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ABSTRACT 

In this paper, we propose a novel approach for low-resolution face recognition, under uncontrolled settings. Our approach first 

decomposes a multiple of extracted local features into a set of representative basis (low-rank matrix) and sparse error matrix, and 

then learns a projection matrix based on our proposed sparse-coding-based algorithm, which preserves the sparse structure of the 

learned low-rank features, in a low-dimensional feature subspace. Then, a coefficient vector, based on linear regression, is 

computed to determine the similarity between the projected gallery and query image’s features. Furthermore, a new morphological 

pre-processing approach is proposed to improve the visual quality of images. Our experiments were conducted on five available 

face-recognition datasets, which contain images with variations in pose, facial expressions and illumination conditions. Experiment 

results show that our method outperforms other state-of–the-art low-resolution face recognition methods in terms of recognition 

accuracy.   
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1. Introduction 

Practical face recognition systems often deal with low-resolution (LR) or poor-quality images, with huge variations 

in pose, facial expressions and lighting conditions. These make the low-resolution (LR) face recognition task very 

challenging. Conventional face recognition methods [1-3] work well for images which are of good quality and taken 

under controlled environments. Recently, a recognition rate higher than 99% has been achieved in recognizing high-

resolution (HR) face images, taken under unconstrained environments, by using deep learning. However, for LR face 

recognition, the face images contain limited information that can distinguish one from the other. This results in a 

significant decline in recognition rates, when the face resolution is low. Moreover, the face images enrolled in a gallery 
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set are usually of high resolution, so a dimension mismatch problem occurs. The lack of resolution-robust features, 

misalignment of faces, and noise effects are the major challenges in LR face recognition. This makes LR face 

recognition a challenging and hot research topic for researchers in the field of computer vision and pattern recognition. 

Before investigating the LR face recognition problem, it is necessary to determine the minimum resolution at which 

conventional face recognition methods can retain their performance, but will drop rapidly when the resolution is further 

decreased. We have found that this minimum resolution is about 32 × 24. A lot of research is being conducted to tackle 

the abovementioned challenges, and handling all of them simultaneously is very challenging and requires significant 

attention. One straightforward solution is to reconstruct a HR image from a given LR probe image using a super-

resolution (SR) technique, and the super-resolved face image is then used for recognition. Another way is to learn a 

common low-dimensional subspace for the gallery and probe images, where accurate classification can be performed. 

The third possible solution is to downsample the HR gallery images to the same resolution as the LR probe image for 

matching in the LR domain. Fig. 1 summarizes these three possible approaches for solving the LR face recognition 

problem. 

 

Fig. 1. Three possible approaches for LR face recognition. 

In the next section, we will first give an overview of existing methods for LR face recognition. Then, the problems 

to be tackled by our proposed algorithm are presented and the way to solve them is briefly explained. Finally, the 

motivation and justification of the techniques used in our algorithm are elaborated.  
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2. Related Works 

2.1  Super-resolution techniques 

Super-resolution (SR) has been considered as one of the possible solutions, which increases the image resolution 

before performing recognition. For face images, the SR process is also known as face hallucination, which was first 

proposed in [4]. The method decomposes a face image into a pyramid of features by utilizing the Gaussian and 

Laplacian pyramids, and then reconstructs the corresponding high-resolution (HR) image. In [5], the limitations of SR 

were discussed and some possible solutions to breaking them were given. A SR method based on sparse coding was 

proposed in [6], which first computes the sparse representation coefficients of each LR image patch from a dictionary, 

and then uses those coefficients to generate the corresponding HR image patch. The similarity between the HR and LR 

image pairs is enhanced by jointly training the dictionaries, by using LR and HR image patch pairs. Wang et al. [7] 

utilizes principal component analysis (PCA) to linearly represent LR test image in terms of similar LR training images. 

The HR image is constructed, by replacing the LR training images with the corresponding HR training images. The 

SR methods in [8, 9] assume that the LR and HR images of the same person have some intrinsic correlation. Another 

face-hallucination framework presented in [10] assumes that two face images of the same identity have similar local-

pixel structures. The approach learns the local-pixel structure for reconstructing a HR image by searching a face 

database for similar HR faces using the LR input image.  

It was reported in [11, 12] that super-resolved images contain distortion and artifacts, which reduce the recognition 

accuracy, and hence are not a feasible solution to LR face recognition. Hennings-Yeomans et al. [13] proposed an 

objective function for performing hallucination and recognition simultaneously. This approach is computationally 

expensive, because optimization is required for each test image. Huang et al. [14] presented a SR method, based on 

non-linear mappings of coherent features. The method used Canonical Correlation Analysis (CCA) to create a coherent 

subspace between the PCA-based features of HR samples and LR samples. Radial basis function (RBF) is then used 

to learn the nonlinear mappings between the coherent features, and the super-resolved coherent features of a LR image 

are determined by using a trained RBF model. Zou et al. [15] proposed a framework for face hallucination, which 

learns a mapping function between the HR and LR image spaces by utilizing a new discriminative constraint. Jian et 

al. [16] proposed an improved method for performing hallucination and recognition simultaneously by utilizing the 

singular value properties of images at different resolutions. To recognize LR face images, only the super-resolved HR 
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features are required. Another way is to extract features from super-resolved HR images. However, these images, which 

are distorted versions of the true HR face images, are generated by estimation. Pong et al. in [17] proposed an approach, 

which directly estimates the HR features for recognition by performing super-resolution in the feature space. The 

method also fuses the features from different resolutions, so as to further improve the recognition accuracy. 

2.2.  Subspace learning methods 

Another approach for recognizing LR face images is based on coupled mappings. Li et al. [11] proposed a coupled-

mapping technique, which projects the LR and HR images into a unified feature subspace, which facilitates the ultimate 

classification. Zhou et al. [18] presented a method based on simultaneous discriminant analysis, which preserves the 

discriminative power of the HR and LR samples in the learned common subspace. Ren et al. [12] learned a common 

subspace for LR and HR samples using coupled kernel embedding, which uses a new similarity measure to compare 

the multimodal data. Biswas et al. [19] used multidimensional scaling for LR face recognition, which projects LR and 

HR samples into a common subspace in such a way that the geometrical structure of the samples is preserved. This 

approach also ensures that the distance between two LR images is nearly the same as that of its HR counterparts. Siena 

et al. [20] proposed a method to project HR gallery images and LR probe images into a common subspace based on 

their local structure’s relationship. Similarly, Shi et al. [21] projects HR gallery images and LR probe images into a 

unified latent subspace by incorporating the geometrical structure of each given sample with respect to its neighboring 

points. The approach combines all the local optimizations to construct a global structure, which preserves the 

discriminant information of the samples in the learned subspace. Zhang et al. [22] proposed to learn a projection matrix, 

which maximizes the margin between inter-class and intra-class distances in the common subspace. Wang et al. [23] 

used CCA to determine the correlation between HR and LR image pairs, such that a pair of transform matrices are 

computed for the HR and LR face images, respectively. Jiang et al. [24] addressed the LR face recognition problem by 

proposing a coupled discriminant method based on multi-manifold analysis. The approach learns both the local 

structure and the neighborhood information about the manifold subspace covered by the image samples. After that, 

two mapping functions are learned to project the HR and LR samples, respectively, into a unified feature subspace. 

Chu et al. [25] proposed a cluster-based method, based on simultaneous discriminant analysis. This method learns the 

cluster-based scatter matrices, which is then used to regularize the between-class and within class scatter matrices. This 

enhances the discriminability of the feature space. Xing et al. [26] proposed a method based on coupled mappings, 
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which projects face-image samples into a unified feature subspace using the topology of a generalized bipartite graph. 

The approach also preserves the local geometrical structure of the samples when they are projected into a new subspace. 

Recently, Yang et al. [27] proposed a discriminative multi-dimensional scaling (DMDS) method for LR face 

recognition, which considers the intra-class, as well as inter-class, distances, while projecting the HR and LR data 

samples into a unified feature subspace.  

2.3. Deep learning-based methods 

Recently, deep learning has gained a lot of attention due to its excellent performance in many computer-vision tasks, 

such as image classification, object detection, recognition, etc. For face recognition, various deep learning models [28-

32] have been established, and provided excellent performance. Sun et al. [28] proposed a deep convolutional neural 

network (CNN), namely DeepID, which learns high-level deep features from the patches of face regions for 

identification. Another deep face model, namely FaceNet  [29], which uses a large network trained by distance 

constraints, was proposed. This model achieves a very high recognition accuracy of 99.60% on the challenging dataset, 

namely Labeled Faces in the Wild (LFW). Recently, Liu et al. [32] proposed an angular softmax loss function, which 

learns discriminative features using a CNN based on the ResNet architecture. The method achieves 99.42% accuracy 

on the LFW dataset. However, images captured by surveillance cameras are usually of low resolution, and require 

significant upscaling to serve as an input for the deep-CNN models. The upscaled face images have poor quality, 

because the original LR face images contain less amount of information. In this paper, we have also investigated the 

performance of LR face recognition, by using deep-learning-based face recognition methods, for face images at 

different resolutions.  

