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The unprecedented coronavirus disease 2019 (COVID-19)
pandemic is still a worldwide threat to human life since its
invasion into the daily lives of the public in the first sev-
eral months of 2020. Predicting the size of confirmed cases
is important for countries and communities to make proper
prevention and control policies so as to effectively curb the
spread of COVID-19. Different from the 2003 SARS epi-
demic and the worldwide 2009 H1N1 influenza pandemic,
COVID-19 has unique epidemiological characteristics in its
infectious and recovered compartments. This drives us to
formulate a new infectious dynamic model for forecasting
the COVID-19 pandemic within the human mobility net-
work, named the SaucIR-model in the sense that the new
compartmental model extends the benchmark SIR model by
dividing the flow of people in the infected state into asymp-
tomatic, pathologically infected but unconfirmed, and con-
firmed. Furthermore, we employ dynamic modeling of pop-
ulation flow in the model in order that spatial effects can
be incorporated effectively. We forecast the spread of ac-
cumulated confirmed cases in some provinces of mainland
China and other countries that experienced severe infection
during the time period from late February to early May
2020. The novelty of incorporating the geographic spread of
the pandemic leads to a surprisingly good agreement with
published confirmed case reports. The numerical analysis
validates the high degree of predictability of our proposed
SaucIR model compared to existing resemblance. The pro-
posed forecasting SaucIR model is implemented in Python.
A web-based application is also developed by Dash (under
construction).
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1. INTRODUCTION

The conventional susceptible-infected-recovered (SIR)
dynamic model is one of the simplest compartmental mod-
els in epidemiology that segments the flows of people into
three states, i.e., susceptible (S), infected (I), and resis-
tant/recovered (R). The SIR model is used to compute the
theoretical number of people infected with a contagious ill-
ness in a closed population over time [13]. It has been widely
applied and expanded to estimate or to predict the spread
size of contagion phenomena such as the worldwide 2009
H1N1 influenza pandemic and severe acute respiratory syn-
drome (SARS) in 2003 for the purpose of infection preven-
tion and control and public health strategies [2]. Modeling
dynamics of coronavirus disease 2019, COVID-19 in short,
remains a big challenge, although there has been sporadic
investigation in the past few months [9]. The goal of this
project is to to develop an expansion of the SIR model,
named SaucIR, in response to the spread of the COVID-19
pandemic on the basis of its specific epidemiological charac-
teristics and dynamic migration.

Unfortunately, the officially deployed interventions based
on the SIR model were invalidated at the outbreak of
COVID-19, particularly at the early stage when COVID-19
burst onto the global pandemic scene, even though the
SARS 2003 epidemic and COVID-19 share many similar-
ities. According to the editorial of New England Journal
of Medicine (NEJM) in April 2020, the rapid, worldwide
spread of COVID-19 resulted in more than 2.6 million peo-
ple infected within five months, in contrast to the fact that
SARS 2003 was controlled within 8 months with less than
ten thousand persons infected in limited geographic areas
[7]. More worldwide dynamic data of the infection spread
are available to the public [22]. There are quite a few key
factors to interpret the dramatically different trajectories
of transmission and spread between COVID-19 and SARS
2003. For instance, one epidemiological key influence factor
is the existence of asymptomatic individuals, who are the
silent carriers of coronavirus. Such asymptomatic infections
were diagnosed with positive RT-PCR test results but with-
out any relevant clinical symptoms in the preceding days
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or during hospitalization, inducing the risk of spreading the
disease and hence preventing ascertainment before symp-
toms [7]. Therefore, symptom-based detection of infection
is less effective in COVID-19, compared to influenza and
the SARS 2003 epidemic [21]. To examine asymptomatic
transmission is necessary to fully consider in forecasting the
spread size of the COVID-19 pandemic for effective public
health prevention and control.

Driven by the nonignorable presence of asymptomatic
transmission of the COVID-19 disease, we present a new
dynamic model for the spread of infection by partitioning
the infectious compartment of the traditional SIR model
into three parts, i.e., asymptomatic cases, pathologically in-
fected but unconfirmed cases, and confirmed cases.

Another crucial factor is dynamic human mobility in for-
mulating the spread of the COVID-19 pandemic, driven
by the effectiveness of isolating the spread of COVID-19
through lockdown of Wuhan city before the Chinese Spring
Festival. The key initiative of such an extreme public health
intervention ahead of major public holidays was to cut off
the massive human movement between Wuhan and sur-
rounding cities. The spread of virus was controlled, with
evidence that the reproductive number Rt decreased over
time t, by 2.7-3.8 before January 26 to less than 1.0 after
February 6, and less than 0.3 after March 1 [19]. This encour-
ages us to incorporate dynamic spreading patterns within
the spatial framework of the human mobility network [2].
The predictability of the spread of infectious disease could
be improved by characterizing the geographical spread of
epidemics [20, 11]. Population flowing out of Wuhan has
been incorporated to predict the risk and distribution of
confirmed cases spatially [12]. Geographical dispersion of an
epidemic through human mobility has also been successfully
applied to forecast the spreading of SARS 2003 and H1N1
2009 [2], whereas the mobility parameter was fixed as a con-
stant on all nodes. Such constant mobility assumption is
reasonable for SARS 2003 but not applicable for COVID-19
because the latter infectious disease is more contagious and
there is much more intense human mobility in 2020 com-
pared to 13 years ago [3].

