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Abstract. This paper is concerned with the stability of boundary layer solutions for a viscous
hyperbolic system transformed via a Cole-Hopf transformation from a singular chemotactic system
modeling the initiation of tumor angiogenesis proposed in [H. A. Levine, B. Sleeman, and M. Nilsen-
Hamilton, Math. Biosci., 168 (2000), pp. 71-115]. It was previously shown in [Q. Hou, Z. Wang, and
K. Zhao, J. Differential Equations, 261 (2016), pp. 5035-5070] that when prescribed with Dirichlet
boundary conditions, the system possesses boundary layers at the boundaries in an bounded interval
(0,1) as the chemical diffusion rate (denoted by € > 0) is small. This paper proceeds to prove the
stability of boundary layer solutions and identify the precise structure of boundary layer solutions.
Roughly speaking, we justify that the solution with € > 0 converges to the solution with e = 0 (outer
layer solution) plus the inner layer solution with the optimal rate at order of O(¢1/2) as ¢ — 0, where
the outer and inner layer solutions are well determined and the relation between outer and inner layer
solutions can be explicitly identified. Finally we transfer the results to the original pretransformed
chemotaxis system and discuss the implications of our results.
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1. Introduction. Chemotaxis, the movement of an organism in response to a
chemical stimulus, has been an important mechanism of various biological phenom-
ena/processes, such as aggregation of bacteria [49,63], slime mold formation [23], fish
pigmentation [53], tumor angiogenesis [7,8,9], primitive streak formation [54], blood
vessel formation [17], and wound healing [56]. The prototypical chemotaxis model,
known as the Keller—Segel (KS) model due to their pioneering works of [30, 31, 32],
reads in its general form as

u = [Dug = xu($(¢))alz,
(1.1) { Ci = ECpp + gzcu,c),

where u(z,t) and c(x,t) denote the cell density and chemical (signal) concentration
at position z and time t, respectively. The function ¢(c) is called the chemotactic
sensitivity function accounting for the signal response mechanism and g(u,c¢) is the
chemical kinetics (birth and death). D > 0 and € > 0 are cell and chemical diffusion

*Received by the editors April 26, 2017; accepted for publication (in revised form) February 5,
2018; published electronically June 14, 2018.
http://www.siam.org/journals/sima/50-3/M112748. html
Funding: The research of the second author was supported by the National Natural Science
Foundation of China (NSFC) grant 11743009. The research of the third author was supported in
part by NSFC grant 11631008 and by the Shanghai Committee of Science and Technology under
grant 15XD1502300. The research of the fourth author was supported in part by Hong Kong RGC
GRF grant PolyU 153032/15P.
fDepartment of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon
200240, Hong Kong (giangian.hou@connect.polyu.hk, mawza@polyu.edu.hk).
fInstitute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of
China (cjliusjtu@gmail.com).
§School of Mathematical Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University,
Shanghai, People’s Republic of China (ygwang@sjtu.edu.cn).

3058

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.siam.org/journals/sima/50-3/M112748.html
mailto:qianqian.hou@connect.polyu.hk
mailto:mawza@polyu.edu.hk
mailto:cjliusjtu@gmail.com
mailto:ygwang@sjtu.edu.cn

Downloaded 09/16/22 to 158.132.161.185 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STABILITY OF BOUNDARY LAYERS 3059

coefficients, respectively. x # 0 is referred to as the chemotactic coefficient with
|x| measuring the strength of the chemotactic sensitivity, where the chemotaxis is
said to be attractive if x > 0 and repulsive if x < 0. The application of (1.1)
generically depends on the specific forms of ¢(c) and g(u,c). There are two major
classes of chemotactic sensitivity functions: linear law ¢(c) = ¢ and logarithmic law
¢(c) = Inc. The former was originally derived in [30, 31] by Keller and Segel to
model the self-aggregation of Dictyostelium discoideum in response to cyclic adenosine
monophosphate (cAMP), while the latter was first employed in [32] to model the wave
propagation of bacterial chemotaxis, though it has many other prominent applications
in biology (cf. [2,3,10,29,34,52]). Compared with massive well-known results on
the KS system with linear chemotactic sensitivity (cf. [4,5,22,25]), few results are
available for the logarithmic sensitivity due to its singularity nature (at ¢ = 0). This
paper is concerned with the following KS system with logarithmic sensitivity:

ut = [Dug — xu(Ine)z]s,
Ct = ECgq — HUC

(1.2)

this was a specialized KS model with linear nutrient consumption proposed in [30],
and it later found applications in [35] to describe the dynamical interactions between
vascular endothelial cells (VECs), denoted by u, and signaling molecules vascular en-
dothelial growth factor (VEGF), denoted by ¢, in the initiation of tumor angiogenesis.
Except this, the model (1.2) has also been used in [50] to model the boundary move-
ment of chemotactic bacterial populations. Though bearing specific applications, the
logarithmic sensitivity brings considerable challenges to mathematical analysis due
to its singularity nature. The common approach currently used to overcome this
singularity is the Cole-Hopf type transformation (cf. [34,43])

(1.3) v:—@(lnc) _ _VXPCa

r— — - ;

Iz poc

which transforms the model (1.2) into a nonsingular system of conservation laws

up — (W0)z = Ugg,
(1.4) vy — (u— 0%y = G40,

(u7 v)(w, 0) = (UO, UO)(‘r)v
where the temporal-spatial rescalings ¢ = At and T = ‘/%TL:U have been used and
tildes have been suppressed in (1.4) for convenience.

Though the transformed system (1.4) no longer has singularity, it has a quadratic
nonlinear convection term and the parameter ¢ in (1.4) plays a dual role: coefficient
of both diffusion and nonlinear convection, which is a prominent feature compared to
existing viscous hyperbolic systems as far as we know (cf. [16,19,60]). How to make
a balance between the diffusion and nonlinear convection becomes an art of analysis.
The transformed model (1.4) in multidimensions still remains poorly understood so
far and available results are limited to small-data solutions (cf. [11,21, 36,40, 55,66]).
In contrast the model (1.4) has been well understood in one dimension to a large
extent such as the existence and stability of traveling wave solutions (cf. [6,28, 39,
41,42,43,44]) and large-data solutions (cf. [37,48]) in R or in bounded intervals with
various boundary conditions (cf. [40,61,68,73]).

The present paper will investigate the zero-limit problem of (1.4) as ¢ — 0, which
is motivated by the fact pointed out in [35] that the magnitude of the diffusion rate
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¢ of the chemical VEGF can be negligible compared to the diffusion of VECs in the
initiation of tumor angiogenesis. Moreover the diffusion rate ¢ was assumed to be
zero in the analysis of [32] and many subsequent works (cf. [65]) for simplicity. Hence
whether the nondiffusive model (i.e., € = 0) is a good approximation of the diffusive
model when € > 0 is small is of importance. This promises a relevance to explore the
zero-limit problem of (1.4) in elucidating this question. From a mathematical point
of view, the zero-limit problem of (1.4) as ¢ — 0 is of independent interest due to
the dual role of ¢ which causes challenges in deriving uniform-in-¢ estimates. This
topic has been investigated in several circumstances. First in unbounded domains,
it has been shown that both traveling wave solutions (cf. [65]) in R and the global
small-data solution of the Cauchy problem (cf. [55,66]) in RNV (N = 2,3) are uni-
formly convergent in e, namely, the solutions of (1.4) with £ > 0 converge to those
with ¢ = 0 in the L*°-norm as ¢ — 0. However, the e-limit problem in bounded
domains appears to be more involved. This is closely related to the boundary layer
theory, which has been an important topic in fluid mechanics stimulating a large body
of outstanding works (cf. [13,14,16,19,20,27,60,64,70,72]). A fundamental question
in fluid mechanics is whether solutions of the incompressible Navier—Stokes equations
(NSE) converge to those of the Euler equations as the viscosity vanishes. The posi-
tive answer of this question has been given to the incompressible NSE under Lions-
or Navier-type boundary conditions (cf. [45,69]). However, the convergence under
no-slip (zero Dirichlet) boundary condition is elusive due to the appearance of degen-
erate Prandtl-type boundary layers (cf. [1,18,47,51,71]). This imposes an interesting
question: under what type of boundary conditions do the solutions of (1.4) converge
as ¢ — 0?7 This topic has been recently studied in [38,67] in a bounded interval.
Hereafter we assume D = y = u = 1 without loss of generality for simplicity since the
specific values of them are not of importance to our analysis. For illustration, let’s
first consider the initial-boundary value problem of system (1.4) in an interval (0, 1):

up — (V) g = Ugy, (z,t) € (0,1) x (0,00),
(1.5) v — (u— €lv]?)y = eVag,
(u,v)(@,0) = (uo, vo)(x).