2.4 Problem statement 

Performances of face-recognition methods heavily depend on the amount of discriminant, robust features that can 

be extracted from face images, which exhibits as high-frequency components. However, when the image resolution 

decreases, the information available for distinguishing faces becomes less, and therefore SR becomes ineffective under 

unconstrained variations. This is because reconstruction from low-frequency components is an ill-posed problem and 

creates artifacts in the super-resolved images. Performances of the recognition-based and feature-based super-

resolution methods depend on the feature extraction technique and reconstruction regularization model being used, but 

it is still unclear which regularization methods are optimal from the recognition perspectives. In addition to that, the 
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choice of features, which need to be able to handle large amount of variations in unconstrained environments, is critical. 

The previous methods, based on coupled mapping, do not extract the robust features from face images, but directly 

projecting the face samples into a unified feature subspace. This reduces the recognition accuracy in uncontrolled 

settings, especially under pose and illumination variations.  Almost all the learning-based approaches consider using a 

subspace formed by linear projection to determine the similarity between the gallery and query samples, without 

examining some of the important properties of the samples. 

Local features are more robust to pose and illumination variations, as compared to global features. Bereta et al. [33] 

presented a detailed comparative analysis of the performances of different local feature descriptors for face recognition. 

The advantages of using feature-level fusion for improving face recognition accuracy were also discussed. Lei et al. 

[34] proposed a novel texture descriptor for recognizing face images using the Fourier transformation of local binary 

pattern (LBP). For the descriptor, discriminant image filters are used for learning, and dominant patterns are 

constructed. Yoo et al. [35] proposed to decompose the LBP feature into a number of bit-planes, which not only contain 

the local structure information of face images, but also the method is proven to be robust to illumination variations. All 

the decomposed bit-planes are then combined to form a high-dimensional feature vector for face recognition. Recently, 

a robust local feature descriptor [36], based on shearlet transform, was proposed, which extracts useful information 

from face images by analyzing their singular structures. The estimated shearlet coefficients are then combined with 

LBP for face representation.   

Methods based on coupled mappings and super-resolution are robust to only one variation. Robustness can be 

improved by using a combination of local features. Now, the question is which features should be selected and 

combined? In this paper, we address this question by fusing two local feature descriptors, which are robust to various 

facial variations. Recently, low-rank approximation techniques [37,38] have achieved great success in solving the 

occluded face recognition problem, by decomposing face images into a set of representative bases (the low-rank matrix) 

and the corresponding sparse error matrix. It is observed that the learned low-rank matrix has better representation 

capability as compared to the original data matrix. Moreover, the low-rank matrix can also alleviate the effect of 

illumination variations, which improves the recognition accuracy. Inspired by this, we utilize the low-rank matrix-

decomposition algorithm to convert the extracted fused features into a low-rank matrix and a corresponding error 

matrix (sparse in nature). For recognition, we only utilize the low-rank component, while discarding the sparse error 
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matrix. Since the discarded sparse error matrix represents noisy components, so the recovered low-rank matrix provides 

better feature representation for face recognition. Furthermore, our approach first down-samples gallery faces to the 

size of the query image, and perform recognition in the low-resolution domain. Although the super-resolved face image 

or feature contains more information, the estimated information may be incorrect and distorted. By downsampling the 

gallery faces, no prediction is necessary. In this paper, we will investigate all the drawbacks of existing LR face 

recognition methods, and then propose an effective solution for tackling all the variations simultaneously, by utilizing 

sparse coding on multiple robust low-rank local features for LR face recognition.   

2.5 Motivation 

Inspired by the applications of sparse representation [39,40] to pattern recognition, we propose a new approach for 

LR face recognition based on sparse coding of multiple low-rank local features. The major idea is to compute an 

optimum sparse matrix, which projects the gallery and query low-rank features onto a common low-dimensional 

subspace. Sparse coding provides natural discriminant power and represents face images in a compact manner. A linear 

relationship exists between a test sample and the other training samples of the same subject. Matching a HR gallery 

image with a LR probe image has the dimension-mismatch problem, which also produces noise when projecting the 

LR and HR samples into a unified subspace. Our proposed method first down-samples all HR gallery images to the 

same resolution as the LR probe (test) image, and performs recognition in the LR domain. In our proposed approach, 

we assume that two images of the same resolution have higher correlation as compared to having two different 

resolutions. This is because the low-dimensional features are effective in computing precisely both the within-class 

and between-class scattering matrices, as their dimension is lower than, or closer to, the total number of samples 

available. In [15], it has also been argued that downsampling both the training and testing images can increase the 

recognition rate, even for images of very low resolution, such as 6 × 6 pixels. Therefore, downsampling face images 

is a feasible approach to solve the dimension-mismatch problem.  

According to the review discussed previously, SR algorithms are not feasible for recognition purposes. This is due 

to the generation of artifacts in the super-resolved images, which reduce the recognition accuracy. To overcome this 

problem, a new morphological pre-processing approach based on top and bottom-hat filtering is proposed, which 

improves image quality, without generating any kind of distortion or artifacts in the final processed image. To make 

our approach robust to variations in unconstrained environments, two local features, Gabor wavelets and Local Binary 
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Pattern Difference (LBPD), are extracted from both the training and testing face images. Extracted features are 

normalized and then concatenated to form a final normalized feature vector. The normalized, fused features are then 

used to learn a low-rank matrix and a sparse error matrix, using an augmented lagrangian method. The extracted low-

rank matrix is then projected into a new low-dimensional feature subspace by computing a projection matrix based on 

our proposed algorithm, such that the sparsity of the learned features is preserved. After that, the similarity between 

the gallery and query features is determined by estimating a coefficient vector using linear regression [41]. Based on 

the coefficient vector, residuals are computed for feature matching. To increase the discriminability between the face 

images of two different subjects, class-label information is utilized. Furthermore, our proposed objective function does 

not need to tune the model parameters, especially the neighborhood size. Our method has less computational 

complexity than other linear and nonlinear mapping-based methods [42,43], and can estimate local structures of face 

images by utilizing the sparse prior knowledge. Extraction and fusion of multiple low-rank local features make our 

method effective for recognition in unconstrained environments.  

This work is an extension of our preliminary work [44]. The new contributions of this paper are as follows: 

 A more compact and discriminative feature representation is learned by fusing the Gabor features and the Local 

binary pattern difference feature (a numerical variant of LBP). The extracted local features are converted into a 

set of representative basis (low-rank) and a sparse error matrix. The learned low-rank features are then used to 

learn a projection matrix based on sparse coding, which increases the recognition accuracy up to a significant 

level, as reported in the experiment sections.  

 Extensive experiments are conducted with detailed analysis. Compared to our previous paper [44], we evaluate 

our proposed method with respect to various parameters, such as image resolutions, feature dimensions, etc.  

 Some new additional challenging datasets, namely the Multi-PIE [45], FERET [46], LFW [47], and Remote face 

dataset [48] are used to evaluate the performance.  

The rest of the paper is structured as follows. Section 3 introduces our proposed morphological pre-processing 

method, then Gabor wavelets and LBPD features are described. Section 4 explains the concept of low-rank feature 

learning. Section 5 presents our proposed framework based on sparse coding.  Section 6 introduces the linear regression 

model used for classification. Section 7 demonstrates the experimental results and compares our method with other LR 

face recognition methods. Finally, the paper is concluded in Section 8. 
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Fig. 2. The morphological pre-processing steps, on a LR face image. 

3 Pre-Processing and Feature Selection 

For face recognition, face images are first aligned and normalized to a specific resolution, and are usually pre-

processed so that they become more standardized. This can help improve the recognition rate. In this section, we will 

describe our proposed morphological pre-processing method, and the features selected for our proposed algorithm. 

3.1 Morphological pre-processing 

To solve the problem of artifacts and distortion produced by SR algorithms, a novel morphological pre-processing 

method based on top and bottom-hat filtering is proposed. This method not only extracts useful information from face 

images, but also eliminates low-contrast features. It can also alleviate the effects of non-uniform illumination, so it is 

suitable for tackling variations in lighting conditions.  

Let 𝐼 be a grayscale image, and 𝑠 be a disk-shaped structuring element with radius 𝑅. The first step is to apply the 

top-hat filtering which is defined as 𝑇𝑡(𝐼) = 𝐼 − 𝐼 ∘ 𝑠, where ∘ represents the opening operation. It can extract bright 

features from an image. Similarly, dark features are extracted by bottom-hat filtering defined as 𝑇𝑏(𝐼) = 𝐼  𝑠 − 𝐼, 

where   represents the closing operation. To enhance the local contrast for better image understanding, the face image 

is added to the difference between the two filtering outputs. Mathematically, it is given as follows:   

                                                                                   𝐼𝐶𝐸 = 𝐼 + 𝑇𝑡(𝐼) − 𝑇𝑏(𝐼),                                                                               (1)                                                                       

where 𝑇𝑡(𝐼) and 𝑇𝑏(𝐼) represent the top and bottom-hat filtering images, respectively, and 𝐼𝐶𝐸 is the contrast-enhanced 
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face image. Fig. 2 shows a LR face image with uneven illumination and the corresponding contrast-enhanced image 

generated by the proposed filtering operation.  

