
1

Preserving User Privacy For Machine Learning:
Local Differential Privacy or Federated Machine

Learning?
Huadi Zheng, Haibo Hu, Senior Member, IEEE , Ziyang Han

Abstract—The growing number of mobile and IoT devices has nourished many intelligent applications. In order to produce high-quality
machine learning models, they constantly access and collect rich personal data such as photos, browsing history and text messages.
However, direct access to personal data has raised increasing public concerns about privacy risks and security breaches. To address
these concerns, there are two emerging solutions to privacy-preserving machine learning, namely local differential privacy and
federated machine learning. The former is a distributed data collection strategy where each client perturbs data locally before
submitting to the server, whereas the latter is a distributed machine learning strategy to train models on mobile devices locally and
merge their output (e.g., parameter updates of a model) through a control protocol. In this paper, we conduct a comparative study on
the efficiency and privacy of both solutions. Our results show that in a standard population and domain setting, both can achieve an
optimal misclassification rate lower than 20% and federated machine learning generally performs better at the cost of higher client CPU
usage. Nonetheless, local differential privacy can benefit more from a larger client population (> 1k). As for privacy guarantee, local
differential privacy also has flexible control over the data leakage.

Index Terms—Federated Machine Learning, Local Differential Privacy

F

1 INTRODUCTION

The pervasive application of mobile, wearable and IoT
devices has encouraged the boosting amount of generated
data. Together with the drastic development of machine
learning, mobile apps are empowered to provide person-
alized and self-evolving AI service such as voice assistant,
word suggestion, facial recognition, and smart video feeds.
In most of these applications, the machine learning model is
refined by continually feeding in new user data (as features)
and their feedback (as labels) from their mobile devices.
However, these data, such as type history, web access logs,
and frequently visited locations, are often sensitive and
private information. To combat privacy infringement, US
Federal Trade Commission has called for a national law
against general violation of privacy after the testimony of
Facebook–Cambridge Analytica scandal [1]; and EU has
adopted the more stringent “General Data Protection Regu-
lation” (GDPR) to supersede the “Data Protection Directive”
in May 2018 [2].

Despite of strict legislation on personal data protection
and the efforts made by most service providers, hosting
personal data in a centralized location can still be highly
risky due to security breach, internal theft or corporate dis-
honesty. A famous incident is the leakage of celebrity photos
from iCloud in 2014. Unfortunately, centralized sanitation
(e.g., generalization) and encryption schemes are shown

• The authors are with the Department of Electronic and Information
Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
and PolyU Shenzhen Research Institute (Corresponding author: Haibo
Hu). E-mail: {huadi.zheng@connect.polyu.hk, haibo.hu@polyu.edu.hk,
ziyang.han@connect.polyu.hk }

vulnerable to various attacks, such as deanonymizing Net-
flix challenge dataset with IMDb data [3].

More recently, two distributed data analytical tools are
proposed to protect privacy, namely, local differential pri-
vacy [4] and federated machine learning [5]. Both tools
avoid direct access of personal data while still retaining
high utility, e.g., high accuracy on statistics estimation or
the trained model. Their mechanisms are summarized as
follows:

1) Local differential privacy (LDP): Each user perturbs
her data locally before sending them to an untrusted
service provider for data collection and analytics.
LDP achieves plausible deniability of each individ-
ual under a measurable and rigorous mechanism.
LDP is heavily investigated in the literature of
privacy-preserving statistics collection.

2) Federated machine learning (FML): It trains a glob-
ally shared model over a large number of dis-
tributed clients using an efficient control protocol
with the central server. Only model parameter up-
dates calculated on local data are submitted to the
server, who aggregates them to improve the shared
global model. This approach not only protects users’
local data but also leverages on the computing re-
sources on mobile devices.

