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Abstract:

The role of liquid viscosity on droplet spreading behavior upon impacting on a smooth stainless steel 

surface has been experimentally investigated. Results show the droplet spreading dynamics with 

increasing viscosity (characterized by the Ohnesorge number, Oh) exhibits complex dependence on 

the impact inertia (characterized by Weber number, We). Specifically, for a small impact inertia 

(We<30), the droplet oscillates in the vertical direction around the maximum height Ha. The non-

dimensional maximum diameter βmax first increases and then decreases with increasing Oh, and this 

non-monotonic phenomenon has not been reported previously. For an intermediate impact inertia 

(60<We<240), the droplet has no oscillation after it spreads to βmax, and it has the form of a rim-

bounded lamella. Although βmax shows a monotonic decrease with increasing Oh,  some unsmooth 

disturbance around the rim occurs only at intermediate Oh. For a higher impact inertia (We>240), 

droplet splashing emerges and then vanishes with increasing Oh, although βmax still decreases 

monotonically. All the observed phenomena imply that liquid viscosity may have a dual role in 

affecting the droplet spreading, which previous models of βmax do not take into account. 
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1. Introduction

The impact of a single droplet on a solid surface or a thin-film is frequently observed in nature 

and industry processes, such as the aerosol generation from raindrops hitting soil (Joung and Buie, 

2015), the blade erosion by high inertia droplet impact on steam turbines (Zhang et al., 2017), the 

extraction of useful information by police experts from bloodstains (Hulse-Smith et al., 2005; Smith 

et al., 2018), droplet splashing blemishes ink-jet printing (Martin et al., 2008). As for combustion 

engines, the impact of fuel droplets on the intake port, back of the intake valve, or even combustion 

chamber to form a thin liquid film is inevitable because of the limited space for mixture formation. 

Such a film deposit reduces the near wall fuel evaporation rate, especially at cold start condition, and 

ultimately increases the emission of unburned hydrocarbon and soot particles. 

The droplet-wall impact outcome and spreading phenomenon are expected to be influenced by 

the properties of droplets (density ρ, viscosity µ, surface tension σ, droplet diameter D0, and velocity 

U0), the wall conditions (cold/heated, dry/wet, contact angle, roughness, etc.), and the surrounding gas 

(pressure, molecular weight, etc.). Weber number (We=ρD0U0
2/σ) and Ohnesorge number 

(Oh=µ/(ρD0σ)1/2), which respectively measures the ratio of inertia and viscous force over the surface 

tension force, are typically used to describe the complex impact outcomes such as spreading and 

rebound (without secondary droplets), prompt, fingering, corona and thin sheet splashing (with 

secondary droplets), as reviewed in a few previous papers (Josserand and Thoroddsen, 2016; Moreira 

et al., 2010; Rioboo et al., 2001; Yarin, 2006). 

For droplet impact on dry and cold surfaces, as far as the spreading outcome being concerned, 

several experimental and theoretical investigations have been conducted, in terms of descriptions of 

the spreading phenomenon (Bayer and Megaridis, 2006; Laan et al., 2014; Lee et al., 2016a; Lee et al., 

2016b; Pasandideh‐Fard et al., 1996; Seo et al., 2015; Ukiwe and Kwok, 2005; Vadillo et al., 2009) 

and the evolution of the normalized spreading diameter β  (Bayer and Megaridis, 2006; Laan et al., 
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2014; Lee et al., 2016a; Pasandideh‐Fard et al., 1996; Vadillo et al., 2009), empirical or theoretical 

models of the maximum spreading diameter βmax (Bayer and Megaridis, 2006; Laan et al., 2014; Lee 

et al., 2016a; Roisman, 2009; Wildeman et al., 2016) and their parametric dependence (Josserand and 

Thoroddsen, 2016; Moreira et al., 2010; Yarin, 2006).

Specifically, the spreading process upon impact is usually divided into several stages, namely the 

kinematic, spreading, relaxation and equilibrium stage (Rioboo et al., 2002). For the kinematic stage 

(β<1), the evolution of β is barely influenced by surface roughness, We or Oh, and simply evolves 

with the square root of the normalized time τ . 

In the subsequent spreading stage (1<β<βmax), various parameters begin to affect the spreading 

dynamics in terms of the droplet deformation and the evolution of β. For instance, the droplet typically 

spreads out in a rim-bounded lamella, and β increases with τ. Generally, larger We and smaller Oh 

result in the acceleration of β because of the higher inertia and smaller viscous dissipation (Lee et al., 

2016b; Tang et al., 2017; Vadillo et al., 2009). Influence of wettability on the evolution of β was only 

observed for very hydrophobic surfaces during the final stage of spreading (Rioboo et al., 2002). 

Surface roughness was found to slightly reduce the evolution of β (Tang et al., 2017) and the number 

of fingers (Range and Feuillebois, 1998). Lower ambient gas pressure delays the appearance of the 

thin sheet and suppresses fingering (Xu et al., 2005). The development of fingers during the spreading 

and the model prediction of the number of fingers were studied in the context of Rayleigh-Taylor 

instability (Allen, 1975; Bhola and Chandra, 1999; Thoroddsen and Sakakibara, 1998; Vu et al., 2011; 

Yarin, 2006). These studies investigated the occurrence of thin sheet and the mechanism of such 

instability at the rim of the droplet during spreading.  