3.2 Gabor Wavelets 

Local features have been proven to be robust to variations in facial expressions, pose and illumination. From the 

biological point of view, Gabor functions can be used to model the responses of the cells in the visual cortex of 

mammalian brains. This feature exploits local regions to extract information at multiple scales and orientations. It is 

an efficient local feature descriptor, and has been used in many applications, such as object tracking, detection, and 

recognition. Gabor wavelets (GWs) can be used for spatial-frequency analysis because they have both the multi-

orientation and multi-resolution properties, which enables it to provide valuable information about the local structure 

of an image. GWs achieve optimal representation in the frequency domains. It is defined as a complex exponential 

modulated by a Gaussian function, which is written as follows:  

                                                           𝜙𝜔,𝜃(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−(

𝑥2+𝑦2

2𝜎2 )
. [𝑒𝑖(𝜔𝑥𝑐𝑜𝑠𝜃+𝜔𝑦𝑠𝑖𝑛𝜃) − 𝑒−

𝜔2𝜎2

2 ],                                                (2) 

where (𝑥, 𝑦) represents the pixel positions, 𝜔 is the frequency of the sinusoidal plane wave, 𝜃 represents the orientation, 

and 𝜎 is the standard deviation or scale corresponding to the Gaussian envelope. In our proposed method, we extract 

features at five scales and eight orientations. 

3.3 Local Binary Pattern Difference Feature 

To extract the local binary pattern (LBP) features [49], an image is first partitioned into a number of blocks, in order 

to retain the spatial information about the features. In each block, the LBP code at each pixel position is generated, by 

comparing the central pixel with its corresponding neighboring pixels residing on a circle of the radius 𝑅, centered at 

the pixel under consideration. If a neighboring pixel has its value smaller than the central one, then it is labeled as ‘0’, 

otherwise as ‘1’. A string of the binary bits is used to form an LBP code for the pixel. Mathematically, the LBP code 

of the central pixel 𝑥𝑐 with respect to the channel 𝜙 can be written as follows: 

                                                                              𝐼𝐿𝐵𝑃𝑁,𝑅
(𝑥𝑐 , 𝜙) = ∑ 𝑢(𝜙(𝑥𝑛) − 𝜙(𝑥𝑐))2𝑛,

𝑁−1

𝑛=0

                                                                      (3) 

where 𝑥𝑛 (𝑛 = 0, … , 𝑁 − 1) represents the 𝑁 neighboring pixels on the circle of radius 𝑅 centered at pixel 𝑥𝑐; 𝜙 can 

be either intensity value or filter response of the image; and 𝑢(𝑥) is the step function, i.e. its value is ‘1’ if 𝑥 ≥ 0,  and 

‘0’ otherwise. There are many LBP variants [50-52]. A problem with LBP is that the LBP code is a non-numerical 
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representation, which is a discrete pattern rather than a numerical response. Therefore, LBP cannot combine with other 

features for recognition. Recently, a numerical variant of LBP [53], which is known as local binary pattern difference 

(LBPD), was proposed. To extract this feature, the mean LBP of a given region is computed, then the LBPD at a pixel 

position is computed as the difference between its LBP code and the mean LBP. The Karcher mean [54] is used to 

compute the mean LBP of a region, which plays a vital role in minimizing the sum of distances to all the points in a 

given image region. Each element of a binary vector 𝑰̂𝐿𝐵𝑃 represents a specific bit of the regular LBP. Specifically, the 

𝑘th bit of 𝑰̂𝐿𝐵𝑃 is given as follows: 

                                                                               𝑰̂𝐿𝐵𝑃(𝑘) = 𝑢(𝜙(𝑥𝑘) − 𝜙(𝑥𝑐)).                                                                         (4)                                                     

  Suppose that there are 𝑃 LBPs in a region, represented as 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑃}. The 𝑘th element for 𝑘 = 0, … , 𝐾 − 1 of 

its Karcher mean 𝒎̂𝐼 is defined as follows: 

                                                                                         𝒎̂𝐼(𝑘) = ⌊
∑ 𝐼𝑝(𝑘)𝑃

𝑝=1

𝑃
+ 0.5⌋ ,                                                                                   (5) 

where ⌊. ⌋ is the floor function, 𝒎̂𝐼 belongs to the set of the 2𝐾 LBPs. To relax the constraint that the LBP mean is an 

LBP, the mean LBP vector can be a floating-point vector denoted by 𝒎̂𝑓, as follows:                                                                                         

                                                                                                      𝒎̂𝑓 =
∑ 𝑰̂𝑝

𝑃
𝑝=1

𝑃
.                                                                                                  (6) 

     
 

     
                                                          

Fig. 3. LBPD feature and histogram representation of two face images. 

 

3.3.1 LBP Difference 

Let us consider the LBP code 𝑰̂ and mean 𝒎̂𝑓 of a face image. The LBPD feature vector can be computed as 𝒅̂ =

𝑰̂ − 𝒎̂𝑓. Magnitude of the LBPD feature is given by: 

                                                                                  𝐼𝐿𝐵𝑃𝐷
𝑠(𝑥, 𝜙) = ‖𝑰̂ − 𝒎̂𝑓‖ ,                                                                            (7) 

where ‖. ‖ can be of any type of norms. Its values are positive so it is also known as unsigned LBPD. To extract more 

discriminative information from an image, the sign is introduced by defining the LBPD feature as follows: 
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                                                                      𝐼𝐿𝐵𝑃𝐷
𝑠(𝑥, 𝜙) = 𝑠(‖𝑰̂‖ − ‖𝒎̂𝑓‖)‖𝑰̂ − 𝒎̂𝑓‖ ,                                                              (8)                                                     

where 𝑠(𝑥) is the signum function, whose value is 1 if 𝑠(𝑥) ≥ 0 and -1 if 𝑠(𝑥) < 0. This will form an ordered LBP 

feature vector. It is not affected by the permutation of bits, so the representation is invariant to rotation. Fig. 3 shows 

two face images from the LFW database and their corresponding LBPD images and histograms.   

3.4 Feature Selection   

Selection of appropriate feature descriptor is quite important to achieve optimum performance in image classification 

and object recognition. In the last two decades, various global and local feature descriptors have been proposed. As 

discussed earlier, local features tend to outperform global features, and have been proven to be more robust against 

various geometric variations. Some of the state-of-the-art feature descriptors include SIFT [55], SURF [56], HOG [57], 

Gabor [58], and LBP [49]. To improve the performance, various extensions of these descriptors have been proposed. 

For facial image analysis, Gabor and LBP have been proved to be the best performing feature descriptors for face 

recognition [59]. For object recognition, the most widely used local feature descriptor is SIFT, which first extracts 

relevant keypoints from given images, and then represents the gradient information in the neighborhood of each 

keypoint. This feature exhibits both scale and rotation invariance. However, its major drawback is high computational 

complexity. Inspired by SIFT, a faster version known as SURF was proposed, whose performance strongly depends 

on the relative keypoints that can have a variable geometry. It is highly desirable that the selected feature descriptor 

has high discriminative power and low computational complexity. In comparison to SIFT, LBP is simple and fast to 

compute. It can efficiently describe the local texture information, while showing high robustness to monotonic gray-

level transformations. Moreover, the features computed by using LBP are fixed relative to each other and can better 

distinguish between the curved surfaces, such as face images. For a difficult task, such as LR face recognition, using a 

single feature is unable to capture sufficient discriminative information from face images. In [59], it was argued that 

combining the LBP with Gabor features can enhance the recognition performance, up to a significant level. As 

discussed in Section 3.3, the LBP feature consists of discrete patterns or symbols, rather than a numerical response, so 

the LBP feature cannot combine with other features directly.  

In our proposed method, we employ two efficient texture descriptors, namely Gabor wavelets (GWs) and LBPD, 

due to their supplementary natures, which makes them promising candidates for fusion. The effectiveness of combining 

these two features is explained, as follows. First, the Gabor features can encode the facial shape information at multiple 
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scales and orientations. Each GW may be viewed as a bandpass filter, which extracts features at a specific range of 

frequencies and orientations in the frequency domain. Okajima et al. [60] argued that Gabor wavelets can be used as a 

solution for the mutual information maximization problem. The Gabor-type receptive field has the capability to extract 

the maximum amount of information from local image regions. Motivated by the success of LBP in the computer-

vision tasks, we employ a recently proposed numerical variant of LBP, namely LBPD. It encodes the variation of a 

LBP code from the average LBP of a local region. LBPD does not consider the intensity of pixels, because it utilizes 

the sign of comparisons between neighboring pixels, as in Equation (4). This makes LBPD invariant to lighting 

conditions. It is clear that image rotation affects the permutation of bits. According to Equation (3), LBP used the 

predetermined weights to weigh the bits, which results in the different LBP codes of the original image and its rotated 

version. Therefore, extra effort is necessary to achieve rotation invariance [61]. LBPD is inherently rotation-invariant, 

as the norm employed in Equations (7) and (8) can make sure that the code is independent of permutation of the bits. 