Although both tools avoid direct access, their method-
ologies are essentially different. LDP is a theoretical privacy
notation that can be achieved by different algorithms, while
FL is a generic distributed learning framework without the-
oretical provable privacy. To conduct a comparative study
of both tools, we deploy them to solve a common set of
classification problems in mobile scenarios. This allows us

This is the Pre-Published Version.
The following publication H. Zheng, H. Hu and Z. Han, "Preserving User Privacy for Machine Learning: Local Differential Privacy or
Federated Machine Learning?," in IEEE Intelligent Systems, vol. 35, no. 4, pp. 5-14, 1 July-Aug. 2020 is available at https://doi.org/10.1109/
MIS.2020.3010335.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

to gain important insights of their performance in terms of
classification performance, privacy loss, CPU/power con-
sumption, and bandwidth consumption. In particular, to
unify the privacy model of both solutions, we design a pri-
vacy loss metric through a general sample inference attack.
To summarize, our primary contributions are as follows:

• We implement two competing solutions that learn
from user data without submitting the original user
data to the server and extensively discuss the unifi-
cation of two solutions.

• We design a unified privacy loss metric for both
solutions through a general sample inference attack.

• We conduct extensive experiments to compare both
solutions in a set of machine learning problems in
mobile scenarios.

The rest of the work is organized as follows. In Section 2,
we introduce the fundamental principles of LDP and feder-
ated machine learning, and point out their problems. Section
3 presents the methodology of our comparative study of the
two techniques. The experimental results shown in Section 4
compare their performance for given learning tasks with re-
spect to various model and dataset parameters. We discuss a
unification strategy in Section 5 and related work in Section
6. And finally, the findings of the study are concluded in
Section 7.

2 PRELIMINARIES

2.1 Local Differential Privacy

LDP [4] extends the notion of differential privacy by per-
turbing local data with noise determined by a predefined
parameter. In a nutshell, a perturbation algorithm A prob-
abilistically modifies a local raw value νi to another value
in the same domain of possible outputs κ. The modified
value is then submitted to the server. A learning task on
the statistical features (e.g., frequency and mean) of such
data retains certain accuracy after the server collects all
perturbed values. Meanwhile, each individual can have
plausible privacy guarantee bounded on a privacy budget
of ε.

Formally, the perturbation algorithm suffices ε-LDP prin-
ciple if and only if for any two individuals’ inputs νi and νj ,
we have

Pr[A(νi) = s] ≤ eε · Pr[A(νj) = s],

where s ∈ κ. Obviously, perturbed data is closer to the origi-
nal data with a larger privacy budget ε and user population.
Since the noises are applied to the data set directly, this
strategy may have a strong impact on model performance
when the budget is low.

2.2 Federated Machine Learning

In a task of federated machine learning, each mobile de-
vice initializes its own training using the shared model
downloaded from the server and builds a new model using
its local data. The updated model parameters will then be
returned to the server, averaged with other peer devices and
merged as the new shared model. This process is repeated

multiple rounds to satisfy a learning objective until the
desired set of model parameters are obtained.

Formally, a typical supervised machine learning objec-
tive function can be expressed as

argmin
W

1

N

∑
j∈J
L(f(xj ,W), yj),

where a learning algorithm is stated as f and its correspond-
ing parameters W are estimated from the dataset J with a
total sample size of N by minimizing the loss L between
predictions on all input xi and true label yi in the training
set.

In federated machine learning, data are assumed to be
distributed over a set of M mobile devices and each of them
can be considered as a partition P with n = |P | training
samples. The objective in this setting evolves to minimize
the aggregated loss:

g(W) =
∑
m∈M

nm
N
F (Pm,W),

where F is the local loss defined by

F (Pm,W) =
1

nm

∑
k∈Pm

L(f(xk,W), yk).

To train such an objective, a straightforward gradient
descent algorithm can be applied to estimate model param-
eters using the iterative rule below:

Wt+1 ←Wt − η∇g(W),

which is a full-batch gradient descent using all client data
to generate an update in round t. However, this is not
practical since it takes a long time for each iteration and
even multiple times longer under the case of potentially
high latency and limited bandwidth of the mobile network.
To improve communication efficiency, federated machine
learning commonly increases individual client computation
by asking each mobile device to iterate over local data sev-
eral times with stochastic gradient descent before submit-
ting the parameter updates to the server for averaging [5].