After reaching βmax, the droplet may contract back (β decreases) or its periphery is fixed at βmax. 

Excess kinetic energy keeps on dissipating through relaxation and finally reaches equilibrium. Banks 

et al. (2014) investigated the effect of droplet impact velocity, viscosity and solid surfaces on the 
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oscillation frequency and initial amplitude. They found that the increase of impact velocity restricts 

the oscillation and that the effect of viscosity on the oscillation frequency and amplitude depends on 

the surface material. Lin et al. (2018) analyzed the oscillation with the damped harmonic system and 

interpreted the effects of liquid viscosity and surface wettability on the oscillation by scaling analyses. 

Different models have been proposed to predict βmax. The scaling law of βmax~(Re2Oh) (Bayer 

and Megaridis, 2006; Scheller and Bousfield, 1995; Seo et al., 2015)  and the Padé approximation 

(Laan et al., 2014; Lee et al., 2016b) were widely used. Roisman (2009) developed an analytical self-

similar solution which satisfies the Navier-Stokes equation. Models based on energy conservation, 

which consider the energy conversion from kinetic energy to surface energy and to viscous dissipation, 

mainly focus on the estimation of viscous dissipation during the droplet spreading (Chandra and 

Avedisian, 1991; Pasandideh‐ Fard et al., 1996; Ukiwe and Kwok, 2005; Vadillo et al., 2009). 

Wildeman et al. (2016) found that approximately one-half of the initial kinetic energy is transformed 

into surface energy for high impact velocities and free-slip surface. As for no-slip surface condition, 

the head loss can be added into the total dissipation as one-half of the initial kinetic energy. The 

prediction of viscous dissipation during the spreading plays vital role in the models based on energy 

conservation, and the time when the droplet reaches its maximum spreading diameter tmax has been 

extensively studied and refined by different approach (Chandra and Avedisian, 1991; Gao et al., 2018; 

Lee et al., 2016a; Pasandideh‐Fard et al., 1996).

Viscosity is an important and fundamental element in fluid mechanics, which also significantly 

influences the spreading process and splashing patterns. Xu et al. (2005) found the non-monotonic 

effect of viscosity on the splashing threshold pressure, but the effect of viscosity on spreading has not 

been investigated sufficiently. In addition, most of the previous work were focused on the relatively 

high impact inertia, and show that increasing viscosity suppresses the evolution of β. The first objective 

of this work is then to systematically investigate the effect of viscosity on the impact behavior and the 

evolution of the spreading diameter, over a wide range of We. We will show that less viscous liquid 
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does not always promote the evolution of β. In addition, the previous empirical or theoretical 

correlations on βmax are based on the experimental data from various pure liquids with simultaneously 

varying surface tension and viscosity, which make it hard to decouple the influence of viscosity from 

that of surface tension. Thus the second objective of this work is to provide a mapping of βmax with a 

wide range of viscosity for different impact inertia, but with negligible change of surface tension. 

Finally, the previous models on βmax will be compared with the present experimental data to evaluate 

their validity range, and theoretical considerations for future modelling will be discussed. In the 

following text, the experimentation will be specified in Section 2, followed by the phenomenological 

descriptions of droplet impact with emphasis on the viscosity effects, in Section 3. Quantitative 

description of the viscosity effects on the spreading behavior will be discussed in Section 4, and the 

empirical correlations on βmax will be compared and analyzed in Section 5.

2. Experimental specifications 

2.1 High-speed Imaging System

The experimental system used in the present study has been described in great detail in our 

previous work (Tang et al., 2017) and will be briefly summarized as follows. The droplet impacting 

process is recorded by a phantom V611 high-speed camera attached by a long focus microscope, 

operating at 10,000 fps with a 1104×504 pixel resolution. The camera is tilted by 15° to get information 

about the horizontal surface morphology, such as the fingering disturbance and thin sheet. The vertical 

velocity is corrected with the cosine value of 15°. The droplet is released from different height, 

resulting in variation of the impacting velocities ranging from 0.5 m/s to 4.1 m/s. The surface used in 

the present experiment is smooth (Ra=0.025µm) stainless steel. 

2.2 Characterization of droplet
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The experiments were conducted with different glycerol solutions with viscosity µ varying from 

1.6 mPa·s to 25.08 mPa·s. Other typical properties of the liquids are presented in Table 1. Figure 1 

presents the non-dimensional surface tension, viscosity and density of glycerol solutions. The density 

and surface tension of these glycerol solutions are nearly constant, and the viscosity changes more than 

one order of magnitude. Two non-dimensional parameters will be used to describe the droplet 

dynamics, namely the Weber number We=ρD0U0
2/σ and the Ohnesorge number Oh=μ/(ρσD0)1/2. The 

estimated maximum error in the droplet shape is about 2 pixels (equivalent to 0.02 mm with a 0.01 

mm/pixel spatial resolution). Consequently, the uncertainty of D0 is about ± 0.04 mm, and that of U0 

is less than 2%. As a result, the relative error of the Weber number, ∆We/We = ∆D0/D0 + 2∆U/U, is 

less than 6%. Correspondingly, non-dimensional maximum spreading diameter is βmax=Dmax/D0 and 

the non-dimensional time is τ = tU0/D0. 