In comparison to LBP, LBPD also expresses the diversity of the local co-occurrence, instead of representing it directly 

as LBP does. Furthermore, LBPD consists of numerical responses, whereas LBP is a collection of discrete patterns. 

This numerical property of LBPD makes it attractive, in terms of texture analysis. According to the results shown in 

[53], LBPD outperforms various LBP variants and other feature descriptors, in terms of texture, as well as medical 

imaging analysis. Due to the abovementioned advantages, we utilize LBPD as a feature descriptor. In our algorithm, 

both features are first normalized and then concatenated to form a final normalized feature vector.  

4 Low-rank Feature learning  

Recently, low-rank matrix recovery has gained a lot of attention, due to the great number of applications it has for 

computer vision and pattern recognition, e.g. face recognition [37,38], data mining, image classification [62], etc. For 

face recognition, Wei et al. [38] decomposed the data matrix into two parts, known as the low-rank matrix and its 

corresponding sparse error matrix, and then utilized the low-rank matrix for recognition. Instead of using data matrices 

directly, various kinds of features can first be extracted from images for better representation. As discussed in [62], 

extracted local features may exhibit some noisy patterns, which can reduce the recognition performance. Motivated by 

this observation, we decompose the extracted fused feature vectors 𝑭 into a low-rank feature matrix 𝑨 and a 

corresponding sparse error matrix 𝑺. The extracted low-rank feature matrix 𝑨 has been proven to be more 
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discriminative for recognition, as it provides better feature representation, as shown in Fig. 4. It works by minimizing 

the rank of the matrix 𝑨, while computing the 𝑙0-norm of 𝑺. It can be written as follows: 

                                                    min
𝑨,𝑺

rank (𝑨) + 𝜆‖𝑺‖0  s. t. 𝑭 = 𝑨 + 𝑺.                                               (9) 

The second term computes the non-zero elements in 𝑺. For simplification, the first term of Equation (9) can be replaced 

with the nuclear norm, while the second one with 𝑙1-norm. The resulting optimization problem can be written as:  

                                                        min
𝑨,𝑺

‖𝑨‖∗ + 𝜆‖𝑺‖1  s. t. 𝑭 = 𝑨 + 𝑺.                                                   (10) 

It turns out to be a convex optimization problem, with two major constraints. First, the rank of the recovered low-rank 

matrix 𝑨 should be as small as possible. Second, there should be a small number of non-zero elements in 𝑺. In our 

method, we utilize Augmented Lagrange multiplier (ALM) to solve this optimization problem due to its low 

complexity. Let 𝑭 be the fused features extracted from face images. Then the Lagrange function of Equation (10) is 

written as: 

                                           𝐿𝜇(𝑨, 𝑺, 𝒀) = ‖𝑨‖∗ + 𝜆‖𝑺‖1+< 𝒀, 𝑭 − 𝑨 − 𝑺 > +
𝜇

2
‖𝑭 − 𝑨 − 𝑺‖𝐹

2 ,                            (11) 

where 𝒀 and 𝜇 represents a Lagrange multiplier and a penalty parameter, respectively. The matrices 𝑨 and 𝑺 are updated 

alternatively until converged, as follows:  

                                                       (𝑨𝑗+1, 𝑺𝑗+1) = arg min
𝑨,𝑺

𝐿𝜇(𝑨, 𝑺, 𝒀𝑗),                                                   (12) 

                                                         𝒀𝑗+1 = 𝒀𝑗 + 𝜇(𝑭 − 𝑨𝑗+1 − 𝑺𝑗+1),                                                    (13) 

where 𝑗 is the iteration index. 

1) Updating 𝑨𝑖 

To update the low-rank matrix 𝑨𝑖
𝑗+1 of class 𝑖 at the (𝑗 + 1)st iteration, all the variables except 𝑨𝑖 are fixed, which 

leads to the following equation: 

𝑨𝑖
𝑗+1 = arg min

𝑨𝑖

𝐿(𝑨𝑖, 𝑺𝑖
𝑗, 𝒀𝑖

𝑗 , 𝜇𝑗) 

= arg min
𝑨𝑖

‖𝑨𝑖‖∗+< 𝒀𝑖
𝑗 , 𝑭𝒊 − 𝑨𝑖 − 𝑺𝑖

𝑗 > +
𝜇𝑗

2
‖𝑭𝒊 − 𝑨𝑖 − 𝑺𝑖

𝑗‖
𝐹

2
 

= arg min
𝑨𝑖

∈ ‖𝑨𝑖‖∗ +
1

2
‖𝑿𝑎 − 𝑨𝑖‖𝐹

2 ,  (14) 
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where ∈= (2𝜇𝑗)−1 and 𝑿𝑎 = 0.5(𝑭𝑖 − 𝑺𝑖
𝑗 +

𝟏

𝜇𝑗 𝒀𝑖
𝑗). 

According to Section 2.1 in [63], the closed form solution of the above equation is given as 𝑨𝑖
𝑗+1 = 𝑷𝑍∈[𝑹]𝑸𝑇 , where 

𝑷𝑹𝑸𝑇 is the singular value decomposition of 𝑿𝑎, and 𝑍∈[𝑹] is the elementwise thresholding of 𝑹, i.e., 𝑍∈[𝑹](𝑖, 𝑗) =

𝑧∈[𝑹(𝑖, 𝑗)], where 𝑧∈[𝑟] is defined as 

                                                                       𝑧∈[𝑟] = {
𝑟−∈ ,     if 𝑟 >∈
𝑟+∈ ,      if 𝑟 <∈

    0,       otherwise
                                                                (15) 

2) Updating 𝑺𝑖 

𝑺𝑖
𝑗+1 = arg min

𝑺𝑖

𝐿(𝑨𝑖
𝑗+1, 𝑺𝑖 , 𝒀𝑖

𝑗, 𝜇𝑗) 

= arg min
𝑺𝑖

𝜆‖𝑺𝑖‖1+< 𝒀𝑖
𝑗 , 𝑭𝒊 − 𝑨𝑖

𝑗+1 − 𝑺𝒊 > +
𝜇𝑗

2
‖𝑭𝒊 − 𝑨𝑖

𝑗+1 − 𝑺𝒊‖
𝐹

2
 

  = arg min
𝑺𝑖

∈′ ‖𝑺𝑖‖1 +
1

2
‖𝑿𝑠 − 𝑺𝑖‖𝐹

2 ,   (16) 

where ∈′= (
𝜆

𝜇𝑗) and 𝑿𝑠 = 𝑭𝑖 − 𝑨𝑖
𝑗+1 + (

1

𝜇𝑗) 𝒀𝑖
𝑗. 

Similarly, the closed form solution of this optimization problem is given as 𝑺𝑖
𝑗+1 = 𝑍𝜖′(𝑿𝑠). We set 𝜆 = 0.001 in our 

experiments. Furthermore, we discard the sparse error term 𝑺, and use the low-rank approximation feature matrix 𝑨 

only for further processing. Fig.4 shows the recovered low-rank and the originally extracted Gabor features. 

                             

(a)                                                                                            (b) 

Fig 4. Gabor features extracted from a face image. (a) Original Gabor features with 5 scales and 8 orientations, (b) Low-rank Gabor features. 

5 Sparse Coding of Multiple Low-Rank Features 

Sparse representation has gained much attention in the last decade, due to its state-of-the-art performance in pattern 

recognition tasks. Wright et al. [39] proved the effectiveness of sparse theory for recognition of face images taken in 

uncontrolled environments. According to the representation, a linear relationship exists between each test sample and 
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the other training samples from the same subject, which is sparse in nature. A face image 𝒚 can be expressed as 𝒚 =

𝑿𝒌, where 𝒌 represents the sparse coefficient vector, and 𝑿 is a data matrix whose columns represent the training data. 

It should be known that the samples of the same subject are highly correlated, while the correlation between samples 

of different subjects is weak. For the samples in 𝑿 belonging to the same subject of 𝒚, the corresponding coefficients 

in the sparse coefficient vector 𝒌 should have non-zero values, while the rest of the coefficients are zero. Let 𝑿 =

[𝒙1, 𝒙2, … , 𝒙𝑀], where 𝒙𝑗 is the 𝑗th training sample and 𝑀 is the total number of training samples. Let us consider that 

there are 𝑐 classes in the training set, and 𝑛 samples for each class, i.e. 𝑀 = 𝑛𝑐. According to sparse theory, each 

training sample can be linearly reconstructed by the remaining 𝑀 − 1 samples, with most of the weights of the samples 

being zero. Our major objective is to project the features of training and testing samples into a low-dimensional feature 

space, such that their sparsity is preserved. Let us assume that the sparse coefficient vectors of the training samples are 

denoted as 𝑲 = [𝒌1, 𝒌2, … , 𝒌𝑀], where 𝒌𝑗 ∈ 𝑅𝑀 is the sparse vector of the 𝑗th training sample, computed using the 𝑙1-

minimization technique.  

