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We present a theory on the coalescence of 2 spherical liquid
droplets that are initially stationary. The evolution of the radius
of a liquid neck formed upon coalescence was formulated as an
initial value problem and then solved to yield an exact solution
without free parameters, with its 2 asymptotic approximations
reproducing the well-known scaling relations in the inertially lim-
ited viscous and inertial regimes. The viscous-to-inertial crossover
observed in previous research is also recovered by the theory,
rendering the collapse of data of different viscosities onto a
single curve.

droplet coalescence | scaling

Droplet coalescence (1–5) is a ubiquitous phenomenon
involved in impact or contact of dispersed 2-phase flows

(6–12). Among the various relevant problems, the initial coa-
lescence of 2 liquid droplets has been of core interest. The
first quantitative analysis of sphere coalescence was provided by
Frenkel (13) based on the assumption of internal Stokes flow;
however, the result was commented as “misleading” by Hop-
per (14), who gave an analytical solution for the coalescence
of 2 cylindrical droplets of radius R0 for viscous sintering. His
studies (15–17) show that the time evolution of the radius R of
the neck (or bridge) between the droplets approximately satisfies
t ∼−R/ lnR∗ where R∗=R/R0. Later, Eggers et al. (1) consid-
ered the 3-dimensional coalescence and attained R∗∼−t∗ ln t∗

for R∗< 0.03, where t∗= t/τv (τv =µR0/σ with µ and σ being
the dynamic viscosity of the liquid and the surface tension coef-
ficient, respectively). For larger R∗, they (1, 18) argued that the
neck flow goes beyond the Stokes regime to the inertial (or invis-
cid) regime and further arrived at the 1/2 power-law scaling,
R∗∼ (t/τi)

1/2 with the time scale being τi = (ρR3
0/σ)1/2, where

ρ is the liquid density.
Recent advances in the high-speed digital imaging (2, 3, 19),

state-of-art probing techniques (4, 20, 21), and numerical simu-
lation (22, 23) enabled researchers to scrutinize the early stages
of drop coalescence when R∗� 1. As a result, the 1/2 power-law
scaling for the inertia-dominated regime was confirmed by many
experimental (2, 3, 21, 24–26) and numerical (18, 22, 27–29) stud-
ies. The same scaling was also observed for droplet coalescence
on substrate (30–32). In the Stokes regime, the exact solution
of Hopper (15) has been shown to match well with the exper-
iment of Paulsen et al. (33) and the numerical simulation of
Sprittles and Shikhmurzaev (23). However, an intriguing finding
by Aarts et al. (2) and Thoroddsen et al. (3) was that the vis-
cous regime of their experiments is well predicted by the linear
scaling of R∗∼ t∗, which was also corroborated by other studies
(4, 19, 25). The apparent inconsistency in the different viscous
scalings was clarified by Paulsen et al. (33) who pointed out that
the viscous regime should begin with an inertially limited viscous
regime, which satisfies the linear scaling, and then be followed
by a Stokes regime satisfying Hopper’s solution if the viscosity is
sufficiently large.

Meanwhile, research attention has been given to the crossover
(or transition) from the inertially limited viscous regime to the
inertial regime. We hereinafter refer to this crossover as the

viscous-to-inertial crossover, which originates from the litera-
ture when only 2 coalescence regimes, viscous and inertial, were
believed to exist before the identification of the inertially limited
viscous regime (33). The first direct evidence of the crossover
from R∗∼ t∗ to R∗∼ (t∗)1/2 was reported by Burton and
Taborek (25). By equating the characteristic velocities from the 2
scaling laws, they derived the crossover length, lc ∼µ(R0/ρσ)1/2,
which was later confirmed by Paulsen and coworkers (4, 34), who
further obtained the crossover time, τc ∼µ2(R0/ρσ

3)1/2. With
these time and length scales, Paulsen et al. (4) applied a fitting
curve, (R/lc)−1∼ (t/τc)−1 + (t/τc)−1/2, to collapse the neck
evolutions of distinct viscosities, which points to a universality
in droplet coalescence.

