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Abstract. This study addresses an investment problem facing a venture fund

manager who has a non-smooth utility function. The theoretical model char-

acterizes an absolute performance-based compensation package. Technically,
the research methodology features stochastic control and optimal stopping by

formulating a free-boundary problem with a nonlinear equation, which is trans-
ferred to a new one with a linear equation. Numerical results based on sim-

ulations are presented to better illustrate this practical investment decision

mechanism.

1. Introduction. While the US economy is recovering as indicated by the first in-
crease in interest rate announced by the Federal Reserve Board in December 2015,
innovation-based new venture enterprices continued to serve as the engine of the eco-
nomic growth (Carter-Mason-Tagg (2004)). However, financing their survival and
growth is important yet challenging, especially at their early stages of development
(Berger-Udell (1998)). Given the difficulties of securing debt financing due to their
liability of newness and lack of collateral (Chua-Chrisman-Kellermanns-Wu (2011)),
they have to rely on equity financing, most of which are from venture capitalists.
In order to lower the level of risk they take, venture capitalists tend to establish
venture funds and hire professional fund managers to make investment decisions.
These venture fund managers are compensated by a fixed amount of salary plus an
absolute performance-based incentive characterized by an American-style option,
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and their best interests are to optimize based on their utilities functions which take
risk preferences into account.

Having said these, we formulate a venture fund manager’s utility maximization-
based investment decision problem using an optimal-stopping mechanism. It fea-
tures the risk-taking behaviors in terms of the time point at which the manager
quits an investment project. The exit options which the manager can choose from
include, but are not limited to, leverage buy-out conducted by the entrepreneurs,
management buy-out, initial public offerings, mergers and acquisitions, and sale
to strategic investors (Cumming-Walz (2010)). By deciding to exit an investment
project at a certain time point, the utility based on the manager’s compensation
package and risk preference may be maximized.

While optimal stopping theory has been extensively applied in pricing Ameri-
can options (Elliott-Kopp (1999); Yong-Zhou (1999); Ceci-Bassan (2004); Li-Zhou
(2006); Shiryaev-Xu-Zhou (2008)), researchers usually run into more complicated
situations when studying risk-taking behaviors of venture fund managers. This
is mainly because of the existence of free-boundary problems with general con-
trolled diffusion processes (Fleming-Soner (2006); Peskir-Shiryaev (2006)). To help
fill these gaps in the literature, this study is rooted in Choi-Koo-Kwak (2004),
Henderson-Hobson (2008) and Bensoussan-Cadenillas-Koo (2015), and it presents
solutions to venture fund managers’ utility maximization problems and interprets
their risk-taking behaviors. In particular, Choi-Koo-Kwak (2004) and Bensoussan-
Cadenillas-Koo (2015) proposed a general entrepreneurial/managerial decision prob-
lem which involves a broad class of nonconcave objective functions. Also, Bensoussan-
Cadenillas-Koo (2015) proved that the optimization problem with a nonconcave
objective function has the same solution as the optimization problem when the ob-
jective function is replaced by its concave hull, and thus the problems are equivalent
to each other. However, it is technically difficult to present analytical or numeri-
cal solutions using the methods introduced in previous studies (Chang-Pang-Yong
(2009); Dayanik-Karatzas (2003); Carpenter (2000)) because of the optimization
process over the entire investment period and the simultaneous investment deci-
sions on multiple projects. Thus, we develop a new approach by transforming the
free-boundary problem with non-linear equations to a new one with linear equations
in this work, and then optimize fund managers’ investment strategies.

This study adds to the understanding of risk-taking behaviors and investment
decision mechanisms of venture fund managers in at least three aspects below.
First, it is one of the early studies addressing venture fund managers’ decision-
making process theoretically using a utility-maximization model and an American-
style optimal stopping mechanism. Therefore, this study sheds light on the cutting-
edge development of the entrepreneurial finance and entrepreneurship literature.
Second, it contributes to the mathematical finance literature by formulating risk-
sensitive problem in wealth management. Third, findings of this study provide
important and timely implication practitioners and policy makers by helping them
understand venture fund managers’ risk-taking behaviors.

The rest of this paper is structured as the following: Section 2 formulates the
utility-maximization model. Sections 3 and 4 solve the optimal stopping problem
with and without constraints, respectively. Numerical results from simulations are
presented in Section 5.