In expanding the SIR model to our proposed SaucIR
model, our main concerns focus on two aspects: (1) the divi-
sion of infectious compartment into three separate segments,
and (2) dynamic human mobility by separating the group
size of migration in and out of a node within a network. It
improves the prediction fidelity as shown in our simulation
results. Furthermore, we demonstrate that it is possible to
control the confirmed cases by reducing aggregation of mi-
gration among nodes in the human mobility network.

The remainder is organized as below. In Section 2, we give
the formulation of the new SaucIR model for the spread of
COVID-19 based on its epidemiological characteristics and
dynamic geographical spread. We present a practical way
to measure dynamic human mobility and suggest optimal
enhancement for public control strategies. In Section 3, we

apply the SaucIR model to estimate and predict the con-
firmed cases in mainland China and in worldwide countries
with severe infections. In Section 4, we assess the predic-
tive accuracy by comparing the proposed and the existing
resembling models.

2. FORMULATION OF NEW SPREAD
MODEL OF COVID-19

In this section, we formulate the predictive spread model
of COVID-19 involving key factors driven from the epidemi-
ological characteristics such as asymptomatic cases and dy-
namic human mobility within a network of coupled pop-
ulations. We start from the following dynamics model [2]
describing the local disease time course on each node based
on the conventional SIR model:

∂tSn = −αInSn

Nn
,

∂tIn =
αInSn

Nn
− β0In,

n = 1, . . . ,M,(1)

where Sn and In represent the numbers of susceptible and
infected individuals on node n in a network of people flow
with a total of M nodes, respectively, Nn is the population
size of node n, Rn = Nn − Sn − In represents the number
of recovered or deceased on node n, α is the mean infection
rate of individuals, β0 is the mean recovery rate of indi-
viduals, and ∂tXn stands for the partial derivative of the
population size of state X on node n with respect to time t
in a time course with X being the place holder for S, I, or
any other disease state alphabet in the modeling thereafter.
The epidemiological threshold R0 = α/β is an indication of
the transmissibility of a virus, governing the time evolution
of the aforementioned equations.

2.1 Segmenting the infectious compartment

One of the epidemiological characteristics of COVID-19
that is remarkably different from existing infectious diseases
such as SARS is the existence of asymptomatic carriers.
Hence, symptom-based screening alone failed to detect a
high proportion of infectious cases for asymptomatic per-
sons and was not enough to control transmission. The prob-
able asymptomatic transmission will not be known for sure
unless an antibody test is applied. The risk of asymptomatic
transmission cannot be ignored because of a large number of
asymptomatic carriers [18, 1, 15]. Thus, it is reasonable to
segment the asymptomatic infected COVID-19 carriers in-
dependently in the infectious compartment. As a result, the
infectious compartment is partitioned into two segments,
i.e., the asymptomatic (A) and the symptomatic. Addition-
ally, the symptomatic segment exposes to dynamic process
and is stratified into two stages, i.e., pathologically infected
but unconfirmed (U) and confirmed (C). That is, the infec-
tious group first experiences the onset of symptoms, then it
may be confirmed clinically after a time lag, called the incu-
bation period. Thereafter, the confirmed group will be iso-
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lated for therapy in the hospital and lose its transmissibility.
The incubation period is contagious in our compartmental
model [16], which is in line with the existing assumption for
modeling the spread of the SARS epidemic [5]. The infec-
tivity during the incubation period for COVID-19 is criti-
cal for controlling the disease [17]. As a result of the newly
segmented infectious compartment, the R (recovered or de-
ceased) compartment composes of two parts, recovered or
deceased (R1) from the symptomatic compartment or recov-
ered (R2) from the asymptomatic compartment accordingly.
The formulated contagion pattern is summarized in Figure
1 to illustrate the spread dynamics.

Figure 1. Progression flow of COVID-19. The parameters
within the figure are illustrated in the adjacent paragraph.

Next, we analyze the key epidemiological parameters
in Figure 1. The parameter α denotes the transmission
rate from susceptible to infected, θ denotes the probability
that susceptible individuals turn to be asymptomatically in-
fected, ζ denotes the rate that a person in the incubation
period turns to be confirmed clinically, and β denotes the re-
covery rate from symptomatically confirmed to recovered or
deceased. For the symptomatic segment, the time lag from
U to C is taken as 5 days, the average incubation period in
the literature [14]. Our simulations show that the incuba-
tion period of 3 to 5 days is not sensitive to the proposed
model. For the progression from asymptomatic (A) to recov-
ered (R2), the time lag 21 days corresponds to the maximal
observation of the communicable period of asymptomatic
carriers, counted from the first day of positive nucleic acid
test to the first day of the continuous negative tests of an
asymptomatic carrier [1]. There are very few references for
the interval length of the communicable period of asymp-
tomatic carriers to the pandemic spread [10]. Our simulation
results show that the scope of 9-21 days will not affect much
of the accuracy of the proposed model in Section 3.1. The
aforementioned consideration of epidemiological character-
istics is summarized in the following compartmental model
on node n,

