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Abstract. The original well-known Keller-Segel system proposed in [26] describing the chemo-
tactic wave propagation remains poorly understood in many aspects due to the logarithmic sin-
gularity. As the chemical assumption rate is linear, the singular Keller-Segel model can be con-
verted, via a Cole-Hopf type transformation, into a system of viscous conservation laws without
singularity. But the chemical diffusion rate parameter ε for the original Keller-Segel system now
plays a dual role in the transformed system by acting as the coefficients of both diffusion and
nonlinear convection (which is newly generated by the Cole-Hopf transformation) terms. This
is a new feature different from most of (if not all) other viscous conservation laws as we know,
and raises new challenges in deriving the uniform estimates in ε. In this paper, we first consider
the dynamics of the transformed Keller-Segel system in a bounded interval with time-dependent
Dirichlet boundary conditions. By imposing some conditions on the boundary data, we show that
boundary layer profiles are present as ε → 0 and large-time profile of solutions will be determined
by the boundary data (i.e. boundary stabilization). We employ the refined (weighted) energy
estimates with the “effective viscous flux” technique to establish the uniform-in-ε estimates to
show the emergence of boundary layer profiles. For asymptotic dynamics of solutions, we develop
a new idea by exploring the convexity of an entropy expansion to get the basic L1-estimate, on
which our results are built up by the method of energy estimates. Finally we gain the results for
the original singular Keller-Segel system by reversing the Cole-Hopf transformation. Numerical
simulations are performed to interpret our analytical results and their implications.

1. Introduction

The oriented movement of species up/down to the chemical concentration gradient is termed
as chemotaxis which has been a significant mechanism to interpret abundant pattern formation
and biological processes such as bacteria band formation and aggregation [39, 49], slime mould
formation [16], fish pigmentation patterning [42], angiogenesis in tumor progression [6–8], primi-
tive streak formation [43], blood vessel formation [14], wound healing [45], and so on. Proposed
by Keller-Segel in 1971, the chemotaxis model has two prototypes according to the chemotactic
sensitivity function. One was the linear sensitivity and the other was the logarithmic sensitiv-
ity. The former was derived in [25] to model the self-aggregation of Dictyostelium discoideum in
response to cyclic adenosine monophosphate (cAMP) and the latter in [26] to model the wave
propagation of bacterial chemotaxis. Compared to massive results on the Keller-Segel (KS) model
with linear sensitivity, much less is known on the KS model with logarithmic sensitivity due to
its singularity nature. However logarithmic sensitivity complies with the Webber-Fecher law and
has many prominent applications in biology (cf. [2, 3, 10, 22, 23]) in addition to its indispensable
role to reproducing the bacterial traveling bands (cf. [50]). This paper is concerned with the
original KS model proposed in [26]{

ut = [Dux − χu(lnw)x]x,
wt = εwxx − uwm,

(1.1)

where u(x, t) and w(x, t) denote the bacterial density and concentration of nutrient (chemical),
respectively, at position x and time t. The parameter D > 0 is the diffusivity of bacterial, χ > 0
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is referred to as the chemotactic coefficient measuring the intensity of chemotaxis, ε ≥ 0 is the
chemical diffusion rate and m ≥ 0 is the consumption rate of nutrient.

It has been shown (cf. [24, 47, 50]) that the KS model (1.1) will produce traveling bands
(pulsating waves) if 0 ≤ m < 1, and fronts if m = 1 and no traveling waves if m > 1, where the
logarithmic sensitivity is indispensable to generate traveling waves. In the case of 0 ≤ m < 1,
the KS model (1.1) was employed by Keller and Segel to interpret the bacterial traveling band
formation observed in the experiment by Adler [1]. Whenm = 1, (1.1) was first used by Nossal [41]
to model the boundary movement of bacterial and later by Levine et al [28] to model the dynamics
between vascular endothelial growth factor (VEGF) and vascular endothelial cells (VECs) in the
initiation of tumor angiogenesis. Except the existence of traveling waves, the understanding of
(1.1) with m ̸= 1 is very poor due to the singularity of logarithm lnw (at w = 0), where in
particular the stability of traveling waves remains an outstanding open question to date except
some instability results [11, 40]. However for the linear consumption case m = 1, the model can
be understood to some extend since the logarithmic singularity can be resolved by a Cole-Hopf
type transformation ([27, 36])

v = −(lnw)x = −wx

w
, (1.2)

which converts the KS model(1.1) into a non-singular system of conservation laws as follows{
ut − (χuv)x = Duxx,

vt + ε(v2)x − ux = εvxx.
(1.3)

Though the singularity no longer exists in (1.3), a quadratic nonlinear convection is generated.
In multi-dimensions, v is a gradient vector and the curl of v is intrinsic required to be zero,
namely curlv = ∇ × v = 0. A characteristic feature of the transformed system (1.3) distinct
from other system of conservation laws (e.g. see [4, 9, 48]) is that the parameter ε plays a dual
role: coefficient of viscosity (diffusion) and nonlinear convection. Hence it is hard to justify the
parameter ε > 0 is “good” or “bad” for analysis, and how to find a balance between the nonlinear
convection and viscosity with the curl-free condition becomes an art of analysis. Indeed the
transformed chemotaxis model (1.3) has been well understood in one-dimension for both ε = 0
and ε > 0 from various aspects such as the traveling wave solutions (cf. [5, 21, 31, 33–36]),
global dynamics of large-data solutions in R (cf. [29, 38]) or in the bounded interval subject to
various boundary conditions (cf. [30, 51, 53]). However it still remains poorly understood in
multi-dimensions except few results on the small-data solutions (cf. [12, 15, 44, 52]) or radial
solutions (cf. [54]). In addition to these works, there was another class of results by considering
singular limits of solutions to (1.3) as ε → 0. Such a topic is of particular interest since the
vanishing as ε → 0 occurs concurrently to both viscosity and quadratic nonlinear convection
in the transformed system (1.3). It is also of relevance since the chemical diffusion rate ε > 0
was assumed to be zero in the analysis of many early works (cf. [24, 26, 28]) on the grounds of
simplicity and hence it is desirable to reveal the role of ε. Next we shall first recall existing results
connecting the limit problem of ε → 0 and then propose our new questions.

If the spatial domain is unbounded (i.e. x ∈ RN , N ≥ 1), it has been shown in [44, 50, 52] that
both traveling wave solutions (see [50]) and global solutions of the Cauchy problem (see [44, 52])
are uniformly convergent in ε, namely the solutions with ε > 0 converges to those with ε = 0 as
ε → 0 in L∞-norm. If the domain is an interval say (0, 1), and zero mixed Neumann-Dirichlet
(ND) boundary conditions are prescribed:

ux|x=0,1 = 0, v|x=0,1 = 0, ε ≥ 0

it was shown in [53] that the solution is still uniformly convergent in ε. However if the Dirich-
let boundary conditions are imposed, one cannot impose the boundary conditions for v with
ε = 0 since otherwise the problem may be over-determined. In this circumstance, boundary
layers may arise due to the possible mismatch of boundary conditions. This was first observed
and numerically verified in a recent work by Li and Zhao in [30], and later was justified in [18].
Considering that the boundary conditions are dynamic in vivo environment for tumor angiogen-
esis, in this paper we consider the system (1.3) with time-dependent Dirichlet boundary values,



BOUNDARY LAYERS AND STABILIZATION OF THE SINGULAR KELLER-SEGEL SYSTEM 3

and for simplicity hereafter we assume χ = D = 1 since their specific values are not important
for our analysis. Hence precisely we shall consider the initial-boundary value problem (1.3) for
(x, t) ∈ [0, 1]× [0,∞) as follows:

ut − (uv)x = uxx, x ∈ (0, 1)

vt + ε(v2)x − ux = εvxx, x ∈ (0, 1)

(u, v)(x, 0) = (u0, v0)(x), u0 ≥ 0, x ∈ [0, 1]

u(0, t) = u(1, t) = α(t) ≥ 0, v(0, t) = v(1, t) = β(t),

(1.4)

where α(t) and β(t) are known functions dependent on t. In (1.4) we always assume ε > 0. The
non-diffusive initial-boundary value problem associated with (1.4) is

ut − χ(uv)x = Duxx, x ∈ (0, 1)

vt − ux = 0, x ∈ (0, 1)

(u, v)(x, 0) = (u0, v0)(x), u0 ≥ 0, x ∈ [0, 1],

u(0, t) = u(1, t) = α(t) ≥ 0.

(1.5)

Since now the boundary conditions are time-dependent, the global existence and asymptotic
behavior of solutions may become elusive due to time-variable boundary data. Whether the
boundary layer profiles for constant Dirichlet boundary data can be destructed by time-varying
boundary data is also concerned. Hence we set two goals to this paper. First we show that the
global strong solutions of the initial-boundary value problem (1.4) and (1.5) exists and boundary
layer profile will arise as ε → 0 under mild conditions on boundary data α(t) and β(t), where
the solution component u converges in L∞, v converges in L2 while diverges in L∞. Second, we
prove under certain constraints, the time-dependent boundary data α(t) and β(t) will act as the
asymptotic profiles of solutions to (1.4) approaching some constant states. We remark that the
approaches and estimates developed in previous works [18, 30] for constant boundary conditions
are not adequate for our current problem with time-dependent boundary data and various delicate
boundary estimates and uniform-in-ε estimates are desired. In this paper we shall introduce the so
called “effective viscous flux” technique employed in the study of the Navier-Stokes equations (see
[17, 37]) to gain the desired estimates to achieve our first goal. For the second goal, we develop
a new entropy-like energy framework and fully explore the convexity of the entropy expansion to
establish a basic L1 energy estimate, on which the results of the asymptotic behavior of solutions
are built up. We shall state our main results in the next section.

2. Statement of main results

To proceed, we first specify some notations for clarity. In the sequel, Hk[0, 1] denotes the usual

k-th order Sobolev space on [0, 1] with norm ∥f∥Hk[0,1] :=
(∑k

j=0 ∥∂
j
xf∥2

)1/2
, where we simply

denote ∥ · ∥ := ∥ · ∥L2[0,1]. We also use ∥ · ∥L∞ to denote ∥ · ∥L∞[0,1]. Unless otherwise specified, we
use C to denote a generic positive constant and C(t) denotes a generic positive constant which
depends on t. The values of the constants may vary line by line according to the context.

The first result of this paper on the existence and uniform-in-ε boundedness of global solutions
to (1.4) is stated as follows.

Theorem 2.1. Assume that the initial and boundary data satisfy

(u0, v0) ∈ H2[0, 1], u0 ≥ 0, α(t) ≥ 0, (α, β)(t) ∈ C2([0,∞)), |α(t)| ≤ c0, (2.1)

where c0 is a positive constant. Then for any ε ≥ 0, the initial boundary value problem (1.4) has a
unique global solution (u, v), such that for any T > 0, there hold that (u, v) ∈ L∞(0, T ;H2(0, 1))∩
L2(0, T ;H2(0, 1)), u ≥ 0 and

∥u∥2H1 + ∥ut∥2 + ∥ux∥2L∞ + ∥v∥2 + ∥v∥2L∞ + ∥vt∥2 + ε
1
2 ∥vx∥2

+

∫ T

0

(
ε

1
2 ∥uxx∥2 + ε

3
2 ∥vxx∥2 + ∥uxt∥2 + ε ∥vxt∥2

)
dτ ≤ C(T ),
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where C(T ) is a positive constant dependent on T but independent of ε.

The second result is concerned with the zero chemical diffusion limit of solutions of (1.4) and
boundary layer emergence as ε → 0. Before stating the results, we first define boundary layer
solutions of the problem (1.4) (cf. [13, 20, 46, 55]).

Definition 2.1. Let (uε, vε) and (u0, v0) denote the solutions of the initial-boundary value prob-
lems (1.4) and (1.5), respectively. If there exists a non-negative function δ(ε) satisfying δ(ε) → 0
as ε → 0 such that

lim
ε→0

∥(uε − u0, vε − v0)∥L∞([0,T );C[δ,1−δ]) = 0,

lim inf
ε→0

∥(uε − u0, vε − v0)∥L∞([0,T );C[0,1]) > 0,

then the initial-boundary value problem (1.4) is said to have a boundary layer solution as ε → 0
and δ(ε) is called a BL-thickness, where ∥(f, g)∥X = ∥f∥X + ∥g∥X , X = L∞ ([0, T ); C[0, 1]).

Remark 2.1. As mentioned in [13], the definition 2.1 does not determine the BL-thickness
uniquely since any function δ∗(ε) satisfying δ∗(ε) > δ(ε) for 0 < ε ≪ 1 is also a BL-thickness.

