
of critical sequences, we adopt perturbation to process these
sequences by adding or deleting some moving points so
that the published data satisfy our (l, α, β)-privacy model.
Our performance studies based on a comprehensive set of
real-world data demonstrate that DPPP can provide higher
data utility compared to peer schemes. Our privacy analysis
shows that DPPP can provide better privacy for the sensitive
attribute. In the future work, we will optimize our algorithm
to handle extremely large trajectory dataset with the aid of
indexing and pruning.
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