Theory
We provide a derivation to theoretically explore the universal-
ity of the coalescence scaling for the viscous-to-inertial crossover
process. A schematic of the neck between 2 merging droplets
of initial radius R0 is shown in Fig. 1. The neck radius, R, is
defined as the minimum radial distance from the z axis to the
neck. Under capillary-pressure difference, the neck expands out
at a speed of U (t). We assume the flow to be

1) “Quasisteady,” meaning the flow acceleration is mainly asso-
ciated with the convection induced by the neck movement.

2) “Quasiradial,” meaning the neck region can be treated as a
ring of radius R and width 2rR, which is driven by a distributed
and quasiradially directed capillary force (1). The capillary
force is related to 2 principle curvatures, 1/R and−1/rR (29),
with the latter being the effective curvature in the zr plane.
As a result, the flow driven by the outwardly moving neck
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Fig. 1. A zoomed-in schematic of the neck region between 2 merging
droplets. The red and blue contours illustrate the vorticity distribution
localized around the neck.

interface occurs mainly in the radial direction. This is evident
from the simulated flow field by Paulsen et al. (33), showing
that the streamlines near the neck are predominantly in the
radial direction.

3) “Localized,” meaning the significant velocity gradients or vor-
ticity distributions are restricted to the vicinity of the neck
as illustrated in Fig. 1. This accords with the finding of
Paulsen et al. (4) that the flow extends over a length com-
parable to the neck width rather than the neck radius. Thus,
the main vortical structure has a length of O(rR), and the
origin (point 1) is considered as the far field where the veloc-
ity gradients are effectively zero. According to Paulsen and
coworkers (4, 33), this condition comes naturally for the iner-
tially limited viscous regime, where a Stokes flow is confined
around the neck region, while the bulk fluid in the droplet
is inertia-dominated; however, this is different from the ideal
Stokes regime where the entire droplet is considered to be
viscosity-dominated and inertia-negligible.

4) “Geometrically self-similar,” so that the neck width satisfies
the simple geometric relation, rR/R = tan (θ/2). Under the
coalescence regime of R�R0, we have tan (θ/2)≈ θ/2≈
R/(2R0) and, consequently,

rR
R
≈ R

2R0
� 1, [1]

which is consistent with previous studies (4, 29). It is noted that
this assumption is valid for the inertially limited viscous regime
(33), but not for the Stokes regime, where rR/R has been found
to be higher-order small (1, 15).

Assumptions 3 and 4 dictate that the present theory does
not apply to the Stokes regime. For the axisymmetric and
quasisteady flow, the Navier–Stokes equation in the r direction is
expressed as

ρ(uz∂zur + ur∂rur ) =−∂rp +µ
[
∂2
z ur + ∂2

r ur + ∂r (
ur

r
)
]
, [2]

where uz and ur are the velocity components in the z and r
directions, respectively, and p is the pressure. Along the r axis,
uz and ∂zur are all zeros owing to the condition of symme-
try, so the term uz∂zur vanishes in Eq. 2. We now integrate

Eq. 2 along the r axis from point 1 (r = 0, z = 0) to point 2
(r =R, z = 0) as∫

1→2

[
1

2
ρ∂ru

2
r + ∂rp−µ

(
∂2
z ur + ∂2

r ur + ∂r (
ur

r
)
)]

dr

=
1

2
ρU 2 + p2− p1−µ

(∫ R

0

∂2
z urdr + (∂rur )|2 +

U

R

)
= 0,

[3]

where the subscripts 1 and 2 denote the quantities associated
with points 1 and 2, respectively. In attaining Eq. 3, we have
also applied (ur )|1 = 0 according to the axisymmetric condi-
tion, (∂rur )|1 = 0 following assumption 3, and (ur )|2 = U (t)
by definition. As the present theory concerns the coalescence of
liquid droplets in a gaseous environment, the liquid–gas inter-
face can be treated as a free surface, across which the capillary
pressure jump is p∞− p =−2µn · S · n +σκ (35), where p∞ is
the ambient gas pressure, n and κ are the unit normal vec-
tor and curvature of the interface, respectively, and S is the
rate-of-strain tensor. Accordingly, the pressures at the far-side
droplet and the neck satisfy p∞− p1 =−2σ/R0 and p∞− p2 =
−2µ(∂rur )|2 +σ(1/rR − 1/R), respectively. Here, p1 serves as
the pressure at the far-side droplet according to assumption 3.
Subtracting the 2 equations yields p2− p1 =−σ(1/rR − 1/R +
2/R0) + 2µ(∂rur )|2, which can be plugged into Eq. 3 to obtain

1

2
ρU 2−σ

(
1

rR
− 1

R
+

2

R0

)
−µ

(∫ R

0

∂2
z urdr + (∂zuz )|2 +

2U

R

)
= 0.