Then our second main result is the following.

Theorem 2.2. Let the assumptions in Theorem 2.1 hold. Let (uε, vε) and (u0, v0) be the solutions
of the initial boundary value problems (1.4) and (1.5) respectively. Then

(i) As ε → 0, the following convergence holds:{
(uε, uεx, v

ε, εvεx) → (u0, u0x, v
0, 0) strongly in L∞ (

[0, T );L2(0, 1)
)
,

(uεt , v
ε
t ) → (u0t , v

0
t ) strongly in L2

(
[0, T );L2(0, 1)

)
.

(ii) There exists a function δ(ε) satisfying

δ(ε) → 0 and
ε

1
2

δ(ε)
→ 0, as ε → 0, (2.2)

such that the initial-boundary value problem (1.4) has a boundary layer solution satisfying

lim
ε→0

∥vε − v0∥L∞([0,T );C[δ,1−δ]) = 0, (2.3)

lim inf
ε→0

∥vε − v0∥L∞([0,T );C[0,1]) > 0, (2.4)

provided that β(t) ̸=
∫ t
0 u

0
x(0, s)ds+ v0(0).

The result in Theorem 2.2 (i) yields that limε→0 ∥uε−u0∥L∞([0,T );C[0,1]) = 0. This implies that
uε does not have boundary layer profile, and only vε has as given in Theorem 2.2 (ii).

Next we shall state the result on the asymptotic behavior of solutions to (1.4).

Theorem 2.3. Consider the initial-boundary value problem (1.4). Suppose that the initial data
(u0, v0) ∈ H1[0, 1] are compatible with the boundary conditions. Assume that

• there exist constants α, α, β, such that 0 < α = inf α(t) ≤ supα(t) = α < ∞ and
sup |β(t)| = β < ∞, for all t ≥ 0,

• (αt, βt) ∈ L1(0,∞) ∩ L2(0,∞).

Then for any ε > 0 there exists a unique global-in-time solution (u, v) to (1.4), such that (u −
α(t), v − β(t)) ∈ L∞(0,∞;H1(0, 1)) ∩ L2(0,∞;H2(0, 1)) and satisfies

lim
t→∞

(
∥u(·, t)− α(t)∥2H1 + ∥v(·, t)− β(t)∥2H1

)
= 0.

We have the following remark regarding Theorem 2.3.

Remark 2.2. The conditions on the time-dependent boundary data admit a family of functions
approaching constant states with certain decaying/growth rates, such as algebraic or exponen-
tial, as time goes to infinity. Since the temporal integrability of the boundary data is not re-
quired, boundary functions which approach constant states with slow decaying/growth rates, such
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as α(t) = 2 ± 1
(1+t)ϵ for 0 < ϵ ≪ 1, are permitted. The long-time behavior result indicates that

the solution decays asymptotically and its decay profile is determined by the boundary data. In
addition, we require α(t) to be bounded from below and above away from zero, which is consistent
with and generalizes the previous result [30] wherein the boundary data are constants.

Finally we reverse the results of the transformed system to the pre-transformed chemotaxis
model (1.1) with m = 1. The counterpart of the initial-boundary value problem of (1.1) with
m = 1 corresponding to (1.3) reads as

ut = [Dux − χu(lnw)x]x,

wt = εwxx − uw,

(u,w)(x, 0) = (u0, w0)(x), x ∈ [0, 1],

u(0, t) = u(1, t) = α(t) ≥ 0, (lnw)x|x=0 = (lnw)x|x=1 = −β(t), if ε > 0,

u(0, t) = u(1, t) = α(t) ≥ 0, if ε = 0.

(2.5)

Then we have following results for (2.5).

Theorem 2.4. Consider the problem (2.5).
(i) Assume that the initial and boundary data satisfy

u0 ∈ H2, (lnw0)x ∈ H2, u0(x) ≥ 0, w0(x) > 0, (α(t), β(t)) ∈ C2([0,∞)), |α(t)| ≤ c0.

Then for any ε ≥ 0, the IVBP (2.5) has a unique global solution (u,w), such that u ≥ 0 and for
any T > 0, {

u ∈ L∞([0, T );H2(0, 1)) ∩ L2([0, T );H2(0, 1)),

w ∈ L∞([0, T );H3(0, 1)) ∩ L2([0, T );H3(0, 1)).
(2.6)

Let (uε, wε) and (u0, w0) be the solutions to (2.5) with ε > 0 and ε = 0, respectively. Then for
any t > 0, as the the chemical diffusion coefficient ε tends to zero, there is a positive constant
C(t) independent of ε such that∥∥(uε − u0)(·, t)

∥∥2
C[0,1]

+
∥∥(wε − w0)(·, t)

∥∥2
C[0,1]

≤ C(t)ε
1
2 . (2.7)

Moreover, there is a function δ(ε) satisfying δ(ε) → 0 and ε
1
2

δ(ε) → 0, as ε → 0, such that

lim
ε→0

∥wε
x − w0

x∥L∞([0,T );C[δ,1−δ]) = 0, (2.8)

lim inf
ε→0

∥wε
x − w0

x∥L∞([0,T );C[0,1]) > 0. (2.9)

(ii) Let the initial data satisfy (u0, (lnw0)x) ∈ H1(0, 1), and let the boundary data satisfy the
conditions in Theorem 2.3. Then for any ε > 0 there exists a unique global-in-time solution (u,w)
to (2.5), such that (u− α(t), (lnw)x + β(t)) ∈ L∞(0,∞;H1(0, 1)) ∩ L2(0,∞;H2(0, 1)) and

lim
t→∞

∥u(·, t)− α(t)∥L∞ = 0, ∥w(·, t)∥L∞ ≤ Ce−
1
2
(α−εβ

2
)t.

Remark 2.3. Although the result (2.7) shows that the solutions of the original Keller-Segel model
(1.1) with m = 1 do not have boundary layer profiles, the results (2.8) and (2.9) indicate that the
derivative of w will have boundary layer profiles.

Remark 2.4. The result in Theorem 2.4 (ii) means that when α > εβ
2
(this condition is satisfied

naturally in the case of β(t) = 0), the L∞-norm of w will exponentially decay to zero as time goes

to infinity. However the result for the case α < εβ
2
is unclear. But our result implies that if the

solutions diverge in this case, the divergence rate is not faster than an exponential rate.

The rest of this paper is organized as follows. In section 3, we shall establish the global existence
of solutions of (1.4) and prove Theorem 2.1. In section 4, we explore the vanishing limits as ε → 0
of solutions (boundary layer solutions) and prove Theorem 2.2. The results on the asymptotic
behavior of solutions (Theorem 2.3) will be shown in section 5, and the proof of Theorem 2.4
will be given in section 6. Finally we show the numerical simulations to illustrate boundary layer
profiles and interpret our analytical results in section 7.
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3. Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. First, using the standard arguments (e.g. see [51]),
one can show the local existence of solutions to (1.4).

Lemma 3.1 (Local existence). Suppose that the assumptions in Theorem 2.1 hold. For any ε ≥ 0,
there exists a positive constant T0 such that (1.4) has a unique solution (u, v) ∈ L∞ (

[0, T0);H
2(0, 1)

)
∩

L2
(
[0, T0);H

2(0, 1)
)
satisfying u ≥ 0 in (x, t) ∈ [0, 1]× [0, T0).

Next we derive some a priori uniform-in-ε estimates of solutions, which not only extend the
local solutions to global ones, but also play important parts in investigating the vanishing diffusion
limit. We depart from the following boundary estimates on (ux, vx).

Lemma 3.2. Let the assumptions in Theorem 2.1 hold. Then it holds that
ux(0, t) =− d

dt

(∫ 1

0

∫ x

0
u(ξ, t)dξdx

)
+

∫ 1

0
uvdx− α(t)β(t),

εvx(0, t) =− d

dt

(∫ 1

0

∫ x

0
v(ξ, t)dξdx

)
+

∫ 1

0
udx− α(t)− ε

∫ 1

0
(v2 − β2(t))dx,

(3.1)

and 
ux(1, t) =

d

dt

(∫ 1

0

∫ 1

x
u(ξ, t)dξdx

)
+

∫ 1

0
uvdx− α(t)β(t),

εvx(1, t) =
d

dt

(∫ 1

0

∫ 1

x
v(ξ, t)dξdx

)
+

∫ 1

0
udx− α(t)− ε

∫ 1

0
(v2 − β2(t))dx.

(3.2)

Proof. By integrating (1.3) over (0, x) and using the boundary condition in (1.4), we have
ux(0, t) =ux −

d

dt

(∫ x

0
udx

)
+ uv − α(t)β(t),

εvx(0, t) =εvx −
d

dt

(∫ x

0
vdx

)
+ u− α(t)− ε(v2 − β2(t)).

(3.3)

Then, integrating (3.3) with respect to x over (0, 1), yields (3.1). Similarly, (3.2) is obtained. �

Lemma 3.3. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there exists a positive
constant C(t) which is dependent on t but independent of ε, such that∫ 1

0
u(x, t)dx+ ∥v(·, t)∥2 +

∫ t

0

(∫ 1

0

(ux)
2

u+ 1
dx+ ε ∥vx∥2

)
dτ ≤ C(t). (3.4)

Proof. To resolve the logarithmic singularity in the following estimates, inspired by [30], we make
a technical treatment by introducing a change of variable ũ = u + 1. Thus, problem (1.4) turns
into 

ũt − ũxx = (ũv)x − vx,

vt − εvxx = (ũ− εv2)x,

(ũ, v)(x, 0) = (ũ0, v0)(x) = (u0 + 1, v0)(x), ũ0(x) ≥ 1, x ∈ [0, 1],

ũ(0, t) = ũ(1, t) = α(t) + 1 ≥ 1, v(0, t) = v(1, t) = β(t).

(3.5)

Multiplying the first equation of (3.5) by ln ũ and integrating the result by parts over [0, 1], we
have

d

dt

∫ 1

0
ηdx+

∫ 1

0

(ũx)
2

ũ
dx+

∫ 1

0
ũxvdx =(ũx ln ũ+ uv ln ũ)

∣∣∣x=1

x=0
+

∫ 1

0
v
ũx
ũ
dx

=ũx ln ũ
∣∣∣x=1

x=0
+

∫ 1

0
v
ũx
ũ
dx,

(3.6)
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where η = ũ ln ũ − ũ + 1 + R and R is a positive constant to be determined later. Multiplying
the second equation of (3.5) by v and integrating the result by parts over [0, 1], we have

1

2

d

dt

∫ 1

0
v2dx−

∫ 1

0
ũxvdx+ ε ∥vx∥2 = εvxv

∣∣∣x=1

x=0
. (3.7)

Adding (3.6) to (3.7) and integrating the result over (0, t) yield that

∫ 1

0
ηdx+

1

2
∥v∥2 +

∫ t

0

(∫ 1

0

(ũx)
2

ũ
dx+ ε ∥vx∥2

)
dτ

≤
∫ 1

0
η0dx+

1

2
∥v0∥2 + ε

∫ t

0
vxv

∣∣∣x=1

x=0
dτ +

∫ t

0
ũx ln ũ

∣∣∣x=1

x=0
dτ +

∫ t

0

∫ 1

0
v
ũx
ũ
dxdτ.

(3.8)

Using the fact ũ ≥ 1 and Cauchy-Schwarz inequality, we get

∫ t

0

∫ 1

0
v
ũx
ũ
dxdτ ≤1

2

∫ t

0

∫ 1

0

(ũx)
2

ũ
dxdτ +

1

2

∫ t

0

∫ 1

0

v2

ũ
dxdτ

≤1

2

∫ t

0

∫ 1

0

(ũx)
2

ũ
dxdτ +

1

2

∫ t

0

∫ 1

0
v2dxdτ,

and

∫ 1

0
η0dx =

∫ 1

0
(ũ0 ln ũ0 − ũ0 + 1 +R)dx

≤
∫ 1

0
ũ20dx−

∫ 1

0
u0dx+

∫ 1

0
Rdx ≤ 2 ∥u0∥2 + 2 +R.

On the other hand, from the boundary conditions in (2.1), for any t > 0 there is a constant c1(t)
which may depend on t such that

∥(α, β)(·)∥C2[0,t) ≤ c1(t). (3.9)

Thus, using Lemma 3.2, (3.9), integration by parts and Cauchy-Schwarz inequality, we can esti-
mate the third term on the right-hand side of (3.8) as follows:

ε

∫ t

0
vxv

∣∣∣x=1

x=0
dτ =ε

∫ t

0
β(τ) (vx(1, τ)− vx(0, τ)) dτ

=

∫ t

0

d

dτ

(∫ 1

0
v(x, τ)dx

)
β(τ)dτ

=

∫ 1

0
v(x, t)β(t)dx−

∫ 1

0
v(x, 0)β(0)dx−

∫ t

0

(∫ 1

0
v(x, τ)dx

)
β′(τ)dτ

≤c1(t)

∫ 1

0
|v|dx+ c1(t)

∫ t

0

∫ 1

0
|v|dxdτ + C

≤1

4
∥v∥2 + C(t)

∫ t

0
∥v∥2 dτ + C(t).