If (1.5) is endowed with the mixed homogeneous Neumann-Dirichlet boundary con-
ditions
Uz |e=0,1 = V|g=0,1 = 0,

it was shown in [67] that the solutions of (1.5) are uniformly convergent in &, namely,
the solutions of the diffusive problem (¢ > 0) uniformly converge to those of the
nondiffusive problem (¢ = 0). However, if the Dirichlet boundary conditions are
imposed, one cannot impose Dirichlet boundary conditions for v at boundaries if e = 0
since otherwise the nondiffusive problem (¢ = 0) may be overdetermined (cf. [38]).
This indicates that the Dirichlet boundary conditions of (1.5) ought to be prescribed as

(1.6) {u|z_°’l -

Ulp=0,1 = T >

N

> 0, ”U|z:071 =7, if € > 0,
0 if e =0,

where the boundary values of v when ¢ = 0 are determined by the second equation of
(1.5) via u, and may not equal to ©. Due to this possible mismatch of boundary condi-
tions between € > 0 and ¢ = 0, the L*°-norm of v may diverge as € — 0 near end points
x = 0,1, and if so boundary layers will arise. Such suspicion has been numerically ver-
ified recently by Li and Zhao in [38], followed with a rigorous proof in [26]. Precisely
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speaking, if letting (u®,v%) and (u”,v°) denote the solutions of the initial-boundary
value problem (1.5)—(1.6) for € > 0 and ¢ = 0, respectively, then the work [26] showed
that if initial data satisfy some compatibility conditions on boundaries, then for any
function §(¢) depending on e and satisfying d(¢) — 0 and €'/2/6(e) — 0 as e — 0,
it holds that for any T > 0,

lim [|u® — 6| L 0,17 [0,77) = 0,

e—0

(L.7) lim || — O =0, liminf ||vo® — 2?| >0
lim Le=((§,1-5]x[o,7]) = 0, limir L= ([0,1x[0,7]) > 0,

where the function d(¢) is called a boundary layer thickness following the nomencla-
ture of [14,15]. But, it is easy to see that the boundary layer thickness §(e) satisfying
the above constraints is not unique; for example, the relations given in (1.7) hold for
any 0(e) = e* with o < . A formal asymptotic analysis was further performed in [26]
to show that the exact boundary layer thickness magnitude is of order £'/2.
Compared to the boundary layer theory developed in fluid mechanics, the study of
boundary layer theory of chemotaxis models is still in its infant stage. The rigorous
work [26] only showed the existence of boundary layer solutions of (1.5)—(1.6) and
proved the convergence of the solution component v* as € — 0 outside the boundary
layers. However, the structure of v as ¢ — 0 inside the boundary layers remains open.
In this paper we shall exploit the structure of v¢ inside the boundary layers and hence
establish the stability of boundary layer solutions of (1.5)—(1.6) in the entire interval
(0,1). With the general boundary layer theory [57,59] applied to (1.5)—(1.6), the
solution profile (u®,v¢) of (1.5) for small € > 0 is composed of two parts: outer layer
profile and inner (boundary) layer profile. Since u® converges uniformly in € and hence
the inner layer profile part will be absent, (u®,v®) is anticipated to possess the form

u® = ul + O(e%);

ve =9 + vL(%,t) + vR(L\}:,t) + O0(e%)

for some o < 1/2, where (u”,v°) is the outer layer profile which is the solution of the
nondiffusive problem of (1.5)—(1.6) with £ = 0, and the inner (boundary) layer profile
vt Jv® adjusts rapidly from a value away from the boundary to a different value on the
left /right end point. Outside the boundary layer, the nondiffusive problem dominates.
Inside the boundary layer, diffusion becomes important. The main goal of this paper
is to explicitly derive the outer/inner layer profiles and justify (1.8) holds as ¢ — 0
for a = 1/2, which is the optimal convergence rate since the magnitude of boundary
layer thickness is of order !/2. Finally we convert the results of (1.5)-(1.6) back to
the original chemotaxis model (1.2) and find that the chemical concentration has no
boundary layer but its gradient does. This essentially means that chemotactic flux
near the boundary will change drastically if the chemical diffusion rate is small, which
implies that the chemical diffusion plays an important role in the tumor angiogenesis
(see a more detailed discussion for the biological implications of our results in the end
of section 2).

(1.8)

2. Statement of main results.
Notation. For clarity, we specify some notations below.
e Without loss of generality, we assume 0 < £ < 1 throughout this paper for
we consider the diffusion limit problem as & — 0.
e Unless specified, we use C' to denote a generic positive constant which is
independent of €, depends on the time variable, and may vary in the context,
while Cy denotes a generic positive constant independent of ¢ and time t.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/16/22 to 158.132.161.185 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3062 Q. HOU, C.-J. LIU, Y.-G. WANG, AND Z. WANG

e IP with 1 < p < oo represents the Lebesgue space LP(0,1) with respect to
z € (0,1). L and Ly denote L?(0,00) with respect to z and LP(—o0,0) with
respect to &, respectively. Similarly, H*, HF and H? denote the Sobolev
spaces W52 in (0,1), (0,00), and (—o0,0) with respect to z, z, and &, respec-
tively.

e Denote (z) = 1+ 22 for z € [0,00), and (§) = /1 + &2 for £ € (—o0,0].

e N denotes the set of nonnegative integers, and N represents the set of positive
integers.

2.1. Boundary layer profiles. In this subsection, we are devoted to using
formal asymptotic analysis to find the equations of boundary layer profiles of (1.5)
with small € > 0. The boundary layer thickness has been formally justified as O(g'/?)
in the appendix of [26]. Thus based on the WKB method (cf. [19, 24, 58]), solutions
of (1.5) with € > 0 have the following expansions for j € N:

uf (z,t) = Y2 (ul (2, 8) + uP (2,1) + 0 (€,1))

(2.1) 0
v (x,t) = Y eI (01 (a,t) + 0P (2, 8) + 0" (1))

j=0

with boundary layer coordinates (or stretching transformations) defined as

A
Ve
where each term in (2.1) is assumed to be smooth, and the boundary layer profiles
(uB9 vB:3) and (u7,v"7) enjoy the basic hypothesis (cf. [24, Chapter 4], [19], [58])
(H) u?7 and v+ decay to zero exponentially as z — oo, while u®7
and v%7 decay to zero exponentially as £ — —oo for all j > 0.

To derive the equations of boundary layer profiles in (2.1), we split our analysis
into three steps. We first insert expansions (2.1) into the initial data in (1.5) and into
(1.6) to obtain the initial and boundary values of outer and inner layer profiles. Then
in the second and third steps, equations for both outer and inner layer solutions will be
derived by substituting (2.1) into the first and second equations of (1.5) successively.
Proceeding with these procedures by the asymptotic matching method (details are
given in the appendix), we derive that the leading-order outer layer solution pair
(ul0,v1:0)(z,t) satisfies the problem

(2.2) 2= , ze[0,1],

utI’O = (uI’OvI’O)x + uif, (z,t) € (0,1) x (0,00),
1,0 1,0
v, =Y,
(2.3) K i

(uI’O’ vI’O)(xv 0) = (uo, vo)(z),
uI’O(O,t) = uI’O(l,t) =1,
which is exactly the nondiffusive form of (1.5)—(1.6) with & = 0. Thus (u?,v°) solves
(2.3) by uniqueness. The leading-order inner layer solution v2:9(z,t) near the left end
point of (0, 1) satisfies
o/ =~ + 20, (2,1) € (0,00) x (0,00),
(2.4) vP0(2,0) =0,
UB’O(Ov t) =0 UI,O(Oa t)a
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and u?%(z,t) = 0, and the first-order inner layer solution u?-!(z,t) is determined by
vB0(2,t) through

(2.5) uPl(z,t) = ﬂ/ vBOy, t)dy, z€[0,00).

The leading-order inner layer solution v*%(£,¢) near the right end point of (0,1)
satisfies

U{O = _Mb,o + 1}2750’ (§7 t) € (_OO’O) x (O’ 00)7

(2:6) v"0(¢,0) =0,
v?0(0,t) = 7 — v 0(1, 1),

and u»?(&,t) = 0, and the corresponding first-order inner layer solution u”!(&,t) is
given by

@.7) wien=a [ Ty dy, € € (—o0,0).
£

To carry out our desired results, we need the estimates of the first-order outer layer
solution pair (u!"!,v?!)(x,t) which satisfies the following problem:

uft = (@), 4 (W0, bl (at) € (0,1) x (0,00),
11 11
UV = Uy,

(uh ") (2,0) = (0,0),

ul(0,t) = —ﬂ/ vB0(2, ) dz,
0

L] ) = —q b0 1) de.
W (1, 1) u/ POE, 1) de

Moreover the inner layer profile (u?-2 vB:1)(z,t) satisfies

vfg’l = —uvPl + vi’l — 2(1)]’0(0,75) + UB’O)Uf’O +/ D(y,t) dy,
z

(2.9) vB1(2,0) =0,
vPH0,8) = —v"1(0,1),
and
(2.10) uP?(z,t) = ﬂ/ vB1(y, 1) dy—/ / D(s,t) dsdy,
z z Yy

where ®(z,t) = (ul1(0,t) + uP1)vB0 + uL.0(0,4)vB0 + uB1(v10(0,¢) + vB0) +
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2ul0(0,¢)v59. Correspondingly the inner layer profile (u%2, v%1)(¢,t) satisfies

— 00
Uf’l = —a™! + 02’51 —2(v10(1,8) + vb’O)Ug’o + / (y,t)dy,
13

(2.11) WPL(E0) = 0

v?1(0,t) = —o1(1,1),

and

b,2 _ = - b1 _ R
(2.12) u”? (€, 1) u/g v (y,t) dy /g /y U(s,t)dsdy,

where W(£,1) = (ul1(Lt) + ubl)o” + wl0(1, )00 + w2 (v10(1,1) + v20) +
§u£’0(1,t)v2’0. One can derive the initial-boundary value problems for higher-order
layer profiles (ul7, v1:3), (uB7+1 vB:J) and (ub7+1 v%7) for j > 2. But (2.3)-(2.12)
have been sufficient for our purpose. The detailed derivations of the above equations
are postponed the appendix, since it is a little lengthy. The global solutions of (2.3)
have been achieved in [38] (see Lemma 2.1 below) and their regularities will be shown
in section 3, while the existence of global solutions of (2.4)—(2.12) with regularities
will be detailed in section 3.