2. Model formulation. For technical simplicity, we assume that the continuous-
time financial market is complete and arbitrage-free. A venture fund manager’s
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task is to develop an optimal investment strategy based on a risk-free asset with
instantaneous interest rate r and a risky project whose assets Sit , i = 1, 2, · · · , n
follow stochastic differential equations

dSit
Sit

= (r + µi)dt+

m∑
j=1

σijdW
j
t , for i = 1, 2, · · · , n, (2.1)

where µ := (µ1, µ2, · · · , µn)> is the excess appreciation rate, σ := (σij)n×m is the
volatility, and W := (W 1,W 2, · · · ,Wm)′ is a standard n-dimensional Brownian
motion defined on a complete probability (Ω,F ,P). In addition, σσ′ > εIn×n ,
where ε > 0.

The process of the asset portfolio Xt follows

dXt = (rXt + µ>π)dt+ π>σdWt, X0 = x, (2.2)

where an admissible investment strategy π ∈ U is progressively measurable with
respect to {Ft} such that Xt ≥ 0 and satisfy E

∫∞
0
|π|2dt < ∞. In particular, U

is a convex set in this paper, for example, U ≡ L2
F ([0,∞),Rn) in Section 3, and

U ≡ L2
F ([0,∞),Rn+) in Section 4, where each component is non-negative.

The manager controls assets with initial value x0, and her wealth at exercise time
τ is the payoff of a call option on the asset with strike price (or benchmark payoff)
B plus a constant K > 0, that includes fixed compensation and personal wealth.
By choosing an optimal investment strategy π∗ and an optimal stopping time τ∗,
the manager intends to maximize her expected utility such that

V (x) = sup
π,τ

E
[
e−βτU(α(Xτ −B)+ +K)

]
, (2.3)

where α represents the number of options or the percentage of positive profits, β > 0

is the discounted factor, U(x) = 1−γ
γ

(
A(x−w)

1−γ

)γ
, x > w, 0 < γ < 1, w < K, A > 0

is the utility function.

3. Stopping problem with unconstrained portfolio. Applying the principle
of dynamic programming, we may obtain the following Hamilton-Jacobi-Bellman
(HJB) equation

min
{
−max

π

[1

2
π>σσ>πV ′′(x) + µ>πV ′(x)

]
− rxV ′(x) + βV (x),

V (x)− U(α(x−B)+ +K)
}

= 0, x > 0,

V (0) = U(K).
(3.1)

We conjecture that there exists a free boundary point x∗ > B such that{
V (x) > U(α(x−B)+ +K), 0 < x < x∗;

V (x) = U(α(x−B)+ +K) = U(α(x−B) +K), x ≥ x∗ > B.

Furthermore, problem (3.1) can be reduced to
max
π

[1

2
π>σσ>πV ′′(x) + µ>πV ′(x)

]
+ rxV ′(x)− βV (x) = 0, 0 < x < x∗,

V (x) = U(α(x−B) +K), x ≥ x∗ > B,

V (0) = U(K).
(3.2)
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Suppose that V (x) is increasing and concave, i.e., V ′(x) > 0, V ′′(x) < 0. Then

π∗ = −(σσ>)−1µ
V ′(x)

V ′′(x)
.

Let θ = σ−1µ. Therefore, problem (3.2) is equivalent to
1

2
‖θ‖2 (V ′(x))2

V ′′(x)
− rxV ′(x) + βV (x) = 0, 0 < x < x∗,

V (x) = U(α(x−B) +K), x ≥ x∗ > B,

V (0) = U(K).

(3.3)

Remark 3.1. Discussion of the special cases of K = w = 0, B > 0 or
K = w = B = 0.

These special case are simple. We need not adopt dual methods to derive their
strategies. Denote

F (x) := U(α(x−B)+ +K) =
1− γ
γ

(
A(α(x−B)+ +K − w)

1− γ

)γ
Case 1. K = w = 0, B > 0.

When K = w = 0, then F (x) = 0 if x ≤ B, F (0) = F ′(0) = 0, by the equation
in (3.3) and V (0) = 0, we have the general solution is

V (x) = cxγ ,

where c will be defined later by the second condition in (3.3). Substituting the
expression of V (x) into the equation in (3.3) yields(

1

2
||θ||2 γ

γ − 1
− rγ + β

)
· c = 0.

(i) If 1
2 ||θ||

2 γ
γ−1 − rγ + β = 0, then we have{

V (x∗) = U(α(x∗ −B)),

V ′(x∗) = αU ′(α(x∗ −B)),

i.e., 
cxγ∗ = 1−γ

γ

(
Aα(x∗−B)

1−γ

)γ
,

cγxγ−1
∗ = Aα

(
Aα(x∗−B)

1−γ

)γ−1

.

Hence, {
x∗ = +∞,

c = (Aα)γ

γ(1−γ)γ−1 ,

which implies that problem (3.3) has no free boundary. The value function is always
larger than payoff function. This means that managers will not stop the investment,
i.e., τ∗ =∞.