5.1 Feature Representation based on Sparse Coding 

The purpose of sparse representation is to represent test images by using the minimum number of training samples.  

Mathematically, it can be written as follows: 

                                                                                  min‖𝒌‖0 s.t.  𝒚 = 𝑿𝒌.                                                                                 (17)                                                                                        

If it contains enough sparsity, then the solution of Equation (17) is equivalent to the 𝑙1-minimization problem, i.e.  

                                                                                  min‖𝒌‖1 s.t.  𝒚 = 𝑿𝒌.                                                                                 (18)  

In an ideal situation, a test image 𝒚 from the 𝑗th class can be linearly represented in terms of all the training samples, 

which can be written as 

                                                               𝒚 = 𝑿𝒌 = 𝑿𝒌1𝑗 + 𝑿𝒌2𝑗+, … , +𝑿𝒌𝑛𝑗,                                                               (19) 

where 𝑛 is the number of training samples in the 𝑗th class, and 𝒌𝑖𝑗 is the sparse coefficient vector whose entries are 

zero, except those associated with the 𝑗th class and the 𝑖th training sample in the class.                                                                                                                 

In our algorithm, we propose the following objective function to compute the optimal projection matrix 𝑷, which 

preserves the sparse structure when projecting the extracted multiple low-rank features 𝑭 onto a new feature subspace. 

                                                                                  𝑷 = arg min
𝑷

∑‖𝑷𝑇𝒇𝑗 − 𝑷𝑇𝑭 𝒌𝑗‖
2

𝑀

𝑗=1

,                                                                          (20) 
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where 𝒇𝑗 is the low-rank feature vector of the 𝑗th training sample. By using simple algebraic formulation, Equation 

(20) can be written as: 

                                                                                min 𝑷𝑇 (∑(𝒇𝑗 − 𝑭𝒌𝑗)(𝒇𝑗 − 𝑭𝒌𝑗)
𝑇

𝑀

𝑗=1

) 𝑷.                                                                      (21) 

Assume that the low-rank feature vectors are projected onto an 𝑚 dimensional vector space. Let 𝒖𝑗 be the m-

dimensional unit vector with the 𝑗th element equal to 1, and 0 otherwise. Equation (21) can then be written as follows: 

min 𝑷𝑇 (∑(𝑭𝒖𝑗

𝑀

𝑗=1

− 𝑭𝒌𝑗)(𝑭𝒖𝑗 − 𝑭𝒌𝑗)
𝑇

) 𝑷 

= min 𝑷𝑇𝑭 (∑(𝒖𝑗 − 𝒌𝑗)(𝒖𝑗 − 𝒌𝑗)
𝑇

𝑀

𝑗=1

) 𝑭𝑇𝑷 

                         = min 𝑷𝑇𝑭 (∑(𝒖𝑗𝒖𝑗
𝑇 − 𝒖𝑗𝒌𝑗

𝑇 − 𝒌𝑗𝒖𝑗
𝑇 + 𝒌𝑗𝒌𝑗

𝑇)

𝑀

𝑗=1

) 𝑭𝑇𝑷 

                                                                                                                                                                        

                                                                    = min 𝑷𝑇𝑭(𝑰 − 𝑲 − 𝑲𝑇 + 𝑲𝑇𝑲)𝑭𝑇𝑷.                                                                     (22)                                          

                                                                                               

We set the constraint 𝑷𝑇𝑭𝑭𝑇𝑷 = 1. Then, the objective function is converted into the following optimization 

problem                                                                   

                                                                          min
𝑷

𝑷𝑇𝑭(𝑰 − 𝑲 − 𝑲𝑇 + 𝑲𝑇𝑲)𝑭𝑇𝑷

𝑷𝑇𝑭𝑭𝑇𝑷
.                                                                (23) 

                                                                                                                                      

To solve (23), the Lagrange method is used, which provides the following equation:   

                                                      𝐿(𝑷, 𝜆) = 𝑷𝑇𝑭(𝑰 − 𝑲 − 𝑲𝑇 + 𝑲𝑇𝑲)𝑭𝑇𝑷 −  𝜆(𝑷𝑇𝑭𝑭𝑇𝑷 − 1),                                         (24) 

where 𝜆 is a lagrange multiplier, and 𝑰 represents the identity matrix. To compute the optimum sparse projection matrix 

𝑷, we set the derivative to zero, i.e. 
𝜕𝐿

𝜕𝑷
= 0, which gives the following equation:  

                                                                          𝑭(𝑰 − 𝑲 − 𝑲𝑇 + 𝑲𝑇𝑲)𝑭𝑇𝑷 = 𝜆𝑭𝑭𝑇𝑷.                                                                      (25) 

Finally, it becomes an eigen-decomposition problem in which we select the 𝑚 eigenvectors of the matrix 

(𝑭𝑭𝑇)
−1

𝑭(𝑰 − 𝑲 − 𝑲𝑇 + 𝑲𝑇𝑲)𝑭𝑇, with the smallest eigenvalues to construct a new low-dimensional feature subspace. 

Our proposed algorithm builds the sparse coefficient matrix by utilizing all the training data, so no search for nearest 

neighbors is required during testing. For visualization of the learned low-rank sparse features, we randomly selected 

10 face samples from each of the 10 different classes. The low-rank sparse features are first extracted and then 

visualized using t-Distributed stochastic neighbor embedding (t-SNE) [64], as shown in Fig. 5. It can be observed that 
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the discriminablity of the learned features is enhanced, as samples from different classes are well separated in the 

feature space.  

 

Fig 5. Visualization of the learned low-rank sparse features using t-SNE.  

5.2 Geometrical and Mathematical properties of a Generalized Eigenvalue Problem 

In this section, we explain our proposed formulation from geometrical and mathematical points of view. The 

proposed formulation involves two major steps, which are: (1) construction of the sparse coefficient matrix 𝑲, and (2) 

determination of the projection matrix 𝑷. To understand this eigenvalue problem, attention needs to be paid to these 

two major steps. Firstly, sparse coefficient vector 𝒌𝑗 is determined for each sample 𝒙𝑗 using 𝑙1 minimization. Each 

column of 𝑲 represents the sparse coefficient vector of a sample. Now, we will analyze the effectiveness of this 

computed sparse coefficient matrix 𝑲. Geometrically, each sparse coefficient vector 𝒌𝑗 is invariant to scaling and 

rotation of the data samples. It is also invariant to translation due to the constraint 1 = 𝟏𝑇𝒌𝑗, where 𝟏 is an identity 

vector. Therefore, the sparse coefficient matrix 𝑲 remains unchanged whenever data samples are translated and rotated, 

which is one of its important geometrical properties. In our proposed method, we construct a coefficient matrix, using 

whole training data, instead of using the 𝑘-nearest neighbors. This helps in preserving the global structure of the data, 

while projecting them into a new sparse feature subspace. The constructed sparse coefficient matrix also has the 

capability to preserve the discriminant information. To understand this, let us take an example of face recognition. The 

major assumption in face recognition is that the face images, belonging to the same class, lie on a linear subspace. Let 

𝒙𝑗 be a face image belonging to the 𝑗th class, 𝒙𝑗 can be represented as a linear combination of the other face images 
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from the same 𝑗th class, and the computed coefficient vector 𝒌𝑗 is sparse. This shows that 𝒌𝑗 naturally contains 

discriminant information, so it can easily distinguish the face images of two different classes. Our proposed method 

uses 𝑙1 regularization, which enables it to encode the prior knowledge of sparsity. It performs sparse reconstruction 

only in the training process. Having determined the projection matrix 𝑷, sparse reconstruction is no longer necessary 

and our algorithm is therefore efficient.  

 

Fig 6. Training stage of our proposed framework.  

6 Linear-Regression-based Classification 

After projecting gallery and probe features onto the sparse feature subspace, a linear regression framework is 

developed to model the similarity between them. The main idea of this model is to compute a linear mapping function 

between the gallery and the probe face images. According to the developed model, there exists a linear relationship 

between a probe image and each of the samples in a gallery.  If a query face image fits to the 𝑖th class in the gallery 

set, it can be represented as a linear combination of the gallery-images features from the same class. Therefore, we 

have   

                                                                                              𝑰𝑅 = 𝑿𝑖𝜶𝑖  ,                                                                                      (26) 

where 𝑰𝑅 is the reconstructed probe image based on the gallery images from the 𝑖th class; 𝑿𝑖 = [𝒙𝑖,1, … , 𝒙𝑖,𝑛𝑖
] are the 

training samples from the 𝑖𝑡ℎ class, which has 𝑛𝑖 samples; and 𝜶𝑖 represents the image coefficient vector of the probe 

image, estimated by the least-squares algorithm. The next step is to find the residual values for each class, based on the 

computed coefficient vectors. The query face image 𝒚 is assigned to the class 𝑗 with the minimum residual value, i.e.              

                                                                                   𝑗 = min
𝑖

‖𝒚 − 𝑿𝑖𝜶𝑖‖.                                                                       (27) 
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Fig 7. Testing stage of the proposed framework. 