∂tSn = −αn(Un +An)Sn

Nn
,

∂tUn =
αn(Un +An)Sn

Nn
(1− θ)− ζnU

t−5
n ,

∂tAn =
αn(Un +An)Sn

Nn
θ −At−21

n ,

(2)
∂tCn = ζnU

t−5
n − βnCn,

∂tR1n = βnCn,

∂tR2n = At−21
n , n = 1, . . . ,M,

where An represents the group size of asymptomatic cases,
Un and Cn are group sizes of infected but not yet confirmed
clinically and confirmed clinically in the symptomatic seg-
ment, respectively, R1n and R2n denote the removed cases
from symptomatic and asymptomatic segments, respec-
tively, αn denotes the average infection rate for population n
in the network, βn denotes the average recovery rate of indi-
viduals from confirmed clinically under therapy to recovered
on node n, and R1n = Nn − Sn − (Un +An + Cn)−R2n.

Notice that for population n in a network, the accumu-
lated confirmed cases, denoted as D, is the sum of the clin-
ically confirmed under therapy (C) and the recovered or
deceased from symptomatic cases (R1). Thereafter,

(3) ∂tDn = ζnU
t−5
n

will replace the bi-interrelated variation equations in the
system of equations (2) in the final dynamic model.

2.2 Dynamic human mobility

We now incorporate the impact of population flow onto
the modeling of the infectious spread of COVID-19. To guar-
antee the prediction fidelity, we distinguish the group size of
people emanating from a node m in and out of another node
n, and hence, the distinct human mobility rates of moving
in and out of a node n. This is a quite practical strategy con-
sidering the difference among nodes. Let X be a placeholder
for the compartments S, U , and A. The infection variation
for population n comes from two sources, local and migra-
tion,

(4) ∂tXn = ∂tXn,local + ∂tXn,migration,

where the first summand ∂tXn,local on the right side of equa-
tion (4) represents the dynamic local disease time course
on node n by equations (2) and (3). Next, we will eluci-
date the formulating of ∂tXn,migration based on parameters
of dynamic human mobility.

Let Fnm be the group size of people emanating from node
m to node n. Denote Fn· =

∑
m Fnm and F·m =

∑
n Fnm.

Let γin
n = Fn·/Nn be the proportion of the group size moving

in destination n (Fn·) to the population size of node n (Nn),
and γout

n = F·n/Nn be the proportion of group size of people
leaving node n (F·n) to the population size of node n. Let
P in
nm = Fnm/Fn· be the proportion of group size emanat-

ing from node m in destination n to the group size moving
in destination n; let P out

mn = Fmn/F·n be the proportion of
group size leaving node n for another node m to the group
size emanating from node n. Let P in

nn = 0 = P out
nn . Under the

setting of such human mobility measurements, the variation
of the susceptible within our spread model of COVID-19
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satisfies

∂tSn,migration =

M∑
m=1

[
γin
n P in

nmSm − γin
n P in

nm

αm(Um +Am)Sm

Nm

− γout
n P out

mnSn

]
.

(5)

Notice that, when there is no geometrical difference in trans-
mission, denoted as γin

n = γout
n ≡ γ for any node n, and there

is no infection during the migration, denoted as αm = 0, our
proposed equation (5) reduces to the representation of ∂tSn

in the literature [2].
For Un and An, one cannot ignore the infection owing to

human mobility among nodes in the geometrical network.
The correspondent dynamic processes can be presented as
follows:

∂tUn,migration

=

M∑
m=1

[
γin
n P in

nmUm + γin
n P in

nm

αm(1− θ)(Um +Am)Sm

Nm

− γout
n P out

mnUn

]
,

∂tAn,migration

=
M∑

m=1

[
γin
n P in

nmAm + γin
n P in

nm

αmθ(Um +Am)Sm

Nm

− γout
n P out

mnAn

]
,

(6)

where αm denotes the rate of infection at node m other than
node n.

Based on the spirit of equation (4), we can further update
the dynamic model (2) by combining (3), (5), and (6) into
(2).

2.3 The SaucIR-model

To formulate the final SaucIR model, we still need to fur-
ther refine some nested parameters to enhance predictivity.
In a network, the prevention and control policies of different
nodes should lead to spatially varying epidemic parameters.

First of all, we will add the effects of quarantine into
the modeling of the contagion pattern of COVID-19 [5].
In mainland China, during the COVID-19 pandemic, most
provinces have announced officially the detailed confirmed
cases and labeled whether the specific case was once quar-
antined. This information is beneficial for estimating the
quarantine rate parameter ln as the ratio of the size of quar-
antine labeled cases against the total number of confirmed
cases of COVID-19 disease for population n. Still in model-
ing the spread of SARS by the literature [5], ln changes over
time. Varying ln is effective in the situation where there
exist inflection points, validated by Figure 4 in literature

[5], whereas it is not significant for our proposed model, as
confirmed by the simulations summarized in Table 11 and
Figure 3.