3 METHODOLOGY

3.1 Problem Statement

We aim to tackle a machine learning problem in a dis-
tributed data setting where companies such as Google and
Apple would like to improve their AI service accuracy, such
as word auto-complete suggestion, through the data (e.g.,
keyboard input) from millions of distributed data points.
To minimize the risk of privacy leakage, these companies
adopt either of the two strategies: local differential privacy
to allow users to perturb data before submitting to them
or federated learning to train the machine learning model
locally and only update the model parameters to them. Ta-
ble. 1 summarizes the main characteristics of both strategies.
A typical data record for classification task is in the form of
{X1, X2, ..., Xl} where Xi (i < l) are feature dimensions
and the last one Xl is the classification label of this record.

3

TABLE 1
Characteristics of LDP and FML

Local Differential Privacy Federated Machine Learning

Target Data Collection Distributed Learning

Computation Mobile Perturbation,
Server Training

Mobile Training,
Server Aggregation

Application Shared Model Personal/Shared Model

Privacy Preservation Adaptive Privacy Budget Model Updates Only

Communication One-time Submission Multiple Interactions

Frequent Data Type Structured Data Text, Image, Audio

3.2 Strategy LDP: Submit Perturbed Data with ε-LDP

3.2.1 Client Side:
To perturb each user’s data while satisfying ε-LDP, a san-
itized mechanism is introduced which covers sensitive in-
formation with a certain amount of noises. For categorical
attributes, each of the attributes has ki (1 ≤ i ≤ l) candi-
date values across all samples. For any dimension Xi, the
perturbed output can be X ′i by using a staircase mechanism
proposed by [6], namely k-RR:

P (X ′i|Xi) =
1

ki − 1 + eε

{
eε if X ′i = Xi

1 if X ′i 6= Xi

where there will be a probability of eε

k−1+eε to output the
real value, and 1

k−1+eε to output one of the remaining k− 1
candidate values.

As for numeric attributes normalized in [-1,1], a piece-
wise mechanism by [7] can be applied as follows:

P (X ′i|Xi) =
1

eε/2 + 1

{
eε/2 if X ′i ∈ [Li, Ri]

1 if X ′i ∈ [−δ, Li) ∪ (Ri, δ]

δ =
exp(ε/2) + 1

exp(ε/2)− 1

Li =
δ + 1

2
·Xi −

δ − 1

2
Ri = Li + δ − 1

where there will be a probability of eε/2

eε/2+1
to output a

value sampled in [Li, Ri], and 1
eε/2+1

to output one in
[−δ, Li) ∪ (Ri, δ]. After perturbation, the sanitized data
{X ′1, X ′2, ..., X ′l} will be submitted to the server when a
high-speed network is available such as Wi-Fi.

3.2.2 Server Side:
The server receives a set of perturbed data from clients and
concatenates them into one large dataset. Different from the
statistics collection which usually has a calibration, the san-
itized data won’t have such a post-processing step since we
aim at generating a perturbed dataset. All data points will
be checked for any invalid or erroneous values produced
by the client side. Features can be further extracted and put
into learning pipeline to train a new model. To make use of
the current model, its parameters will be used to initialize
the new model.

3.3 Strategy FML: Train Locally with Federated Ma-
chine Learning
3.3.1 Client Side:
The client receives an instruction for model update task with
a set of training parameters like local batch size and the
number of training passes. The current service model with
weights W will be downloaded into this device. Local data
will be formulated into a proper input form and put into
the training pipeline. In the current round t, the client m
may iterate through the local data E passes with learning
rate η before uploading results using the following gradient
descent,

Wmt ←Wmt − η∇F (Pm,W),

where Pm is local data {X1, X2, ..., Xl}m used in one itera-
tion but this can be controlled by the server to avoid using
the whole local dataset in one batch.