                       

                           

                                           (a)                                                                                                   (b) 

                                    

                             

                                                            (c)                                                                                                   (d) 

Fig. 8. Original images and the corresponding LR images: (a) Extended Yale-B, (b) Multi-PIE, (c) FERET, and (d) LFW databases. The first 

rows show the original face images, while the second rows show the downsampled images.  

7 Experiments 

We evaluate the performance of our proposed framework by conducting the experiments on five face datasets, 

including the Extended Yale-B, Multi-PIE [45], FERET [46], LFW [47], and Remote face [48] databases. These 

databases contain images with variations in pose, facial expressions, and lighting conditions. In the pre-processing 

stage, face images are first detected and aligned using MTCNN [65]. For the different databases, we followed the other 

papers on LR face recognition to down-sample face images to a specific size. This allows our algorithm to be directly 

compared to other algorithms.   
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7.1   Experimental Results on the Extended Yale-B Database  

The Extended Yale-B database consists of 2,432 images from 38 subjects with 64 images per subject, which were 

captured under different lighting conditions. In our experiments, all 64 images per subject with different illumination 

conditions are utilized. For training, we randomly select 10, 20, and 30 images per subject. LR probe images of size 

12 × 12 are generated using a down-sampling operation. The HR and LR face images of five individuals from the 

Extended Yale-B database are shown in Fig. 8(a).  In Fig. 9, the recognition rate shows an increasing trend and remains 

stable as feature dimension increases. Our proposed method outperforms other LR face recognition methods, and 

achieves the highest recognition rate of 94.74%, when the feature dimension is higher than 70. The highest recognition 

rates of CLPM [11], DSR [15], NMCF [14], MDS [19], CCA [23], CDMMA [24], and CMDA [26] are 89.35%, 62.3%, 

81.42%, 77.01%, 77.90%, 88.2%, and 89.8%, respectively, at their corresponding optimal feature dimensions.  

 
Fig.9. Recognition rates of different methods at different feature dimensions on the Extended Yale-B database (LR: 12 × 12). 

7.2 Experimental Results on the Multi-PIE Database 

The Multi-PIE dataset consists of more than 750,000 face images of 337 subjects. Images were captured in four 

different sessions. Following the protocol used in [27], we conducted experiments on a subset of session 04, which 

contain images with frontal pose under 20 different illumination conditions. The camera and the recording numbers, 

used in our experiments, are 05-1 and 01, respectively. For training, we randomly selected 50 subjects, while the 

remaining subjects were used for testing. To construct a gallery set, 6 images of each subject were selected, while the 

remaining 14 images were included in a probe set. LR probe images of size 8 × 8 are generated using a downsampling 

operation. The HR and the corresponding LR images from the Multi-PIE dataset are shown in Fig. 8(b). Table 2 shows 
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the comparative results in terms of Rank-1 recognition accuracy. Fig. 10(a) shows the recognition rate at different 

feature dimensions. Our method performs better than the other LR face recognition methods and achieves the highest 

recognition accuracy of 97.41%.    

  
(a)                                                                                                              (b) 

Fig. 10. Recognition rates with different feature dimensions: (a) Multi-PIE database (LR: 8 × 8) and (b) the FERET database (BaBe) (LR: 8 ×
8). 

 

7.3 Experimental Results on the FERET Database 

The FERET dataset consists of more than 13,000 face images from 1,565 subjects.  Each subject has images with 

large variations in pose, expressions, and illumination conditions. The dataset consists of one standard gallery set (Fa), 

and three probe sets (Fb, Dup1, and Dup2). The HR and LR face images of five individuals from the FERET database 

are shown in Fig. 8(c). In our experiments, we selected the group, namely Fa, which consists of 994 frontal face images 

with one image per subject, and used it as a gallery set, while Fb, which consists of 994 images with expression 

variations, was used as a probe set. Throughout this paper, we called this subset ‘FERET (Fa)’.We carried out our 

experiments by selecting a training set that consists of only one image per subject. LR probe images of size 12 × 12 

are generated by using a down-sampling operation. Our method performs better than other LR face recognition 

methods, and achieves the highest recognition rate of 89.66%, with a feature dimension of 200, whereas the recognition 

accuracy achieved by CLPM [11], CMFA [20], SDA [18] and C-RSDA [25] are 82.46%, 75.40%, 71.77%, and 86.29%, 

respectively, with their optimal feature dimensions. Table 1 shows the comparative results at different resolutions.  

 

 

Table 1 

Comparative results on the FERET (Fa) dataset, in terms of Rank-1 Recognition accuracy, at different resolutions with optimal feature 

dimensions.  



 

 

 

23 

Algorithm 8*8 12*12 16*16 

CLPM [11] 79.94% 82.46% 84.48% 

CMFA [20] 72.08% 75.40% 75.60% 

SDA [18] 68.75% 71.77% 72.08% 

C-RSDA [25] 82.36% 86.29% 86.29% 

Proposed method 84.71% 89.66% 95.22% 

Table 2 

Comparative results for FERET (BaBe) and Multi-PIE datasets in terms of Rank-1 Recognition accuracy at optimal feature dimensions (Probe 

image resolution:8 × 8). 

Algorithm FERET (BaBe) Multi-PIE 

CLPM [11] 55.22% 88.04% 

CMFA [20] 75.98% 93.44% 

SDA [18] 72.09% 89.51% 

Shi et al. [21] 80.90% 95.69% 

MDS [19] 85.91% 91.78% 

LMCM [22] 90.00% -------- 

DMDS [27] 90.89% 93.88% 

LDMDS [27] 93.55% 95.81% 

Proposed Method 96.22% 97.41%  

 

We further perform experiments on another challenging subset of the FERET dataset, which contains images of 200 

subjects (including 𝑏𝑎, 𝑏𝑑, 𝑏𝑒, 𝑏𝑓, 𝑏𝑔, 𝑏𝑗 𝑎𝑛𝑑 𝑏𝑘). Throughout this paper, we called this subset ‘FERET (BaBe)’. In 

this subset, 7 images per subject are available. We randomly selected 50 subjects for training, while the remaining 150 

subjects were used to construct a testing set. In other words, different subjects were used for training and testing. During 

training, all of the 7 images per subject were used. For the testing set, the first four images were used to construct a 

galley set, while the remaining 3 images were used as a probe set. For evaluation, we downsample the probe images to 

the size of 8 × 8. Our proposed method outperforms other state-of-the-art LR face recognition methods, and achieves 

the highest recognition rate of 96.22%, with a feature dimension of 140. The comparative results are shown in Table 

2.  Recognition rates with different feature dimensions are shown in Fig. 10(b). The face images in this subset contain 

large pose and illumination variations. Therefore, very low-dimensional features are not effective in achieving optimal 

performance. However, our method still outperforms the other methods, when the feature dimension is higher than 

120. 
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Fig. 11. Recognition rates of our proposed method on the LFW database, with different feature dimensions and at different probe image 

resolutions.  

 

7.4 Experimental Results on the LFW Database 

We also evaluate our proposed method on LR face images taken under uncontrolled environments by conducting 

experiments on the LFW dataset. All the images in this dataset were captured in the wild, having large variations in 

expression, pose, make-up, lighting condition, etc. It consists of 13,233 face images from 5,749 individuals. Out of 

these, 1,680 individuals contain more than two images, and 610 of them contain more than four images in the dataset. 

We randomly selected 4 images from each of the 610 individuals. For training, we randomly selected 150 subjects with 

10 images each from the CASIA-Web face dataset [66]. For testing, two images per subject from the selected LFW 

images were used to construct the gallery set, and the other two were used for the probe set. In other words, the datasets 

used for training and testing are different. LR probe images of resolutions 12 × 12, 16 × 16, and 20 × 20 were 

generated using a downsampling operation. Our method shows a promising result by achieving 88.23% accuracy on 

LR images of size 12 × 12. For the LFW dataset, we compare our results with a recently proposed deep-learning-based 

method [32], which will be shown in the next section. The HR and LR face images of five individuals from the LFW 

database are shown in Fig. 8(d). The recognition rate of our proposed method, with different feature dimensions and at 

three different probe image resolutions, is shown in Fig. 11.  

7.5 Comparison with Deep-Learning Methods 

Convolutional neural networks (CNNs) have revolutionized pattern-recognition research by providing state-of-the-

art performances in various computer-vision tasks. One of the main reasons for its success is the availability of a large 
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amount of training data and the networks are trained for feature extraction and recognition from end to end. As 

discussed earlier, deep-learning methods have achieved more than 99% recognition accuracy on the LFW dataset. 

However, deep learning is still finding a way to make its mark in solving the LR face recognition problem. Schroff et 

al. [29] reported around 50% decline in validation rate, when the size of face images was reduced from 256 × 256 to 

40 × 40.  In this section, we analyze the performance of our proposed method in comparison to the deep-learning-

based method. In this regard, we have performed several experiments to evaluate whether current deep face models are 

good enough for recognizing LR face images.  