2.2. Main results (stability of boundary layer profiles). In [38], the au-
thors proved the global well-posedness of classical solutions to system (1.5)—(1.6) with
e > 0. We cite the results below for later use.

LEMMA 2.1 (see [38]). Suppose that (ug,vg) €
the compatibility conditions (ug,vo)(0) = (uo,v0)(1)
the initial-boundary value problem (1.5)—(1.6) has a
(u®,v®) satisfying the following properties:

(i) If e > 0, then (uf —u,v® — ) € C(]0,00); H? x H?)N L*(0,00; H® x H?3) such
that

H? x H? with ug > 0 satisfy
= (u,v). Then for any e > 0,
unique global classical solution

I(u® = @) 72 + | (v° = B)(B)II72 +/0 (s (IIZ2 + ellvg(r)72) dr < C,

where C' is a positive constant independent of €.
(ii) If e = 0, then (u® —u,v%) € C([0,00); H? x H?) N L?(0,00; H® x H?).

In order to prove the stability of boundary layer solutions of (1.5)—(1.6), we need
some further compatibility conditions on boundaries and higher regularity on the
initial data (ug,vo) to gain necessary estimates for solutions of (2.3)—(2.11). Precisely,
we postulate that the initial data (ug,vo) € H? x H? satisfy

(u0,v0)|z=0,1 = (1, D),
(A) uOm|x:O,1 =0,
[(uovo)z + Uozs)|z=0,1 = 0.
We underline that the condition (A) can be fulfilled by many functions, for instance,

ug(x) = i+ az*(z — 1), vo(x) = ¥ + baz*(z — 1)? with @ > 0 and b € R.
Now we are in a position to state the main results of this paper as follows.

THEOREM 2.1. Assume that (ug,vo) € H? x H? with ug > 0 satisfy the compat-
ibility conditions (A). Denote by (uf,v®) the unique global solution of (1.5)—(1.6)
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Fic. 2.1. A numerical simulation of the boundary layer profile v¢(xz,t) of the system (1.5)—
(1.6) solved by the MATLAB PDE solver based on the finite difference scheme with time step size
At = 0.01 and spatial step size Ax = 0.001 where initial data uo(z) = 14 z*(x — 1)%, vo(zx) =
1+ 22 (x—1)2 and boundary data @ = v = 1. The profile consists of two parts: outer layer profile v°
and inner layer profiles vB:9 and v®° near the left and right end points, respectively. Outside the
boundary layer the profile v (z,t) matches well with the outer layer profile v°(z,t), whereas there is
a rapid transition inside the boundary layer.

with € > 0. Then as ¢ — 0, the following asymptotic expansions hold in space
L*>([0,1] x [0,T)) for any fired 0 < T < co:
uf (z,t) =ul(z,t) + O(eY?),
2.13 -1
(2:13) v (x,t) =00 (z,t) + UB’O(%J) + Ub’()(%,t) + 0(e'/?),

where (u®,v°) = ,v1°0) denotes the outer layer profile and the inner layer profile

(B0 WP0) is given by

(ul©

B2 1): N ~(Sa+50-9) [5(5-1(0, 5))—02(0, 5)] dy ds,
(2 14 // \/ T t s

Ve 1) // \/t—s

Remark 2.1. We remark that (2.13) displays an elaborate structure of v¢ in the
entire interval [0, 1] including outer (approximated by v°) and inner (approximated by
vB:0 %9) boundary layer profiles, which significantly develops the result in previous
work [26, Theorem 2.6], where only the outer layer profile for v° is obtained. The
convergence rate O(/?) in (2.13) is optimal, which improves the rate O (/) derived
in [26]. Furthermore the inner layer profile is explicitly connected to the outer layer
profile through (2.14).

A numerical simulation of the boundary layer solution component v¢(z,t) is plot-
ted in Figure 2.1, where the structure of v°(z,t) is graphically demonstrated.

o (S +0-9) [a(p—00(1, 5))—o0(1, 8)] dy ds.
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The counterpart of the original system (1.2) in [0, 1] corresponding to the initial-
boundary value problem of the transformed system (1.5)—(1.6) reads as follows:

up = [ug — u(Ine)sla,
Ct = ECgy — UC,
(2.15) (u, ¢)(x,0) = (uo, co) (), = € [0,1],
Ula=0,1 = T, %: 2=0,1 = —C if e >0,
U|z=0,1 = U if e=0.

Denote by (u?, %) (x,t) the solution of (2.15) with e = 0. Then c°(z,t) can be solved
from the second equation (¢ = 0) of (2.15) as follows:

(2.16) A(x,t) = co(w)e” Joud o) dr

With (2.16) and the results obtained for the transformed system (1.5)—(1.6), we have
the following assertions for the initial-boundary value problem (2.15).

THEOREM 2.2. Suppose that the initial data (ug,Incy) € H® x H* satisfy ug(x) >
0, co(z) > 0 and the compatibility conditions (A) with vo = —(Incy), and v = ¢.
Let (u®,c®) be the unique global solution of (2.15) with € > 0. Then for any fized
0 < T < oo, we have in space L>([0,1] x [0,T]) that

(2.17) uf(x,t) = ul(z,t) + O(e'/?), E(z,t) = P(x, t) + OEV?)

and

(218) ) = 1) — O, 1)[ (% ) +oh? (% )] +oE),

with the solution component c®(z,t) explicitly given via u®(z,t) in (2.16).

Remark 2.2. Compared with the previous result in [26, Proposition 2.8], Theorem
2.2 enhances the convergence rate by /4 and gives the leading-order expansion for
¢S in (2.18), thanks to the elaborated approximation (2.13) for solutions (u®,v°).

In view of model (1.2) and the transformation (1.3), we see that the quantity v
represents the velocity of chemotactic flux crossing the boundary (in tumor angiogen-
esis the blood vessel wall can be understood as a boundary). Therefore the results in
Theorem 2.2 assert that although both cell density and chemical concentration will
have no boundary layer as chemical diffusion € goes to zero, the chemotactic flux,
namely, the term u(lnc¢), = —uw, has a sharp transition near the boundary (i.e.,
the endothelial cells cross the blood vessel wall quickly). Hence our results indicate
that the diffusion of the chemical signal (i.e., VEGF) plays an essential role in the
transition of cell mass from boundaries to the field away from boundaries during the
initiation of tumor angiogenesis. Our results further indicate that the nondiffusive
model (2.15) with e = 0 is not a good approximation of the diffusive model (2.15) for
small € > 0 near the boundary under the boundary conditions imposed in (2.15).

The rest of the paper is organized as follows. In section 3, we shall derive some
regularity of global solutions to (2.3)-(2.12). In section 4, we reformulate our problem
properly and then prove Theorem 2.1 by the refined energy estimates based on the
regularity results derived in section 3. The proof of Theorem 2.2 will be given in
section 5. In Appendix A we detail the asymptotical analysis of obtaining (2.3)—
(2.12).
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3. Regularity of outer/inner layer profiles. In this section, we shall devote
ourselves to deriving some regularities for solutions of (2.3)—(2.12) for later use. We
depart with a basic regularity result.

Let functions fy(z,t), fa(z,t), f(x,t), and g(z,t) defined on [0, 1] x [0, 00) satisfy
the following regularity properties for any m € Ny and 0 < T < oo:

3ff1 € L2(0,T; H2m_1_2k), 8;9]02 c L2(07T; I_I2m—1—2lc)7
O f € L2(0,T; H>™22%) 9Fg e L2(0,T; H2m~1-2k),
where k = 0,1,...,m — 1. To solve the outer layer solution pairs (u!7,v!7)(x,t),j =

0,1, from problems (2.3) and (2.8), we first consider the following auxiliary initial-
boundary value problem:

hy = (flh)r+(f2w)x+hxm+fa ({E,t) € (071) X (O,T),
wy = hy + 9,

(h’w)($70) = (ho,’LUo)(])),

h(0,t) = h(Lt) =0.