The test ranges of Oh and We are presented in Figure 2. As the cases of the least and the most 

viscous liquids, the 10%  and 70% glycerol solutions did not result in droplet splashing until We=726 

(roughly the maximum We that could be achieved in the experiment). For other glycerol solutions, 

splashing is observed when We is sufficiently large.

3. Phenomenological descriptions on viscosity effects

In our previous work (Tang et al., 2017), we have identified different stages of spreading upon 

impact of a droplet on stainless steel solid surface that characterize the spreading behavior, namely the 

kinematic, spreading, relaxation and equilibrium stage, with emphasis on the effect of surface 

roughness. In this work, we focus on the effect of viscosity on the phenomenological impact behavior, 

during those identified stages, on a smooth solid surface at small, intermediate and large impact inertia 

cases.

3.1 Representative cases at a small Weber number
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Figure 3 shows the images of droplet impact process at a relatively low We (We≈13). Both 

dimensional and non-dimensional spreading time are presented in the figure. 

At the kinematic stage (β<1), there is barely a difference in droplets with varied Oh. At 0.5ms, 

the top of the droplet keeps spherical and the bottom of the droplet has already contacted with the 

surface and formed a liquid film. 

At the spreading stage (1<β<βmax), there are some horizontal ripples (capillary waves) that 

propagate from the wall to the top of the droplet, as shown in the images at 2ms. This kind of capillary 

wave propagation is consistent with the experimental observation by Bayer and Megaridis (2006). In 

addition, at this spreading stage, the viscosity begins to play a role in the spreading process. At 

different Oh, the droplet spreads at different velocity and eventually results in a quite different βmax. 

The time instant when the droplet reaches βmax is defined as tmax and marked in the figure. Interestingly, 

βmax first increases and then decreases with increasing Oh; the same non-monotonic variation occurs 

for tmax. 

At the relaxation stage (t>tmax), droplet oscillation is observed. Part of the rim returns to the center 

of the droplet after reaching βmax, and then spreads to the rim again with a little change in the horizontal 

direction but with a remarkable change of the height of droplet center in the vertical direction. This 

behavior is evidently different from a simple interface retraction. The droplet at Oh=0.0038 reaches 

the oscillating apex at 11.3ms, 23.6ms, 35.3ms and 43.5ms, respectively. The time to reach the 

oscillating apex for the first time is defined as ta and marked in the figure, the height of the apex at ta 

is defined as Ha. It is seen that ta first increases and then decreases with increasing Oh, also indicating 

the non-monotonic effect of viscosity. At final stage when all the kinetic energy is dissipated, the 

droplet exhibits as a spherical cap shape. Further quantitative analysis and underlying physics will be 

discussed in detail in Section 4.

3.2 Representative cases at intermediate Weber numbers
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Figure 4 shows images of droplet impact process with varied viscosity at We≈ 60. Droplet 

oscillation is significantly suppressed and is only observed at a relatively high Oh (Oh=0.0592). 

Images of β < 1 are not shown since at these We, only one or two images are captured during the 

kinematic stage. During the spreading stage, as it is different from the cases at We≈13, no propagating 

ripples are observed for these cases. In addition, both tmax and βmax change monotonically with the 

increase of Oh. Viscosity significantly reduces tmax (correspondingly, τmax ) from 4.9ms(2.4) at 

Oh=0.0038 to 2.8ms(1.4) at Oh=0.0592. During the spreading, the rim of the droplet remains smooth 

with no visible disturbance. The thickness of the rim increases with the increase of Oh (de Ruiter et 

al., 2010), but this is hardly visible in this work because of the 15° tilted camera view. At the final 

equilibrium stage, unlike the small We cases, the droplet does not show any oscillation. 

To further investigate the impact characteristics at intermediate We, Figure 5 shows the impact 

images at We≈200. At 0.5ms, the droplet keeps spherical away from the surface and its impact 

interface already forms a liquid film. The droplet oscillation is not visible at this We; the rim of the 

droplet becomes thinner, which is consistent with the previous observation (Wang et al., 2018). 

Compared with the cases at We≈60, both tmax and τmax are reduced at We≈200. It still takes shorter time 

for glycerol solution with higher viscosity to reach smaller βmax. 

Another non-monotonic phenomenon with the increase of Oh is observed. At Oh=0.0287, a thin 

sheet, which is much thinner than the rim and is levitated from the surface appears between the rim 

and inner droplet at 0.5ms and then leads to an instability at 1.5ms. This observation is consistent with 

that in the previous study (Driscoll and Nagel, 2011). However, such a thin sheet is absent at higher 

Oh (Oh=0.0592), and the rim tends to be stable again. Partially enlarged images is presented as Figure 

5b for better comparison. Similar non-monotonic phenomenon of viscosity was observed in the 

previous study of Vu et al. (2011), where they compared the splashing characteristics of glycerol 

solution droplets with different viscosity. 
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3.3 Representative cases at high Weber number

The presence of a thin sheet is more pronounced at higher We as presented in Figure 6 for We≈

400. At 0.3ms, which is the very beginning of spreading, no thin sheet is observed at Oh=0.0038. At 

Oh=0.0070, the edge of the droplet has a distinct thin-sheet inclined to the wall, with a finger protrusion. 