For deep-learning-based experiments, we used three different models of SphereFace (SF) [32] (a deep CNN model, 

trained on the CASIA-Web Face [66] dataset, to perform face recognition). It should be noted that the size of the 

training data used by SphereFace is small, compared to the datasets used in VGG-Face [30], FaceNet [29], and Deep 

Face [28]. The model achieves excellent performance on both the LFW and Youtube face (YTF) datasets. First, we 

used a pretrained model (Model no. 1) of SphereFace for LR face recognition. Our experimental results show that using 

a pretrained model for LR face recognition gives the worst performance. The reason for this is that SphereFace was 

originally trained on HR images, so fine-tuning or retraining is necessary to achieve good performance on LR face 

images. It should be noted that the Multi-PIE and LFW datasets contain color face images. Therefore, we fine-tune the 

model with a small learning rate of 0.01, which linearly decays to zero. We also randomly downsample the input face 

images to different sizes between 8 × 8 and 95 × 95, and report the best performance for the two datasets in Tables 3 

and 4, respectively. On the other hand, the Extended Yale-B and FERET datasets consist of grayscale images, so fine-

tuning the original model with color images might not give the optimal performance on these two datasets. Therefore, 

we retrain the original model using gray-scale images instead of color face images. In this case, the input size of the 

first convolutional layer is changed to 1, rather than 3. Similar to the fine-tuned models, the input face images are 

downsampled to the sizes between 8 × 8 and 95 × 95. The initial learning rate is set to 0.1, which linearly decays to 

zero. At last, we fine-tune the model with the LR version of both CASIA-Web Face and the images we used for training 

our proposed algorithm with the same configuration, as explained before. This fine-tuned model is denoted as SF-

LR_C.  For LFW dataset, our algorithm is already trained with CASIA-Web Face, so no further fine-tuning is required 

for the LFW dataset. However, this fine-tuned model (SF-LR_C) does not perform well, when the image resolution is 

less than 20 × 20. The CASIA-Web Face dataset consists of large number of images per subjet with variations in pose, 
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expressions, and illumination. This allows deep models to learn rich level of image representations for recognition. 

Therefore, adding more images into the training set does not increase the recognition rate. The optimal recognition 

performances are reported in Tables 5, 6 , and 7, respectively. 

Table 3 

Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different resolutions, on the Multi-PIE 

Dataset.  

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SF-HR 84.39% 90.59% 96.03% 99.02% 

SF-LR 96.94% 98.41% 99.96% 100.00% 

SF_LR_C 90.33% 97.31% 99.84% 100.00% 

Proposed Method 97.41% 97.94% 97.94% 98.06% 

Table 4 

Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different resolutions, on the LFW 

database. 

Method 12 × 12 16 × 16 20 × 20 

SF-HR 18.93% 19.67% 41.64% 

SF-LR 52.70% 78.85%     89.92% 

Proposed Method 88.36% 93.28% 95.41% 

 

Table 5 

Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different resolutions, on the Extended 

Yale-B database. 

Method 12 × 12 16 × 16 20 × 20 

SF-HR 61.22% 54.64% 57.12% 

SF-LR 63.08% 68.03% 73.61% 

SF-LR_C 62.12% 67.98% 73.61% 

Proposed Method 94.74% 95.13% 94.87% 

 

Table 6 

Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different resolutions, on the FERET 

(Fa) database. 

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SF-HR 52.73% 65.07% 72.30% 77.64% 

SF-LR 59.29% 49.28% 86.76% 94.22% 

SF-LR_C 34.51% 51.31% 73.94% 86.32% 

Proposed Method 84.71% 89.66% 95.22% 96.55% 

Table 7 

Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different resolutions, on the FERET 

(BaBe) database. 

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SF-HR 42.67% 65.56% 80.22% 88.44% 

SF-LR 55.11% 54.67% 94.22% 99.56% 

SF-LR_C 39.33% 44.22% 73.56% 90.44% 

Proposed Method 96.22% 99.33% 98.67% 99.78% 
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It can be seen that fine-tuning and retraining result in significant improvements in the recognition of LR face images. 

Throughout our experiments, we follow the SphereFace’s implementation to align the face images using MTCNN [65].  

In the testing stage, deep features are extracted from the output of the FC1 layer. In the experiments, the final feature 

of a probe face image is obtained by concatenating the original features and its mirrored features. Finally, the similarity 

score is computed using the cosine similarity. In [32], the performance of the SphereFace model was evaluated using 

different numbers of layers (10, 20, 36, 40 and 64). However, a minor improvement is reported in the recognition rate 

when the number of layers increases from 20 to 64.  

7.6 Experimental Results on the Remote Face Database 

In order to evaluate the performance of our proposed method under more challenging conditions, we conducted 

experiments on the Remote Face dataset [48], which contains images taken under unconstrained outdoor maritime 

environments. The images were taken at different distances, ranging from 10-250 m. There are 2,102 face images in 

total from 17 subjects. Each subject has a number of images, ranging between 29 and 306.  

                        

                                 Blur                                           Illum                                      Illum_blur 

                         

                           Frontal_pose                           Non-frontal pose                         Low-resolution 

Fig. 12. Sample face images from all the six subsets of the Remote Face database.   

The dataset consists of six subsets, denoted as blur, illum, illum_blur, frontal_pose, Nf_pose, and low_res, 

respectively. The blur subset contains 75 face images with blurring effects. The illum subset consists of 561 face images 

with different lighting conditions. The illum_blur subset consists of 128 images, with both lighting and blurring effects. 

The low_res subset is the most challenging one, as it contains 90 face images of very low resolution. The frontal_pose 

and non-frontal pose (Nf_pose) subsets include images having frontal and non-frontal poses, with 1,166 and 846 face 

images, respectively. The gallery set consists of five HR face images of each subject. We conducted experiments on 

all of the six subsets and achieved competitive results. For the subsets with a blur and lighting effects, all the methods 
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can achieve promising results, as these effects do not have severe impact on the image’s apperance. All the methods 

can also achieve satisfactory performance on the frontal-pose subset. For the Nf_pose subset, most of the methods have 

their performance drop significantly, while our method can achieve the best performance, with the recognition rate of 

96.4%. The low_res subset is the most challenging one, because the images are of a small size and suffered from 

blurring. The resolution of the images in this subset is 20 × 30 only. The face images of three different subjects from 

all the six subsets are shown in Fig. 12. No training set is provided by the Remote Face dataset [48], so we used 16,028 

frontal face images from the Face Recognition Grand Challenge (FRGC) dataset for training. It can be seen that all the 

other methods do not perform well on the LR face images, as it is very difficult to extract useful information from such 

low-quality, low-resolution images. Similar to [36], we compare the performance of our method with different local 

feature descriptors, including binarized statistical image features [67], DFD [34], LSF [36], and two deep-learning-

based methods (DL [68], and SphereFace (SF) [32]). Experimental results are tabulated in Table 8.  

Table 8 

Comparative results on remote face dataset, in terms of Rank-1 Recognition rate on all the six subsets. 

 

Subset Algorithm Rate (%) Subset Algorithm Rate (%) Subset Algorithm Rate (%) 

blur BSIF 62.2 frontal_pose BSIF 70.1 Nf_pose BSIF 49.2 

 DFD 63.5  DFD 78.6  DFD 52.5 

 DL 48.6  DL 80.3  DL 49.8 

 Shearlet 62.5  Shearlet 77.8  Shearlet 51.7 

 LSF 67.3  LSF 83.8  LSF 57.2 

 SF-FT 89.4  SF-FT 95.4  SF-FT 90.1 

 SF-FT_C 85.9  SF-FT_C 95.0  SF-FT_C 89.1 

 SF 93.8  SF 97.8  SF 94.2 

 Ours 90.5  Ours 98.8  Ours 96.4 

illum BSIF 79.3 illum_blur BSIF 74.8 low_res BSIF 11.2 

 DFD 83.4  DFD 75.2  DFD 14.5 

 DL 80.4  DL 71.8  DL 11.5 

 Shearlet 81.6  Shearlet 74.3  Shearlet 13.8 

 LSF 92.5  LSF 76.0  LSF 19.9 

 SF-FT 99.2  SF-FT 96.9  SF-FT 51.4 

 SF-FT_C 98.0  SF-FT_C 96.9  SF-FT_C 61.4 

 SF 99.4  SF 98.5  SF 66.0 

 Ours 98.8  Ours 98.8  Ours 81.1 

It can be seen that the deep-learning-based model SF [32] can achieve a state-of-the-art performance on the five 

subsets, except the low_res subset. This is because the original model was trained on HR face images. In our 

experiments, we have also fine-tuned the model using two schemes. In the first scheme, our model is fine-tuned with 

the LR images from the CASIA-Web Face dataset [66], with the sizes between 8 × 8 and 95 × 95, for performance 
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evaluation. In the experiment results, this fine-tuned model is denoted as SF-FT. In the second scheme, our model is 

fine-tuned with the combination of LR images from both the CASIA-Web Face and the FRGC dataset (16,028 frontal 

face images), with the sizes between 8 × 8 and 95 × 95. This fine-tuned model is denoted as SF-FT_C. After including 

the FRGC dataset for fine-tuning, the recognition rate is increased by 10% on the low_res subset. However, the original 

SF model performs better than the two fine-tuned models (SF-FT and SF-FT_C), because the distribution of the 

downsampled faces used for fine-tuning is different from the native LR faces. For those subsets other than low_res, no 

considerable improvement is observed in terms of recognition rate by including the FRGC dataset in the training set. 