(3.1)

To derive the desired regularity (3.2) for solutions (h,w) of (3.1) (see Proposition
3.1 below), some compatibility conditions on hg, wo, f1, fo, f, g are required. In
what follows, by “hg, wo, f1, f2, f, and g satisfy the compatibility conditions up to
order (m — 1) for the problem (3.1),” we mean that 0Fh|;—g, which is determined by
ho, wo, f1, f2, f, g and their time derivatives through the equations in (3.1), is equal
to zeros on boundaries for 0 < k <m — 1 (cf. [33, p. 319)]).

Then the solution of (3.1) has the following regularity properties.

PROPOSITION 3.1. Suppose that (hg,wo) € H?*™~ 1 x H*™=1 f fo, f, and g
satisfy the compatibility conditions up to order (m — 1) for the problem (3.1). Then
there exists a unique solution (h,w) to (3.1) for any 0 < T < co such that

Ofh e L2(0,T; H*™2%), k=0,1,...,m;

3.2
(3.2) we L0, T; H*™~ Y, oFw e L2(0,T; H*™T1728) k=1,...,m.

Proof. The proof of global existence and uniqueness of solutions to (3.1) is stan-
dard (see Lemma 2.1). The regularity given in (3.2) can be proved by mathematical
induction. For m = 1, the conclusion follows from the standard energy method used
in [38, Proof of Theorem 1.1] and we hence omit the details. The remaining procedure
of mathematical induction is routine (e.g., see details in [12, pp. 387-388]) and will
be skipped for brevity. 0

To solve inner layer profiles v59(z,¢) and v?1(z,t) from (2.4) and (2.9), we need
the following result.

PROPOSITION 3.2. Let m € Ny and 0 < T < co. Suppose p(z,t) satisfies for any
l € N that

() OFp e L2(0,T; H>™272%) k=0,1,...,m—1,
and the compatibility conditions up to order (m — 1) for the following problem:

pr = —Up +zz +p, (Zat) € (0,00) X (OaT)a
(3.3) ¢(2,0) =0,
»(0,t) = 0.
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Then there exists a unique solution ¢ to (3.3) such that for anyl € N,
() OFp e L2(0,T; H>™ %), k=0,1,...,m.
Proposition 3.2 follows directly from the standard energy method, and we hence omit

the proof. We proceed to introduce the following well-known result for later use.

PROPOSITION 3.3 (see [62, Lemma 1.2]). Let V, H, V' be three Hilbert spaces,
satisfying V. C H C V. with V' being the dual of V. If a function u belongs to
L?(0,T;V) and its time derivative us belongs to L?(0,T;V "), then

ue C([0,T]; H) and [Jullze(o,m;m) < Cllullzzo,rvy + uell p20,7v7)):

where the constant C' depends on T'.

Remark 3.1. Let m € N. Suppose that w € L?(0,T; H™2) and u; € L*(0,T; H™).
Then it follows from Proposition 3.3 that

u € C([():T};Hmﬂ) and ||U||L°°(0,T;Hm+1) < O(Hu||L2(O,T;Hm+2) + ||Ut||L2(o,T;Hm))-

Based on the above preliminaries, we can establish the regularities of solutions
to (2.3)—(2.12). First for the problem (2.3), the existence of global solution has been
available (see Lemma 2.1). We prove the following regularity results.

LEMMA 3.1. Let (ug,vo) € H3 x H3 satisfy the assumptions in Theorem 2.1.
Then the unique solution (ul?,v1:0) of (2.3) satisfies that
oFul® e L2(0,T; H*?*), k=0,1,2;
vl0 e L0, T; H?);  oFo!0 € L2(0,T; H2%), k=1,2.
Proof. We shall prove this lemma by Proposition 3.1 and Lemma 2.1. Differenti-

ating the first and second equations of (2.3) with respect to ¢, respectively, and setting
al0 = utI’O, 10 = vtI’O, one gets

f”tI,O = (flﬂLO)z + (f27~)170):c + ai”z?v

1,0 _ ~1.0
(3'4) vilo ~1IL:(C) 7 ~
(@, 0")(x,0) = (o, Do) (),

where fi :=v10, fo :=ul0, Gy := (upvo)s + Uozs, Vo := g, and the first and second
equations of (2.3) have been used to determine initial data 4y and ¥y, respectively.
We next verify that g, 99, f1, and fo fulfill the assumptions in Proposition 3.1 with
m = 1. First, by the assumptions in Theorem 2.1 and using Lemma 2.1 one finds that

(3.5) [Goll 71 + [[Tol[ 71 < Co; I fill 20,70y + I f2ll 20,101y < C-
Noting that the compatibility condition of order zero for (3.4) is satisfied under as-
sumption (A), thus using (3.5), we apply Proposition 3.1 with m = 1 to system (3.4)

and conclude that

(3.6) OFul® e L2(0,T; H*2%), k=1,2; o0 e L*0,T; HY),
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10._,1

~ 0 ~ 1,0 .
where uy” and 910 := v;"” have been used. It only remains to prove

(3.7) u™ e L2(0,T; HY), "0 e L>(0,T;H?), v °e L?(0,T;H%).

To this end, we apply the differential operator 92 to the second equation of (2.3) and
use the first equation of (2.3) to get

1,0 10 _ 10 1,01,
(38) Vgazt = u:m?zr = Uggt — (u Ov 0)$$$7

which, multiplied by 200 in L%, gives

Txrx

%Ilvifz(t)\\%z < 2z (0]l 2 os0s ()]l 2 + Collu® (@)l ms 0" (1) |7
< Co(1+ a0 (@)l s) vz (D172
+ Colllug (D12 + a0 @)l as 0" (O 372)-
Thus it follows from Gronwall’s inequality, Lemma 2.1, and (3.6) that
(3.9) Hvifac”QLaQ(QT;Lg) <C.
Furthermore, using (3.8), (3.6), (3.9), and Lemma 2.1, one has

(3.10)

1, s s
[l el r20.r;22) < g ®llzeo,mmr2) + Collu" Nl 20,709 070 oo (0,7 119) < C.

Finally, the second equation of (2.3) along with (3.10) and Lemma 2.1 yields
(3.11) ||Uf"OHL2(0,T;H3) < "l L2 0,m,m1y < C.

Collecting (3.9), (3.10), (3.11) and using Lemma 2.1 we obtain (3.7), which in con-
junction with (3.6) finishes the proof. 0

LEMMA 3.2. Let (ul?,v19) be the solution obtained in Lemma 3.1. Then
(3.12)

- (585 +20-9) [a(-010(0, )~ (0, 5)] dy ds

t 0 1
vB0(2,1) ::/0 /_DO \/ﬁe
is the unique solution of (2.4). Moreover, for any 0 < T < oo andl € N, it holds that
(3.13) () OFuB O L2(0,T; HE?*)  for k=0,1,2.
Consequently it follows from (2.5) that
() oFuBl € L2(0,T; HY2%)  for k=0,1,2.
Proof. We first prove (3.12) by setting w(z,t) := e®[vP0(2,t) — (v — v1:0(0,1))].

Then from (2.4) we derive the heat equation subject to the homogeneous Dirichlet
boundary condition,

wy — w., = —[e" (5 — vP0(0,1)]:, (z,1) € (0,00) x (0, 00)
w(z,0) =0,
w(0,t) =0,
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which can be solved explicitly by the reflection method with odd extensions (cf. [33])
as follows:

t 0
w(z,t) = 2/0 [ D(z — gt — $)[e™ (5 — v10(0, )], dyds — ™ (7 — v19(0, 1))

with the heat kernel I'(z,t) = \/ﬁe_%. Hence (3.12) follows by substituting the

above equality into the definition of w(z,t). We proceed to prove (3.13). Let 6(z) be
a smooth function defined on [0, 00) satisfying

(3.14) 0(0)=1, 6(z)=0 forz > 1.
Let b(t) :=v—v10(0,¢) and 950 := 059 —0(2)b(t). Then from (2.4) we deduce that
980 satisfies
B = aP0 B0 4,
(3.15) UB’O(z, 0) =0,
#2:9(0,t) = 0,

where p(z,t) := 0,,(2)b(t) — @b(2)b(t) — 6(2)b+(t), and the compatibility condition
o = vg(0) has been used to determine the initial value of 2. We shall apply
Proposition 3.2 to (3.15) to derive the desired regularity for v?:%. To this end, we
need to verify that p satisfies the assumptions in Proposition 3.2 with m = 2. First, it
is easy to check that g satisfies the compatibility conditions up to order one for problem
(3.15) under assumption (A). Then noticing that for any G(z,t) € LP(0,T; H') with
1 < p < 0, it follows from the Sobolev embedding inequality that