(3.10)
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Noting that ũx = ux, for the fourth term on the right-hand side of (3.8), we use Lemma 3.2, (2.1)
and the integration by parts to get∫ t

0
ũx ln ũ

∣∣∣x=1

x=0
dτ =

∫ t

0
ln(α(τ) + 1) (ũx(1, τ)− ũx(0, τ)) dτ =

∫ t

0
ln(α(τ) + 1)

d

dτ

(∫ 1

0
u(x, τ)dx

)
dτ

=

(∫ 1

0
u(x, t)dx

)
ln(α(t) + 1)−

(∫ 1

0
u(x, 0)dx

)
ln(α(0) + 1)

−
∫ t

0

(∫ 1

0

u(x, τ)α′(τ)

α(τ) + 1
dx

)
dτ

≤ ln(α(t) + 1)

∫ 1

0
udx+ C(t)

∫ t

0

∫ 1

0
udxdτ + C(t)

≤d1

∫ 1

0
udx+ C(t)

∫ t

0

∫ 1

0
udxdτ + C(t),

where we have used the fact that α(t) ≥ 0, (3.9) and ln(α(t) + 1) ≤ ln(c0 + 1) ≤ d1,where d1 ≥
1 is a constant. If we choose R = 2d1e

2d1+2, then it holds that

0 ≤ u ≤ d1u ≤ d1ũ ≤ 1

2
(ũ ln ũ− ũ+ 1 + 2d1e

2d1+2) =
1

2
η.

Inserting the above estimates into (3.8) yields∫ 1

0
udx+

1

4
∥v∥2 + 1

2

∫ t

0

∫ 1

0

(ũx)
2

ũ
dxdτ + ε

∫ t

0
∥vx∥2 dτ

≤C(t) + C(t)

∫ t

0

∫ 1

0
udxdτ + C(t)

∫ t

0
∥v∥2 dτ

≤C(t) + C(t)

∫ t

0

(∫ 1

0
udxdτ + ∥v∥2

)
dτ,

which results in (3.4) by the Gronwall’s inequality. �

Lemma 3.4. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there exists a
constant C(t) > 0 which is dependent on t but independent of ε, such that

∥u(·, t)∥2 + ∥v(·, t)∥2 +
∫ t

0
(∥ux∥2 + ε ∥vx∥2)dτ ≤ C(t). (3.11)

Proof. Multiplying the first equation of (1.4) by u, integrating the result by parts over [0, 1], and
adding the resultant equality to (3.7), we have

1

2

d

dt
(∥u∥2 + ∥v∥2) + ∥ux∥2 + ε ∥vx∥2

=−
∫ 1

0
uvuxdx+

∫ 1

0
uxvdx+ u2v

∣∣∣x=1

x=0
+ uxu

∣∣∣x=1

x=0
− 2ε

3
v3
∣∣∣x=1

x=0
+ εvxv

∣∣∣x=1

x=0
.

(3.12)

Integrating (3.12) with respect to t and using the boundary conditions in (1.4), we have

1

2
(∥u∥2 + ∥v∥2) +

∫ t

0
(∥ux∥2 + ε ∥vx∥2)dτ

=
1

2
(∥u0∥2 + ∥v0∥2)−

∫ t

0

∫ 1

0
uvuxdxdτ +

∫ t

0

∫ 1

0
uxvdxdτ +

∫ t

0
uxu

∣∣∣x=1

x=0
dτ + ε

∫ t

0
vxv

∣∣∣x=1

x=0
dτ.

(3.13)
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For the second and third terms on the right-hand side of (3.13), by the Gagliardo-Nirenberg and
Cauchy-Schwarz inequalities, we have∫ t

0

∫ 1

0
uvuxdxdτ +

∫ t

0

∫ 1

0
uxvdxdτ

≤1

4

∫ t

0
∥ux∥2 dτ +

∫ t

0
∥u∥2L∞ ∥v∥2 dτ +

∫ t

0
∥v∥2 dτ

≤1

4

∫ t

0
∥ux∥2 dτ + C(t)

∫ t

0
(∥u∥2 + ∥u∥ ∥ux∥)dτ + C(t)

≤1

2

∫ t

0
∥ux∥2 dτ + C(t)

∫ t

0
∥u∥2 dτ + C(t),

where in the second inequality we have used (3.4). The last term on the right-hand side of (3.13)
has been well estimated in (3.10). Therefore, we get from (3.4) and (3.10) that

ε

∫ t

0
vxv

∣∣∣x=1

x=0
dτ ≤ 1

4
∥v∥2 + C(t)

∫ t

0
∥v∥2 dτ + C(t) ≤ C(t).

For the fourth term on the right-hand side of (3.13), by Lemma 3.2 and integration by parts, we
have ∫ t

0
uxu

∣∣∣x=1

x=0
dτ =

∫ t

0

d

dτ

(∫ 1

0
u(x, τ)dx

)
α(τ)dτ

=α(t)

∫ 1

0
u(x, t)dx− α(0)

∫ 1

0
u(x, 0)dx−

∫ t

0

∫ 1

0
u(x, τ)α′(τ)dxdτ

≤C(t),

where we have used (3.4) and (3.9). Substituting these estimates into (3.13), we obtain

1

2
(∥u∥2 + ∥v∥2) + 1

2

∫ t

0
(∥ux∥2 + ε ∥vx∥2)dτ ≤ C(t)

∫ t

0
∥u∥2 dτ + C(t),

which, together with Gronwall’s inequality, yields (3.11). �

Lemma 3.5. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, it holds that

∥ut(·, t)∥2 + ∥vt(·, t)∥2 + ∥ux(·, t)∥2 +
∫ t

0

(
∥ut∥2 + ∥uxt∥2 + ε ∥vxt∥2

)
dτ ≤ C(t), (3.14)

where the constant C(t) is independent of ε but dependent on t.

Proof. We first multiply the first equation of (1.4) by ut and integrate the resulting equation over
[0, 1]× [0, t] to get

1

2
∥ux∥2 +

∫ t

0
∥ut∥2 dτ

=
1

2
∥u0x∥2 +

∫ t

0

∫ 1

0
(uv)xutdxdτ +

∫ t

0
uxut

∣∣∣x=1

x=0
dτ

=
1

2
∥u0x∥2 −

∫ t

0

∫ 1

0
uvuxtdxdτ +

∫ t

0
uvut

∣∣∣x=1

x=0
dτ +

∫ t

0
uxut

∣∣∣x=1

x=0
dτ

=
1

2
∥u0x∥2 −

∫ t

0

∫ 1

0
uvuxtdxdτ +

∫ t

0
uxut

∣∣∣x=1

x=0
dτ,

(3.15)

where in the last equality we have used the boundary conditions in (1.4). For the second term on
the right-hand side of (3.15), by the Gagliardo-Nirenberg and Cauchy-Schwarz inequalities, (3.4)
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and (3.11), we have

−
∫ t

0

∫ 1

0
uvuxtdxdτ ≤1

8

∫ t

0
∥uxt∥2 dτ + 2

∫ t

0
∥u∥2L∞ ∥v∥2 dτ

≤1

8

∫ t

0
∥uxt∥2 dτ + C

∫ t

0
(∥u∥2 + ∥ux∥2) ∥v∥2 dτ

≤C(t) +
1

8

∫ t

0
∥uxt∥2 dτ.

(3.16)

From Lemma 3.2 and integration by parts, the last term on the right-hand side of (3.15) can be
estimated as follows:

∫ t

0
uxut

∣∣∣x=1

x=0
dτ =

∫ t

0
(ux(1, τ)− ux(0, τ))α

′(τ)dτ =

∫ t

0

d

dτ

(∫ 1

0
u(x, τ)dx

)
α′(τ)dτ

=α′(t)

∫ 1

0
u(x, t)dx− α′(0)

∫ 1

0
u(x, 0)dx−

∫ t

0

∫ 1

0
u(x, τ)α′′(τ)dxdτ

≤C(t),

(3.17)

where (3.4) and (3.9) have been used. Substituting (3.16) and (3.17) into (3.15), we have

1

2
∥ux∥2 +

∫ t

0
∥ut∥2 ≤

1

8

∫ t

0
∥uxt∥2 dτ + C(t). (3.18)

Next, in order to obtain the estimate of

∫ t

0
∥uxt∥2 dτ , differentiating (1.3) with respect time t,

we get {
utt − uxxt = (uv)xt,

vtt − εvxxt = (u− εv2)xt.
(3.19)

Multiplying the first equation of (3.19) by ut and the second by vt, adding the results and
integrating it over [0, 1]× [0, t], we have

1

2
∥ut∥2 +

1

2
∥vt∥2 =

1

2

(
∥ut(0, x)∥2 + ∥vt(0, x)∥2

)
+

∫ t

0

∫ 1

0
(uxxt + (uv)xt)utdxdτ

+

∫ t

0

∫ 1

0
uxtvtdxdτ + ε

∫ t

0

∫ 1

0
vxxtvtdxdτ − ε

∫ t

0

∫ 1

0
(v2)xtvtdxdτ

=
1

2

(
∥ut(0, x)∥2 + ∥vt(0, x)∥2

)
+

4∑
i=1

Ii.

(3.20)

For I1, integrating by parts and using the boundary conditions in (1.4), we obtain

I1 =−
∫ t

0
∥uxt∥2 dτ −

∫ t

0

∫ 1

0
(uv)tuxtdxdτ +

∫ t

0
uxtut

∣∣∣x=1

x=0
dτ +

∫ t

0
(uv)tut

∣∣∣x=1

x=0
dτ

=−
∫ t

0
∥uxt∥2 dτ −

∫ t

0

∫ 1

0
(uvt + utv)uxtdxdτ +

∫ t

0
uxtut

∣∣∣x=1

x=0
dτ.

(3.21)
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Using (3.11), Gagliardo-Nirenberg and Cauchy-Schwarz inequalities, we can estimate the second
term on the right-hand side of (3.21) as

−
∫ t

0

∫ 1

0
(uvt + utv)uxtdxdτ

≤1

8

∫ t

0
∥uxt∥2 dτ + C

∫ t

0
(∥utv∥2 + ∥uvt∥2)dτ

≤1

8

∫ t

0
∥uxt∥2 dτ + C

∫ t

0
∥ut∥2L∞ ∥v∥2 dτ + C

∫ t

0
∥u∥2L∞ ∥vt∥2 dτ

≤1

8

∫ t

0
∥uxt∥2 dτ + C(t)

∫ t

0
(∥ut∥2 + ∥ut∥ ∥uxt∥)dτ + C(t)

∫ t

0
(∥u∥2 + ∥u∥ ∥ux∥) ∥vt∥2 dτ

≤1

4

∫ t

0
∥uxt∥2 dτ + C(t)

∫ t

0
∥ut∥2 dτ + C(t)

∫ t

0
(1 + ∥ux∥2) ∥vt∥2 ,

which updates (3.21) as

I1 ≤− 3

4

∫ t

0
∥uxt∥2 dτ + C(t)

∫ t

0
∥ut∥2 dτ + C(t)

∫ t

0
(1 + ∥ux∥2) ∥vt∥2 +

∫ t

0
uxtut

∣∣∣x=1

x=0
dτ.

By Cauchy-Schwarz inequality, we have

I2 ≤
1

4

∫ t

0
∥uxt∥2 dτ +

∫ t

0
∥vt∥2 dτ.

Integration by parts implies

I3 =ε

∫ t

0

∫ 1

0
vxxtvtdxdτ = −ε

∫ t

0
∥vxt∥2 dτ + ε

∫ t

0
vxtvt

∣∣∣x=1

x=0
dτ. (3.22)

In order to estimate the boundary terms in (3.21) and (3.22), we follow the same procedure as in
Lemma 3.2 and get

uxt(1, t)− uxt(0, t) =
d

dt

(∫ 1

0
ut(x, t)dx

)
(3.23)

and

vxt(1, t)− εvxt(0, t) =
d

dt

(∫ 1

0
vt(x, t)dx

)
. (3.24)

Using (3.9) and (3.23), integration by parts and Cauchy-Schwarz inequality, we can estimate the
last term on the right-hand side of (3.21) as follows:∫ t

0
uxtut

∣∣∣x=1

x=0
dτ =

∫ t

0
(uxt(1, τ)− uxt(0, τ))α

′(τ)dτ =

∫ t

0

d

dτ

(∫ 1

0
uτ (x, τ)dx

)
α′(τ)dτ

=α′(t)

∫ 1

0
ut(x, t)dx− α′(0)

∫ 1

0
ut(x, 0)dx−

∫ t

0

∫ 1

0
ut(x, τ)α

′′(τ)dxdτ

≤1

4
∥ut∥2 +

∫ t

0
∥ut∥2 dτ + C(t).