3.3.2 Server Side:
The server sends out an invitation to a fraction C of current
online devices M at each round of training and starts
sending service model to C ·M devices after confirmation.
Updates received from the selected clients will be merged,
which is equivalent to:

Wt+1 ←
∑ nm

N
Wmt

This server-client interaction will be repeated for multiple
times until the changes of parameters meet the pre-defined
threshold.

4 EVALUATION

4.1 Setup
We evaluated three public datasets in this comparative
study.

• NYC Taxi [8]: This dataset contains 1.4m samples of
2016 yellow taxi trips in New York City. Based on
the 8 attributes (e.g., number of customers, starting
location of a trip), a model is trained to predict the
duration of each trip.

• BR2000 [9]: This dataset has 38k samples of census
data collected in 2000 Brazil demographic census.
Based on the 13 attributes (e.g., household, disabil-
ity), a model is trained to predict a person’s monthly
income.

• Adult [10]: This dataset consists of 45k samples of
census data from UCI Machine Learning Repository.
14 attributes (e.g., education level, occupation) are
provided to determine whether a person earns over
50k a year.

All datasets contain categorical and continuous at-
tributes. To ensure the data are applicable to LDP, we per-
turbed the numberic attributes and categorical attributes us-
ing corresponding mechanisms. Missing values and outliers
were removed. For both tasks, the machine learning model
was a neural network with 2 hidden layers containing 30
units, followed by relu activation function. The output layer
was a softmax activation to produce classification results.
Both strategies were given an initial model trained by 10% of

4

data. The remaining 70% of data were distributed to clients
for local training and 20% were used for testing. Similarly,
LDP only perturbed the 70% of the data and use the original
20% for testing.

All experiments are implemented with Python 3.6 on a
desktop computer running Windows 10 with Intel Core i7-
7700 3.6GHz CPU and 32G DDR4 RAM. Federated learning
is simulated with TensorFlow r1.13. As the experiments
require thousands of mobile devices to participate, which
we do not own, we use multiple server machines and mul-
tithreading to simulate these devices. For privacy budget in
LDP, we demonstrate the results of ε set to 2, 4 and 8, which
are common budgets adopted by industries [11]. For LDP,
the central model is trained with 500 iterations for maxi-
mum 100 epochs using a learning rate of 0.1. As for FML, by
default, we pick 20% of clients in each round for maximum
200 rounds and iterate 20 local passes with learning rate 0.1
in each device before uploading the updates.

4.2 Classification Performance
To explore the performance of two strategies, we evaluated
the misclassification rate with respect to the number of
clients. The rate was reported when it converged during
training or exceeded the maximum number of server epochs
in LDP (resp. maximum communication rounds in FML).

As shown in Fig. 1, both strategies reduce misclassifi-
cation rate with the change of client numbers from 0.1k
to 1.6k. The rate of LDP does not change much for the
budget of 2 until it reaches around 1300 clients where the
rate achieves the optimal 34% in BR2000 dataset. The case
with budget of 4 converges slightly quicker to a misclas-
sification rate of 27% while the budget of 8 reaches the
optimal performance of 15% in Adult dataset and eventu-
ally outperforms FML in most datasets. This is consistent
with the perturbation mechanism where relaxed privacy
guarantee, i.e., greater budget, leads to lighter noises. Most
of the misclassification rates saturate after the client size
exceed 1k. It indicates that the model performance of LDP
mainly benefits from an environment with a large scale of
distributed data.

For FML, IID and non-IID setups were evaluated, that is,
to distribute the data in a way where most labels evenly exist
in each device or cluster in different devices. In both setups,
misclassification rate decreases faster with more participants
and stays at saturated level on 14% (IID) and 19% (non-
IID), optimal in BR2000 and NYC Taxi respectively when the
number of clients reaches between 700 and 1000. FML can
learn a useful model even if there are only a few clients at the
early stage compared to LDP. It is obvious that the uneven
distribution of data leads to a negative impact on FML,
while LDP is free from the influence of data distribution
since this strategy collects all data in the first place.