The thin sheet becomes more pronounced at Oh=0.0166 but with a smaller finger-like protrusion. At 

Oh=0.0287, the less obvious thin sheet is almost attached to the solid surface, and it is difficult to 

observe at Oh=0.0592. 

At 0.4ms, both the droplet and the thin sheet keep outspreading, and there is still no thin-sheet or 

any disturbance at Oh=0.0038. The thin sheet at Oh=0.0070 breaks up and produces many smaller 

secondary droplets, while it still remains stable and does not break at Oh=0.0166, Oh=0.0287 and 

Oh=0.0592. 

The droplets at Oh=0.0166 and Oh=0.0287 splash at 0.8ms. Although the splashing patterns and 

the influence of viscosity on the splashing dynamics are not the focus of this work, we do need to 

mention the splashing outcome because it is only observed at intermediate Oh numbers. In general, 

the result of the droplet impact changes from deposition (Oh=0.0038) to thin sheet splashing 

(Oh=0.0070, 0.0166, 0.0287), and then to deposition again (Oh=0.0592). 

Droplet splashing is a complex phenomenon that has not been fully understood (Josserand and 

Thoroddsen, 2016). The classical splashing threshold (Mundo et al., 1995; Stow and Hadfield, 1981) 

is given by Kcr=WeRe1/2>3000, which can be rewritten by Kcr=We5/4Oh-1/2 by using the relation 

Re=We1/2Oh-1. Considering Oh=0.0038, 0.0070, 0.0166, 0.0287 and 0.0592 in the present experimental  

investigation, we can estimate the corresponding threshold Wecr=Kcr
4/5Oh2/5 for observing droplet 

splashing by are 65, 83, 117, 146 and 195, respectively. This estimation is roughly consistent with the 

observation that the most viscous liquid (Oh=0.0592) results in deposition. However, there is no 

splashing for the droplet with smallest viscosity (Oh=0.0038), implying that the critical Weber number 

decreases and then increases with increasing Oh. A number of power laws in the form of Kcr=AWeaOhb 
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were summarized in the review (Moreira et al., 2010), but none of them implies the non-monotonic 

emergence of droplet splashing with increasing Oh. A possible explanation is that the existing scaling 

laws do not consider the different splashing types (e.g. prompt and thin sheet splashing) for different 

droplet viscosity. Another possible explanation to the present observation is proposed as follows. 

The earlier work of Xu et al. (2005) has reported that “a more viscous liquid splashes more easily 

than a less viscous one”. They attributed this to the decreased capillary pressure on the spreading liquid 

layer with increasing liquid viscosity, as . The range of Ohnesorge number Σ𝐿 = 𝜎/𝑑 = 𝜎/ 𝜈𝐿𝑡

(Oh=0.0024-0.0083) in which they observed the phenomenon is consistent with that in the present 

study (Oh=0.0038-0.0103). Furthermore, we note that further increasing liquid viscosity would 

eventually suppress the splashing by stabilizing the growing unstable waves (Matas, 2015; Naraigh 

and Spelt, 2018). Consequently, visible splashing is not observed for the case of We=400 and 

Oh=0.0592 and may appear at higher We. Further quantitative analyses for the appearance and 

disappearance of splashing and for the transition from prompt to thin sheet splashing with increasing 

Oh are beyond the scope of the present study and certainly deserve more future efforts. 

4. Viscosity effects on spreading dynamics

4.1 Evolution of spreading diameter and center height 

Figure 7 shows the evolution of β at three representative Weber numbers (13, 200 and 400) and 

various Oh. At the kinematic phase (β<1), β increases as approximately β∼3τ 0.57, which is consistent 

with the previous observation of Rioboo et al. (2002). There is almost no difference in β among various 

Oh, rendering a seemingly “Oh-independent” stage where the spreading process can be completely 

described by the impact velocity U0 and initial diameter D0. This phenomenon can be understood by 

recognizing that the droplet impact velocity has not been substantially decelerated at the early stage, 

so the characteristic velocity is approximately equal to U0 and Re can be roughly estimated as 

Re=We1/2Oh which is about O(102)-O(104) for the cases in Figure 7. For such high Reynolds numbers, 
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the viscous dissipation is evidently negligible and the early stage is characterized as “inviscid” or 

“kinematic”. In the following stage, the droplet has been extensively spread out, and the significantly 

reduced droplet velocity results in much smaller Re and therefore significant viscous effects. 

Consequently, the difference in viscosity begins to affect the spreading process. 

At We≈13, the droplet at Oh=0.0070 spreads faster but reaches βmax at a later time, which is 

consistent with the non-monotonic effects of viscosity on ta as presented in Figure 3. The spreading 

diameter β of the droplet at Oh=0.0038 significantly decreases after reaching its βmax. For droplets at 

Oh=0.0070 and Oh=0.0592, the increased viscosity makes the droplets harder to retract than the droplet 

at Oh=0.0038. 