[4]

Note that the continuity equation, ∂zuz + ∂rur + ur/r = 0, has
been used in the above derivation.

The quasiradial assumption 2 implies uz = 0 around point 2
and further (∂zuz )|2 = 0 in Eq. 4. Furthermore, ∂2

z ur can be
expressed as

∂2
z ur ≈

(∂zur )|z=rR − (∂zur )|z=0

rR
=

(∂ruz +ω)|z=rR

rR
, [5]

with (∂zur )|z=0 = 0 by axisymmetry and ω= ∂zur − ∂ruz being
the vorticity. Eq. 5 essentially gives a leading-order approxi-
mation based on linearizing the strain rate near the plane of

Fig. 2. The simulated flow field around the neck for a representative case
of Oh = 4. The numerical method is reported in Materials and Methods.

23468 | www.pnas.org/cgi/doi/10.1073/pnas.1910711116 Xia et al.
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symmetry. Integrating Eq. 5 from point 4 (r = 0, z = rR) to point
3 (r =R, z = rR) yields∫ R

0

∂2
z urdr ≈ 1

rR

(
(uz )|34 +

∫ R

0

ω|z=rRdr

)
, [6]

where (uz )|3 and (uz )|4 are negligibly small according to assump-
tions 2 and 3, respectively. For (uz )|3, the continuity equation
gives (∂uz/∂z )|3∼U /R, which amounts to (uz )|3/rR ∼U /R.
For (uz )|4, it must be smaller than ūz , which is the average
uz across the 3–4 interface and is estimated to be O(UrR/R)
by applying the integral form of the continuity equation to the
revolved rectangular 1234. Therefore, both (uz )|3 and (uz )|4 are
bounded by O(UrR/R).

Lacking a priori knowledge of the vorticity field, we seek an
approximation of ω|z=rR based on the computational obser-
vation that in the orz plane, the neck movement induces 2
opposite-sign vortices that are centered around the 2 edges of
the neck, as illustrated in Fig. 2. This physical picture is also con-
sistent with assumption 3. The radial-vorticity decay displayed in
Fig. 2 further implies that the vortex is analogous to a Batchelor
vortex (36) and has a Gaussian vorticity distribution as

ω0(r ′) =
U

rv
e
−
(

r′
rv

)2
, [7]

where r ′=R− r is the radial location relative to the vortex cen-
ter located at the neck interface, and rv is an effective radius of
the vortex core. Eq. 7 is also similar to the Oseen–Lamb vor-
tex (37), which is an analytical solution to the vorticity-diffusion
equation. Recognizing that ω0(r ′) =ω(r) =ω(R− r ′) for z = rR
and 0≤ r ≤R, the integral on the right-hand side of Eq. 6 can be
further derived as

−U

∫ R
rv

0

e
−
(

r′
rv

)2
d

(
r ′

rv

)
=−
√
πU

2
erf

(
R

rv

)
≈−
√
πU

2
, [8]

with R/rv� 1 given by assumption 3 and Eq. 1.
We now plug in Eqs. 6 and 8 to cast Eq. 4 in the form,

1

2
ρU 2−σ

(
1

rR
− 1

R
+

2

R0

)
−µ

(
−
√
πU

2rR
+O(

U

R
)

)
= 0. [9]

Fig. 3. Model validation against experimental data from previous studies
(see Experimental Data in Materials and Methods for detailed parameters).
A close-up of the crossover regime is shown in the Inset plot.

Fig. 4. Validation of the current theory (Eq. 14) against simulated neck evo-
lution for droplets of different viscosities (Oh). Inset plot shows the time
evolution of the simulated neck interface for a representative case with
Oh = 0.0016.