4.3 Privacy Loss
To understand the privacy loss of both strategies, inference
accuracy is evaluated using general sample inference at-
tacks. In this attack, we assume an adversary (e.g., untrusted
aggregator) is able to decrypt the communication channel in
both strategies and has basic knowledge about the types of
the local training set (e.g., attribute type, candidate value).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.4 0.7 1 1.3 1.6

M
is

cl
as

si
fic

at
io

n
R

at
e

Number of Clients (k)

LDP, ε=2 LDP, ε=4 LDP, ε=8
FML (IID) FML (non-IID)

(a) NYC Taxi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.4 0.7 1 1.3 1.6

M
is

cl
as

si
fic

at
io

n
R

at
e

Number of Clients (k)

LDP, ε=2 LDP, ε=4 LDP, ε=8
FML (IID) FML (non-IID)

(b) BR2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.4 0.7 1 1.3 1.6

M
is

cl
as

si
fic

at
io

n
R

at
e

Number of Clients (k)

LDP, ε=2 LDP, ε=4 LDP, ε=8
FML (IID) FML (non-IID)

(c) Adult

Fig. 1. Misclassification rate of different strategies

By observing the data transferred between a client and a
server, i.e., perturbed data in LDP and model parameters
in FML, the adversary can perform inference attack to
determine which samples drawn from the same distribution
belong to the client training set. A higher inference accuracy
leads to greater privacy loss.

In LDP, the inference is performed by measuring the
Manhattan distance between testing data and perturbed
data, and a testing record is considered as a member of

5

0.4

0.5

0.6

0.7

0.8

0.9

1

LDP,
ε=2

LDP,
ε=4

LDP,
ε=8

FML,
E=5

FML,
E=10

In
fe

re
nc

e
A

cc
ur

ac
y

Strategies
(a) NYC Taxi

0.4

0.5

0.6

0.7

0.8

0.9

1

LDP,
ε=2

LDP,
ε=4

LDP,
ε=8

FML,
E=5

FML,
E=10

In
fe

re
nc

e
A

cc
ur

ac
y

Strategies
(b) BR2000

0.4

0.5

0.6

0.7

0.8

0.9

1

LDP,
ε=2

LDP,
ε=4

LDP,
ε=8

FML,
E=5

FML,
E=10

In
fe

re
nc

e
A

cc
ur

ac
y

Strategies
(c) Adult

Fig. 2. Privacy of different strategies (E: number of local passes in FML)

local dataset when its minimum distance is less than a
threshold. As for FML, since adversary can obtain both
global model and local updated one, by comparing the
membership inference [12] on the two models, the local
samples can be exposed. That is, given a threshold, if a
record is recognized as a member in the inference on the
local model but non-member on the global model, it is likely
that this record belongs to the local set. We evaluated all
settings on a testing dataset with half of the samples used
in local training and the other half outside of the device,
such that the random guess is 0.5. All results were reported
under optimal threshold in their settings.

As shown in Fig. 2, LDP achieves a flexible control over
privacy loss compared to FML. Except for the budget of
8, the inference accuracy is constrained to less than 80%

and even 55% as privacy budget drops to 2 in all datasets.
As for FML, the inference accuracy can reach over 80%
among all datasets with 5 local passes and even 90% in
NYC Taxi and Adult when local passes increase to 10. to
improve communication efficiency, it commonly adds more
computation to clients by iterating local updates multiple
times before the aggregation step. This indicates that such
fine-grained updates can significantly capture the details of
local data and are vulnerable to malicious inference. In this
case, LDP with low budget has stronger privacy guarantee
than FML while the performance of classifier is the trade-off
by revisiting model misclassification rate.