Similar to (3.10), we can estimate the last term on the right-hand side of (3.22) as

ε

∫ t

0
vxtvt

∣∣∣x=1

x=0
dτ =

∫ t

0

d

dτ

(∫ 1

0

∫ 1

x
vt(ξ, τ)dξdx

)
β′(τ)dτ

≤
∫ 1

0
|vt||β′(τ)|dx+

∫ 1

0
|vt(0, t)||β′(0)|dx+

∫ t

0

∫ 1

0
|vt||β′′(τ)|dxdτ

≤1

4
∥vt∥2 +

∫ t

0
∥vt∥2 dτ + C(t),



12 HONGYUN PENG, ZHI-AN WANG, KUN ZHAO, AND CHANGJIANG ZHU

where we have used (3.24). Next, we need to estimate I4. Integrating by parts, using the boundary
conditions in (1.4), Gagliardo-Nirenberg and Cauchy-Schwarz inequalities, we obtain

I4 =− ε

∫ t

0

∫ 1

0
(v2)xtvtdxdτ = ε

∫ t

0

∫ 1

0
(v2)tvxtdxdτ − ε

∫ t

0
(v2)tvt

∣∣∣x=1

x=0
dτ

≤ε

2

∫ t

0
∥vxt∥2 dτ + 2ε

∫ t

0
∥v∥2L∞ ∥vt∥2 dτ

≤ε

2

∫ t

0
∥vxt∥2 dτ + C

∫ t

0
(ε ∥v∥2 + ε ∥vx∥2) ∥vt∥2 dτ

≤ε

2

∫ t

0
∥vxt∥2 dτ + C(t)

∫ t

0
(1 + ε ∥vx∥2) ∥vt∥2 dτ.

Substituting the estimates of Ii (i = 1, 2, 3, 4) into (3.20), we get

1

4
∥ut∥2 +

1

4
∥vt∥2 +

1

2

∫ t

0
(∥uxt∥2 + ε ∥vxt∥2)dτ

≤C(t) + C(t)

∫ t

0
(1 + ∥ux∥2 + ε ∥vx∥2)(∥ut∥2 + ∥vt∥2)dτ.

Using Gronwall’s inequality and (3.11), we obtain

∥ut∥2 + ∥vt∥2 +
∫ t

0
(∥uxt∥2 + ε ∥vxt∥2)dτ ≤ C(t), (3.25)

which together with (3.18) leads to ∥ux∥2 +
∫ t

0
∥ut∥2 dτ ≤ C(t). This, along with (3.25), leads

immediately to (3.14). �
The next lemma gives the estimate of L∞-norm of (ux, v). It turns out it is not easy to gain

them by the routine procedure like the iteration method. Motivated by the studies for the Navier-
Stokes equations (cf. [17, 19, 37]), we here introduce the following so-called “effective viscous flux
G(x, t)”:

G = ux + uv. (3.26)

From the first equation of (1.3), it is easy to see that

Gx = ut. (3.27)

The quantity effective viscous flux G will play an important role deriving the L∞-norm of (ux, v).

Lemma 3.6. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there exists a
constant C(t) > 0 which is independent of ε, such that

∥ux(·, t)∥L∞ + ∥v(·, t)∥L∞ ≤ C(t). (3.28)

Proof. Multiplying the second equation of (1.4) by 2nv2n−1(n ≥ 1 is an integer), integrating the
result by parts over (0, 1), we obtain

d

dt

∫ 1

0
v2ndx+ 2n(2n− 1)ε

∫ 1

0
v2n−2v2xdx

=2n

∫ 1

0
v2n−1uxdx+ 2nε

[
β(t)2n−1vx(1, t)− β(t)2n−1vx(0, t)

]︸ ︷︷ ︸
R1

− 4nε

2n+ 1

∫ 1

0
(v2n+1)xdx

≤2n

∫ 1

0
v2n−1Gdx− 2n

∫ 1

0
v2nudx+R1

≤2n

∫ 1

0
(v2n + 1)|G|dx+R1

≤2n∥G∥L∞

∫ 1

0
v2ndx+ 2n∥G∥L∞ +R1,

(3.29)
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where we have used the boundary conditions in (1.4) and the non-negativity of u and v2n. Now,
we need to control ∥G∥L∞ . Using Gagliardo-Nirenberg inequality, (3.26)-(3.27), (3.11) and (3.14),
we get

∥G∥2 ≤ C(∥ux∥2 + ∥uv∥2) ≤ C(∥ux∥2 + ∥u∥2L∞ ∥v∥2) ≤ C(t)

and

∥G∥2L∞ ≤ C(∥G∥2 + ∥G∥ ∥Gx∥) ≤ C(t)(1 + ∥ut∥2) ≤ C(t). (3.30)

Using Lemma 3.2 and integration by parts, we have∫ t

0
R1dτ =2nε

∫ t

0
β2n−1(τ) (vx(1, τ)− vx(0, τ)) dτ

=2n

∫ t

0
β2n−1(τ)

d

dτ

(∫ 1

0
v(x, τ)dx

)
dτ

≤2n

∫ 1

0
|v||β2n−1(t)|dx+ 2n

∫ 1

0
|v0||β2n−1(0)|dx

+ 2n(2n− 1)

∫ t

0

∫ 1

0
|v||β2n−2(τ)||β′(τ)|dxdτ

≤2nC2n(t) + 2nC2n(t)

∫ 1

0
|v|dx+ 2n(2n− 1)C2n(t)

∫ t

0

∫ 1

0
|v|dxdτ

≤Cn2C2n(t),

(3.31)

where we have used (3.9) and (3.11). Then it follows from (3.29)-(3.31) and Gronwall’s inequality
that ∫ 1

0
v2ndx ≤ Cn2C2n(t) exp

{
2n

∫ t

0
∥G∥L∞dτ

}
≤ Cn2C2n(t) exp{C(t)n}. (3.32)

Then, raising the power 1
2n to both sides of (3.32) and letting n → ∞, we obtain that

∥v∥L∞ ≤ C(t). (3.33)

From (3.26), (3.11), (3.14), (3.30) and (3.33), we conclude that

∥ux∥L∞ ≤ ∥G∥L∞ + ∥u∥L∞ ∥v∥L∞ ≤ C(t).

Thus, the proof of (3.28) is completed. �

The following refined estimates of (u, v) will play an important role in the study of vanishing
diffusion limit.

Lemma 3.7. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, it holds that

ε
1
2 ∥vx(·, t)∥2 +

∫ t

0

(
ε

1
2 ∥uxx∥2 + ε

3
2 ∥vxx∥2

)
dτ ≤ C(t), (3.34)

where the constant C(t) is independent of ε but depends on t.

Proof. Multiplying the first equation of (1.4) by −2εuxx in L2, using Cauchy-Schwarz inequality,
(3.9) and Lemmas 3.4-3.6, we have

ε
d

dt
∥ux∥2 + 2ε ∥uxx∥2 =− 2ε

∫ 1

0
(uv)xuxxdx+ 2εuxut

∣∣∣x=1

x=0

≤ε

4
∥uxx∥2 + 4ε(∥u∥2L∞ ∥vx∥2 + ∥ux∥2L∞ ∥v∥2) + 4εc1(t) ∥ux∥L∞

≤ε

4
∥uxx∥2 + C(t)ε ∥vx∥2 + C(t)ε.

(3.35)
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Next, we differentiate the second equation of (1.3) with respect to x, and subtract the resulting
equation from the first equation of (1.3), to get

vxt − εvxxx = ut − (uv)x − ε(v2)xx. (3.36)

Multiplying (3.36) by 2εvx and integrating the result over (0, 1) yield

ε
d

dt
∥vx∥2 + 2ε2 ∥vxx∥2

=2ε

∫ 1

0
(vxut − (uv)xvx) dx− 2ε2

∫ 1

0
vx(v

2)xxdx+ 2ε2vxvxx

∣∣∣x=1

x=0

=I5 + I6 + I7.

(3.37)

I5 can be estimated by Cauchy-Schwarz inequality and Lemmas 3.4-3.6 as

I5 ≤ ε ∥vx∥2 + 2ε(∥ut∥2 + ∥uvx∥2 + ∥uxv∥2) ≤ C(t)ε ∥vx∥2 + C(t)ε.

For I6, we use integration by parts, Cauchy-Schwarz inequality, Sobolev embedding theorem and
Lemmas 3.4-3.6, to get

I6 =− 2ε2
∫ 1

0
vx(v

2)xxdx

=2ε2
∫ 1

0
vxx(v

2)xdx− 2ε2vx(v
2)x

∣∣∣x=1

x=0

≤ε2

4
∥vxx∥2 + 16ε2 ∥v∥2L∞ ∥vx∥2 + 4ε2 ∥v∥L∞ ∥vx∥2L∞

≤ε2

4
∥vxx∥2 + C(t)ε2 ∥vx∥2 + C(t)ε2

(
∥vx∥2 + ∥vx∥ ∥vxx∥

)
≤ε2

2
∥vxx∥2 + C(t)ε ∥vx∥2 .

Noting that εvxx = vt − ux + ε(v2)x, using (3.9), (3.28), the Gagliardo-Nirenberg and Cauchy-
Schwarz inequalities, we have

I7 =2ε2vxvxx

∣∣∣x=1

x=0
= 2εvx

(
vt − ux + ε(v2)x

) ∣∣∣x=1

x=0

=2εvxvt

∣∣∣x=1

x=0
− 2εvxux

∣∣∣x=1

x=0
+ 2ε2vx(v

2)x

∣∣∣x=1

x=0

≤2β′(t)ε ∥vx∥L∞ + 2ε ∥ux∥L∞ ∥vx∥L∞ + 4ε2 ∥v∥L∞ ∥vx∥2L∞

≤C(t)ε ∥vx∥L∞ + C(t)ε2(∥vx∥2 + ∥vx∥ ∥vxx∥)

≤C(t)ε ∥vx∥2 +
1

8
ε2 ∥vxx∥2 + C(t)ε

1
2 + C(t)ε2 ∥vx∥2 +

1

8
ε2 ∥vxx∥2

≤C(t)ε ∥vx∥2 +
1

4
ε2 ∥vxx∥2 ,

where we have used the following inequality derived from Gagliardo-Nirenberg inequality and
Young inequality

C(t)ε ∥vx∥L∞ ≤C(t)ε(∥vx∥+ ∥vx∥
1
2 ∥vxx∥

1
2 )

≤C(t)ε ∥vx∥2 +
1

8
ε2 ∥vxx∥2 + C(t)ε

1
2 .

Substituting the estimates of Ii (i = 5, 6, 7) into (3.37) and adding the resulting inequality to
(3.35) yield

ε
d

dt
(∥ux∥2 + ∥vx∥2) + ε ∥uxx∥2 + ε2 ∥vxx∥2 ≤ C(t)ε ∥vx∥2 + C(t)ε

1
2 .



BOUNDARY LAYERS AND STABILIZATION OF THE SINGULAR KELLER-SEGEL SYSTEM 15

Then the Gronwall’s inequality leads to

ε(∥ux∥2 + ∥vx∥2) +
∫ t

0

(
ε ∥uxx∥2 + ε2 ∥vxx∥2

)
dτ ≤ C(t)ε

1
2 ,

which immediately gives (3.34) and completes the proof of Lemma 3.7. �
Finally, Theorem 2.1 results from Lemmas 3.1-3.7.

4. vanishing diffusion limit and boundary layer solutions

This section is concerned with the vanishing diffusion limit and boundary layer solutions. We
first give the global existence of solutions to the non-diffusion problem (1.5).

Lemma 4.1. Assume that the initial and boundary data satisfy

(u0, v0) ∈ H2, u0 ≥ 0, u(0, t) = u(1, t) = α(t) ≥ 0, α(t) ∈ C2([0,∞)), |α(t)| ≤ c0.

Then for any 0 < T < ∞, there exists a unique strong solution (u, v) to (1.5) in [0, 1] × [0, T )
satisfying (u, v) ∈ L∞ (

[0, T );H2(0, 1)
)
∩ L2

(
[0, T );H2(0, 1)

)
.