It can be observed that the performance of the deep learning models declines when the presented probe images are of 

low resolution. However, our method performs better than all the other methods on this subset, as well as on 

frontal_pose, illum_blur, and Nf_pose. For the blur and illum subsets, the performance of our method is comparable to 

SF and SF-FT.  

Our proposed method also provides state-of-the-art performance on the low_res subset, due to the two effective 

stages of learning (low-rank feature learning and sparse mapping). LR images contain very limited amounts of 

information, which cannot be fully extracted by using only multiple local features. Furthermore, the LR images may 

contain some artifacts or noises, which can greatly degrade the recognition performance. The low-rank feature learning 

part in our algorithm generates a clean low-rank feature matrix and excludes the distorted components, which helps in 

revealing the correct identity information. In Section 7.8, the effectiveness of low-rank feature learning will be further 

explained. Furthermore, computing the sparse-coefficient matrix using the whole training set leads to the projection of 

the learned features into a discriminant sparse feature subspace, which can further increase the inter-personal variations. 

This can also improve the recognition performance. 

7.7 Feature Fusion 

Most of the existing face recognition methods utilize only one feature descriptor. However, in difficult tasks, such 

as LR face recognition, no single feature is good enough to extract all the relevant information from LR face images. 

Combining multiple efficient features is a promising way to bring major improvement in recognition accuracy. In our 

previous approach [44], we used only one local feature descriptor (Gabor wavelets) for extracting facial details from 

LR images, which provided satisfactory performance. However, it does not perform well under large pose variations 

and poor lighting conditions. To overcome this problem, we fuse two efficient local feature descriptors, i.e. Gabor 
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wavelets and LBPD, which can achieve much better performance even under large unconstrained environments. Table 

9 shows the recognition rates on the four databases (in comparison to previously proposed approach [44]), with and 

without performing feature fusion at the corresponding optimal feature dimensions. It can be observed that learning 

and fusing the low-rank features brings significant improvements, in terms of recognition accuracy.  

Table 9 
Recognition rates in comparison to the preliminary work [44], recorded at the optimal feature dimensions. 

 

Dataset Previous Method [44] Proposed Method 

Extended Yale-B (LR: 12 × 12) 49.21% 94.74% 

FERET (fa) (LR: 12 × 12) 70.08% 89.66% 

FERET (BaBe) (LR: 8 × 8) 46.44% 96.22% 

LFW (LR: 12 × 12) 44.34% 88.36% 

Multi-PIE (LR: 8 × 8) 56.40% 97.41% 

7.8 Effectiveness of Low-rank Feature Learning 

Low-rank feature learning has been proven to be an efficient technique to handle large amounts of noise variations 

in data samples. It aims to learn a low-rank dictionary, by optimizing the dictionary atoms, and removing sparse errors 

from the data samples. Furthermore, it can reveal the global structural information of the data samples, which helps in 

reconstructing a given test sample using a discriminative low-rank dictionary. The learned low-rank feature of a sample 

has high correlation with that of the same class, which enhances the recognition performance. It can effectively reveal 

the identity of the data samples by incorporating the global structural information.  

As discussed before, we first decompose the extracted local features into a low-rank feature matrix, and a sparse 

error matrix. After that, only the low-rank component is utilized for identification. In this section, we evaluate the 

performance of our proposed method with and without including the estimated sparse error matrix in the final feature 

representation. Firstly, we visualize the estimated low-rank and sparse error components by applying the low-rank 

matrix decomposition algorithm on some face images from the LFW dataset. Fig. 13 shows the low-rank representation 

of face images and their corresponding sparse errors.  

 

The low-rank representation of face images from LFW dataset. 
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Corresponding Sparse error images  

Fig. 13. Low-rank representation of face images and the corresponding sparse error images.  

 

Fig. 14. Recognition rates with and without using the sparse error matrix for all the five datasets at optimal feature dimensions.  

In our experiments, we found that by including the sparse error matrix in the final feature representation, recognition 

rate drops by a significant level. We repeat our experiments by following the protocol discussed before, and report the 

recognition rates for all of the five datasets at optimal feature dimensions. Fig. 14 shows the recognition rates with and 

without using the sparse error matrix. It can be observed that the recognition rate increases by 20-25%, when the sparse 

error matrix is discarded. Furthermore, we also evaluate the performance by excluding low-rank feature learning from 

the recognition pipeline. This means that the extracted fused features are directly projected into the sparse feature 

subspace for classification. The results are reported for all the five datasets with optimal feature dimensions. For the 

datasets consisting of images taken in constrained environments, a 10-20% decline in recognition rate is observed. In 

the next part, we evaluate the performance without projecting the extracted low-rank features into the sparse feature 

subspace. The dimension of the low-rank features is reduced directly using PCA, which is then fed to a linear-

regression-based classifier. Fig. 15 shows the recognition rates obtained after conducting various ablation studies. It 

can be seen that, by excluding low-rank feature learning and sparse mapping, the recognition rate drops  down to a 

significant level. This shows the effectiveness of our proposed method. The recognition results based on our method 
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on the four datasets, at the corresponding optimal feature dimensions and with different numbers of training images 

per subject, are shown in Tables 10-13, respectively. 

 

 

Fig. 15. Recognition rates of our proposed method, with and without using low-rank decomposition and sparse mapping, on the ??? dataset.  

 

Fig. 16. Recognition rates of our proposed method, with and without using low-rank decomposition and sparse mapping, on the Remote Face 

dataset. 

 



 

 

 

33 

 

Fig. 17. Recognition rates of the proposed method on four datasets at different probe image resolutions. 

7.9 Recognition across Different Probe Resolutions 

In this section, the performance of our proposed method is evaluated using probe images of different resolutions, 

with and without using our proposed morphological preprocessing method. For all the four datasets, three different 

probe resolutions, 8 × 8, 12 × 12, and 16 × 16, were used. Experiments were conducted by selecting a fixed number 

of training samples per subject and the respective optimal feature dimensions, at different probe resolutions, and results 

are shown in Fig. 17. The results show that our proposed method can achieve a very good recognition performance 

even if image resolution is reduced to lower than 12×12. Table 14 shows the recognition rates, with and without using 

the proposed pre-processing method, at the corresponding optimal feature dimensions for the four datasets. It can be 

observed that 1% to 6% of improvement, in terms of recognition rate, can be achieved when the pre-processing step is 

employed. 

 

Table 10 
Recognition rates, using different numbers of training images per subject, on the Extended Yale-B database (LR:12 × 12). 

Training images / subject Recognition rate 

10 0.9382 

20 0.9474 

30 0.9461 
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Table 11 

Recognition rate, using different numbers of training images per subject, on the Multi-PIE database (LR:8 × 8). 

Training images / subject Recognition rate 

                      10                    0.9148 

15 0.9720 

20 0.9741 

 

Table 12 

Recognition rate, using different numbers of training images per subject, on the FERET (Fa) database (LR:12 × 12). 

Training images / subject Recognition rate 

1 0.8966 

2 0.9399 

Table 13 

Recognition rate, using different numbers of training images per subject, on the LFW database (LR:12 × 12). 

Training images / subject Recognition rate 

5 0.6664 

10 0.8823 

 

 

Table 14 

Recognition rates of our proposed method, with and without using the morphological pre-processing method. 

 

8 Conclusions 

This paper addresses the problem of low-resolution face recognition by proposing a sparse-coding-based approach, 

which first extracts multiple local features (Gabor wavelets and LBPD) from face images and then decomposes them 

into a corresponding low-rank feature matrix and a sparse error matrix. The learned low-rank features are then projected 

into a new discriminative feature subspace using the proposed sparse-coding-based algorithm. It can be observed that 

sparsity plays an important role in discriminating face images of two different classes. Our proposed method performs 

sparse reconstruction in the training process, without searching for any nearest neighbors. The learned projection matrix 

also preserves the global structure of the data samples in the learned sparse feature subspace. For matching, a coefficient 

vector is computed to find the similarity between the training and testing image’s features by using linear regression. 

Residual values are then computed based on the estimated coefficient vectors, which represents a testing feature, in 

terms of a set of training features. Finally, the LR query face image is then assigned to the class label with the least 

Database Recognition rate (without pre-processing) Recognition rate (after pre-processing) 

Extended Yale-B (160-D features)  0.882 0.947 

Multi-PIE (160-D features) 0.922 0.974 

FERET (Fa) (200-D features) 0.831 0.896 

FERET (BaBe) (100-D features) 0.873 0.915 

LFW (200-D features) 0.819 0.883 
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residual value. Our objective function does not need to tune any model parameter. Experimental results demonstrate 

that our proposed method can achieve a better performance than other LR face recognition methods, in terms of 

recognition accuracy.
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