4.4 CPU Consumption
4.4.1 Client Side
The main client CPU consumption is on perturbation of
data for LDP while FML spends most of the time updating
the global model with local data. We review the CPU time
against the average local dataset size of each device in Fig. 3.
FML consumes more CPU to iterate through the data and
grows linearly to over 3.8ms for NYC Taxi (resp. 6.3ms
for BR2000) while LDP grows significantly slower and only
reaches 1.2ms for NYC Taxi (resp. 1.7ms for BR2000). When
the size of local dataset is small, the time will approximate
preparation time such as parameters initialization since the
real processing time is too short. The battery will drain faster
under the setting of FML.

4.4.2 Server Side
The computation resources of server are spent on pooling
client’s data and training the model in LDP. Obviously it
consumes more CPU over server side to train the model
compared to FML where the server only needs to coordinate
clients and aggregates all received updates, since training
workload is transferred to clients. For each model, 100
server training epochs take an average of 36s with 500
iterations in LDP while the aggregation and update process
in FML take less than 1s.

4.5 Communication Cost
4.5.1 Client Side
As for data transmission of client device, since LDP will
collect all data, the transmission amount is constant to
the size of local dataset while FML sends a number of
parameters depending on model size. In Fig. 4, LDP has a
larger communication cost than FML when communication
rounds are less than 300. Eventually, FML has 3x more cost
due to frequent exchange of model updates with server.

4.5.2 Server Side
On the server side, since the communication cost against
round change just aggregates all client’s, we instead inves-
tigate the transferred data size against the number of clients
by fixing round number at 1.1k (best model performance)
for each client. As shown in Fig. 5, LDP grows much faster
with more participants than FML in communication cost
since it is equivalent to collect the whole dataset combined
from all clients. Due to the frequent interactions between
clients and server, the accumulated transferred data grows

6

0

1

2

3

4

5

6

7

10 30 50 70 90 110 130

C
PU

 T
im

e
(m

s)

Number of Records

LDP FML

(a) NYC Taxi

0

1

2

3

4

5

6

7

10 30 50 70 90 110 130

C
PU

 T
im

e
(m

s)

Number of Records

LDP FML

(b) BR2000

Fig. 3. Client CPU time

0

20

40

60

80

100

120

140

160

0.1 0.3 0.5 0.8 1.1

O
ve

ra
ll

D
at

a
Tr

an
sf

er
ed

 (K
B

)

Rounds (k)

LDP FML

Fig. 4. Client bandwidth consumption, NYC Taxi

0

10

20

30

40

50

60

70

0.1 0.4 0.7 1 1.3

O
ve

ra
ll

D
at

a
Tr

an
sf

er
ed

 (M
B

)

Number of Clients (k)

LDP FML,C=20% FML,C=40%

Fig. 5. Server bandwidth consumption, NYC Taxi

quickly as well and reaches over 30MB when 20% of clients
participate in each round and can outgrow LDP with 40%
participation rate.

5 DISCUSSION

Impact of Data and Training Procedure In this comparative
study, we evaluated moderate type of data for generality.
For “heavy data” like images and audio, we expect the trend

of computation/network overhead will be similar to current
comparative study but with widening gap. On the one hand,
client CPU usage in FML will grow drastically as the model
complexity also increases for such data while LDP remains
the same. On the other hand, LDP will consume higher
network usage given that perturbed data has a similar size
of the original one. For LDP, we adopt the same straightfor-
ward training as FML for fair comparison. However, the
model performance may be volatile to the privacy bud-
get. Alternative training procedure using frequency-based
statistics [2] can be adopted to improve the model quality
and stability. The main idea is to generate synopsis such as
histogram from perturbed data and synthesize training data
from that synopsis.
Privacy Challenges in FML Even though FML provides a
good property of intrinsic preservation of local data while
delivering high-quality model, this strategy still faces many
challenges on privacy protection and the reasons are three-
fold. First, as shown in our empirical analysis, privacy con-
trol is limited for the submitted updates in FML, since the
change of local pass number does not produce a significant
influence over the privacy loss. Second, current FML heavily
relies on encryption schemes to deliver secure aggregation
and is susceptible to the inherited vulnerabilities of that
designated encryption. Third, the system efficiency is liable
to be degraded by the secure aggregation scheme, such
as multi-party computation (MPC) [13] which is inherently
computationally complex.