(ii) If 1
2‖θ‖

2 γ
γ−1 − rγ + β 6= 0, then c = 0, but v(x) = 0 is not the solution to

problem (3.3), which implies that the original problem has no solution in this case.

Case 2. K = w = B = 0. Denote

F (x) := U(αx) =
1− γ
γ

(
Aαx

1− γ

)γ
=

(αA)γ

γ(1− γ)γ−1
xγ .
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In this case F (0) = 0 and F ′(0) = +∞. Moreover, F (x) is a concave function in
x. Note that

F ′(x) =
(αA)γ

(1− γ)γ−1
xγ−1, F ′′(x) =

(αA)γ

(1− γ)γ−2
xγ−2,

Substituting the expression of F (x) into the equation in (3.3) leads to

1

2
‖θ‖2 (F ′(x))2

F ′′(x)
− rxF ′(x) + βF (x)

= −1

2
‖θ‖2 (αA)γ

(1− γ)γ
xγ − r(αA)γ

(1− γ)γ−1
xγ +

β(αA)γ

γ(1− γ)γ−1
xγ

=
(αA)γ

(1− γ)γ

(
−1

2
‖θ‖2 − r(1− γ) +

β(1− γ)

γ

)
xγ .

(i) If − 1
2‖θ‖

2 − r(1 − γ) + β(1−γ)
γ ≥ 0, then the solution to problem (3.1) is

F (x) = U(αx). The value function is the same as payoff function and optimal
stopping τ∗ = 0.

(ii) If − 1
2‖θ‖

2−r(1−γ)+ β(1−γ)
γ < 0, then the solution to problem (3.1) satisfies{

1
2‖θ‖

2 (V ′(x))2

V ′′(x) − rxV
′(x) + βV (x) = 0, x > 0,

V (0) = 0.

Similar to (ii) in the case 1, the original problem has no solution. �

In general case K > 0, we employ dual method to problem (3.3), we define

v(y) = max
x>0

[V (x)− xy], y ∈
[

lim
x→+∞

V ′(x), V ′(0)
]
. (3.4)

Since V ′′(x) < 0 and the critical value xy satisfies V ′(xy) = y, then there exists an
inverse function I(y) of V ′(x) such that xy = I(y). Hence

v(y) = V (xy)− xyy = V (I(y))− yI(y), y ∈
[

lim
x→+∞

V ′(x), V ′(0)
]
. (3.5)

Furthermore, we have

v′(y) = V ′(I(y))I ′(y)− I(y)− yI ′(y) = −I(y) < 0, (3.6)

v′′(y) = −I ′(y) =
−1

V ′′(I(y))
> 0, (3.7)

which implies that I(y) is strictly decreasing , and v(y) is strictly convex and de-
creasing on ( lim

x→+∞
V ′(x), V ′(0)). Moreover, in view of (3.4), we have

V (x) = min
y∈
[

lim
x→+∞

V ′(x),V ′(0)
][v(y) + xy], x > 0. (3.8)

Then for any x > 0, let yx = V ′(x), in view of (3.6), we have

v′(yx) = v′(V ′(x)) = −I(V ′(x)) = −x.
In terms of (3.6), we obtain I(yx) = x, which implies

yx = I−1(x) = V ′(x). (3.9)

It follows from (3.8) that we have

v(yx) + xyx = V (x).
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Set x = I(y). Then (3.3) reads
1

2
‖θ‖2 y2

V ′′(I(y))
− ryI(y) + βV (I(y)) = 0, y∗ < y < y0,

V (I(y)) = U(α(I(y)−B) +K), lim
x→+∞

V ′(x) < y ≤ y∗,

V (I(y0)) = U(K),

(3.10)

where y0 is defined by y0 = V ′(0) and y∗ is defined by y∗ = V ′(x∗).
By (3.5), (3.6) and (3.7), we deduce the first two equations of (3.10) into

1

2
‖θ‖2y2v′′(y) + (β − r)yv′(y)− βv(y) = 0, y∗ < y < y0,

v(y)− yv′(y) = U(α(−v′(y)−B) +K), lim
x→+∞

V ′(x) < y ≤ y∗.
(3.11)

The definition of y0 implies that I(y0) = 0. Then v′(y0) = −I(y0) = 0. Combining
with (3.5) yields

V (0) = V (I(y0)) = v(y0) + y0I(y0) = v(y0).

Since the boundary condition of V (x) at x = 0 is U(K), thus we obtain the boundary
conditions at y = y0 (y0 is unknown){

v(y0) = U(K),

v′(y0) = 0.