The other focus of our study is the correction of the trans-
mission rate αm for the migration process. The transmission
rate function is no doubt time and nodal dependent. Let τn
be a decay constant on node n. The general exponential tilt
expression

(7) αn(t) = αn(0) · e−τnt

is an acceptable functional to act in the local infectious pro-
cess [4] in which the prevention and control in local govern-
ments can effectively help prevent the spread of contagion.
However, the monotone decreasing function (7) is not suit-
able to apply in the migration process owing to unprece-
dented human mobility. Conservatively, we uniformly apply
the nodal function αn(t) to behave as the transmission rate
function in the migration part of the final model.

All of the above considerations lead to the final SaucIR
model illustrating the infection progression:

∂tSn = −(1− ln)
αn(t)(Un +An)Sn

Nn

+
M∑

m=1

[γin
n P in

nmSm

− γin
n P in

nm(1− ln)
αm(0)(Um +Am)Sm

Nm

− γout
n P out

mnSn],

∂tUn = (1− ln)
αn(t)(Un +An)Sn

Nn
(1− θ)− ζnU

t−5
n

+

M∑
m=1

[γin
n P in

nm(1− ln)Um

+ γin
n P in

nm(1− ln)
αm(0)(1− θ)(Um +Am)Sm

Nm

− γout
n P out

mn (1− ln)Un],

∂tAn = (1− ln)
αn(t)(Un +An)Sn

Nn
θ −At−21

n

+

M∑
m=1

[γin
n P in

nm(1− ln)Am

+ γin
n P in

nm(1− ln)
αm(0)θ(Um +Am)Sm

Nm

− γout
n P out

mn (1− ln)An],

∂tDn = ζnU
t−5
n ,

∂tR2n = At−21
n , n = 1, . . . ,M.

(8)

The epidemic parameters ln, αn, and ζn are estimated from
the announced epidemic data by the provinces. The initial
value of Sn is the population size of every node. The initial
value of Dn is the number of cumulative confirmed cases
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each day. The initial value of Un is the sum of new diagnoses
in the next six days. The initial value of An is the total
number of new diagnoses in the next six days multiplied by
θ/(1− θ).

2.4 Prevention and control strategy

In this subsection, we explore whether human mobility
can be modified among nodes in a network to control or
minimize the accumulated confirmed cases in a district over
a certain time interval.

Let DT
n be the confirmed cases on node n up to day

T . Denote any local coupled populations in the network
as S = {1, · · · ,K}, and all populations in the network as
S0 = {1, · · · ,M}, where K ≤ M . The migration-related pa-
rameters introduced before Section 2.3 on a specific day t
are then denoted as γin

n,t, γ
out
m,t, P

in
nm,t, and P out

nm,t. The objec-
tive function will be optimized by choosing the appropriate
time-dependent tuning parameters aforementioned.

Recall that we define γin
n , γout

n , P in
nm, and P out

mn , the pa-
rameters of the human mobility in a network, in Section 2.2.
We add an extra suffix t in the footnote to denote the corre-
sponding parameters when time t falls into the time interval
[0, T ]. Let C in

nm,T and Cout
nm,T be the rate of emanating from

node m in and out to node n, respectively, in the network
over the time period [0, T ]. Then, it is readily seen that∑

t∈[0,T ]

γin
n,tP

in
nm,t = C in

nm,T ,

∑
t∈[0,T ]

γout
m,tP

out
nm,t = Cout

nm,T , ∀m,n ∈ S0.
(9)

To modify parameters of human mobility among nodes
in the network, for any pairwise nodes n and m, one natural
constraint is to keep a constant relationship between the
group size emanating from node n with population size Nn

and out of another node m with population size Nm, so that
the optimization problem may be presented as

min
γin
n,t,P

in
nm,t,γ

out
m,t,P

out
nm,t

∑
n∈S

DT
n subject to

C in
nm,TNn = Cout

nm,TNm, ∀m,n ∈ S0.

(10)

For the optimization problem (10), we assume that the mo-
bility group will not change the epidemic parameters αn(t),
βn, ln, and θ on node n. To solve the optimization prob-
lem (10), we employ the general genetic algorithm [6]. Here
are notations involved in the algorithm. Denote (γP )innm,t =

γin
n,tP

in
nm,t and (γP )outmn,t = γout

m,tP
out
nm,t; let C in

T and Cout
T

represent the matrices (C in
nm,T )n,m∈S0 and (Cout

nm,T )n,m∈S0 ,

respectively; and let (γP )in and (γP )out represent the
three-dimensional matrices ((γP )innm,t)t∈[0,T ],n,m∈S0

and
((γP )outmn,t)t∈[0,T ],n,m∈S0

, respectively. The particular termi-
nologies in the genetic algorithm and their correspondence
in our problem are listed as below:

1. Individual: a matrix shaped as (T, M, M), where T and
M correspond to (γP )innm,t and (γP )outmn,t, respectively,
for t ∈ [0, T ] and n,m ∈ S0.

2. Population: a collection of individuals.
3. Fitness: a description of how good an individual fits the

environment, and in our study, how small the number
of

∑
n D

T
n is.

4. Selection, crossover, and mutation: specific operation in
genetic algorithm, aiming to generate individuals that
are more likely to correspond to better fitness.

Algorithm 1 provides the steps for minimizing the accu-
mulated confirmed cases within any sub-network over a time
interval, of which the function getfitness is presented in the
following Algorithm 2.