Proof. Noting that the energy estimates established in Theorem 2.1 still hold true for ε = 0, i.e.,
for any t > 0, there is a constant C(t) > 0, such that

∥u(·, t)∥2H1 + ∥ut(·, t)∥2 + ∥ux(·, t)∥2L∞ + ∥v(·, t)∥2 + ∥v(·, t)∥2L∞ + ∥vt(·, t)∥2

+

∫ t

0

(
∥ut∥2 + ∥vt∥2 + ∥uxt∥2

)
dτ ≤ C(t).

(4.1)

Next, we will give the estimate of ∥vx∥. Differentiating the second equation of (1.5) with respect
to x, then subtracting the resulting equation from the first equation of (1.5), we have

vxt = ut − (uv)x. (4.2)

Multiplying (4.2) by 2vx, integrating by parts over (0, 1) and using Cauchy-Schwarz inequality
and (4.1), we deduce

d

dt
∥vx∥2 =2

∫ 1

0
vxutdx− 2

∫ 1

0
(uv)xvxdx

≤∥vx∥2 + 2 ∥ut∥2 + 4 ∥uvx∥2 + 4 ∥uxv∥2

≤C(t) ∥vx∥2 + C(t).

Applying Gronwall’s inequality, we have

∥vx∥2 ≤ C(t). (4.3)

This together with the first equation of (1.5) and (4.1) means

∥uxx∥ ≤ ∥ut∥+ ∥uvx∥+ ∥uxv∥ ≤ C(t). (4.4)

Next differentiating (4.2) with respect to x, we have

vxxt = utx − (uv)xx. (4.5)

Multiplying (4.5) by 2vxx, integrating by parts over (0, 1), using Cauchy-Schwarz inequality, (4.1)
and (4.3), we deduce

d

dt
∥vxx∥2 =2

∫ 1

0
vxxuxtdx− 2

∫ 1

0
(uv)xxvxxdx

≤∥vxx∥2 + 2 ∥uxt∥2 + 6 ∥uvxx∥2 + 24 ∥uxvx∥2 + 6 ∥uxxv∥2

≤C(t) ∥vxx∥2 + 2 ∥uxt∥2 + C(t).

Applying Gronwall’s inequality and (4.1), we have

∥vxx∥2 ≤ C(t).
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This together with (4.1), (4.3)-(4.4) and the local existence of solutions to (1.5) (see Lemma 3.1)
completes the proof of Lemma 4.1. �

4.1. Proof of Theorem 2.2 (i). Let (uε, vε) and (u0, v0) be the solutions to the initial boundary
value problems (1.4) and (1.5), respectively. Let us set

φε = uε − u0, θε = vε − v0.

Then, by a straightforward calculation, we find that (φε, θε) satisfies the following the initial
boundary value problem: {

φε
t −

(
uεθε + v0φε

)
x
= φε

xx,

θεt − (φε − ε (vε)2)x = εvεxx,
(4.6)

with initial data

(φε, θε) (x, 0) = (0, 0), (4.7)

and boundary condition:

φε(0, t) = φε(1, t) = 0. (4.8)

Lemma 4.2. Assume that the assumptions listed in Theorem 2.1 and Lemma 4.1 are satisfied.
Then for any t > 0, there exists a positive constant C(t) which is independent of ε, such that∥∥(uε − u0)(·, t)

∥∥2 + ∥∥(vε − v0)(·, t)
∥∥2 + ∫ t

0

(∥∥(uε − u0)x
∥∥2 + ε ∥vεx∥

2
)
dτ ≤ C(t)ε

1
2 (4.9)

and∥∥(uε − u0)x(·, t)
∥∥2 + ε ∥vεx(·, t)∥

2 +

∫ t

0

(∥∥(uε − u0)t
∥∥2 + ∥∥(vε − v0)t

∥∥2) dτ ≤ C(t)ε
1
2 . (4.10)

Proof. Multiplying the first and second equations of (4.6) by 2φε and 2θε respectively, integrating
the result by parts on [0, 1], using the boundary condition (4.8), we have

d

dt
(∥φε∥2 + ∥θε∥2) + 2 ∥φε

x∥
2

=− 2

∫ 1

0

(
uεθε + v0φε

)
φε
xdx+ 2

∫ 1

0
(φε − ε (vε)2)xθ

εdx+ 2ε

∫ 1

0
vεxxθ

εdx

=J1 + J2 + J3.

(4.11)

By Cauchy-Schwarz inequality and Theorem 2.1, we have

J1 ≤
1

2
∥φε

x∥
2 + C ∥uε∥2L∞ ∥θε∥2 + C

∥∥v0∥∥2
L∞ ∥φε∥2 ≤ 1

2
∥φε

x∥
2 + C(t)(∥θε∥2 + ∥φε∥2),

J2 ≤
1

2
∥φε

x∥
2 + C ∥θε∥2 + Cε2 ∥vε∥2L∞ ∥vεx∥

2 ≤ 1

2
∥φε

x∥
2 + C ∥θε∥2 + C(t)ε

3
2 ,

J3 ≤∥θε∥2 + ε2 ∥vεxx∥
2 .

Substituting the estimates of Ji (i = 1, 2, 3) into (4.11), we get

d

dt
(∥φε∥2 + ∥θε∥2) + ∥φε

x∥
2 + ε ∥vεx∥

2 ≤ C(t)(∥φε∥2 + ∥θε∥2) + ε2 ∥vεxx∥
2 + C(t)ε

3
2 ,

which, along with Gronwall’s inequality, (4.7) and (3.34), leads to

∥φε∥2 + ∥θε∥2 +
∫ t

0
(∥φε

x∥
2 + ε ∥vεx∥

2)dτ ≤ C(t)ε2
∫ t

0
∥vεxx∥

2 dτ + C(t)ε
3
2 ≤ C(t)ε

1
2 . (4.12)

Then (4.9) follows from (4.12).
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Next, we derive the estimates for (φε
x, θ

ε
x). To this end, multiplying the first and second

equations of (4.6) by 2φε
t and 2θεt , respectively, and then integrating the results over [0, 1], we

have

d

dt
∥φε

x∥
2 + 2 ∥φε

t∥
2 + 2 ∥θεt ∥

2

=2

∫ 1

0

(
uεθε + v0φε

)
x
φε
tdx+ 2

∫ 1

0
(φε − ε (vε)2)xθ

ε
tdx+ 2ε

∫ 1

0
vεxxθ

ε
tdx

=J4 + J5 + J6.

(4.13)

Next, we estimate Ji (i = 4, 5, 6). First, we write J4 as follows:

J4 =2

∫ 1

0

(
uεxθ

εφε
t + v0xφ

εφε
t + v0φε

xφ
ε
t

)
dx+ 2

∫ 1

0
uεθεxφ

ε
tdx = H1 +H2.

It follows from Cauchy-Schwarz inequality, Lemma 4.1, Theorem 2.1 and (4.9) that

H1 ≤
1

2
∥φε

t∥
2 + C ∥uεx∥

2
L∞ ∥θε∥2 + C

∥∥v0x∥∥2L∞ ∥φε∥2 + C
∥∥v0∥∥2

L∞ ∥φε
x∥

2

≤1

2
∥φε

t∥
2 + C(t) ∥φε

x∥
2 + C(t)ε

1
2 .

For H2, integrating by parts and using Cauchy-Schwarz inequality, Gagliardo-Nirenberg inequal-
ity, Theorem 2.1 and (4.9), we have

H2 =− 2

∫ 1

0
uεθεφε

xtdx− 2

∫ 1

0
uεxθ

εφε
tdx

=− 2
d

dt

∫ 1

0
uεθεφε

xdx+ 2

∫ 1

0
uεtθ

εφε
xdx+ 2

∫ 1

0
uεθεtφ

ε
xdx− 2

∫ 1

0
uεxθ

εφε
tdx

≤− 2
d

dt

∫ 1

0
uεθεφε

xdx+ ∥θε∥2 + C ∥uεt∥
2
L∞ ∥φε

x∥
2 +

1

2
∥θεt ∥

2 + C ∥uε∥2L∞ ∥φε
x∥

2

+
1

2
∥φε

t∥
2 + C ∥uεx∥

2
L∞ ∥θε∥2

≤− 2
d

dt

∫ 1

0
uεθεφε

xdx+
1

2
(∥θεt ∥

2 + ∥φε
t∥

2) + C(t)(1 + ∥uεt∥
2 + ∥uεxt∥

2) ∥φε
x∥

2 + C(t)ε
1
2

≤− 2
d

dt

∫ 1

0
uεθεφε

xdx+
1

2
(∥θεt ∥

2 + ∥φε
t∥

2) + C(1 + ∥uεxt∥
2) ∥φε

x∥
2 + C(t)ε

1
2 .

Next, using Cauchy-Schwarz inequality and Theorem 2.1, we obtain

J5 =2

∫ 1

0
φε
xθ

ε
tdx− 4ε

∫ 1

0
vεvεxθ

ε
tdx

≤1

4
∥θεt ∥

2 + C ∥φε
x∥

2 + Cε2 ∥vε∥2L∞ ∥vεx∥
2

≤1

4
∥θεt ∥

2 + C ∥φε
x∥

2 + C(t)ε
3
2

and

J6 ≤
1

4
∥θεt ∥

2 + 4ε2∥vεxx∥2.
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Substituting above estimates of Ji (i = 4, 5, 6) into (4.13), integrating the resulting inequality
over [0, t] and using Theorem 2.1 and (4.9), we get

∥φε
x∥

2 + ε ∥vεx∥
2 +

∫ t

0
(∥φε

t∥
2 + ∥θεt ∥

2)dτ

≤− 2

∫ 1

0
uεθεφε

xdx+ C(t)

∫ t

0
(1 + ∥uεxt∥

2) ∥φε
x∥

2 dτ + Cε2
∫ t

0
∥vεxx∥

2 dτ + C(t)ε
1
2

≤1

2
∥φε

x∥
2 + 2 ∥uε∥2L∞ ∥θε∥2 + C(t)

∫ t

0
(1 + ∥uεxt∥

2) ∥φε
x∥

2 dτ + C(t)ε
1
2

≤1

2
∥φε

x∥
2 + C(t)

∫ t

0
(1 + ∥uεxt∥

2) ∥φε
x∥

2 dτ + C(t)ε
1
2 .

It follows from Gronwall’s inequality and Theorem 2.1 that

∥φε
x∥

2 + ε ∥vεx∥
2 +

∫ t

0
(∥φε

t∥
2 + ∥θεt ∥

2)dτ ≤ C(t)ε
1
2 ,

which gives (4.10) and the proof of Lemma 4.2 is completed. �

Finally, Theorem 2.2 is a consequence of Lemma 4.2.

4.2. Proof of Theorem 2.2 (ii). Inspired by a recent work [19], we first establish the following
lemma by the weighted L2-method dedicating to the boundary layer solutions.

Lemma 4.3. Assume that the assumptions listed in Theorem 2.1 and Lemma 4.1 are satisfied.
Then for any t > 0, there exists a positive constant C(t) which is independent of ε, such that∫ 1

0
ξ(x)|θεx|2dx ≤ C(t)ε

1
2 , (4.14)

where the weight function ξ(x) is defined as ξ(x) = x2(1− x)2, x ∈ [0, 1].

Proof. We differentiate the second equation of (4.6) with respect to x to get

θεxt − (φε − ε (vε)2)xx = εθεxxx + εv0xxx. (4.15)

Multiplying (4.15) by ξ(x)θεx and integrating by parts over [0, 1]× [0, T ), one gets

1

2

∫ 1

0
ξ(x)|θεx|2dx+ ε

∫ t

0

∫ 1

0
ξ(x)|θεxx|2dxdτ

=
ε

2

∫ t

0

∫ 1

0
ξ′′(x)|θεx|2dxdτ +

∫ t

0

∫ 1

0
φε
xxξ(x)θ

ε
xdxdτ

+ ε

∫ t

0

∫ 1

0

(
(vε)2 + v0x

)
xx

ξ(x)θεxdxdτ

=K1 +K2 +K3.