By the smooth-fit condition, we know V ′(x) continuously goes through x = x∗,
then

V ′(x∗) = αA

(
A(α(x∗ −B) +K − w)

1− γ

)γ−1

. (3.12)

Substituting y∗ in the second equality of (3.11) and combining with the definition
of y∗, we obtain −v′(y∗) = I(y∗) = x∗ > B. Hence, the boundary conditions at
y = y∗ become 

v(y∗)− y∗v′(y∗) = U(α(−v′(y∗)−B) +K),

y∗ = αA

(
A(α(−v′(y∗)−B) +K − w)

1− γ

)γ−1

.

In view of the above analysis, we have the following lemma

Lemma 3.2. The function v(y) satisfies the following differential equation

1

2
‖θ‖2y2v′′(y) + (β − r)yv′(y)− βv(y) = 0, y∗ < y < y0, (3.13)

with the boundary condition

v(y0) = U(K), (3.14)

v′(y0) = 0, (3.15)

v(y∗)− y∗v′(y∗) = U(α(−v′(y∗)−B) +K), (3.16)

y∗ = αA

(
A(α(−v′(y∗)−B) +K − w)

1− γ

)γ−1

. (3.17)

Lemma 3.3. When K−ω−αB < 0, there exists a unique solution of (3.13)-(3.17).
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Proof. Obviously, the general solution of the ordinary differential equation (3.13)
can be expressed by

v(y) = D1y
n1 +D2y

n2 , y ∈ [y∗, y0], (3.18)

where
n1 =

−
(
β − r − 1

2‖θ‖
2
)

+

√(
β − r − 1

2‖θ‖2
)2

+ 2‖θ‖2β
‖θ‖2

> 1,

n2 =
−
(
β − r − 1

2‖θ‖
2
)
−
√(

β − r − 1
2‖θ‖2

)2
+ 2‖θ‖2β

‖θ‖2
< 0.

(3.19)

Note that, y0 > 0 is finite, otherwise problem (3.13)–(3.17) has no solution. Sub-
stituting the expression (3.18) of v(y) into (3.14) and (3.15) yields

D1 =
−n2U(K)

(n1 − n2)yn1
0

, D2 =
n1U(K)

(n1 − n2)yn2
0

. (3.20)

Thus,

v(y) =
−n2U(K)

n1 − n2

( y
y0

)n1

+
n1U(K)

n1 − n2

( y
y0

)n2

, y ∈ [y∗, y0], (3.21)

where (y0, y∗) satisfy (3.16)–(3.17). Substituting (3.21) into (3.16), we have

(n1 − 1)n2U(K)

n1 − n2

(y∗
y0

)n1

+
(1− n2)n1U(K)

n1 − n2

(y∗
y0

)n2

= U(α(−v′(y∗)−B) +K).

(3.22)
It follows from (3.22) and the definition of U(x) that we obtain

(n1 − 1)n2(K − w)γ

n1 − n2

(y∗
y0

)n1

+
(1− n2)n1(K − w)γ

n1 − n2

(y∗
y0

)n2

=

{
α

[
n1n2U(K)

(n1 − n2)y0

(y∗
y0

)n1−1

− n1n2U(K)

(n1 − n2)y0

(y∗
y0

)n2−1

−B
]

+K − w
}γ

=

[
αn1n2U(K)

(n1 − n2)y0

((y∗
y0

)n1−1

−
(y∗
y0

)n2−1
)

+K − w − αB
]γ
.

Re-arranging the above equation leads to

αn1n2U(K)

(n1 − n2)y0

((y∗
y0

)n1−1

−
(y∗
y0

)n2−1
)

=

[
(n1 − 1)n2(K − w)γ

n1 − n2

(y∗
y0

)n1

+
(1− n2)n1(K − w)γ

n1 − n2

(y∗
y0

)n2
] 1
γ

−K + w + αB.

This implies that y0 can be expressed by y∗
y0

, i.e.,

y0 =
αn1n2U(K)

(
(y∗y0 )n1−1 − (y∗y0 )n2−1

)
(n1 − n2)

{[
(n1−1)n2

n1−n2
(y∗y0 )n1 + (1−n2)n1

n1−n2
(y∗y0 )n2

] 1
γ

(K − w)−K + w + αB

} .
(3.23)
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From (3.16), (3.17) and the definition of U(x), we obtain

v(y∗)− y∗v′(y∗)
y∗

=

1−γ
γ

Aγ

(1−γ)γ [α(−v′(y∗)−B) +K − w]γ

α Aγ

(1−γ)γ−1 [α(−v′(y∗)−B) +K − w]γ−1
,

which implies

v(y∗) +
( 1

γ
− 1
)
y∗v
′(y∗) =

K − w − αB
αγ

y∗.