Algorithm 1 minimize the accumulated confirmed cases

1: Initialize population
2: for iter = 1,. . ., loop num do
3: for individual in population do
4: fitness(individual)=getfitness(Cin

T ,Cout
T ,individual,T ,M)

5: end for
6: record the best fitness so far
7: selection(population, fitness)
8: crossover(population)
9: mutation(population)
10: end for

Algorithm 2 function getfitness implementing the SaucIR
model
input: Cin, Cout, individual, T , M
1: set individual(t, m, m)=0
2: for m in range(M) do
3: for n in range(M) do
4: summn=

∑
t(individual(t,m, n))

5: for t in range(T ) do
6: (γP )inmn,t = individual(t,m, n)Cin

mn,T /summn

7: (γP )outmn,t = individual(t,m, n)Cout
mn,T /summn

8: end for
9: end for
10: end for
11: fitness=−equations (8)((γP )in, (γP )out)

Based on the SaucIR model (8), one may use Algorithms
1 and 2 to solve the minimization problem (10). Notice that
the four tuning rate parameters are ratios among F·m, Fn·,
Nn, Nm, and Fnm. Therefore, governmental management
may have a proper intervention on the migration size within
a sub-network for the purpose of preventing and controlling
the spread of COVID-19.

3. NUMERICAL ANALYSIS AND
FORECASTING

In this section, we use the data of confirmed cases within
the human mobility networks in mainland China and the
international community to analyze the predictive fidelity
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of the SaucIR spread model (8) of COVID-19. To assess
the accuracy of prediction, we adopt two assessment indices,
max absolute percent error (MAPE) and root mean squared
error (RMSE) with mathematical expressions

MAPEn = max
t

{
|Dpred

n −Dreal
n |

Dreal
n

}

and

RMSEn =

√∑
t

(Dpred
n −Dreal

n )2/(t0 − 1),

respectively, where t0 is the number of days of a prediction
period with daily unity to count time, and the superscripts
“pred” and “real” denote predicted and real, respectively.
MAPE reflects the maximal daily percentage error out of the
total number of infections over the forecasting time period,
whereas RMSE measures the averaged headcount error over
the forecasting time period. The prediction is more accurate
with lower levels of such errors.

3.1 Analysis of human mobility network in
mainland China

We use epidemic and migration data from January 24
through February 15, 2020, to forecast confirmed case num-
bers on February 16-18, 2020, for a network of human mobil-
ity including 11 nodes (provinces) in mainland China. The
spread of COVID-19 during the period kept on growing and
did not reach a steady stage. The epidemic data is available
through the link [23]. Data sets of the migration part are
obtained from the Baidu Migration [24]. This website pro-
vides the group size of people emanating from each province,
and the percent of migration from one province to another
province.

We choose 11 Chinese provinces that were the most
severely infected nationally during the time period, exclud-
ing Shandong and Hubei. The epidemic data of Shandong
province are not included in this study as the cumulative
number of confirmed cases dropped unusually on a period
of consecutive three days. Hubei province is not included in
the analysis because of the Wuhan lockdown that went into
effect on January 24, 2020, cutting off the population mobil-
ity from those outside the province. Figure 2 displays the cu-
mulative numbers of epidemic data such as confirmed cases,
deceased cases, and recovered cases of the top 11 severely
infected provinces aforementioned on January 30, 2020. The
cumulative number of diagnoses in Shanghai is not available
in the previously mentioned data link but can be obtained
from the Shanghai Municipal Health Commission [25].

In the following analysis, we first evaluate the effects of
components of the model and the sensitivity of parameters
involved in the model. We then assess the prediction fidelity
of the proposed SaucIR model and compare the prediction
result based on the epidemic and migration data in mainland
China.

Figure 2. Cumulative numbers of diagnoses on January 30,
2020.

Firstly, we evaluate the effects of the asymptomatic com-
ponent in the SaucIR model, including the proportion of
asymptomatic carriers and the communicable period of
asymptomatic carriers. On one hand, we conduct simula-
tions studying the effects of different levels of the rate of
asymptomatic people (θ) on the prediction accuracy. The
results are summarized in Tables 1 and 2. The values of θ
may be different spatially. Our simulation results assess and
show that the SaucIR model works well when θ takes val-
ues between 0.15 to 0.45 in terms of MAPE and RMSE.
Both MAPE and RMSE show a similar pattern, such that
the measure error first decreases and then increases as θ
varies starting from 0.05 and upward to 0.45. The bot-
tom points of θ of measurement errors are slightly different
among provinces. Thus, it may be concluded that θ affects
the error of the predicted results but the prediction accuracy
may be guaranteed when it is controlled under 0.45. Hence,
we uniformly use 0.25 as the rate of the asymptomatic in-
fected group to analyze the predictive fidelity of the pro-
posed model. Another observation is that the supercity Bei-
jing has relatively larger values of MAPE and RMSE, which
are highly likely due to the relatively extensive amount of
imported cases based on the news and media report. On the
other hand, we validate it is reasonable to take 21 days as
the communicable period of asymptomatic carriers. We con-
duct a sensitivity analysis to compare the effect of selecting
different communicable period on the prediction accuracy.
According to the literature [10], we select the length of time
consisting of 6-21 days in the simulations. Both RMSE and
MAPE reflect that the prediction error is smaller in most
areas when the length of time varies between 9 and 21 (Ta-
bles 7 and 9), and the effect of the value on the prediction
error is small (Tables 8 and 10).