Figure 8 shows the normalized height of droplet center hc* (hc*=hc/D0) as a function of 

normalized time τ  at different We and Oh. It is noted that there is barely any difference for glycerol 

solution with varied viscosity and We, even for glycerol solution of Oh=0.0070 at We≈400 which 

splashes. The correlation of central height hc* proposed by Roisman et al. (2009) can well predict the 

present experimental data for τ <0.4, when the droplet impact is in “the first non-viscous regime” 

characterized by hc*=1-τ (Roisman et al., 2009). However there is some deviation of “the second non-

viscous regime” characterized by hc*=0.39(0.25+τ)-2 from the present experimental data for τ >0.7. It 

is also noted that the time instant τviscous, which indicates the beginning of “the third viscous regime” 

is undetermined in Roisman et al. (2009)’s model. Lagubeau et al. (2012) also proposed three regimes 

about the height of the droplet center. The model is same with that of Roisman et al. (2009) in “pressure 

impact regime (τ<0.5)” and similar in “self-similar inertial regime (0.5<τ < τp)”. By using this model, 

the beginning of “Plateau regime (τp < τ)” as τp is approximately 3.3 for the droplet at Oh=0.0038 and 

We=13, which indicates that the data presented in Figure 8 is in the first and second regime.

4.2 Maximum spreading diameter and oscillation of droplets
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Figure 9 shows the effect of Oh on βmax for different ranges of We. At relatively low We, βmax 

changes non-monotonically with increasing Oh. At We≈13, βmax first increases from 1.92 for the 

droplet at Oh=0.0038 to 2.28 for the droplet at Oh=0.0070. After that, βmax decreases just as the 

tendency at higher We and ends with 1.55 for droplet at Oh=0.0592. At We≈30, βmax also changes 

non-monotonically with the increase of viscosity with the peak at Oh=0.0070. This non-monotonic 

variation of βmax with viscosity has not been reported in the literature and is highly repeatable by 

conducting the experiment for many times and many new patches of glycerol solution. At intermediate 

We, although the disturbance at the rim is influenced non-monotonically by viscosity, the βmax still 

simply decreases with increasing Oh as shown at We≈60,100 and 200 in Figure 9. At higher We 

(We≈400) for the cases with Oh=0.0052, 0.0070, 0.0104, 0.0166 and 0.0287, the droplet keeps 

spreading after the thin-sheet breaks up and generates secondary droplets. The remaining part of the 

edge is still smooth and kept spreading, so we use the hollow dots to present βmax of the splashing 

cases, which is also decreased with the increase of viscosity.

Oscillating process of the droplet after contacting the surface has been presented and described 

in Figure 3. Since higher impact velocity reduced the amplitude of oscillations as illustrated by Banks 

et al. (2014), such phenomena is only observed for glycerol solution at quite small We (We≈13 and 

30). Figure 10a shows the non-dimensional the height of the apex at ta, Ha*=Ha/D0 for different 

proportion of glycerol solution. Figure 10b shows the non-dimensional time ta* when the droplet 

reaches the first apex of oscillation, ta*=taU0/D0 for different proportion of glycerol solution. 

5. Correlations on predicting βmax 

5.1 Descriptions of Previous Models

In previous studies, there are three approaches for βmax correlation: scaling law, energy 

conservation, and momentum conservation, as summarized in Table 2. In the approaches based on 
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scaling law, a large number of data under different conditions with various liquids are used in order to 

get the model which fits other experiments. The scaling law of βmax ~(Re2Oh) is used by Bayer and 

Megaridis (2006), Seo et al. (2015) and others. Laan et al. (2014) successfully described their data by 

a model using the Padé approximation. Lee et al. (2016b) modified the model of Laan et al. (2014) by 

introducing the non-dimensional maximum spreading diameter of the droplet impacting the surface at 

the vanishing velocity. Clanet et al. (2004) proposed different models for liquids at viscous and 

capillary regime.

In an approach based on momentum conservation, Roisman (2009) studied the description of the 

viscous flow of the unstable laminar flow in the film during the droplet spreading process, and obtained 

the self-similar solution of the viscous flow satisfying the Navier-Stokes equation. Then he proposed 

a model of βmax by using the expression of the boundary layer thickness in the theoretical results.

In the approaches based on energy conservation, the kinetic energy EK1 and surface energy ES1 of 

the droplet before the impact are transformed into the surface energy ES2 and the viscous dissipation 

Ediss after the droplet impacts the surface and reaches βmax, rendering the energy conservation equation 

Ek1+ES1=Ediss+ES2. Ek1 and ES1 are usually calculated by π/12ρU0
2D0

3 and πD0
2σ, respectively.  For the 

surface energy at βmax, most of the previous studies assume ES2=0.25πDmax
2σ. The viscous dissipation 

term Ediss typically scales as ΓΩ tmax, where Γ is the mean value of the viscous dissipation energy per 

unit time and volume,  Ω is the volume where viscous dissipation occurs, and tmax is the time at the 

maximum spreading diameter. Γ and  Ω is often assumed to be µ(U0/δ)2 and π/4Dmax
2δ, respectively, 

where δ is the boundary layer thickness. 

The prediction for tmax is very different in various models. Chandra and Avedisian (1991) assumed 

that tmax =D0/U0 as the time for the droplet height h going from its maximum value of D0 to 0 at velocity 

U0. Pasandideh‐Fard et al. (1996) modified tmax by estimating velocity at the edge of the splat during 

spreading VR based on mass conservation and get tmax =8/3D0/U0. Lee et al. (2016a) assumed that tmax 
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scales with Dmax/Vi instead of with D0/Vi, and proposed tmax =(σliquid/σwater) Dmax/V0. Wildeman et al. 