Similarly, y∗ can be expressed by y∗
y0

, i.e.,

y∗ =
αγU(K)

K − w − αB

[
−(1 + n1( 1

γ − 1))n2

n1 − n2

(y∗
y0

)n1

+
(1 + n2( 1

γ − 1))n1

n1 − n2

(y∗
y0

)n2

]
.

(3.24)
Let δ = y∗

y0
. It follows from (3.23) and (3.24) that we obtain

y0 =
αn1n2U(K)

(
δn1−1 − δn2−1

)
(n1 − n2)

{[
(n1−1)n2

n1−n2
δn1 + (1−n2)n1

n1−n2
δn2

] 1
γ

(K − w)−K + w + αB

} (3.25)

and

y∗ =
αγU(K)

K − w − αB

[
−(1 + n1( 1

γ − 1))n2

n1 − n2
δn1 +

(1 + n2( 1
γ − 1))n1

n1 − n2
δn2

]
. (3.26)

Since 0 < y∗ < y0, we have 0 < δ < 1. Also, since n1 > 1 and n2 < 0, we have
0 < δn1−n2 < 1. Furthermore, we get 0 < δn1−1 < δn2−1. From (3.25), we know[

(n1 − 1)n2

n1 − n2
δn1 +

(1− n2)n1

n1 − n2
δn2

] 1
γ

(K − w)−K + w + αB > 0. (3.27)

It then follows from (3.25) and (3.26) that we obtain

n1n2 [δn1 − δn2 ]

=
γ

K − w − αB

[
−
(

1 + n1

( 1

γ
− 1
))
n2δ

n1 +
(

1 + n2

( 1

γ
− 1
))
n1δ

n2

]

·

{[
(n1 − 1)n2

n1 − n2
δn1 +

(1− n2)n1

n1 − n2
δn2

] 1
γ

(K − w)−K + w + αB

}
.

(3.28)

Set

f(δ)
∆
= n1n2 (δn1 − δn2)

+
γ

K − w − αB

[(
1 + n1

( 1

γ
− 1
))
n2δ

n1 −
(

1 + n2

( 1

γ
− 1
))
n1δ

n2

]

·

{[
(n1 − 1)n2

n1 − n2
δn1 +

(1− n2)n1

n1 − n2
δn2

] 1
γ

(K − w)−K + w + αB

}

= γg(δ) +
γ(K − w)

(K − w − αB)(n1 − n2)
1
γ

[n1n2

γ
(δn1 − δn2)− g(δ)

]
[g(δ)]

1
γ ,

(3.29)
where

g(δ)
∆
= (n1 − 1)n2δ

n1 + (1− n2)n1δ
n2 .
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By the definition of g(δ), we obtain

g(0) = +∞, g(1) = n1 − n2 > 0,

g′(δ) = n1n2

[
(n1 − 1)δn1−1 + (1− n2)δn2−1

]
< 0, δ ∈ (0, 1],

hence
g(δ) > 0, δ ∈ (0, 1].

Define h(δ) = 1
γ f(δ)[g(δ)]−

1
γ , we will show that h(δ) = 0 has a unique solution

in [0, 1]. Since

h(δ) =
1

γ
f(δ)[g(δ)]−

1
γ

= g(δ)1− 1
γ +

K − w
(K − w − αB)(n1 − n2)

1
γ

[n1n2

γ
(δn1 − δn2)− g(δ)

]
.

Note that β is large enough such that 1+n2

(
1
γ −1

)
< 0. When K−w−αB < 0,

we have

h(0) = 0 + K−w
(K−w−αB)(n1−n2)

1
γ

lim
δ→0

[
n2

(
n1

γ − n1 + 1
)
δn1 − n1

(
n2

γ − n2 + 1
)
δn2

]
= −∞,

h(1) = (n1 − n2)1− 1
γ

(
1− K−w

K−w−αB

)
= (n1 − n2)1− 1

γ −αB
K−w−αB > 0,

h′(δ) = γ−1
γ g(δ)−

1
γ g′(δ)

+ n1n2(K−w)

(K−w−αB)(n1−n2)
1
γ

[(
n1

γ − n1 + 1
)
δn1−1 −

(
n2

γ − n2 + 1
)
δn2−1

]
> 0,

the last inequality holds with the facts 0 < γ < 1 and g′(δ) < 0. Hence, there exists
a unique solution of h(δ) = 0 in [0, 1].

Thus, there exists a unique δ0 ∈ (0, 1) such that

f(δ0) = 0.