(3.16) 1G(0,8) || e 0,7y < IGllLr(o,m;0) < CollGllLr(o,1;m1)-
By (3.16) and Lemma 3.1, one finds that
(3.17) 10F0"°(0, )| 2(0,m) < C, k= 1,2; 07200, )| 20,7y < C.
Collecting (3.14) and (3.17), one deduces for k = 0,1 and [ € N that
() O = ()1 0... 0Fb — (=)' 0 0Fb — (=)0 098 1b € L2(0,T; HE-2),
which along with Proposition 3.2 entails for k = 0,1,2 and [ € N that
(z)LOFoBO e L2(0,T; HA2F),

Thus (3.13) follows from the definition of 579, (3.14), and (3.17). Finally by (3.13),
we use (2.5) and the Hélder inequality to get for K =0,1,2 and [ € N that

||< > L2(OTH4 2K)

(3.18) 1+2 9k, B,0
< C'Ou 1+ dde ||< > a ”Lz 0,T; A2k < C>

which completes the proof. 0

By a similar procedure as proving Lemma 3.2, we have the following results.
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LeEMMA 3.3. Let (ul9 v19) be the solution obtained in Lemma 3.1. Then the
unique solution v®0(£,t) of (2.6) is as follows:
(3.19)

PO(g,t) =

b 1 (eow? yq
————¢ Vi) a(t=)) a(o—ov"0(1,5)) =001, s)] dy ds.
/0 /0 Vr(t—s) [ ]
Furthermore, for any 0 <T < oo andl € N, the following holds true:
©'ofu"0, (&) ofutt € L?(0,T; HE?F) for k=0,1,2.

Based on Lemmas 3.2 and 3.3, we proceed to solve (2.8).

LEMMA 3.4. Let vB0 and v*0 be the solution obtained in Lemmas 3.2 and 3.3,
respectively. Then there exists a unique solution (ul'1 v11) to (2.8) on [0,T] for any
0<T < o0, such that

oyl € L2(0,T; H*?%), k=0,1,2;
vl e L0, T; H?);  oFolt e L2(0,T; H??%), k=1,2.
Proof. Let bi(t) = @[, vBC(z,t)dz, ba(t) = u [, v"O(& ) dE, b(w,t)

= xba(t) + (1 — 2)b1(t) and uIl = uI 1 + b(x,t). Then from (2.8), we deduce
that (a1, v:!) satisfy

iyt (ff“) + (for" ), + Al + f,

UIl +97

(@, )(%0):(070),
al (O,t):a“(l,t) =0,

(3.20)

where f1:= 010 for=ul0 fi= —(b0!0), + b, , g:= bi(t) — b2(t), and vB0(z,0) =
v?0(€,0) = 0 has been used in deriving the initial data for @/*'. We next verify that
f1, fo, f, and g fulfill the assumptions in Proposition 3.1 with m = 2. Indeed, it
follows from Lemma 3.1 that

(3.21) OFul 0 oFu™0 € L2(0,T; H32%), k=0,1.

Lemma 3.2 gives for £ =0, 1,2 that

622)  fhlbon <@ [ &7y 16 00 iy < O
and similarly Lemma 3.3 implies for k£ = 0,1, 2 that

(3.23) 10£b21Z 20,7y < C-

Thus from (3.22), (3.23), and the definition of g, we have

(3.24) okg e L*(0,T; H37?%), k=0,1.

To estimate f, we use (3.22)—(3.23), Lemma 3.1, and Proposition 3.3 and get for
k =0,1 that

k
107 (00" %)z || 220,722y < Z 107011l 20,7y + 107 b2l L2(0,1))
=0

x llof !

| Lo (0,153 -206-0) < C,
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which, in conjunction with the definition of f, (3.22), and (3.23) entails that
(3.25) off e L*(0,T; H*™?%), k=0,1.

Noting that for (3.20), compatibility conditions up to order one are fulfilled under
assumption (A), by (3.21), (3.24), and (3.25), we apply Proposition 3.1 with m = 2
to (3.20) and get

okull € L2(0,T; H*?%), k=0,1,2;

3.26
(3.26) oht e L0, Ty H?);  ofo™! € LP(0,T; HO72F), k=1,2.

The first estimate in (3.26) along with the definition of @!1, (3.22), and (3.23) gives
rise to

(3.27) okl e L2(0,T; H*2%), k=0,1,2.

Thus the combination of (3.26) and (3.27) completes the proof. d
We next turn to the regularity of solutions to (2.9) and (2.10).

LEMMA 3.5. Let (ult,vT'!) be the solution obtained in Lemma 3.4. Then there
exists a unique solution vB! to (2.9) on [0,T] for any 0 < T < oo such that for any
leN,

(3.28) () okuBY € L2(0,T; HA?%), k=0,1,2.
Consequently, it follows from (2.10) that
(3.29) () OFuB? € L2(0,T; HX2%), k=0,1.

Proof. Let 951 := vB:1 +0(2)v11(0,¢) with § defined in (3.14). Then from (2.9),
we deduce that 2! satisfies

Pt = Pl + 98 4 p,
(3.30) 51(2,0) =0,
#21(0,t) =0,

where p := afv’1(0, t)+0v; " (0,)—0.. 071 (0, £)—2(v10(0, )+ 0 B0+ [ ®(y,t) dy.
We shall apply Proposition 3.2 with m = 2 to (3.30) to prove this lemma by verifying
that p satisfies the assumptions in Proposition 3.2. Let us start by dividing p into
three parts:

(3.31)
p = [abv’1(0,t) + 0v] 1 (0,1) — 0071 (0,1)] — 2(v"0(0, 1) + vB0) B0 4 /OO O(y,t)dy
=10+ 1+ Is. ’
We next estimate Iy, I, and I5. First it follows from (3.16) and Lemma 3.4 that
[0Fv" 10, 8)[| 20,1y < CollOfv" M || 2o,y < €, k=0,1,2,
which, along with the definition of 6 in (3.14), implies that

(3.32) ()L OrL € L*(0,T; H> %), 1€N, k=0,1.
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Then applying (3.16) to 8%11170 and using Lemma 3.1, Lemma 3.2, and Remark 3.1,
we have for £k = 0,1 and ! € N that

(3.33)

H <Z>l afIQHLQ(O,T;HE_%)
k

_ . o
= Co Z(”ag”m||L°°(0,T;H3—2J') 110707 Lo (0, 75122-20) 119 ]”B’OHL%O,T;Hﬁ‘W“‘”)
7=0

<C.

For I3, the estimate is a little more complicated, since it involves several terms. The
Holder inequality entails for £ = 0,1 and [ € N that

(3.34)
oo o0 _ 2
162) O Il o 22wy < CO(H/O / ()~ dydz) [ ()2 0FO o oy

Noting that the integration term in parentheses of the above inequality is finite, we
only need to estimate the remaining term. By the definition of ® below (2.10), one
gets for [ € N that

(3.35)
() 0F @ = (&) O 1 (0,0)07 %) + (2)! O [wP 00 + (=) 07 [y (0, 807 )
+ () 0" 0(0, t)u 1] + (&) OF [u Mo 0) + 2 (=) 07 [y (0, )07 )
= M1+M2+M3+M4+M5+M6.

Applying (3.16) to ﬁguf’l, by Lemma 3.2, Lemma 3.4, and Remark 3.1, we get for
k =0,1 that

k

_ .
|\M1||L2(07T;Hgf2k) < C’oz Hagul’1||L°°(O,T;H3*21)H<Z>lat jUB’O||L2(07T;H§—2<k—j)) <cC.
7=0

Similar arguments further give the estimate for {M;}2<i<6:
Ml 2o pgz-2vy SO, 2<i <6, k=0,1.

Plugging the above estimates into (3.35), we conclude for any [ € N that

(3.36) () oFr® € L*(0,T; H> %), k=0,1,

which along with (3.34) gives rise to

(3.37) ()'OFI; € L2(0,T; H?2F), k=0,1.

Then it follows from (3.31), (3.32), (3.33), and (3.37) that

(3.38) () 0Fp e L*(0,T; H27?%), k=0,1, l€N.

Moreover for (3.30) it is easy to check that p fulfills the compatibility conditions up
to order one under assumption (A). Thus by (3.38), we apply Proposition 3.2 with
m = 2 to (3.30) and have

(3.39) ()t oFoBY € L2(0,T; H?F), k=0,1,2, leN.
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To convert the result in (3.39) back to v?!, we note that
(3.40) (o) 0Pt = () OF5B — () 0(2)0k"(0,1),

where the second term on the right-hand side is estimated by the definition of 6,
(3.16), and Lemma 3.4 for k =1,2 and [ € N as

12)! (=)0 0" (0, )| 2 o esrr—2y < CollOF 0" (0,6) £20,1)
< ColloFv" |20, 15m5-20) < C
and for k=0 and ! € N as
1(2)! (=)™ (0, 6) | 20,752y < Collv™ (0, )| 20,7y < Cllo" |l poe 0,301y < C-

Inserting the above two estimates with (3.39) into (3.40), we derive (3.28). It remains
to estimate u?-2. Indeed, (2.10) implies for [ € N that

o =t [T ot ndy— @) [ [ okes.ndsay
z z Yy

=1+ I5.