Secondly, we evaluate the sensitivity of the incubation pe-
riod in the symptomatic process. We conduct a sensitivity
analysis to check whether the spread results change sub-
stantially for various incubation period. Considering the in-
cubation period in the literature [14], we take 3 to 7 days
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Table 1. MAPE assessing effect of asymptomatic infections spatially

Province
θ Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

0.05 0.033 0.033 0.028 0.019 0.008 0.032 0.008 0.018 0.012 0.023 0.025
0.15 0.013 0.021 0.019 0.017 0.006 0.009 0.004 0.022 0.009 0.008 0.004
0.25 0.017 0.006 0.015 0.011 0.006 0.015 0.005 0.014 0.009 0.009 0.010
0.35 0.015 0.006 0.014 0.006 0.005 0.015 0.003 0.003 0.005 0.007 0.017
0.45 0.015 0.006 0.019 0.009 0.001 0.028 0.011 0.012 0.003 0.005 0.012
0.55 0.026 0.021 0.011 0.029 0.007 0.047 0.008 0.009 0.012 0.023 0.028

Table 2. RMSE assessing effect of asymptomatic infections spatially

Province
θ Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

0.05 11 13 15 22 6 48 8 20 8 13 23
0.15 5 7 10 19 6 15 6 23 5 4 3
0.25 5 2 8 10 5 17 7 13 5 5 8
0.35 5 2 7 8 5 17 3 3 3 4 13
0.45 5 2 10 9 1 30 16 11 2 2 10
0.55 9 9 16 31 6 56 10 8 6 12 24

Table 3. MAPE assessing effect of different lag of days of incubation period

Province
Lag (days) Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

3 0.018 0.006 0.019 0.008 0.008 0.017 0.012 0.021 0.018 0.010 0.026
4 0.016 0.006 0.017 0.007 0.007 0.008 0.010 0.002 0.002 0.004 0.010
5 0.018 0.006 0.016 0.011 0.006 0.015 0.006 0.015 0.009 0.010 0.011
6 0.015 0.012 0.029 0.004 0.012 0.011 0.006 0.007 0.007 0.019 0.012
7 0.043 0.024 0.021 0.016 0.021 0.012 0.029 0.016 0.016 0.041 0.016

Table 4. Range of uncertainty of MAPE assessing effect of [3,5] lag of days of incubation period

Province
Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

Maximum 0.018 0.006 0.019 0.011 0.008 0.017 0.012 0.021 0.018 0.01 0.026
Mininum 0.016 0.006 0.016 0.007 0.006 0.008 0.006 0.002 0.002 0.004 0.01

Table 5. RMSE assessing effect of different lag of days of incubation period

Province
Lag (days) Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

3 5 1 9 8 6 21 13 19 9 4 20
4 4 2 8 7 7 9 11 2 1 2 7
5 5 2 8 10 4 17 6 12 4 4 8
6 5 4 15 5 8 10 6 7 4 7 12
7 14 9 12 22 19 12 37 18 7 22 17

Table 6. Range of uncertainty of RMSE assessing effect of [3,5] lag of days of incubation period

Province
Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

Maximum 5 2 9 10 7 21 13 19 9 4 20
Minimum 4 1 8 7 4 9 6 2 1 2 7
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Table 7. MAPE assessing effect of different lag of days of the median communicable period

Province
Lag (days) Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

21 0.018 0.006 0.016 0.011 0.006 0.015 0.006 0.015 0.009 0.01 0.011
18 0.015 0.015 0.021 0.006 0.007 0.004 0.006 0.008 0.011 0.019 0.008
15 0.02 0.018 0.013 0.003 0.012 0.004 0.013 0.001 0.013 0.014 0.003
12 0.018 0.021 0.014 0.013 0.007 0.009 0.004 0.008 0.016 0.014 0.003
9 0.018 0.012 0.016 0.003 0.012 0.01 0.009 0.016 0.011 0.012 0.013
6 0.02 0.006 0.035 0.017 0.016 0.025 0.034 0.015 0.02 0.016 0.021

Table 8. Range of MAPE assessing effect of [9,21] lag of days of the median communicable period

Province
Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

Maximum 0.02 0.021 0.021 0.013 0.012 0.015 0.013 0.016 0.016 0.019 0.013
Minimum 0.015 0.006 0.013 0.003 0.006 0.004 0.004 0.001 0.009 0.01 0.003

Table 9. RMSE assessing effect of different lag of days of the median communicable period

Province
Lag (days) Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

21 5 2 8 10 4 17 6 12 4 4 8
18 5 5 11 8 6 5 6 9 5 9 7
15 6 6 8 3 10 4 15 1 6 6 2
12 6 7 10 17 6 10 4 8 8 6 2
9 5 3 8 3 10 11 12 18 5 5 11
6 6 2 17 23 16 26 38 16 9 6 18

Table 10. Range of RMSE assessing effect of [9,21] lag of days of the median communicable period