Unification of FML and LDP. Essentially, the aggregation
step in FML is performing mean calculation on scattered
data sources. Given that LDP has been frequently applied
in such distributed analytical task [4], we can consider a
unification approach that tackles the above challenges by
integrating FML with LDP. The core idea is to inject ε-LDP
perturbation to model updates before transmission.

Specifically, on the client side, a set of training instruc-
tions are provided as usual to perform local training. In
addition to batch size and the number of training passes, the
client is also notified of LDP perturbation mechanism and
a privacy budget ε. After parameter update W is derived,
instead of submitting it immediately, the client will generate
a noisy versionW+ldp(ε). On the server side, noisy updates
received from the selected clients will be merged to canceled

7

the additive noises. This server-client interaction can repeat
for multiple times with different budgets. If the perturbation
is produced by a biased mechanism with non-zero mean,
the server will further perform a calibration step on the
aggregated result to obtain an accurate estimation.

In this way, the adversary can only recover noisy model
updates even if the communication channel is intercepted.
Besides, the level of perturbation can be flexibly negotiated
on the fly. For example, if a participant finds the privacy
budget unsatisfied, he/she can reject this round of train-
ing until the expectation is met. Furthermore, perturbation
noise ldp(ε) is commonly generated with light computation,
which can improve the overall efficiency compared to en-
cryption scheme.

Emerging works have tried to leverage such unifica-
tion but the designs are still limited to particular genres
of models [14]. In some aspects, the unification approach
can always outperform the two originals given that the
perturbation is presented in intermediate values and keep a
high resolution of original data. Nonetheless, we leave their
empirical study for future work.

6 RELATED WORK

LDP has been widely applied in distributed data collection,
such as crowdsourcing scenario. It found main applica-
tion in statistical analysis tasks, such as frequency esti-
mation over categorical data. Erlingsson et al. proposed
RAPPOR [15] for this task, which transforms a sensitive
string into a Bloom filter and then applies the random-
ized response method [16] to perturb it. Marginal release
has been studied in [17] under LDP, which is a potential
alternative to produce synthetic data for machine learning
task.

Learning models using distributed resources have been
proposed for distributed GPU settings [18]. While they focus
on a highly-controlled network inside a data center, Google
proposes federated machine learning for a loose federation
of multiple mobile clients with scalable design [5] and de-
velops secure aggregation using encryption scheme such as
multi-party computation [13]. As for the system aspects, the
architecture of federated learning discussed in this paper is
horizontal design [19], which enables easy unification with
LDP on communication level [14]. Particularly, horizontal
federated systems in mobile edge computing have started
to study differentially private version by injecting noises to
either SGD process or the final updates [20].

7 CONCLUSION

We investigate two promising data analytic strategies for
distributed setting while preserving user privacy. Both
strategies are adopted in the same real machine learning
problems and evaluated with extensive experiments under
various system settings. The results show that local dif-
ferential privacy mainly benefits from a large user popu-
lation and consumes less CPU/battery on mobile devices
while maintaining a rigorous privacy guarantee. Federated
machine learning can adapt itself quickly for a moderate
number of users and produce a learning model with higher
quality while the fine-grained update is vulnerable to infer-
ence. Nonetheless, the data submitted with local differential

privacy can be reused indefinitely for other tasks such as
marginal release or itemset mining, while the model trained
by FL is specified for one type of prediction task. As for
future work, we plan to evaluate different unified solutions
again each other using similar empirical framework. We also
plan to propose new privacy-preserving method based on
the comparative study.