Substituting δ0 into (3.25) and (3.26), we obtain

y0 =
αn1n2U(K)

(
δn1−1
0 − δn2−1

0

)
(n1−n2)

{[
(n1−1)n2

n1−n2
δn1
0 + (1−n2)n1

n1−n2
δn2
0

] 1
γ

(K − w)−K + w + αB

} ,(3.30)

y∗ =
αγU(K)

K − w − αB

[
−(1 + n1( 1

γ − 1))n2

n1 − n2
δn1
0 +

(1 + n2( 1
γ − 1))n1

n1 − n2
δn2
0

]
. (3.31)

Then we substitute the above y0 into (3.21) to get the expression of v(y) for y ∈
[y∗, y0].

Furthermore, we can derive V (x) by

V (x) = min
y∈[y∗,y0]

[v(y) + xy] = min
y∈[y∗,y0]

[
D1y

n1 +D2y
n2 + xy

]
, x ∈ (0, x∗),

(3.32)
where

x∗ = I(y∗) = −v′(y∗) =
n1n2U(K)

(n1 − n2)y0
[δn1−1

0 − δn2−1
0 ], (3.33)

with y0 given in (3.30). Hence, the minimum yx satisfies

D1n1y
n1−1
x +D2n2y

n2−1
x + x = 0, x ∈ (0, x∗). (3.34)
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Therefore, for any x ∈ (0, x∗), solving (3.34) to obtain the minimum yx and substi-
tuting it into (3.32), we obtain

V (x) =

{
D1y

n1
x +D2y

n2
x + xyx, x ∈ (0, x∗),

U(α(x−B) +K), x ∈ [x∗,+∞).
(3.35)

In terms of (3.18) with n1 > 1, n2 < 0, D1, D2 > 0, we have

v′′(y) = D1n1(n1 − 1)yn1−2 +D2n2(n2 − 1)yn2−2 > 0, y ∈ [y∗, y0].

Thus, we obtain the first and second orders of V (x) as below

V ′(x) = V ′(I(yx)) = yx > 0,

V ′′(x) =


V ′′(I(y)) = − 1

v′′(y)
< 0, x ∈ (0, x∗),

−(αA)2
(
A(α(x−B)+K−w)

1−γ

)γ−2

< 0, x ∈ [x∗,+∞),

which imply that V (x) is increasing and concave.
Moreover, the optimal free boundary can be presented by

x∗ = I(y∗) = −v′(y∗)

=
n1n2U(K)

(n1 − n2)y0
[δn1−1

0 − δn2−1
0 ]

=
1

α

{[
(n1 − 1)n2(K − w)γ

n1 − n2
δn1
0 +

(1− n2)n1(K − w)γ

n1 − n2
δn2
0

] 1
γ

−K + w + αB

}
.

The third equality is due to δ0 = y∗
y0

and the last one is due to (3.30).

Suppose V (x) is given by (3.35), with n1, n2, D1, D2 are given in (3.19) and
(3.20), respectively, x∗ which can be interpreted as the optimal exercise boundary
is shown in (3.33), then V (x) is the solution to problem (3.1).

We now prove the following verification theorem.

Theorem 3.4. Suppose V (x) is the solution to problem (3.1), then for any admis-
sible π and τ , we have

V (x) ≥ Jπ,τ (x). (3.36)

Moreover, the optimal strategy pair (π∗, τ∗) is π∗ = −(σσ>)−1µ
V ′(x)

V ′′(x)
,

τ∗ = inf{t > 0 : Xt ≥ x∗}.
(3.37)

and

V (x) = Jπ∗,τ∗(x). (3.38)

Proof. For any admissible π, by Itô formula,

d[e−βtV (Xt)] = e−βt
[
− βV (Xt) + (rXt + µ>π)V ′(Xt)

+
1

2
π>(σσ>)πV ′′(Xt)

]
ds+ e−βtπ>σdWt.
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Thus, for any stopping time τ ≥ 0,

V (x) = E[e−β(τ∧T )V (Xτ∧T )] + E
∫ τ∧T

0

e−βt
[
βV (Xt)− (rXt + µ>π)V ′(Xt)

−1

2
π>(σσ>)πV ′′(Xt)

]
dt

≥ E[e−β(τ∧T )V (Xτ∧T )]

+E
∫ τ∧T

0

e−βt
[
− sup

π

(1

2
π>(σσ>)πV ′′(Xt) + µ>πV ′(Xt)

)
−rXtV

′(Xt) + βV (Xt)
]
dt

≥ E[e−β(τ∧T )U(α(Xτ∧T −B)+ +K)].

Taking lim
T→∞

in both sides, then applying Fatou Lemma we obtain

V (x) ≥ lim
T→∞

E[e−β(τ∧T )U(α(Xτ∧T −B)+ +K)] ≥ Jπ,τ (x).