Province
Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

Maximum 6 7 11 17 10 17 15 18 8 9 11
Minimum 5 2 8 3 4 4 4 1 4 4 2

Table 11. MAPE assessing effect of the quarantine rate

Province
ln Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

0.4 0.016 0.012 0.021 0.011 0.01 0.011 0.007 0.012 0.004 0.016 0.011
0.5 0.02 0.015 0.019 0.003 0.006 0.013 0.008 0.016 0.011 0.012 0.013
0.6 0.016 0.006 0.021 0.009 0.01 0.019 0.007 0.014 0.004 0.012 0.008

on the spread of the disease. Both RMSE and MAPE re-
flect that the incubation period corresponding to the best
forecast varies from region to region. When the incubation
period is between 3 and 5 days, the forecast error is small
in most areas (Tables 3 and 5), and the effect of changing
incubation period in this interval is small (Tables 4 and 6).
Consequently, 5 days is acceptable uniformly.

Next, we use simulations to compare the effect of choosing
different ln. As mentioned in Section 2.3, it is reasonable to
keep ln constant over time. Because there are no inflection
points in Figure 3, and the gains from making ln change
over time come mainly from the inflection point. We then

use simulations to compare the effect of choosing different
ln fixed with time. Since the estimated ln varies between
0.4 and 0.6 in the real data, we consider three values of
ln (i.e., 0.4, 0.5, and 0.6) for each node. Both MAPE and
RMSE show that the model is insensitive to the value of ln
(Table 11).

Finally, we evaluate the prediction performance of our
method through simulations. We demonstrate that the pro-
posed segmentation of the infection compartment signifi-
cantly improves the prediction accuracy and that the incor-
poration of dynamic human mobility apparently enhances
the prediction accuracy. We use SIR+M to denote model (3)
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Figure 3. Predicted numbers of confirmed cases in selected provinces. The data on January 24 through February 15, 2020
were used to fit curves while the fitted models were used to forecast the confirmed case numbers on February 16-18, 2020.

Table 12. MAPE evaluation of prediction of confirmed cases China nationally

Province
Method Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

SIR 0.036 0.018 0.015 0.007 0.026 0.035 0.016 0.017 0.014 0.038 0.041
SIR+M 0.039 0.024 0.012 0.007 0.026 0.036 0.015 0.016 0.014 0.038 0.041
SaucIR-M 0.018 0.006 0.023 0.011 0.016 0.021 0.007 0.021 0.019 0.015 0.016
SaucIR 0.017 0.006 0.015 0.011 0.006 0.015 0.005 0.014 0.009 0.009 0.010

Table 13. RMSE evaluation of prediction of confirmed cases China nationally

Province
Method Beijing Shanghai Jiangsu Zhejiang Anhui Guangdong Henan Hunan Chongqing Sichuan Jiangxi

SIR 16 5 8 7 23 45 21 15 7 21 36
SIR+M 16 7 7 7 23 47 21 14 7 21 36
SaucIR-M 6 2 15 11 13 24 9 20 12 8 13
SaucIR 5 2 8 10 5 17 7 13 5 5 8

in the literature [2], and use SIR and SaucIR-M to denote

models (1) (without further segmentation) and (2) (without

dynamic human mobility) in Section 2.1, respectively. The

comparison results are summarized in Tables 12 and 13.

The predicted RMSE is in single digits except for Zhejiang,
Guangdong, and Hunan.

Figure 3 shows the real numbers of confirmed cases and
the fitted numbers of confirmed cases by SIR+M and our
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Table 14. Predicted numbers of confirmed cases.

Country
Date Italy Spain German USA France South Korea UK

05.19.2020 (Pred) 225605 278216 177821 1548974 181245 10992 249210
05.19.2020 (Obs) 225886 278188 177289 1550294 180051 11078 247709
05.19.2020 (PE) -0.0012 0.0001 0.003 -0.0009 0.0066 -0.0078 0.0061
05.20.2020 (Pred) 226315 279774 178518 1564915 181651 10994 252171
05.20.2020 (Obs) 226699 278803 178150 1570583 180934 11110 250141
05.20.2020 (PE) -0.0017 0.0035 0.0021 -0.0036 0.004 -0.0104 0.0081
05.21.2020 (Pred) 226997 281281 179194 1580095 182035 10996 255017
05.21.2020 (Obs) 227364 279524 178748 1592723 181700 11122 252234
05.21.2020 (PE) -0.0016 0.0063 0.0025 -0.0079 0.0018 -0.0113 0.011

Pred, predicted number; Obs, real number; PE, percentage error for every country.

method during the period from January 24 to February
15, 2020, and forecast numbers of confirmed cases for the
next three days. In both the SIR+M and our method, the
real numbers of confirmed cases from January 24 to Febru-
ary 15, 2020 are used to estimate epidemic parameters. In
most provinces, the forecast accumulated numbers of con-
firmed cases by SIR+M are generally larger than the real
magnitudes. Our conjecture is, in SIR+M, the decrease of
the transmission rate α is the main factor that affects the
slowdown in the growth of the number of confirmed cases,
whereas in SaucIR, the group sizes of the segments U and A
will take effects simultaneously together with the transmis-
sion rate α. Notice that, the partition of I into A and U+C
shown in Figure 1 implies that the size of the infectious com-
partment in SaucIR is smaller than that in SIR+M because
the group of C loses transmissibility owing to isolation for
therapy. Also, the forecasting results by SaucIR are closer
to the real numbers compared to those by SIR+M in most
provinces because of the involvement of multiple factors of
the epidemic and human mobility.