(2016) found that tmax =(βmax -1)D0/U0 fitted their simulation data quite well. Lin et al. (2018) 

successfully collapsed all the experimental data into one curve by normalizing the spreading time with 

the modified capillary-inertial time and obtained tmax =0.92We-0.43 (ρR3
max/σ)0.5. Wildeman et al. (2016) 

conducted numerical and theoretical studies on energy dissipation during the spreading and found that 

approximately half of the kinetic energy is converted to surface energy, being independent of the 

detailed parameters of the collision parameters and energy losses for high-impact wall velocities and 

collisions. Their model assumed the total dissipation Ediss includes the dissipation in the boundary layer 

 and the head loss , , and  is equals to half of the initial kinetic energy BL
dE H

dE H BL
diss d dE E E= + H

dE

according to the “1/2 rule”. 

5.2 Predictions of Previous Models

Figure 11 presents normalized measured time τmax of droplets with varied We and Oh, and is 

compared with normalized measured time τmax from some of above mentioned models. Apparently, 

τmax is significantly reduced at higher impact velocity U0 as indicated by the previous models. Chandra 

and Avedisian (1991) and Pasandideh‐Fard et al. (1996)’s models do not account for the effect of 

viscosity, which is manifest in the present experimental data. The τmax also changes non-monotonically 

with the increase of viscosity as well as βmax and Ha*. Lin et al. (2018) and Wildeman et al. (2016)’s 

models can reflect the effect of viscosity to a certain extent, but have some deviations compared with 

the present experimental data. It can be seen that, for the models based on energy conservation, τmax 

needs to be further improved for estimating the viscous dissipation during the droplet spreading.

Figure 12 presents the empirical fitting of βmax of droplets at different Oh based on several models 

at We≈13, 200 and 400. At We≈13, none of the models can exactly capture the non-monotonic change 

of βmax with the increasing Oh. At We≈200, both Lee et al. (2016b) and Wildeman et al. (2016)’s model 
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show good prediction of βmax for glycerol solution with different viscosity. At We≈400, the βmax of 

splashing cases are presented by measuring the smooth edge of the remaining part of the droplet after 

splashing, it’s noted that Lee et al. (2016b) and Wildeman et al. (2016)’s models still predicted βmax 

well. 

Figure 13 shows the deviations of the predictions from different models on βmax. Models based 

on energy conservation are shown in Figure 13a, and models based on scaling law or momentum 

conservation are presented in Figure 13b. The deviation is calculated by  for 
1

/
max_model

n
i i
max_exp

i
nβ β

=

−∑

droplet with n data points. Most of the models based on scaling law is clearly restricted by the liquid 

used in the original model. Seo et al. (2015)’s model is based on ethanol, isooctane and gasoline, which 

all have small surface tension, doesn’t fit the data of glycerol solution well and has the deviation of 

larger than 12%. Lin et al. (2018) proposed four reasons why most models based on mass and 

momentum conservation are inaccurate, which still apply to following models and explained why some 

models do not fit well with glycerol solution. Among these models, the model of Wildeman et al. (2016) 

and Lee et al. (2016b) fit the experimental values with smallest deviation which is less than 5%. We 

note that at small We cases, all models in Table 2 do not qualitatively predict the non-monotonic 

dependence of βmax on Oh, so the data set at We ≈13 and 30 are not included Figure 13.

5.3 Theoretical Considerations for Future Modelling

The model of Wildeman et al. (2016) fits our experimental data with a mean error being less than 

5% for We>30. Wildeman et al. also numerically demonstrated that their model, especially the “1/2 

rule”, is only suitable for We>30. This results in the relatively large deviation of the model from the 

present experimental data at We≈13, as shown in Figure 12a. For future modelling efforts, some 

theoretical considerations are presented in the following. 
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The difficulty of establishing a predicting model for droplet spreading below We≈30 roots in the 

absence of an asymptotically accurate model for droplet shape. As the Weber number increases from 

0 to 30, the droplet shape (at the instant of maximum spreading) resembles from a spherical cap, to a 

puddle with a flattened top, and to a doughnut (Wildeman et al., 2016). The great success of previous 

models for droplet spreading at higher Weber number is largely owing to the existence of fairly precise 

“pizza” model for the droplet shape ― a thin, almost flat central part bordered by a thick cylindrical 

rim (Wildeman et al., 2016).

Another important feature of droplet impact below We≈30 is the substantial amount of “left-over” 

kinetic energy in the form of vortical flow. This energy is comparably negligible in the energy budget 

at higher Weber numbers and therefore is not taken into account in previous models. The existence of 

the “left-over” kinetic energy is manifested by the oscillation of droplet at its maximum spreading, as 

seen in Figure 10. Bearing this in mind, we examined each term in the model of Wildeman et al. (2016), 

which can be rewritten in the present nomenclature by

              (1)
12
𝑊𝑒 + 1

2 = 3(1 ‒ 𝑐𝑜𝑠𝜃)
𝑊𝑒 𝛽2

𝑚 + 𝛼
𝑅𝑒𝛽

2
𝑚 𝛽𝑚 ‒ 1

where each term from left to right represents the initial surface energy (normalized by the initial kinetic 

energy), the “1/2” of initial kinetic energy entering the energy budget (the other half is a geometric 

head loss), the surface energy at the maximum spreading, and the total viscous dissipation.