(3.41)

By (3.28) and a similar argument in deriving (3.18), one gets ||I4||2L2(0 Ty S C

for k = 0,1,2. Noting that I5 is a double integral of 9F®, we employ (3.36) and have
for £ =0, 1 that

T — gco(1+/ooo/°°<y>4dydz+/ooo{ /m[/w@wds}%dy}mz)
z z Y

X ||<Z>l+3afq>||i2(0’T;Hf—2k)
<C.

Substituting the above estimates for Iy and I5 into (3.41) one gets (3.29). The proof
is completed. ]

Noticing the similarity between (2.9) and (2.11), by analogous arguments as prov-
ing Lemma 3.5, one gets the following.

LEMMA 3.6. Let (ul'l,v1:1) be the solution obtained in Lemma 3.4. Then there
exists a unique solution v to (2.11) on [0,T] for any 0 < T < oo such that for any
leN,

©'ofo"! € L*(0,T; HE?F), £k =0,1,2,
and
©LoFub? € L2(0,T; Hg—%), k=0,1.
4. Stability of boundary layers (Proof of Theorem 2.1).

4.1. Reformulation of the problem. To prove Theorem 2.1, if we decompose
the solution (u®,v®) as

u (x,t) = ulO(x,t) + R (x,1),

e _ 1,0 Bof T b,0 z—1 e
v (z,t) = v (z,t) +v (ﬁ,t)—i-v (7\@ ,t)+R2(x,t),

(4.1)
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then it remains to derive the equations satisfied by R$(x,t) (i = 1,2) and to show

RS || Lo 0,11 xo,7) = O('?).

But if we substitute (4.1) into (1.5), we shall find that the equations of Rf have
source terms containing a singular quantity of order e~1/2, which brings difficulties to
deriving the uniform-in-e boundedness of ||Rf|| 1 ([0,1]x[0,7]) (i = 1,2). Therefore we
invoke the higher-order terms in the expansion of (u®,v¥) to overcome this difficulty
motivated by the work [46]. To this end, we employ (2.1)—(2.2) to write RS (z,t)(i =
1,2) as
Ri(x,t) = &' P[ul (@, 0) + u 1 (z,8) + a1 (€, 0] + e[u? (2, 1) + uP (€, 1)]
+ 05 (2, t) + Y205 (2, t),
Ry(,t) = ' Pl (2, 8) + 0P (2,8) + 0™ (&, 1))

+ b5 (z, t) + Y2VE (2, 1),
where the perturbation functions (U, V¢)(x, t) are to be determined, and the auxiliary
functions b;(x,t) (i = 1,2) are constructed as follows to homogenize the boundary
conditions of (U, Ve)(z,t):

V() = — (1 — 2)[e/2ub (—e V2 1) + euB2(0, 1) + eub?(—e=V/2,1)]
— x[al/QuB’l(E_l/Q, t)+ <€ub’2(07 t)+ EuB’Q(a_l/Q, t)],
(1) = — (1 - )P0 V/2, 1) 4 /20 (-2, 1)

_ x[UB’O(E_1/27t) + 61/2UB’1(5_1/2,t)].
We should remark that the term u!2 has been intentionally omitted in the expression
of R5(z,t) since we find it is unnecessary for our purpose. Indeed if we include the
term u’? in R§(x,t), then a higher regularity L?(0,7; H*) will be required on u!-?
in the proof of Lemma 4.1 when estimating f¢. This demands a higher regularity on
initial data (ug, vg) so that (ug, vo) € H® x H. Therefore, to reduce the regularity
of (ug,vp), we deliberately omit u!-? in R5(z,t), which is a trick we employed.

For simplicity of presentation, with z and £ given in (2.2) we define new functions
U (z,t) == ul Oz, t) + 2wl (2, ) + uBl (2, 1) + u>1 (€, 1)
+efu?(z,8) + w2 (1) + b (1),
VE(,t) =00 (2, 1) + 0P0(z, 1) + 0706, 8)
+ 2l (@, ) + 0B (2, 1) + 0L (€ )] + b5 (, t),

and then the perturbation functions (U, V¢)(x,t) can be written as

(4.2) Us = e V2 = U?), Ve =" V2(p5 — Ve,
Substituting (4.2) into (1.5)—(1.6) and using the initial-boundary conditions in
(2.3)—(2.11), one finds that (U®, V¢) satisfies
Up = 2(U V), + UV, + (VU)o + Us, +7 27,
Vi = —26%2VEVE = 26(VEVE), + US + Vi, + e /27,
(U5, V)(=,0) = (0,0),
(U=, VE)(0,1) = (U7, VF)(1,1) = (0,0),

(4.3)
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with

(4.4) fE=U:, +(UVE), —U:, ¢°=eVE, +US — V7 —2VeVE.

Now the key is to give the L> estimates for the solution (U¢,V*) of (4.3)—(4.4), which

will be gradually achieved in what follows by the method of energy estimates.

4.2. Energy estimates. We shall develop various delicate energy estimates in
this subsection to attain the L estimates of (U, V¢) to (4.3)—(4.4). Before proceed-
ing, we introduce some basic facts for later use. First for any Gi(z,t) € H* and
Go(€,t) € H{" with m € N, we have from the change of variables in (2.2) that

(45) Joren(Zzt)] ==+ F oGt niles
and
(46) Jorca(T2 1)L = <+ F o Gate s

For h(-,t) € H' with h|y—01 = 0, we have

T
W (w,0) =2 [ by dy < 2AC,0) ]2 o D)o
0

Thus
(4.7)
(- )|z < V2ARCOIL RO and [Jh(, 1)l < Collha (1)1,

thanks to the Poincaré inequality ||h(-,t)||r2 < Collhz(-, )] 12-
We start with estimating f¢ and g°.

LEMMA 4.1. Let 0 < T < 00, 0 < ¢ < 1, and f¢ be as defined in (4.4). Then
there is a constant C independent of € such that

(4.8) 1£5 20,7522y < C¥/2.

Proof. First applying the definitions of U¢ and V¢ into the expression of f¢ in
(4.4) and using the first equations in (2.3) and in (2.8), we end up with

e 251/2ufw’1 n E1/2u1;:,w1 Feul? e 1 e(ul i),
+ [0+ 51/2u1,1)(,UB,0 L0 4 g1/2B1 61/21}17,1)
xT
(4.9) + [(81/2UB,1 Lel/2ybl 4 B2y 8ub,2)
x (010 4 B0 4 00 L2yl 1/2)B)1 +€1/21}b’1)]x
— 2Bt 20 B eul? 4 e
where

(4.10)
Fe — [bi(vl,o + ’UB’O =+ vb,() + 81/21]1’1 + 61/2’1}3’1 + 81/2vb,1)]x

+ [bg(uLO + 61/2ul’1 —|—€1/2UB’1 _|_51/2ub,1 —|—6UB’2 +€ub,2)]x + (bib;)x _ bit
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By the transformation (2.2), one gets from (A.8), (A.9), (A.12), and (A.13) (see the
appendix) that
eV/2yBl =y 10(0, )y B0

cul? = — ul0(0,8)0B 0 — /24110, £)0 B0 — ul0(0, )0 B0
_ 81/2ul’0(07t)1}f’1 _ 51/2uf’1v1’0(0,t) _ E1/2(uB,1vB,O)

T
and

61/2 b,l Z—UI’O(l,t)UzO
Eub2 — (z — Dul (1, )00 — V2411 (1, )20 — uL0(1, )"0
xT ) xT ) xT €T )

_ 61/2’&[’0(1,15)1)3’1 _ 51/211,2’11}[’0(1,15) _ 61/2(ub’1’t}b’0)x.
Then feeding (4.9) on the above four expressions and rearranging the results, we have

£ =" (@, ) = u0(0,8) — 2ug®(0, 1) o)

+ [(u?0(z,t) — ul(1,t) — (x — DulO(1,1)v20]

+ [(ug (1) = ug?(0,8))0™0 4 (ug® (2, 8) — ug®(1,8))0"]

+e 2@, ) — u"00, )0 + (u (1) — w1 (0, 8))0
+ug (010 (z, 1) — 0"0(0,1))]

+e P[0, ) — 01, )0l + (uh (@ t) — ul (1, 1)l
+ u%l(vho(mv t) - UI}O(la t))}

+€1/2[u£,0(1}3,1 +Ub,1) —|-UI’1( B,0 —|—1}b’0) _"_( _|_u ) IO]

+ 51/2[%1?,101:,0 +uBly b 0 ub 1,B.0 ub,lvfp]

(4.11)