We obtain (3.36).

On the other hand, define π(x) := −(σσ>)−1µ V ′(x)
V ′′(x) . Let X∗t be the solution of

the following SDE,{
dXt = (rXt + µ>π(Xt))ds+ π(Xt)

>σdWt,
X0 = x,

and let

π∗ = π(X∗t ), τ∗ = inf{t ≥ 0 : V (X∗t ) = U(α(X∗t −B)+ +K)}.
Since V (X∗t ) > U(α(X∗t −B)+ +K) when t < τ∗, we have[

−
(1

2
π∗>(σσ>)π∗V ′′ + µ>π∗V ′

)
− rX∗t V ′ + βV

]
(X∗t ) = 0, t < τ∗.

Applying Itô formula yields

V (x) = E[e−β(τ∗∧T )V (X∗τ∗∧T )] + E

∫ τ∗∧T

0

e−βt
[
βV − (rX∗t + µ>π∗)V ′

−1

2
π∗>(σσ>)π∗V ′′

]
(X∗t )dt

= E[e−β(τ∗∧T )V (X∗τ∗∧T )]

= E{e−β(τ∗∧T )[U(α(X∗τ∗∧T −B)+ +K)1{τ∗≤T} + V (X∗T )1{τ∗>T}]}
= E{e−β(τ∗∧T )U(α(X∗τ∗∧T −B)+ +K)1{τ∗≤T}}

+E{e−β(τ∗∧T )V (X∗T )1{τ∗>T}}
= E{e−βτ

∗
U(α(X∗τ∗ −B)+ +K)1{τ∗≤T}}+ E{e−βTV (X∗T )1{τ∗>T}}

≤ E{e−βτ
∗
U(α(X∗τ∗ −B)+ +K}+ E{e−βTV (X∗T )1{τ∗>T}}.

Thus

V (x) ≤ Jπ∗,τ∗(x) + e−βTE{V (X∗T )1{τ∗>T}}. (3.39)

Recalling (3.3), if τ∗ > T , then X∗T ≤ x∗ where x∗ is a finite number, hence
V (X∗T ) ≤ V (x∗) by V ′(x) ≥ 0, so

V (x) ≤ Jπ∗,τ∗(x) + e−βTV (x∗).
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Letting T → +∞, we obtain (3.38).

4. Stopping problem with no-shorting constraint. If there is a no-shorting
constraint, the manager’s utility maximization problem is

V (x) = sup
π∈Rm+ ,τ

E
[
e−βτU(α(Xτ −B)+ +K)

]
. (4.1)

where X· is the solution to the stochastic differential equation (2.2), and again, we
have

min
{
− max
π∈Rm+

[1

2
π>σσ>πV

′′
(x) + µ>πV

′
(x)
]
− rxV ′(x) + βV (x),

V (x)− U(α(x−B)+ +K)
}

= 0, x > 0,

V (0) = U(K).
(4.2)

We conjecture that there exists a free boundary point x̄∗ > B such that{
V (x) > U(α(x−B)+ +K), 0 < x < x̄∗;

V (x) = U(α(x−B)+ +K) = U(α(x−B) +K), x ≥ x̄∗ > B.

Furthermore, problem (4.2) can be reduced to
max
π∈Rm+

[1

2
π>σσ>πV

′′
(x) + µ>πV

′
(x)
]

+ rxV
′
(x)− βV (x) = 0, 0 < x < x̄∗,

V (x) = U(α(x−B)+ +K) = U(α(x−B) +K), x ≥ x̄∗ > B,

V (0) = U(K).
(4.3)

Let

z̄ := argmin
z∈Rm+

1
2‖σ

−1z + σ−1µ‖2, (4.4)

and

ξ̄ := σ−1z̄ + σ−1µ. (4.5)

Since V
′
(x) ≥ 0 and V

′′
(x) < 0, we have − V

′
(x)

V
′′

(x)
≥ 0. By Lemma 3.2 (Xu-Shreve

(1992)), we obtain the supremum in the HJB equation (4.3) by

π̄ = −(σσ>)−1
(
z̄ + µ

) V ′(x)

V
′′
(x)

. (4.6)

Substituting (4.6) into the HJB equation (4.3) results in the equation
1

2
‖θ̄‖2 (V

′
(x))2

V
′′
(x)

− rxV ′(x) + βV (x) = 0, 0 < x < x̄∗,

V (x) = U(α(x−B) +K), x ≥ x̄∗ > B,

V (0) = U(K),

(4.7)

where θ̄ = σ−1(z̄ + µ).
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By Lemma 3.2 (Li-Zhou-Lim (2002)), we also can get the above equation (4.7)
from the following unconstrained HJB equation (4.8)

max
π

{1

2
π>σσ>πV

′′
(x) + (z̄ + µ)>πV

′
(x)
}

+ rxV
′
(x)− βV (x) = 0, 0 < x < x̄∗,

V (x) = U(α(x−B)+ +K) = U(α(x−B) +K), x ≥ x̄∗ > B,

V (0) = U(K)