(4.16)

First, by Lemma 4.1 and Theorem 2.1, we have

K1 ≤Cε

∫ t

0
∥θεx∥

2 dτ ≤ Cε

∫ t

0

(
∥vεx∥

2 +
∥∥v0x∥∥2) dτ ≤ C(t)ε

1
2 . (4.17)
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For K2, using the second equation of (4.6), Cauchy-Schwarz inequality, Lemma 4.1, Theorem 2.1
and (4.9)-(4.10), we obtain

K2 =

∫ t

0

∫ 1

0
ξ(x)θεx

(
φε
t −

(
uεθε + v0φε

)
x

)
dxdτ

=

∫ t

0

∫ 1

0
ξ(x)θεx

(
φε
t − uεxθ

ε − uεθεx − v0φε
x − v0xφ

ε
)
dxdτ

≤C

∫ t

0

(
1 + ∥uεx∥

2
L∞ + ∥uε∥2L∞ +

∥∥v0∥∥2
L∞ +

∥∥v0x∥∥2L∞

)∫ 1

0
ξ(x)|θεx|2dxdτ

+

∫ t

0

(
∥φε

t∥
2 + ∥θε∥2 + ∥φε

x∥
2 + ∥φε∥2

)
dτ

≤C(t)

∫ t

0

∫ 1

0
ξ(x)|θεx|2dxdτ + C(t)ε

1
2 .

For K3, integrating by parts, using Cauchy-Schwarz inequality, Lemma 4.1, Theorem 2.1 and
(4.17), we obtain

K3 =− ε

∫ t

0

∫ 1

0

(
(vε)2 + v0x

)
x
ξ(x)θεxxdxdτ − ε

∫ t

0

∫ 1

0

(
(vε)2 + v0x

)
x
ξ′(x)θεxdxdτ

≤ε

2

∫ t

0

∫ 1

0
ξ(x)|θεxx|2dxdτ + Cε

∫ t

0

(
∥vε∥2L∞ ∥vεx∥

2 +
∥∥v0xx∥∥2) dτ + Cε

∫ t

0
∥θεx∥

2 dτ

≤ε

2

∫ t

0

∫ 1

0
ξ(x)|θεxx|2dxdτ + C(t)ε

1
2 .

Substituting above estimates for Ki (i = 1, 2, 3) into (4.16), we get∫ 1

0
ξ(x)|θεx|2dx+ ε

∫ t

0

∫ 1

0
ξ(x)|θεxx|2dxdτ ≤ C(t)

∫ t

0

∫ 1

0
ξ(x)|θεx|2dxdτ + C(t)ε

1
2 ,

which, together with Gronwall’s inequality, leads to (4.14) and completes the proof of Lemma
4.3. �

Next, we show Theorem 2.2 (ii). For any δ ∈ (0, 12), by (4.14), we have

δ2
∫ 1−δ

δ
|θεx|2dx =δ2

∫ 1
2

δ
|θεx|2dx+ δ2

∫ 1−δ

1
2

|θεx|2dx

≤
∫ 1

2

δ
x2|θεx|2dx+

∫ 1−δ

1
2

(1− x)2|θεx|2dx

≤4

∫ 1
2

δ
x2(1− x)2|θεx|2dx+ 4

∫ 1−δ

1
2

x2(1− x)2|θεx|2dx

≤4

∫ 1−δ

δ
x2(1− x)2|θεx|2dx ≤ C(t)ε

1
2 .

This gives for any δ ∈ (0, 12) that

∥(vε − v0)x∥L2[δ,1−δ] ≤ C(t)δ−1ε
1
4 . (4.18)

Then, using the Morrey and Gagliardo-Nirenberg inequalities, (4.9) and (4.18), we end up with

∥vε − v0∥2C[δ,1−δ] ≤C∥vε − v0∥2L2[δ,1−δ] + C∥vε − v0∥L2[δ,1−δ]∥(vε − v0)x∥L2[δ,1−δ]

≤C∥vε − v0∥2L2[0,1] + C∥vε − v0∥L2[0,1]∥(vε − v0)x∥L2[δ,1−δ]

≤C(t)δ−1ε
1
2 → 0, as ε → 0,
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for any function δ = δ(ε) satisfying (2.2). Thus (2.3) is proved. We proceed to prove (2.4). To
this end, integrating the second equation of (1.5) over [0, t] and then setting x = 0, we have

v0(0, t) =

∫ t

0
u0x(0, t)ds+ v0(0, 0).

Thus, if we choose the appropriate boundary value vε(0, t) such that

vε(0, t) ̸= v0(0, t), namely β(t) ̸=
∫ t

0
u0x(0, s)ds+ v0(0),

then we arrive at (2.4). Thus we complete the proof of Theorem 2.2 (ii). �

5. Long-time behavior

In this section, we prove Theorem 2.3. For the reader’s convenience, we restate the initial-
boundary value problem, which reads as

ut − (uv)x = uxx, x ∈ (0, 1), t > 0,

vt − ux = εvxx − ε(v2)x,

(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1],

u|x=0,x=1 = α(t), v|x=0,x=1 = β(t), t ≥ 0.

(5.1)

The proof of Theorem 2.3 is divided into four steps contained in a series of subsections. First
of all, we note that, due to the conditions of Theorem 2.3 and maximum principle, it holds that
u(x, t) ≥ 0, provided that the solution exists. We depart with a basic estimate involving the
logarithmic expansion of u.

5.1. Entropy estimates.

Lemma 5.1. Let the assumptions in Theorem 2.3 hold. Then there exists a constant C > 0
which is independent on t and ε, such that

E(u(·, t), α(t)) + ∥v(·, t)− β(t)∥2 +
∫ t

0

∫ 1

0

(ux)
2

u
dxdτ + ε

∫ t

0
∥vx∥2dτ ≤ C,

where

E(u, α) ≡
∫ 1

0

{
(u lnu− u)− (α lnα− α)− (u− α) lnα

}
dx ≥ 0

denotes the entropy expansion.

Proof. We divide the proof into three steps.
Step 1. By a direct calculation, we can show that

(u lnu− u)t − (α lnα− α)t − [(u− α) lnα]t

=ut lnu − αt lnα− (u− α)t lnα− (u− α)
αt

α

=(lnu− lnα)ut − (u− α)
αt

α
.

(5.2)

By using the first equation of (5.1) and noting α depends only on t, we deduce that

(lnu− lnα)ut = (lnu− lnα)[(uv)x + uxx]

= [(lnu− lnα)uv]x + [(lnu− lnα)ux]x − v ux −
(ux)

2

u
.

(5.3)

Then plugging (5.3) into (5.2), we find

(u lnu− u)t − (α lnα− α)t − [(u− α) lnα]t

=[(lnu− lnα)uv]x + [(lnu− lnα)ux]x − v ux −
(ux)

2

u
− (u− α)

αt

α
.

(5.4)
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After integrating (5.4) over [0, 1], and using the boundary conditions we have

d

dt

(∫ 1

0
[(u lnu− u)− (α lnα− α)− (u− α) lnα] dx

)
+

∫ 1

0

(ux)
2

u
dx

=−
∫ 1

0
v ux dx−

∫ 1

0
(u− α)

αt

α
dx.

(5.5)

Since β is independent of x, we derive from the second equation of (5.1) that

(v − β)t − ux = ε(v − β)xx − 2ε v (v − β)x − βt

= ε(v − β)xx − 2ε (v − β) (v − β)x − 2ε β (v − β)x − βt.
(5.6)

Taking the L2 inner product of (5.6) with v − β, we have

1

2

d

dt
∥v − β∥2 + ε∥vx∥2 =

∫ 1

0
(v − β)ux dx−

∫ 1

0
(v − β)βt dx. (5.7)

Note that ∫ 1

0
(v − β)ux dx =

∫ 1

0
v ux dx−

∫ 1

0
β ux dx

=

∫ 1

0
v ux dx− β(α− α)

=

∫ 1

0
v ux dx.

So we update (5.7) as

1

2

d

dt
∥v − β∥2 + ε∥vx∥2 =

∫ 1

0
v ux dx−

∫ 1

0
(v − β)βt dx. (5.8)

By adding (5.8) to (5.5), we get that

d

dt

(
E(u, α) +

1

2
∥v − β∥2

)
+

∫ 1

0

(ux)
2

u
dx+ ε∥vx∥2

=−
∫ 1

0
(u− α)

αt

α
dx−

∫ 1

0
(v − β)βt dx

≤|αt|
α

∫ 1

0
|u− α|dx+ |βt|

∫ 1

0
|v − β|dx,

(5.9)

where

E(u, α) ≡
∫ 1

0
[(u lnu− u)− (α lnα− α)− (u− α) lnα] dx ≥ 0. (5.10)

We remark that in [30] the two terms on the right hand side of (5.9) vanish, due to the constant
boundary conditions. The treatment of these non-constant terms is one of the major differences
between this paper and [30].

Step 2. In this step, we derive an energy bound for the L1 norm of u in terms of the entropy
expansion defined by (5.10). We remark that under the Dirichlet type boundary conditions, the
L1 norm of u is not a conserved quantity. Hence, the energy method established in [32] for the
mixed Neumann-Dirichlet boundary value problem can not be utilized for the Dirichlet boundary
conditions. Luckily, such an issue was previously resolved in [30] for constant Dirichlet boundary
data by developing a new approach through higher order nonlinear cancellation. Though such
a technique also works for the time-dependent Dirichlet boundary conditions and can produce a
uniform-in-time energy estimate for the low frequency part of the solution, the proof is lengthy
and one needs more constraints on the boundary data to close the energy estimate. In this
paper, we develop a very new approach (which has never appeared in any related work) to settle
down the energy estimate for the low frequency part of the solution. The idea is to fully explore
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the convexity of the entropy expansion E(u, α) and compare it with a linear function. For this
purpose, we set

Fα(u) ≡ (u lnu− u)− (α lnα− α)− (u− α) lnα+ (e− 1)α− u.

Then it can be readily checked that

Fα(0) = eα > 0,

F ′
α(u) = lnu− lnα− 1,

F ′′
α(u) =

1

u
≥ 0,

F ′
α(eα) = 0,

Fα(eα) = 0,

which imply that Fα(u) ≥ 0 for any u ≥ 0. This leads to

0 ≤ u ≤ (u lnu− u)− (α lnα− α)− (u− α) lnα+ (e− 1)α,

and therefore,

0 ≤
∫ 1

0
u(x, t) dx ≤ E(u, α) + (e− 1)α. (5.11)

Step 3. By plugging (5.11) into (5.9), we see that

d

dt

(
E(u, α) +

1

2
∥v − β∥2

)
+

∫ 1

0

(ux)
2

u
dx+ ε∥vx∥2

≤ |αt|
α

E(u, α) + e|αt|+
|βt|
2

+
|βt|
2

∥v − β∥2,
(5.12)

where we used the first assumption of Theorem 2.3 and the Cauchy-Schwarz inequality. By
applying the Gronwall’s inequality to (5.12), we have

E(u(·, t), α(t)) + 1

2
∥v(·, t)− β(t)∥2

≤ exp

{∫ t

0

(
|ατ |
α

+ |βτ |
)
dτ

}
×

[ ∫ t

0

(
e|ατ |+

|βτ |
2

)
dτ

+ E(u0, α0) +
1

2
∥v0 − β0∥2

]
.

(5.13)

By using the second assumption of Theorem 2.3, we deduce from (5.13) that

E(u(·, t), α(t)) + 1

2
∥v(·, t)− β(t)∥2 ≤ C, ∀ t > 0, ∀ ε ≥ 0, (5.14)

where the constant C is independent of time and ε. By plugging (5.14) into (5.12), then integrating
the resulting inequality with respect to time, we have in particular,∫ t

0

∫ 1

0

(ux)
2

u
dxdτ + ε

∫ t

0
∥vx∥2dτ ≤ C, ∀ t > 0, ∀ ε ≥ 0, (5.15)

where the constant C is independent of time and ε. This together with (5.14) completes the
entropy estimate and hence the proof of Lemma 5.1. �
5.2. L2-estimates. To perform further energy estimates, we let

ũ ≡ u− α, ṽ ≡ v − β,

where (u, v) satisfies (1.4). Then (ũ, ṽ) satisfies
ũt − (ũṽ)x − αṽx − βũx = ũxx − αt,

ṽt − ũx = εṽxx − 2εṽṽx − 2εβṽx − βt,

(ũ, ṽ)(x, 0) = (u0 − α, v0 − β)(x),

ũ|x=0,x=1 = 0, ṽ|x=0,x=1 = 0.

(5.16)
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Lemma 5.2. Let the assumptions in Theorem 2.3 hold. Then there exists a constant C > 0
which is independent on t and ε, such that

∥ũ(·, t)∥2 + α(t)∥ṽ(·, t)∥2 +
∫ t

0
∥ũx∥2dτ ≤ C.