+€[(ul,1 4 uB,l + ub,l)(,UI,l + ,UB,l + ,Ub,l)]r
4 e[(uB? 4 ub?) (010 £ B0 b0 /210 | /2Bl 1/201))
—[eV2ult + 2l 4+ eulP? 4 eul?) + FE

10
= Z K; + F©.
=1

We proceed to estimate K; (1 <4 < 10). Recalling that 2 = £'/22, then by Taylor’s
formula, (4.5), and Lemmas 3.1-3.2, K is estimated as follows:

HK1||L2(O,T;L2) =€ ©

Hulvo(x,t) u"0(0,t) — xul°(0,t) ZQUB,O’

x2 L2(0,T5L2)
B,0

< ellubdlle o) 12°vE )l L 0,;L2)

< 0053/4||u1O||L2(0,T;H3)||Z vz ||L°<>(0,T;Lg)

< 0¥t
Similarly, by using (4.6) we have

t L,t) — (z — D)ulO(1,¢
K222 (0,7;2) <€H (2,8) — w01, 1) — (z = Dy (1, ).527}17,0 < Ce3/4,
(x—1)? L2(0,T;L2)
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Similar arguments further give
IKillL20miey < Ce¥4, i =3,4,5.
By the Sobolev embedding inequality, (4.5)—(4.6), and Lemmas 3.1-3.6 we obtain

K6l 22(0,1;22) < 0053/4||UI’0||Lo<>(0,T;H2)(HUB’1||L2(0,T;Lg) + ||Ub’1 \L?(O,T;Lg))
+ 0063/4”“1’1||L°c(o,T;H2)(||UB’OHL2(0,T;L§) + ||Ub’0||L2(0,T;L§))
+ Coe®/ v

< Ced/4,

\Loo(o,T;H2)(||U;B’1 ||L2(o,T;L§) + ||Ub’1||L2(o,T;L§))

Then using a similar argument as estimating Kg and recalling 0 < € < 1, one infers
that

||Ki||L2(0,T;L2) < 083/4, 8 < < 10.

We proceed to bound each term in K7. Indeed for 0 < x < 1/2, it follows that

—00 < €= ””kl < *ﬁ' Thus, by transformation (2.2) and the Sobolev embedding

inequality, one deduces for fixed ¢ € [0,T] and m € N that
é
/ (u:)[’?’lvb’o)2 dx
0
[ TG e
o L° 7 Ve
2

< [T (0] - ever (- ) e,

2veE

B

3%
< [T B 0 s VRPN OE O e
< Coelm 2 B (2, )2 ™0, D)l
< Ce'/2,

where Lemmas 3.2 and 3.3 have been used. Similarly, for % < x < 1 one has that

2%/E<z=%<c>oemdformeN+thaut

1

/ (uf,lvb,O)Q dx

1
2

2

0
<c? [ e 0 de e uP ) e

— m m 2
< 2O 1)]2, e VR (B (5 1) e oy

< Cel/?,

Combining the above two estimates, we end up with [|uZ1v"0|| 2o 7;12) < Ce'/4. By
similar arguments, one derives that

Bl b b1, B
v, v

7O||L2(0,T;L2) + ||’u’1‘7 b,l,UB

DO 20,12y < Cce'/*,

[|w Ol L2 0,7522) + ||u

Thus HK7||L2(O,T;L2) < 063/4.
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For the last term F¢, we first note for any integer m > 2 that

[ (=2, )| e 0,1y = €™ N (=2 P (=72, )| Lo (0,1
<Ml Ub’l(fvt)HLm(o,T;LgO)
< Coe™ 2 |[(&)™ u" (&, )| oo 0,721
< Ce™m/?

and that ||UB’2(0,t)||Loc(0’T) < COHUB’2||LOC(O’T;H21) < C. By similar arguments, we
can estimate other terms in b3, b5 and conclude that

(4.12) 165 1| Lo 0,750y + 15| 2= 0,7511) < C(€™/2 + ) < Cee.
Similar arguments further entail that
(4.13) 105 | 20,75ty + 105 | 20,7501y < C(€™/? +¢) < Ce.

Then substituting (4.12)—(4.13) into the definition of F© in (4.10) and using 0 < ¢ < 1
and (4.5)—(4.6), one has

154 220, 7;2)
< Collb5 | o 0,751y { 1"
+€1/2Hvl’1”L2(O,T;H1) +e

S R

L2(0,T;H1) + 5_1/4||UB’0||L2(0,T;H;) + 5_1/4||Ub’0||L2(0,T;H§1)

Y4 0B Lo,

L2(0.THY) +51/2||u171||L2(0,T;H1) +€1/4HUB71||L2(0,T;H;)

+ Colts | o< o,z { 1)

+el/4

3/4

|t lL20,mmp) +€ 10?2 L2 0,711

3/4), b2
+ 8 u ||L2(0,T;H§1)}

+ TY2|[65 || oo 0.7,y 105 || oo (0,011 + 1054 | 20,7502 < CE™/2.

Collecting the above estimates for K; (1 < < 10) and F©, from (4.11) one derives
(4.8) and finishes the proof. o

LEMMA 4.2. Let 0 < T < 00, 0 <e <1, and ¢° be as defined in (4.4). Then
lg°Ilz20,7;02) < Ced/,

Proof. Substituting the definition for U¢ and V¢ into ¢° in (4.4), then using the
second equations in (2.3), (2.8), (A.16), and (A.17) (see the appendix), we have

(4.14)
g° = [evld + 320l + [ (05! +08)) + e(uB? + ub?) — V2 (vt + 0]
— [2eVEVE] + [b, — b5,]

14

=11
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We next estimate K;(11 < i < 14). Lemmas 3.1 and 3.4 imply that || K11||z2(0,7:02) <
Ce. Using (2.2), (4.5)—(4.6), and Lemmas 3.5-3.6, we estimate K5 as follows:

b,1 ,
[ K12l 22(0,7;L2) < 4 (oB! r2(0,1;r2) + llvgg ||L2(0,T;L§) + [luf 2||L2(0,T;L§)

b,2 B,1 b,1
+ [lug HL?(O,T;L@) + 1oy 20,102y + llvg ||L2(0,T;Lg))

< O34,

To bound K3, we first estimate ||‘~/6||Loo([071]><[0,T]) and HV;HLOO(O,T;LZ). For any
G1(z,t) € LP(0,T; HY), Go(&,t) € LP(0,T; Hgl) with 1 < p < oo, it follows from the
Sobolev embedding inequality that

xr
G(—,t‘ < 1G22 )| r .12y < CollGilloormny < C,
(4.15) H ! Ve ) Lp(o,T;Lw)—H 1(z, 1)L (0,T;Le°) = ollG1lle (0,T;HY) =
’ x—1
[62(* 2 0] s gy = 1626 D r0m) < CollGaliao iy < €

Then by the definition of V¢, (4.15), Lemmas 3.1-3.6, and (4.13), we deduce that
(4.16)

IVE ) L (o.11x 0,71)
< 0"l qoyxion + 107 Nl o,zipee) + 0" Lo 0,520y + Collbill Lo 0,750
+e 2 (0" e po,yx 10,79y + 107 e 0,732.20) + 110" | £ow 0,7 2))
< C(l—l—al/2 +£m/2) <C,

where the assumption 0 < € < 1 has been used. Moreover (4.5), (4.6), and (4.13) lead
to

(4.17)
1V || o< (0,72

< okl o o,rie2) + €A (WE 0l Lo 0.7 12) + ||U2’OHL°C(0,T;L§)) +Ce™/?
b,1
+ 51/2||U£’1||Loc(o,T;L2) + 61/4(||Uf’1||L<>o(o,T;Lg) + va ||Loo(o,T~.,L§))
< Ce V4,
Thus the above two estimates indicate that
K13l p20,m:02) < CellVE|l Lo 0,11 0, IV |z 0,7522) < Ce™/™.

Finally, the estimate for K74 follows from (4.12), (4.13), and the assumption 0 < ¢ < 1
that

1 K14ll20,m502) < 10511 220,231y + 105 | L20,7:02) < Ce < Ce¥/4,

Then inserting the above estimates for K; (11 <4 < 14) into (4.14) yields the desired
estimate for g°¢. ]

The next lemma gives the estimate for U¢, V¢ in L*°(0,T; L?).
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LEMMA 4.3. Let 0 < T < 00 and 0 < ¢ < 1. Then there exists a constant C,
independent of €, such that
||UEH%<>°(0,T;L2) + ”VE”%OO(O,T;Lz) + HU§||%2(0,T;L2) + EHVfH%%o,T;Lz) < Ce'l?

Proof. Taking the L? inner product of the first equation of (4.3) with 2U¢, then
using integration by parts we have

(4.18)

d e e ! EY/ETTE ! eY/e erTE &
%HU (t)]|22 + 2| UE(1)]|25 :—251/2/0 USVEUS dx—Q/O (UVE + VEUS)UE dx

+2e71/2 /1 fFUdx
0

=My (t) + Ma(t) + Ms(t).