As an attempt to extend Wildeman et al.’s model to lower Weber numbers, we proposed to replace 

its kinetic energy term, i.e. “1/2”, by a factor of f (We, Oh) to account for the significant “left-over” 

kinetic energy. Therefore, we have

       (2)
12
𝑊𝑒 + 𝑓(𝑊𝑒, 𝑂ℎ) = 3(1 ‒ 𝑐𝑜𝑠𝜃)

𝑊𝑒 𝛽2
𝑚 + 𝛼

𝑅𝑒𝛽
2
𝑚 𝛽𝑚 ‒ 1

where the factor should asymptotically approach to 1/2 for We>30 as stated in Wildeman et al. (2016). 

The factor f (We, Oh) by fitting the present experimental data into the above form is presented in Figure 

14. It’s noted that for droplets at We>30, f (We, Oh) is around 0.5 as it should be. At We≈13, f (We=13, 
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Oh) is 0.1, 0.3 and 0.7 for Oh=0.0038, 0.0052 and 0.0070 respectively. At We≈30, f (We=30, Oh) is 

0.2, 0.5 and 0.6 for Oh=0.0038, 0.0052 and 0.0070 respectively. The non-monotonic variation of f 

(We, Oh) with Oh is somewhat consistent with the non-monotonic variation of droplet oscillation with 

Oh, which has been shown in Figure 10.

The role of liquid viscosity in suppressing droplet spreading has been well recognized through 

the viscous dissipation mechanism. Consequently, most of the previous models, which have taken into 

account of viscosity effect, imply a monotonically increasing function of Oh. This can be understood 

by the fact that, for droplet impact with large impact inertia, the droplet internal flow during spreading 

is dominantly controlled by the conversion of kinetic energy to surface energy, which is quantified by 

using We; the concomitant viscous dissipation is merely a “passive scalar” quantified by using Re or 

Oh. Modelling such a viscous effect in an energy conservation analysis can be done by estimating the 

viscous dissipation rate , which is a monotonic increasing function of ;  is the Φ = 𝜇𝑓(𝛾) 𝜇 𝛾 = 𝑔(𝑊𝑒)

characteristic strain rate of the droplet internal flow and depends only on We. The monotonic 

dependence of  on either Re or Oh are evident, for example, the last term on the RHS of Equation Φ

(1). The accuracy of such estimation relies on the sophistication of modelling the two functions f and 

, which in turn reply on the accuracy of modelling droplet shape.𝑔

As we discussed above, an asymptotically accurate model for droplet deformation at small We 

may not exist. This also adds difficulty to modelling viscous dissipation. Unlike the situation at high 

We, the droplet spreading flow at small We is strongly affected by the viscous stress. Consequently, 

another role of liquid viscosity may manifest itself through its influence on modulating the droplet 

internal flow at small Wes. The above approximation  may have to be replaced by 𝛾 = 𝑔(𝑊𝑒) 𝛾 =

 , which could be a monotonically decreasing function of . 𝑔'(𝑊𝑒,𝜇) 𝜇

Based on the above albeit discussions, a quantitively predictive model for the presently observed 

non-monotonic droplet spreading is unavailable in the present study, because it needs not only more 
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accurate experimental data for We<30 but also the help of numerical simulation for quantifying the 

droplet shape and the droplet internal flow, which will be considered in our future work. 

6. Conclusion 

A comprehensive experimental study on a droplet with different viscosity (characterized by 

dimensionless Ohnesorge number, Oh) impacting on a smooth surface is presented in the paper, which 

emphasizes on clarifying the effects of viscosity on spreading process. The most interesting 

experimental observation in the present study, which was not reported in the literature or captured by 

the previous models, is that, at relatively small Weber number (We<30), the maximum spreading 

diameter βmax of droplet first increases and then decreases with increasing Oh, showing non-monotonic 

tendency with the increasing viscosity. At higher Weber numbers (We>30), the present results show a 

good agreement with the previous experimental data and model predictions.

A qualitative explanation to the above observations is as follows. The droplet deformation 

(including spreading) and the internal flow are not dominantly controlled by impact inertia at smaller 

We, in which the liquid viscosity plays important, “active” roles. First, the previously neglected “left-

over” kinetic energy was found significant at small We and vary with Oh (or Re) (Wildeman et al. 

2016). Second, the droplet shape at the maximum spreading appears complex morphological change, 

on which the viscous effects have not been fully understood. Third, the reduction of flow strain rates 

by increasing viscosity could be more prominent than the increase of dissipation coefficient. All of 

these pose great challenge to modelling droplet spreading at small We. 

At relatively high Weber number, the droplet spreading and the flow strain rates are increasingly 

controlled by the impact inertia and the viscosity tends to play the “passive” role as the maximum 

spreading diameter decreases with increasing the viscosity. However, some unsmooth disturbance 

around the rim occurs only at intermediate Oh. At even higher Weber number, the impact outcome 

transits from deposition to splashing and to deposition again with the increase of viscosity, implies 
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another dual role of viscosity at relatively high Weber number. All these non-monotonic spreading 

behaviors reflect the dual role of liquid viscosity, which certainly requires future more experimental 

and numerical work in the future.
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Figure 1 Non-dimensional surface tension, viscosity and density of experimental liquids

Figure 2 Test ranges of non-dimensional parameters Oh and We
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Figure 3 Impact, spreading and oscillation of droplets at We≈13 and different Oh.
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Figure 4 Impact and spreading of droplets at We≈60 and different Oh.
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(b)Partially enlarged images at t=0.5ms at different Oh
Figure 5 Impact, spreading and thin-sheet instability of droplets at We≈200 and different Oh.
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Figure 6 Impact, spreading and splashing of droplets at We≈400 and different Oh.
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Figure 7 Evolution of normalized spreading diameter β at different We and Oh. 