Applying Eq. 1 and balancing the leading-order terms of Eq. 9
yields

ρU 2− 4σR0

R2
+

2
√
πµR0U

R2
= 0, [10]

which can be combined with Ṙ = dR/dt =U to derive

ρṘ∗2L2

T 2
− 2σD0

R∗2L2
+

√
πµD0Ṙ

∗

R∗2LT
= 0, [11]

where D0 = 2R0, R∗=R/L, Ṙ∗= Ṙ/U , and T =L/U , with L,
U , and T being the characteristic length, velocity, and time
scales, respectively.

Paulsen and coworkers (4, 34) showed that by using proper
time and length scales for nondimensionalization, their droplet
coalescence data of various viscosities can be collapsed onto
a single curve, implying the existence of a unified formula for
the viscous-to-inertial combined regimes. Let Eq. 11 be such a
formula, it must be free of dimensional parameters, so we have

ρL2

T 2
=
σD0

L2
=
µD0

LT
, [12]

yielding L=OhD0 and T =µOhD0/σ, where Oh =µ/
√
ρσD0

is the Ohnesorge number. Note that L and T match exactly
with the viscous-to-inertial crossover scales found by pre-
vious studies (4, 25, 34). Accordingly, Eq. 11 takes the
dimensionless form,

Ṙ∗2− 2

R∗2
+

√
πṘ∗

R∗2
= 0. [13]

We can integrate Eq. 13 with the initial condition R∗(t∗= 0) = 0,
where t∗= t/T , to obtain the exact solution,

t∗=

√
πR∗

4
+

√
π

8

[
R∗
√

8R∗2

π
+ 1 +

√
π

2
√

2
sinh−1

(
2
√

2R∗√
π

)]
.

[14]

Eq. 14 readily gives the asymptotic behaviors associated with the
inertially limited viscous and inertial regimes. For the inertial
regime, R∗�

√
2π/4, Eq. 14 yields

Xia et al. PNAS | November 19, 2019 | vol. 116 | no. 47 | 23469
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Fig. 5. Demonstration of the dominant role of Oh in deciding the coales-
cence regimes. All datasets in Figs. 3 and 4 are dyed with a color map based
on log(Oh). To indicate the late-stage development, only data in the range
of 0.1≤ R/D0≤ 0.2 are plotted for each coalescence case.

t∗≈ R∗2

2
√

2
+O(R∗). [15]

For the inertially limited viscous regime, R∗�
√

2π/4, Eq. 14
yields

t∗≈
√
π

4

[
3R∗

2
+

√
π

4
√

2
ln

(
2
√

2R∗√
π

+ 1

)]
≈
√
πR∗

2
+O(R∗2).

[16]

Eq. 16 can be also reduced to the form of R∼ tσ/µ, which is
void of any characteristic length. This can be interpreted that the
physics of the viscous regime is self-similar in an intermediate-
asymptotic sense (38).

Results and Discussion
To evaluate our theory, we first write Eq. 15 in the dimensional
form of R/R0≈ c1(t/τi)

1/2 with c1 = 2, which recovers the 1/2
power-law scaling for the inertial regime. Similarly, Eq. 16 can

be expressed in the dimensional form of R/R0≈ c2t/τv with
c2 = 2/

√
π, which gives the linear scaling relation in the inertially

limited viscous regime. These theoretical coefficients agree rea-
sonably well with c1 = 1.68 and c2 = 1, which were obtained by
empirical fitting (34).

We next validate our theory against experimental data from
literature. Fig. 3 shows existing experimental data of various
Oh , corresponding to a variety of fluid types, such as water,
silicon oil, and glycerol–salt–water mixture, that are of dis-
tinct fluid properties as provided in Materials and Methods. It
is observed that all data tend to collapse onto a single curve,
well predicted by the current theory. Considering the assump-
tions and approximations made in the derivation, the agreement
between theory and experiment is quite satisfactory. The the-
ory also captures the asymptotic behaviors of the data in the
inertially limited viscous and inertial regimes. Specifically, the
R∗∼ t∗ and R∗∼

√
t∗ scaling relations show up as R∗� 1

and R∗� 1, respectively, whereas a clear inflection point can
be identified around R∗∼O(1) and t∗∼O(1) , marking the
transition from viscous to inertial. It should be emphasized
that, although empirical (34) and semiempirical (39) models
exist previously, this work presents a theory that resolves the
unified scaling in the viscous-to-inertial combined coalescence
process.