3.2 Prediction in the international network
of human mobility

In this subsection, we use the international air transport
network to demonstrate the predictive ability of the pro-
posed SaucIR model. We use the accumulated confirmed
cases from February 24 to May 18, 2020 to fit the epidemic
parameters and predict the confirmed cases from May 19
to May 21, 2020 for the seven severely infected countries.
Confirmed cases and human mobility data of countries that
ranked in the top six of confirmed cases and South Korea are
analyzed. See page 4 of [26]. Confirmed cases are announced
by countries. The population mobility data are obtained by
the airport announcements (c.f. [27]). As the quarantines of
people (unconfirmed cases U and asymptomatic carriers A)
are not announced to the public, we set ln = 0. Then, we
can calculate the number of confirmed cases in the future
using model (8).

Table 14 compares the predicted results and the real data
during May 19-21. Evidently, our prediction has smaller rel-
ative prediction errors. Figure 4 graphically displays the

Table 15. Influence of migration scales on confirmed cases

Cij

Confirmed cases Large Medium Small

Maximum 9481 9377 9268
Minimum 9439 9344 9251

predicted curves by our method and the SIR+M together
with the observed values for seven countries during the pe-
riod from February 24 to May 21. In those countries where
SIR+M fits well, the fitting and forecasting are well consis-
tent with the characteristics we mentioned in Section 3.1.
For those countries where SIR+M does not fit well (e.g.,
France), the reason could be that not all infected persons
can be tested immediately [28] so that the cumulative num-
ber of confirmed cases and the number of infected people
are not exactly the same. Our method is more capable to
reflect this due to the segmentation of U+C. Therefore, our
method has forecasting results closer to the real data, with
the maximal MAPE of 0.011.

3.3 Impact of migration on confirmed cases

In this subsection, we study how the migration scales
affect the confirmed cases. The epidemiological parameters
and mobility parameters involved in the dynamic SaucIR
model (8) are calculated or fitted based on the migration
data obtained from the Baidu website and epidemic data
announced officially from January 24 to February 29, 2020.

The migration scale (C in
nm,T and Cout

nm,T ) is categorized
into three levels, where the large and medium scales are
triple and twice of the small scale. Using optimal procedure
(10), the coverage of confirmed cases can be obtained under
various migration scales.

Table 15 summarizes the predicted confirmed cases on the
nodes in the 11-province human mobility network of main-
land China. Vertically, in the same scope of migration scale,
the estimates confirmed cases do not vary much between
the minimum and maximum. This implies that modifying
the emanating rates from a node in or out of another node
within the network has a minor impact on controlling the
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Figure 4. Predicted numbers of confirmed cases in selected countries. The data on February 24 through May 18, 2020 were
used to fit curves while the fitted models were used to forecast the confirmed case numbers on May 19-21, 2020.

transmission rate. Horizontally, a smaller migration scale,
less confirmed cases. This may be evidence of the validity of
Wuhan lockdown for preventing the spread of COVID-19.

4. CONCLUSION AND DISCUSSION

Compared to the SIR model raised in [2], our SaucIR
model is disease specific for the spread of the COVID-19
pandemic. The primary difference is that the infection com-
partment has an independent segment of asymptomatic in-
fected individuals based on the epidemiological characteris-
tics of COVID-19. The numerical results indicate that such
re-compartment is critical and substantial. By the time our
revised manuscript was submitted, we found more stud-
ies on asymptomatic with considerable proportions up to
58% among patients with infection, justifying the rationale
of independent A segment in the proposed compartmental
model. The rate of asymptomatic per sons in population-
based retrospective studies can even reach 43% [8]. It re-
mains a series of unsolved problems regarding the asymp-

tomatic patients in COVID-19 that are anticipating more
epidemiological observations and experiments, such as pat-
tern of infectiveness, accurate communicable period, effec-
tive surveillance and screening [15]. The next distinction is
that we present a dynamic migration procedure rather than
fixing the mobility parameters. Baidu migration data source
makes it feasible for modeling and computing. The advan-
tage of such dynamic human mobility makes it possible to
take into consideration of infection during the procedures of
migration in and out of a spatial node, achieving the pre-
dictive fidelity of the proposed SaucIR model. On the other
hand, it validates the necessity of the separation of moving
in and out of the same node from other nodes in the mod-
eling. The minor difference is that we use the absolute flux
of population rather than the fraction of the passenger flux.
The big population size of the provinces in China brings out
a fraction of each compartment far less than unity, which has
impact on the prediction accuracy. We need to point out that
our modeling uses newly published parameters such as incu-
bation days of infected to the symptom and asymptomatic
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to recovered. Modeling the spread pattern is an important
issue and could be updated when there are new and reliable
epidemic parameters.

The COVID-19 pandemic has not ended yet. The fore-
casting SaucIR model will benefit the public health author-
ities to assess the epidemic situation, make reasonably in-
formed decisions, take appropriate interventions, and give a
timely control of infection.
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