(4.8)
using the same portfolio form

π̄ = −(σσ′)−1
(
z̄ + µ

) V ′(x)

V
′′
(x)

. (4.9)

Based on the above optimization analysis, the constrained portfolio problem (4.1)
can be transformed into the equivalent unconstrained problem

sup
π,τ

E
[
e−βτU(α(X̄τ −B)+ +K)

]
, (4.10)

where the wealth process follows

dX̄t = [rX̄t + (z̄ + µ)>π]dt+ π>σdWt, X̄0 = x. (4.11)

In view of the above analysis and section 3, we have the following theorem.

Theorem 4.1. Suppose V (x) is the value function (4.1) of the no-shorting model,
then V (x) is given by (3.35) with θ replaced by θ̄ = σ−1(z̄+µ), the optimal exercised
boundary x̄∗ to the no-shorting model is also given by (3.33) with θ replaced by θ̄.
Moreover, the optimal strategy pair (π̄, τ̄)

π̄ = −(σσ>)−1(z̄ + µ)
V ′(X̄t)

V ′′(X̄t)
,

τ̄ = inf{t > 0 : X̄t ≥ x̄∗},
(4.12)

where X̄t is the solution to the stochastic differential equation (4.11) and z̄ is shown
in (4.4).

Also, we present the following verification theorem.

Theorem 4.2. Suppose V (x) is the solution to problem (4.2), then for any admis-
sible π and τ , we have

V (x) ≥ Jπ,τ (x). (4.13)

Moreover, there exist π̄ and τ̄ such that

V (x) = Jπ̄,τ̄ (x). (4.14)

The proof of this theorem is similar to the proving procedure of Theorem 3.4.

5. Numerical results. In this section, a numerical example with constant coeffi-
cients is presented to demonstrate the results in the previous section. Let γ = 0.5,
A = 1, w = 0, β = 0.25, m = 3. The interest rate of the bond and the appreciation
rate of the m stocks are r = 0.03 and µ = (µ1, µ2, µ3)> = (0.09, 0.12, 0.15)>,
respectively, and the volatility matrix is

σ =

 0.2500 0 0
0.1500 0.2598 0
−0.2500 0.2887 0.3227

 .
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Then we have

σ−1 =

 4.0000 0 0
−2.3094 3.8490 0

5.1640 −3.4427 3.0984


and {

θ = σ−1µ = (0.3600, 0.2540, 0.5164)>,

(σσ>)−1µ = (3.52, −0.8, 1.6)>.

We see that there exists a shorting case in policy (4.9). Using (4.4), we obtain the
following z̄ to re-construct the no-shorting policy

z̄ := argmin
z∈Rm+

1

2
‖σ−1z + σ−1µ‖2 = (0, 0.03, 0)>.

Hence, {
θ̄ = σ−1(z̄ + µ) = (0.3600, 0.3695, 0.4131)>,

(σσ>)−1(z̄ + µ) = (2.72, 0, 1.28)>.

We now study how x∗ and x̄ change when α, B and K run in the different
intervals.

Case 1. Let 0.02 ≤ α ≤ 0.08, B = 1000 and K = 100.

The free boundaries x∗ and x̄ change when α changes.

Case 2. Let α = 0.01, 500 ≤ B ≤ 900 and K = 100.

The free boundaries x∗ and x̄ change when α changes.

Case 3. Let α = 0.01, B = 1000 and 75 ≤ K ≤ 95.

The free boundaries x∗ and x̄ change when K changes.
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6. Conclusions and implications. Formulating a non-smooth utility maximiza-
tion problem with optimal-stopping features, we study investment decision-making
mechanisms and risk-taking behaviors of venture fund managers. Due to the chal-
lenging nature on the technical side of this free-boundary problem with a nonlinear
equation, we have developed the methodology to convert it to a new one with a linear
equation in order to optimize venture fund managers’ investment strategies and risk-
taking behaviors. Findings of this study add to our knowledge in the fields of risk
management, financial investment, venture fund management, and entrepreneurial
finance. More importantly, it provides critical implications for fund managers to
optimize their investment strategies and for policy makers and entrepreneurs to im-
prove risk management (Sparrow and Bentley (2000)). Future research may extend
the findings of this study by empirical testing the propositions developed in this
study, so that more convincing results may be obtained and presented.
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