We now provide further validation of the theory against
droplet-coalescence simulations of various viscosities. The sim-
ulation setup is specified in Materials and Methods. The neck-
interface evolution for a representative case of Oh = 0.0016 is
shown in the inset plot of Fig. 4. Similar simulations were con-
ducted for Oh = 0.0082, 0.0179, 0.0718, 0.1795, 0.8975, and 4.
The corresponding neck-radius evolutions are presented in the
main plot of Fig. 4. It is seen that each simulation dataset
originates from a finite neck radius, causing the simulated
evolution to deviate from the theory at the beginning. Nev-
ertheless, the later-stage coalescence behavior is less affected
by the simulation onset, as each neck-evolution curve gradu-
ally approaches and then follows its designated scaling, showing
that the overall trend of the simulation curves are well captured
by the theory. Similar neck evolution behaviors were also
observed from previous simulations (22, 40). The source of
the discrepancy between simulation and theory could be 2-fold.
The first is directly associated with the onset of the numeri-
cal neck radius being nonzero, which can be translated into a
time offset as if the neck radius were to grow from zero. The
second is related to the initial velocity of the neck, which is

Fig. 6. (A) Computational domain and mesh for the droplet coalescence simulation, with the inset plot showing the zoomed-in grid configuration of the
interface near the initial contact point. (B) Simulated droplet coalescence vs. Thoroddsen et al.’s experiment (3) (Oh = 2.5× 10−3). The main plot compares
the coalescence speed and the subplot images compares the deformation of the droplet interface, with the red-dotted contours representing the simulation
results. Note that the average radius, Rave, of the 2 droplets was used in the original experiment to account for a slight size disparity between the 2 droplets.

23470 | www.pnas.org/cgi/doi/10.1073/pnas.1910711116 Xia et al.
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Table 1. Parameters (D0, ρ, σ, and µ) for the 15 sets of experimental data plotted in Fig. 3

ρ, σ (×10−2), µ (×10−3),
Data source Fluid type D0 (×10−3), m kg m−3 N m−1 Pa·s

1-Aarts et al. (2) Water 4.0 997 7.2 1
2-Aarts et al. (2) Silicon oil 4.0 970 2.0 5
3-Aarts et al. (2) Silicon oil 4.0 970 2.0 20
4-Aarts et al. (2) Silicon Oil 4.0 970 2.0 50
5-Thoroddsen et al. (3) Water 2.2 997 7.2 1
6-Yao et al. (19) Silicon oil 10.0 970 0.9 970
7-Yao et al. (19) Silicon oil 10.0 970 0.9 97,000
8-Fezzaa and Wang (21) Water 1.99 997 7.2 1
9-Paulsen et al. (33) Silicon oil 2.0 970 2.0 58,000
10-Paulsen et al. (33) GSW 4.0 1,200 6.5 230
11-Paulsen (34) GSW 4.0 1,182 8.9 1.9
12-Paulsen (34) Silicon oil 2.2 818 1.7 0.82
13-Paulsen (34) GSW 4.0 1,225 5.5 30
14-Paulsen (34) GSW 4.0 1,230 6.3 230
15-Paulsen (34) Silicon oil 2.2 966 2.1 97

GSW, glycerol–salt–water mixture.

set as zero in the simulation as indicated from Fig. 4; how-
ever, the theory predicts that the neck velocity is nonzero at
the same radius. Therefore, this velocity difference in turn
causes additional difference in the neck evolution. It should be
noted that the precise setup of initial condition in both simula-
tion and theory requires information about droplet “touching”
at earlier times and smaller scales. Whether such “very-early”
droplet coalescence can be resolved in the framework of con-
tinuum mechanics is questionable and beyond the scope of the
present work.