Proof. Taking the L2 inner product of the first equation of (5.16) with ũ, we have

1

2

d

dt
∥ũ∥2 + ∥ũx∥2 = −

∫ 1

0
ũ ṽ ũx dx+ α

∫ 1

0
ũ ṽx dx− αt

∫ 1

0
ũ dx. (5.17)

Taking the L2 inner product of the second equation of (5.16) with ṽ yields

1

2

d

dt
∥ṽ∥2 + ε∥ṽx∥2 =

∫ 1

0
ṽ ũx dx− βt

∫ 1

0
ṽ dx. (5.18)

Multiplying (5.18) by α, we have

1

2

d

dt

(
α∥ṽ∥2

)
+ εα∥ṽx∥2 = α

∫ 1

0
ṽ ũx dx− αβt

∫ 1

0
ṽ dx+

αt

2
∥ṽ∥2

= −α

∫ 1

0
ũ ṽx dx− αβt

∫ 1

0
ṽ dx+

αt

2
∥ṽ∥2,

(5.19)

where we have applied integration by parts to the first term on the right hand side of (5.19).
Adding (5.19) to (5.17), we have

1

2

d

dt

(
∥ũ∥2 + α∥ṽ∥2

)
+ ∥ũx∥2 + εα∥ṽx∥2

=−
∫ 1

0
ũ ṽ ũx dx− αt

∫ 1

0
ũ dx− αβt

∫ 1

0
ṽ dx+

αt

2
∥ṽ∥2.

(5.20)

Now, we estimate the first term on the right hand side of (5.20) by using the L1 estimate obtained
from the previous subsection. To this end, we observe that∣∣∣∣− ∫ 1

0
ũ ṽ ũx dx

∣∣∣∣ ≤ 1

2
∥ũ∥2L∞∥ṽ∥2 + 1

2
∥ũx∥2, (5.21)

where ∥ũ∥2L∞ can be estimated through the following procedure:

Step 1. Note that for any x ∈ [0, 1] and t > 0,

ũ(x, t) =

∫ x

0
ũy dy,

which implies

∥ũ∥2L∞ ≤
(∫ 1

0
|ũx| dx

)2

.

Step 2. Since ũ = u − α and α is independent of x, it holds that ũx = ux. Then by Hölder’s
inequality and the positivity of u, we have

∥ũ∥2L∞ ≤
(∫ 1

0
u dx

)(∫ 1

0

(ux)
2

u
dx

)
. (5.22)

Step 3. By applying (5.14) to (5.11) and using the first assumption of Theorem 2.3, we obtain∫ 1

0
u(x, t) dx ≤ C, ∀ t > 0. (5.23)

Step 4. By applying (5.23) to the first term on the right hand side of (5.22), we obtain

∥ũ∥2L∞ ≤ C

∫ 1

0

(ux)
2

u
dx. (5.24)
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By plugging the preceding estimate into (5.21), we find∣∣∣∣−∫ 1

0
ũ ṽ ũx dx

∣∣∣∣ ≤ C

2

(∫ 1

0

(ux)
2

u
dx

)
∥ṽ∥2 + 1

2
∥ũx∥2,

which updates (5.20) as

1

2

d

dt

(
∥ũ∥2 + α∥ṽ∥2

)
+

1

2
∥ũx∥2 + εα∥ṽx∥2

≤1

2

(
C

∫ 1

0

(ux)
2

u
dx+ |αt|

)
∥ṽ∥2 + |αt|

∫ 1

0
|ũ| dx+ α |βt|

∫ 1

0
|ṽ| dx.

(5.25)

Note that

|αt|
∫ 1

0
|ũ| dx ≤ |αt|

2
+

|αt|
2

∥ũ∥2,

and

α|βt|
∫ 1

0
|ṽ|dx ≤ α|βt|

2
+

α|βt|
2

∥ṽ∥2.

So we update (5.25) as

d

dt

(
∥ũ∥2 + α∥ṽ∥2

)
+ ∥ũx∥2 + 2εα∥ṽx∥2

≤
(
C

α

∫ 1

0

(ux)
2

u
dx+

|αt|
α

+ |αt|+ |βt|
)(

∥ũ∥2 + α∥ṽ∥2
)
+ |αt|+ α |βt|,

(5.26)

where we have used the first assumption of Theorem 2.3. Applying the Gronwall’s inequality to
(5.26) and using (5.15) and the second assumption of Theorem 2.3, we find that

∥ũ(·, t)∥2 + α∥ṽ(·, t)∥2 ≤ C, ∀ t > 0, (5.27)

for some constant C which is independent of t and ε. Plugging (5.27) back into (5.26), then
integrating the resulting inequality with respect to time, we conclude that∫ t

0
∥ũx∥2dτ ≤ C, ∀ t > 0, (5.28)

where the constant C is independent of t and ε. This completes the energy estimate for the low
frequency part of the solution. �

Next, we shall move on to the estimation of the first order derivatives of the solution.

5.3. H1-estimates.

Lemma 5.3. Let the assumptions in Theorem 2.3 hold. Then it follows that

∥ũx(·, t)∥2 + ∥ṽx(·, t)∥2 +
∫ t

0

(
∥ũxx∥2 + ε∥ṽxx∥2

)
dτ ≤ C,

where the constant C is independent of t, but is inversely proportional to ε.

Proof. Taking the L2 inner products of the first equation of (5.16) with −ũxx, and the second
with −ṽxx, respectively, then adding the results, we have

1

2

d

dt

(
∥ũx∥2 + ∥ṽx∥2

)
+ ∥ũxx∥2 + ε∥ṽxx∥2

=−
∫ 1

0
(ṽũx + ũṽx + αṽx + βũx) ũxx dx+ αt

∫ 1

0
ũxx dx

+ 2ε

∫ 1

0
ṽṽxṽxx dx+ 2εβ

∫ 1

0
ṽxṽxx dx−

∫ 1

0
ũxṽxx dx+ βt

∫ 1

0
ṽxx dx

=
6∑

i=1

Ii.

(5.29)
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For the right hand side of (5.29), we first apply the basic Cauchy-Schwarz inequality to deduce

I1 ≤
1

4
∥ũxx∥2 + 4

(
∥ṽ∥2L∞∥ũx∥2 + ∥ũ∥2L∞∥ṽx∥2 + α2∥ṽx∥2 + β2∥ũx∥2

)
;

I2 ≤
1

4
∥ũxx∥2 + |αt|2;

I3 ≤
ε

8
∥ṽxx∥2 + 8ε ∥ṽ∥2L∞∥ṽx∥2;

I4 ≤
ε

8
∥ṽxx∥2 + 8ε β2∥ṽx∥2;

I5 ≤
ε

8
∥ṽxx∥2 +

2

ε
∥ũx∥2;

I6 ≤
ε

8
∥ṽxx∥2 +

2

ε
|βt|2.

For the L∞ norms appearing in the above estimates, we note that since both the functions ũ and
ṽ equal zero on the boundary, it holds that

ũ(x, t) =

∫ x

0
ũy dy =⇒ ∥ũ∥2L∞ ≤

(∫ 1

0
|ũx| dx

)2

≤ ∥ũx∥2, (5.30)

and the same is true for ṽ. Hence, we can update I1 and I3 as

I1 ≤
1

4
∥ũxx∥2 + 8∥ṽx∥2∥ũx∥2 + 4α2∥ṽx∥2 + 4β2∥ũx∥2;

I3 ≤
ε

8
∥ṽxx∥2 + 8ε ∥ṽx∥2∥ṽx∥2.

Plugging these estimates and preceding estimates for I2, I4, I5 and I6 into (5.29), we obtain

1

2

d

dt

(
∥ũx∥2 + ∥ṽx∥2

)
+

1

2
∥ũxx∥2 +

ε

2
∥ṽxx∥2

≤ 8∥ṽx∥2∥ũx∥2 + 4α2∥ṽx∥2 + 4β
2∥ũx∥2 + |αt|2

+ 8ε ∥ṽx∥2∥ṽx∥2 + 8ε β
2∥ṽx∥2 +

2

ε
∥ũx∥2 +

2

ε
|βt|2

≤ 8
(
∥ũx∥2 + ε∥ṽx∥2

) (
∥ũx∥2 + ∥ṽx∥2

)
+

(
4α2

ε
+ 8β

2
)
ε∥ṽx∥2 +

(
4β

2
+

2

ε

)
∥ũx∥2 + |αt|2 +

2

ε
|βt|2,

(5.31)

where we have used the first assumption of Theorem 2.3. Applying the Gronwall’s inequality to
(5.31), we have

∥ũx(·, t)∥2 + ∥ṽx(·, t)∥2

≤ exp

{
16

∫ t

0

(
∥ũx∥2 + ε∥ṽx∥2

)
dτ

}
×{(

8α2

ε
+ 16β

2
)
ε

∫ t

0
∥ṽx∥2dτ +

(
8β

2
+

4

ε

)∫ t

0
∥ũx∥2dτ

+ 2

∫ t

0
|αt|2dτ +

4

ε

∫ t

0
|βt|2dτ + ∥ũ0x∥2 + ∥ṽ0x∥2

}
.

By using (5.15), (5.28) and the second assumption of Theorem 2.3, we obtain

∥ũx(·, t)∥2 + ∥ṽx(·, t)∥2 ≤ C, ∀ t > 0, (5.32)
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where the constant C is independent of t, but depends reciprocally on ε. Further applying (5.32)
to (5.31), then integrating the result with respect to time, we conclude∫ t

0

(
∥ũxx∥2 + ε∥ṽxx∥2

)
dτ ≤ C, ∀ t > 0,

for some constant C which is independent of t, but depends reciprocally on ε. This completes
the estimate of the first order spatial derivatives of the solution, and therefore the desired energy
estimates stated in Theorem 2.3. �

Next, we prove the decay property recorded in Theorem 2.3.

5.4. Decay estimate. First, we would like to remark that a function of t, belonging toW 1,1(0,∞),
converges to zero as time goes to infinity. In what follows, we use such a fact, together with the
energy estimates obtained in the previous subsections, to establish the decay estimate stated in
Theorem 2.3.

Recalling (5.15) and (5.28), we see that

∥ũx(·, t)∥2 + ε∥ṽx(·, t)∥2 ∈ L1(0,∞).

Hence, for any fixed value of ε, due to the Poincaré’s inequality and the first assumption of
Theorem 2.3, it holds that

∥ũ(·, t)∥2 + α∥ṽ(·, t)∥2 ∈ L1(0,∞). (5.33)

Next, we note that (5.20) can be written as

d

dt

(
∥ũ∥2 + α∥ṽ∥2

)
=− 2∥ũx∥2 − 2εα∥ṽx∥2 − 2

∫ 1

0
ũ ṽ ũx dx

− 2αt

∫ 1

0
ũ dx− 2αβt

∫ 1

0
ṽ dx+ αt∥ṽ∥2,

(5.34)

from which we can deduce∣∣∣∣ ddt (∥ũ∥2 + α∥ṽ∥2
)∣∣∣∣ ≤ 2∥ũx∥2 + 2εα∥ṽx∥2 + ∥ũ∥L∞

(
∥ṽ∥2 + ∥ũx∥2

)
+ |αt|2 + ∥ũ∥2 + α

(
|βt|2 + ∥ṽ∥2

)
+ |αt|∥ṽ∥2.

(5.35)

According to (5.30), we have

∥ũ∥L∞ ≤ ∥ũx∥, ∥ũ∥2 ≤ ∥ũx∥2, ∥ṽ∥2 ≤ ∥ṽx∥2.

Hence, we can update (5.35) as∣∣∣∣ ddt (∥ũ∥2 + α∥ṽ∥2
)∣∣∣∣ ≤ C

(
∥ũx∥2 + ∥ṽx∥2 + |αt|2 + |βt|2 + |αt|

)
, (5.36)

where the constant C is independent of t, and we have applied (5.32) for the uniform estimate
of ∥ũx∥ and (5.14) to the last term on the right hand side of (5.35). From (5.15), (5.28) and the
third assumption of Theorem 2.3 we see that the right hand side of (5.36) is uniformly integrable
with respect to time. Therefore,

d

dt

(
∥ũ(·, t)∥2 + α∥ṽ(·, t)∥2

)
∈ L1(0,∞). (5.37)

The combination of (5.33) and (5.37) implies that

∥ũ(·, t)∥2 + α∥ṽ(·, t)∥2 ∈ W 1,1(0,∞).

Thus,

lim
t→∞

(
∥ũ(·, t)∥2 + α∥ṽ(·, t)∥2

)
= 0.

Since α(t) ≥ α > 0, we conclude that

lim
t→∞

(
∥ũ(·, t)∥2 + ∥ṽ(·, t)∥2

)
= 0.
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In a completely similar fashion by using the estimates in Section 5.4, we can show that

lim
t→∞

(
∥ũx(·, t)∥2 + ∥ṽx(·, t)∥2

)
= 0.