REFERENCES

[1] U. F. T. Commission, “F.T.C. commissioners back
privacy law to regulate tech companies,” 2019. [Online].
Available: https://www.nytimes.com/2019/05/08/business/ftc-
hearing-facebook.html

[2] E. Commission, “Data protection in the EU,” 2018. [On-
line]. Available: https://ec.europa.eu/info/law/law-topic/data-
protection/data-protection-eu

[3] A. Narayanan and V. Shmatikov, “Robust de-anonymization of
large sparse datasets,” in S&P, 2008, pp. 111–125.

[4] R. Dewri, “Local differential perturbations: Location privacy un-
der approximate knowledge attackers,” IEEE Transactions on Mo-
bile Computing, vol. 12, no. 12, pp. 2360–2372, 2013.

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS, 2017.

[6] P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for
local differential privacy,” Journal of Machine Learning Research,
vol. 17, pp. 17:1–17:51, 2016.

[7] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and
G. Yu, “Collecting and analyzing multidimensional data with local
differential privacy,” in ICDE, 2019, pp. 638–649.

[8] N. TLC, “Trip record data,” 2016. [Online]. Available:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[9] IPUMS, “Harmonized international census data for social
science and health research,” 2018. [Online]. Available:
https://international.ipums.org/international/index.shtml

[10] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[11] A. Privacy, “Our approach to privacy,” 2019. [Online]. Available:
https://www.apple.com/privacy/approach-to-privacy/

[12] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” in
NDSS, 2019.

[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in CCS,
2017, pp. 1175–1191.

[14] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang,
and R. Zeng, “Differentially-private ”draw and discard” machine
learning,” CoRR, vol. abs/1807.04369, 2018.

[15] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Random-
ized aggregatable privacy-preserving ordinal response,” in CCS.
ACM, 2014, pp. 1054–1067.

[16] S. L. Warner, “Randomized response: A survey technique for
eliminating evasive answer bias,” Journal of the American Statistical
Association, vol. 60, no. 309, pp. 63–69, 1965.

[17] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen, “Calm: Consistent
adaptive local marginal for marginal release under local differen-
tial privacy,” in CCS, 2018, pp. 212–229.

[18] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“Geeps: scalable deep learning on distributed gpus with a gpu-
specialized parameter server,” in EuroSys, 2016.

[19] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, pp. 12:1–12:19, 2019.

[20] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge
networks: A comprehensive survey,” IEEE Communications Surveys
Tutorials, pp. 1–1, 2020.

8

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant No: U1636205, 61572413), the
Research Grants Council, Hong Kong SAR, China (Grant
No: 15238116, 15222118, C1008-16G and 15218919)

Huadi Zheng receives the BEng degree from
the School of Data and Computer Science, Sun
Yat-sen University, China, in 2012. Currently he
is pursuing a PhD degree in the Department
of Electronic and Information Engineering, Hong
Kong Polytechnic University. His research inter-
ests include mobile side-channel security, data
privacy and machine learning.

Haibo Hu is an associate professor in the De-
partment of Electronic and Information Engi-
neering, Hong Kong Polytechnic University. His
research interests include cybersecurity, data
privacy, internet of things, and machine learning.
He has published over 80 research papers in
refereed journals, international conferences, and
book chapters. As principal investigator, he has
received over 12 million HK dollars of external
research grants from Hong Kong and mainland
China. He is the recipient of a number of titles

and awards, including IEEE MDM 2019 Best Paper Award, WAIM Distin-
guished Young Lecturer, VLDB Distinguished Reviewer, ACM-HK Best
PhD Paper, Microsoft Imagine Cup, and GS1 Internet of Things Award.

Ziyang Han is a Ph.D. student in the Depart-
ment of Electronic and Information Engineering,
Hong Kong Polytechnic University. His current
research work include privacy-aware computing,
information hiding, hardware-based security and
security issues on databases. He has engaged
in security component development of many
widely used applications.