Furthermore, this theory suggests that R∗=R/(OhD0) is
a criterion segmenting the different coalescence regimes.
Although it involves both R/D0 and Oh , for different fluids,
Oh is the parameter that eventually decides whether the iner-
tial regime could arrive. This is evident from Fig. 5, showing
that data in the inertial regime generally corresponds to Oh� 1
and vice versa. This criterion has important practical use. For
example, Aarts et al. (2) considered Data 3 (20 mPa s silicon
oil) and Data 4 (50 mPa s silicon oil) to be within the inertial
regime, whereas Fig. 3 clearly shows that Data 3 mainly cov-
ers the crossover regime and Data 4 extends from the inertially
limited viscous regime to the crossover regime.

In summary, this study presents a unified theory to support
the prominent scaling laws as well as the crossover behaviors
observed from previous experimental studies of binary droplet
coalescence. There are a few key innovations that are crucial
to the development of this theory. The first one is integrating
the governing Navier–Stokes equation along the radial direction
to connect the local movement of the neck to the dynamics of
the bulk droplet. This enables us to resolve the inertially lim-
ited viscous regime, which is locally viscous but inertially driven
in a global sense. The same approach could be useful in solving
other similar crossover problems that involve different physics at
different scales. The second innovation is converting the veloc-
ity gradients to vorticity, which provides a more physical picture
of the “localized flow” around the neck region. Based on the
updated vortex-dynamical perspective, the third innovation is
to apply the Batchelor vortex model to account for the neck
vortices. These innovations together result in the quantitative
estimation of the scaling parameters, which is a unique contri-
bution of this work and is beyond the capacity of a simple scaling
analysis. However, as the present theory does not concern the
Stokes regime, future work is required to address the transi-
tion between the inertially limited viscous regime and the Stokes
regime.

Materials and Methods
Numerical Approach. Numerical simulation was adopted to help understand
the detailed physics of droplet coalescence and could produce data of arbi-
trary properties that would not be easily obtained by experiment. To this
end, the volume of fluid (VOF) simulation (41, 42) was implemented using
the open source code Gerris (43, 44). This numerical approach has been
demonstrated to be suitable for multiphase flow involving the dynamics of
droplets (12, 45–51).

The simulation setup for the coalescence of 2 equal-sized droplets is illus-
trated in Fig. 6A. It is noted that the present study concerns the situation
where the density and viscosity of the gas phase are orders of magnitude
smaller than those of the liquid phase and that the droplets are assumed
to be initially stationary and touching with each other, so no gas film effect
(7, 52, 53) is involved. Thus, the density and viscosity ratios have negligi-
ble effect on the coalescence result, and the only controlling parameter
is the nondimensional liquid viscosity, known as the Ohnesorge number,
defined as Oh =µ/

√
ρσD0. A major challenge here is reducing the initial

neck radius R upon the touching of 2 droplets at t = 0. R(t = 0) is nonzero in
this simulation because the numerical interface is represented by finite lay-
ers of grid cells in the VOF framework. To this end, we have employed the
adaptive mesh refinement (43, 44) to bring down the initial neck radius,
R/D0, to the order of O(10−3). Fig. 6B presents a validation case, which
compares our simulation with Thoroddsen et al.’s experiment (3) of water
droplet coalescence in air. The main plot compares the coalescence speed of
the neck radius, showing a generally good agreement between the numer-
ical prediction and the experimental data. Furthermore, the subplot images
also demonstrate that in an evolution sequence our simulated droplet inter-
faces, which are marked with the red-dotted contours, all match well with
the experimental droplet profiles.

Experimental Data. This work collects the experimental data of previous
droplet coalescence studies for model validation. Specifically, Data 1 to
Data 4 were from Aarts et al. (2), Data 5 from Thoroddsen et al. (3), Data
6 and Data 7 from Yao et al. (19), Data 8 from Fezzaa and Wang (21),
Data 9 and Data 10 from Paulsen et al. (33), and Data 11 to Data 15
from Paulsen (34). These correspond to a variety of fluid types, such as
water, silicon oil, and glycerol–water–NaCl mixture, that are of distinct fluid
properties. The diameter of the droplet D0, the density ρ, the surface ten-
sion coefficient σ, and the dynamic viscosity µ for the 15 sets of data are
reported in Table 1.

Data Sharing. The data reported in this study were obtained through
numerical simulation, as specified in Numerical Approach. The entire dataset
for generating Figs. 2, 4, and 6 have been deposited in the Figshare database
(54) and shared with the public.
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