Figure 8 Evolution of normalized height of droplet center at different We and Oh.
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Figure 9 βmax of glycerol solution with varied viscosity at different We

0.01 0.1
0.2

0.4

0.6

0.8

0.03

H
* m
ax

Oh
0.003

(a)

0.01 0.11

2

3

4

5

(b)
0.003                         0.03      

t* a

Oh
 (b)

Figure 10 Dimensionless parameters of oscillation of glycerol solution with varied Oh at We≈13
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Figure 11 Comparison of measured spreading time τmax and empirical fitting of models

Figure 12 Empirical correlation comparison of different models on predicting βmax
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Figure 13 Mean error of the fitting based on different models with experimental βmax;
The data set for small Weber number case (We<30) is not included. 

Figure 14. The “left-over kinetic energy” factor  by fitting the present experimental data.𝑓(𝑊𝑒, 𝑂ℎ)
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Table 1 Physical properties of liquid droplets at 1 atm and 20 ℃

Liquid Oh
Surface tension

 (N/m)
Viscosity
 (mPa·s)

Density
 (g/cm3)

Diameter 
(mm)

10% glycerol solution 0.0038 0.070 1.60 1.020 2.52±0.07
20% glycerol solution 0.0052 0.068 2.17 1.045 2.50±0.03
30% glycerol solution 0.0070 0.067 2.93 1.070 2.48±0.03
40% glycerol solution 0.0104 0.064 4.25 1.097 2.43±0.03
50% glycerol solution 0.0166 0.061 6.72 1.123 2.39±0.03
60% glycerol solution 0.0287 0.064 12.00 1.151 2.37±0.03
70% glycerol solution 0.0592 0.058 25.08 1.178 2.31±0.03

Table 2 Previous empirical models regarding the maximum spreading diameter
Methods Refs. Droplet-solid surface βmax equation 

Scheller et al. 
(1995)

Glycerin-water-ethanol droplet, 
smooth polystyrene film/glass

βmax=0.61(We/Oh)0.166

Clanet et al. 
(2004)

Water and mercury droplet, smooth 
super-hydrophobic surface

βmax ~ We 0.25 for (We/Re4/5) < 1
βmax ~ Re0.2 for (We/Re4/5) >=1

Bayer et al. 
(2006)

Water droplet, smooth polished 
stainless steel surface

βmax=0.72(We/Oh)0.14

Laan et al. (2014) Water with/without glycerol, blood 
droplet, smooth stainless steel 
surface

βmax=Re1/5P1/2/(A+P1/2)，P=WeRe-2/5，A=1.24±0.01

Seo et al. (2015) Gasoline, isooctane, ethanol, 
smooth aluminum surface

βmax=1.72(Wex/Ohx)0.122(µisoσiso/µxσx), corrected by the 
physical properties fluids

Scaling law

Lee et al. (2016) Water/ethanol/glycerol solution 
droplet, Surfaces with varied 
roughness and contact angle

(β2
max-β2

Vi→0）1/2Re-1/5=We1/2/(A+We1/2), A=7.6

Pasandideh et al. 
(1995)

Water with surfactants, polished 
stainless steel surface

βmax= (𝑊𝑒 + 12)/[3(1 ‒ 𝑐𝑜𝑠 𝜃𝑎) + 4𝑊𝑒𝑅𝑒 ‒ 0.5]

Ukiwe et al. 
(2005)

Water droplet, smooth polymer 
coated surface

𝛽 3
𝑚𝑎𝑥(3(1 ‒ 𝑐𝑜𝑠 𝜃𝑌) + 4𝑊𝑒𝑅𝑒 ‒ 0.5) =

(𝑊𝑒 + 8)𝛽𝑚𝑎𝑥 ‒ 8
Sen et al. (2014) Biofuel droplet, smooth stainless 

steel surface
 ~ 1.73We0.14(𝑊𝑒 + 12)/[3(1 ‒ 𝑐𝑜𝑠 𝜃𝑌) + 4𝑊𝑒𝑅𝑒 ‒ 0.5]

Wildeman et al. 
(2016)

Water droplet, smooth surface  ,no-slip, We > 30
3(1 ‒ 𝑐𝑜𝑠 𝜃)

𝑊𝑒 𝛽2
𝑚 + 𝛼

𝑅𝑒𝛽
2
𝑚 𝛽𝑚 ‒ 1 = 12

𝑊𝑒 + 1
2

Energy 
conservation

Lee et al. (2016) Ethanol/water/glycerol droplet, 
surfaces with varied roughness and 
contact angle

We+12=3β2
max(1-cosθ)+8/βmax+3(σ/2σwater)1/2 β5/2

max We/Re1/2

Momentum 
conservation

Roisman (2009) Water droplet, smooth surface with 
different contact angle βmax ≈ 0.87Re1/5−0.40Re2/5We−1/2