This completes the proof of the decay estimate, and thus of Theorem 2.3. �

6. Proof of Theorem 2.4

In this section, we pass the results of the transformed chemotaxis model (1.3) to the original
chemotaxis system (1.1) with m = 1. Noticing that the transformed and pre-transformed systems
have the same quantity u, we are left to prove the results for w only. We start with the proof
of (2.6). Let x0 ∈ [0, 1]) be such that w0(x0) > 0. Using (lnw0(x))x ∈ H2[0, 1] and Sobolev
embedding theorem, we get (lnw0(x))x ∈ C1[0, 1]. Thus,

lnw0(x)− lnw0(x0) =

∫ x

x0

(lnw0(y))ydy, x ∈ [0, 1],

which leads to

w0(x) = w0(x0) exp

{∫ x

x0

(lnw0(y))ydy

}
, x ∈ [0, 1].

This along with (lnw0(x))x ∈ C1[0, 1] yields w0(x) ∈ C2[0, 1]. Hence there exist two positive
constants w and w such that 0 < w ≤ w0(x) ≤ w < ∞.

From the second equation of (1.1) with m = 1 and the Cole-Hopf transformation (1.2), we have

(lnw)t = −u− εvx + ε(v)2.

Integrating the above equality with respect to t to get

w(x, t) = w0(x) exp
{∫ t

0
[−u− εvx + ε(v)2]dτ

}
. (6.1)

Using Gagliardo-Nirenberg inequality and Theorem 2.1, we have∫ t

0

(
∥u∥L∞ + ε∥vx∥L∞ + ε∥v∥2L∞

)
dτ ≤ C(t),

which implies

e−C(t) ≤ exp
{∫ t

0
[−u− εvx + ε(v)2]dτ

}
≤ eC(t).

This along with (6.1) and 0 < w ≤ w0(x) ≤ w < ∞ gives

c2(t) ≤ w(x, t) ≤ c3(t), (6.2)

where c2(t) = we−C(t) and c3(t) = weC(t). Noting that
wx = w(lnw)x,

wxx = wx(lnw)x + w(lnw)xx,

wxxx = wxx(lnw)x + 2wx(lnw)xx + w(lnw)xxx.

(6.3)

By using the Cole-Hopf transformation (1.2), Theorem 2.1, (6.2) and (6.3), we complete the proof
of (2.6).

Next, we prove (2.7). Let (uε, wε) and (u0, w0) be the solutions to (2.5) with ε > 0 and ε = 0,
respectively. From the second equation of (1.1) with m = 1 and the Cole-Hopf transformation
(1.2), we have

(lnwε)t = −uε − εvεx + ε(vε)2

and

(lnw0)t = −u0. (6.4)
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Then, the difference of the above two equations yields

(lnwε − lnw0)t = (u0 − uε)− εvεx + ε(vε)2. (6.5)

Integrating (6.5) with respect to t, we get

wε(x, t)

w0(x, t)
= exp

{∫ t

0
[(u0 − uε)− εvεx + ε(vε)2]dτ

}
,

where we have used wε(x, 0) = w0(x, 0). Subtracting 1 from both sides of above equation, we
obtain

|wε(x, t)− w0(x, t)| ≤ |w0(x, t)| ·
∣∣∣∣ exp{∫ t

0
[(u0 − uε)− εvεx + ε(vε)2]dτ

}
− 1

∣∣∣∣. (6.6)

Note that Gagliardo-Nirenberg inequality and Young inequality, Theorem 2.1 and Lemma 4.2
give us that ∫ t

0
[(u0 − uε)− εvεx + ε(vε)2]dτ

≤C

∫ t

0

(
∥uε − u0∥L∞ + ε∥vεx∥L∞ + ε∥vε∥2L∞

)
dτ

≤C

∫ t

0

[∥∥uε − u0
∥∥
H1 + C(t)(ε ∥vx∥2 + ε2 ∥vxx∥2 + ε

1
2 ) + C(t)ε

]
dτ

≤C(t)ε
1
4 .

(6.7)

On the other hand, we need to estimate |w0(x, t)|. Integrating (6.4) with respect to t and using
Lemma 4.1, we get

w0(x, t) = w0(x) exp

{
−
∫ t

0
u0dτ

}
≤ w0(x)e

t∥u0∥L∞ ≤ C(t),

which, along with (6.6) and (6.7), gives∥∥wε(·, t)− w0(·, t)
∥∥
C[0,1]

≤ C(t)|eκ − 1| ≤ C(t)(|κ|+ o(|κ|)) ≤ C(t)ε
1
4 , (6.8)

where the Taylor expansion has been used and κ denotes the argument of the exponential function
in (6.6). This together with Lemma 4.2 completes the proof of (2.7).

Next, we proceed to prove (2.8) and (2.9). Note first that

wε
x − w0

x = wε

(
wε
x

wε
− w0

x

w0

)
+

w0
x(w

ε − w0)

w0

= wε
(
(lnwε)x − (lnw0)x

)
+ (lnw0)x(w

ε − w0),

(6.9)

which subject to (1.2), (4.1) and (6.2), yields∥∥(wε
x − w0

x)(·, t)
∥∥
C[δ,1−δ]

≤ ∥wε∥C[δ,1−δ]

∥∥vε − v0
∥∥
C[δ,1−δ]

+
∥∥v0x∥∥C[δ,1−δ]

∥∥wε − w0
∥∥
C[δ,1−δ]

≤ C(t)
∥∥vε − v0

∥∥
C[δ,1−δ]

+ C(t)ε
1
4 .

This, combined with Theorem 2.2, leads to (2.8).
Now, we turn to prove (2.9). We argue by contradiction. Suppose that

lim inf
ε→0

∥wε
x − w0

x∥L∞([0,T );C[0,1]) = 0. (6.10)

It follows from (1.2) and (6.9) that

v0 − vε =
(wε

x − w0
x) + (wε − w0)v0

wε
,

which, together with (6.2), implies that

∥(v0 − vε)(·, t)∥C[0,1] ≤
1

c2(t)

(
∥wε

x − w0
x∥C[0,1] + ∥wε − w0∥C[0,1]∥v0∥C[0,1]

)
.
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By using (4.1) and (6.8), we can show that

∥(v0 − vε)(·, t)∥C[0,1] ≤ C(t)
(
∥wε

x − w0
x∥C[0,1] + C(t)ε

1
4

)
,

which, along with (6.10), leads to

lim inf
ε→0

∥v0 − vε∥L∞([0,T );C[0,1]) = 0.

Apparently, the above result contradicts (2.4). Therefore, Theorem 2.4 (i) is proved.
Finally, we prove Theorem 2.4 (ii). Let (u,w) be the solution to (5.1). We rewrite (6.1) as

w(x, t) = w0(x) exp

{
−
∫ t

0
(α− εβ2)dτ

}
× exp

{∫ t

0
[−(u− α)− εvx + ε(v − β)2 + 2εβ(v − β)]dτ

}
.

(6.11)

By the first assumption of Theorem 2.3, we have

exp

{
−
∫ t

0
(α− εβ2)dτ

}
≤ e−(α−εβ

2
)t.

Using Cauchy-Schwarz inequality, (5.24) and Lemma 5.1 yields∫ t

0
∥u− α∥L∞ dτ ≤ζ0t

3
+ C

∫ t

0
∥u− α∥2L∞ dτ

≤ζ0t

3
+ C

∫ t

0

∫ 1

0

(ux)
2

u
dτ

≤ζ0t

3
+ C,

where ζ0 is a positive constant to be determined later. From Theorem 2.3, Gagliardo-Nirenberg
and Cauchy-Schwarz inequalities, we get

ε

∫ t

0
∥vx∥L∞ dτ ≤ζ0t

3
+ Cε2

∫ t

0
∥vx∥2L∞ dτ

≤ζ0t

3
+ Cε2

∫ t

0
(∥vx∥2 + ∥vxx∥2)dτ

≤ζ0t

3
+ C.

Using Gagliardo-Nirenberg inequality, Poincaré’s inequality and Theorem 2.3, we have

ε

∫ t

0
∥v − β∥2L∞ dτ ≤ Cε

∫ t

0
(∥v − β∥2 + ∥vx∥2)dτ ≤ Cε

∫ t

0
∥vx∥2 dτ ≤ C.

In a similar way, we may readily derive that

2ε

∫ t

0
β ∥v − β∥L∞ dτ ≤ζ0t

3
+ Cε2β

2
∫ t

0
∥v − β∥2L∞ dτ

≤ζ0t

3
+ C.

Substituting the above estimates into (6.11) and choosing ζ0 =
α−εβ

2

2 yield

∥w(x, t)∥L∞ ≤ Ce−
α−εβ

2

2
t.

This completes the proof of the second part of Theorem 2.4, and thus of Theorem 2.4. �
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Figure 1. Numerical simulation of the evolution of solution profiles of the system
(1.4) as ε → 0 in the interval [0, 1], where u|x=0,1 = 1 + 0.1 sin(t), v|x=0,1 =
1+0.1 sin(t), u0(x) = 1−sin(πx), v0(x) = 1+x(1−x). The solution (u(x, t), v(x, t)
is plotted at time t = 0.2.
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Figure 2. Numerical simulation of the time evolution of boundary layer solutions
of (1.4) with ε = 0.0001 in the interval [0, 1], where the initial and boundary date
are same as those chosen in Fig. 1.

7. Simulations and implications

In this section, we numerically solve system (1.4) to illustrate the boundary layer profile (uε, vε),
verify our analytical results and discuss boundary effects. The model is solved in the interval [0, 1]
with MATLAB based on the finite difference scheme with mesh size ∆x = 0.001,∆t = 0.01.

We first choose the initial and boundary data satisfying the requirements in (2.1) and implement
numerical computations to the system (1.4). The solution profile (u, v)(x, t) at time t = 0.2 as
ε → 0 is plotted in Fig.1. For the sake of comparison, we also numerically solve the non-diffusive
problem (1.5) in the absence of boundary conditions for v and plot the numerical solution at
t = 0.2 in Fig.1. We find from the simulations that the solution profile u(x, t) is convergent
with respect to ε in [0, 1], whereas the solution profile v(x, t) becomes increasingly sharp near the
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boundary as ε → 0 and boundary layers arise. Outside the boundary layer (i.e. in the interior of
[0, 1]) the solution profiles v(x, t) for small ε > 0 and ε = 0 match well.

In Fig.2, we proceed to plot the time evolution of the same solution solved in Fig.1 to observe
the asymptotic profiles, where we find that large-time profiles of the solution is elusive. This is
because the boundary data chosen in Fig.1 vary (oscillate) in time. But the simulations show
that the boundary layer profiles (sharp transition near boundaries) persist in time given small
ε > 0. However if we impose some decay properties to the boundary data, the results of Theorem
2.3 show that the asymptotic behavior of solutions may become tractable and converge to some
constant states, where the decay profiles of solutions are determined by the boundary data. Here
we numerically explore this analytical finding. For this, we choose the initial and boundary data
(see the caption of Fig. 3) such that the decay of boundary data for u is exponential and for v
is algebraic, as well as the initial data satisfying the compatibility conditions at the end points
x = 0, 1, as required by Theorem 2.3. We plot the numerical solution profiles in Fig.3 at different
times showing that the solution (u, v) will approach constant states as time evolves. In particular,
we find that the convergence of u is much faster than that of v. This complies with our analytical
results in Theorem 2.3 that the decay rates of u and v are same as the boundary data α(t) and
β(t), respectively, where the former (exponential decay) is much fast than the latter (algebraic
decay).
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Figure 3. Numerical simulation of the time evolution of solutions to (1.4) in the
interval [0, 1] with decay boundary data, where u|x=0,1 = 1 + exp(−t), v|x=0,1 =
1/(1 + t), u0(x) = 2 + x(1− x), v0(x) = 1 + x(1− x), and χ = D = 1, ε = 0.0001.

Finally we shall discuss some biological insights gained from our analytical and numerical
results. In view of model (1.1) with m = 1 and the transformation (1.2), we see that the quantity
v represents the velocity of chemotactic flux crossing the boundary. Therefore the results in
Theorem 2.4 imply that if the chemical diffusion is small, although both cell density and chemical
concentration have no boundary layers, the chemotactic flux (i.e. the term u(lnw)x = uv) may
change drastically near the boundary since v has boundary layers. If the boundary data have
oscillating properties, this phenomenon will persist in time. However if the boundary data have
some decay properties, the boundary layer may vanish as time evolves. Therefore the nature of
boundary date play an essential role in determining the solution behaviour near the boundary
and large-time dynamics.
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