We next estimate M;(t) (i = 1,2,3). First, (4.7) gives
My (t) < Cos 2| U= ()| L2 U (357 1V ()| 2
< illUi(t)Hiz + Co? [VED LIS ()12

For the term ||[V°(t)||72, we use the definition of V¢, Lemma 2.1, and (4.16) to get
(4.19) Vel Loz < € 2 ([0l omiz2) + IVE Il L~ (oiz2)) < Ce™/2,

which, substituted into the above estimate for Mj (), gives rise to My (t) < 1[|UZ(¢)||%-
+ C||U#(t)||32- By a similar argument as deriving (4.16), one infers that

(4.20) 1T# |z o, 110,77y < €

which along with (4.16) leads to

1 € € (7€ € 33
My(t) < Z”U:c(t)H%Z + 8T Z2IVE@ 2 + 8IVEDI7211T°(6) 12

1
< NI + CUU M7= + 1VEOI72)-

For the last term M;5(t), we have by the Cauchy—Schwarz inequality that Ms(t) <
(U= (&)]|22 + et f2(¢)]|3 2. Substituting the above estimates of M;(t) (1 <4 < 3) into
(4.18), we arrive at

d 3 i
(@.21) U OI7: + SIVE @7 < CUV @7 + 1VEOI72) + @7

We turn to estimate V. Multiplying the second equation of (4.3) by 2V¢ in L? and
using the integration by parts we derive

d £ £ ! EY/ET/E ! EXTEYSE
%HV (B))1%2 + 2e||VE()||22 :—453/2/0 VEVEVE dx+45/0 VEVEVE dx

4.22 ! !
(422) +2/ U:ve dx—|—28_1/2/ g°Vedr
0 0

=My (t) + Ms(t) + Me(t) + M-(t).
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We proceed to bound M;(t) (4 < i < 7). Applying (4.7) to V¢ together with (4.19)
leads to

Ma(t) < Coe®?|[VED|32 Ve (8[54

A

]' € €
1eIVE @I + Cog VeI

A

1
1IVE @I + CellVE@I17e-
We employ the Cauchy—Schwarz inequality and (4.16) to deduce that
1 - 1
Ms () < 2ellVE @17 + 162 VE@IZ= V@I < 3elVE Bl + Cel[VE@)1Ze-

Finally, the estimates for Mg(t) and M7 (t) follow from the Cauchy—Schwarz inequality
that

1 _
Mg(t) < SOz +4IVE@Z2,  Me(t) < [VE@)IZ2 + 7 Ig" ()12

Plugging the above estimates for M;(t) (4 < i < 7) into (4.22) and using 0 < e < 1
give us

d 1 _
TNV @Iz +elVE@NZ < U @NZ + CIVE@)Ze + 7 g @172,
which added to (4.21) yields

d (> € (> £
SO 1Z= + IVEOIIZ) + U0 + <l VE @172
< CUUE®IZe + IVEOIZ2) + e IF @72 + e g OZ--

Applying Gronwall’s inequality to the above inequality along with Lemmas 4.1 and
4.2, one gets the desired estimates. The proof is completed. 0

LEMMA 4.4. Let 0 < T < o0 and 0 < € < 1. Then there is a constant C,
independent of €, such that

||U§H%°°(0,T;L2) + ||V;||%°°(O,T;L2) + ||U§x||%2(O,T;L2) + EHV;EH%?(O,T;L?) < Ce 12,

Proof. Taking the L? inner product of the second equation of (4.3) with —2¢V2,,
and using integration by parts, we obtain

(4.23)
i(EHVE(t)HQ )+ 22| VE()]|2, = 4572 IVEVEVE dr + 42 I(VEVE) Ve dx
dt T L2 T L2 — 0 x Yxx 0 zVagx

1 1
- 25/ U:VE, do — 251/2/ gV, dx
0 0
= Rl(t) + Rg(t) + R3(t) + R4(t).

We proceed to estimate R;(t) for 1 <i < 4. By (4.7) we deduce that

1
Ri(t) < Coe™ 2|V IV (llze < 5 IV (01172 + Coe® [V (]2
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Similarly, it follows from (4.7), (4.16), and (4.17) that
Ro(t) < Coe? |V (D)l 21V ()l e | Vi (8) ] 2

1 N .
1E IVE @I + Cos*(IVE@IZ + IV @I 1VE (72

IN

IN

1
15 IWVE @I + Ce* + E2)IVs ()12
For R3(t) and Ry(t), we employ the Cauchy—Schwarz inequality to have
1 1
Ry(t) < 227 IVE M7 + 4IUZ(0I7:  and Ra(t) < 2e%IVE @72 + 427 g7 (@172
Collecting the above estimates of R;(t) (1 < i < 4) and using (4.23), we end up with
d
S EIVEOI72) + IV (0l
< CEIVEDN7: + e+ ) ElVEONF2) + 4T @172 + M g* (0)]72),
which, along with Gronwall’s inequality, Lemmas 4.2—4.3, and 0 < € < 1, yields
(121 Ve e o.1iam + IV oo n) < 02

We next turn to estimate US. Taking the L? inner product of the first equation of
(4.3) against —2U¢,, and using integration by parts we get

(4.25)
d 1 I
VSO + 2201 = =267 [ UV)U do =2 [ 079U, do
0 0
T 1
— 2/ (VEU®)UE, dx — 26—1/2/ fEUE, dx
0 0
= R5(t) + Rﬁ(t) + R7(t) + Rg(t).
By (4.7) and (4.24), we estimate R5(t) as
1 1
Rs(t) < 71Uzl + CoellVE (ON7= U7 01172 < ZIUZ@)17= + Ce 2| U5 ()|
Similarly, we estimate Rg(t) from (4.7), (4.16), and (4.17) as
1 € (7€ (7€ €
R(t) < 21Uz (D72 + CollVE@IIZ: + Vs @I 1UF (D)]72

1 € - g
< NUZ@IZ: + C1 +e NUE )12

To bound Ry (t), we use the definition of U and a similar argument as deriving (4.17)
to get
Hﬁian(o,T;m) <C(l+ g2yl 3/4 g) < C,

where 0 < € < 1 has been used. The above estimate in conjunction with (4.20) and
(4.24) gives

Rr(t)

IN

1 € 33 33 €
ZIIUm(t)II%z +Co(lU= )72 + 1Tz N2 Vi ()72

1 -
UL @17 +C7172,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/16/22 to 158.132.161.185 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3084 Q. HOU, C.-J. LIU, Y.-G. WANG, AND Z. WANG

Last, the Cauchy-Schwarz inequality yields Rs(t) < [|UZ, (1)]|2. + 47| fe(2)[|2-.
Feeding (4.25) on the above estimates of R;(t) (5 <1 < 8) leads to

d
%”Ui(t)”%? HUZ @17 SCE2+14+2)|US (0172 + Ce ™2 +4e 71 f2 (1) 12,
which, upon integration over (0,¢) with ¢ < T, gives rise to
HUIE||%°°(O,T;L2) + ||U£m||%2((),T;L2) < e V2,
where Lemma 4.1, Lemma 4.3, and 0 < € < 1 have been used. The above estimate

along with (4.24) completes the proof. d

4.3. Proof of Theorem 2.1. To prove Theorem 2.1, it suffices to estimate
|‘R§||Loo([071]><[0,T]) and ||R§||Lm([0,1]x[07’1"]). For this, we first estimate U® and V¢ in
L*> (]0,1] x [0,T]) by (4.7), Lemmas 4.3, and 4.4 and get

1/2 1/2
U= |z o.11x0.11) < CollUZ N2 0 sy IUZ N2 o 2y < €

(4.26) e el/2 e)1/2
HV HLW([O,l]x[O,T}) < CO”V ||Loo(o,T;L2)||Vz ||L°°(0,T;L2) <C.

Then the estimate for RS follows from (4.15), Lemmas 3.2-3.6, (4.12), and (4.26) that

| RS | o (j0,1] x [0,77)
< Coe 2w Hlzoo o,75m0) + 4l L om0y + 6" | o 07211
+ Coe (||l 0,712y + 1"l e 0,m:2)) + CollbF | Lo (0,750
+ 2| U oo (10,11 ¢ 10,177)
< e,

where 0 < & < 1 has been used. Similarly, by (4.15), Lemmas 3.4-3.6, (4.13), (4.26),
and 0 < ¢ < 1, we have

12 (

IR5|I Loe 0,11 x0,77) < Coe™?([[0" | oo 0,501y + 07 | oo (0,7 m02) + ||7fb’1||Loo(o,T;Hg))

+ Col[b3 || Lo 0,711y + 51/2HVEHLOO([OJ]X[O,T])
< Cel/2,

The above two estimates along with (4.1) imply (2.13) and complete the proof of
Theorem 2.1. d

5. Proof of Theorem 2.2. We are now in a position to prove Theorem 2.2 by
converting the result of Theorem 2.1 to the pretransformed chemotaxis model (2.15).

Proof of Theorem 2.2. Let (uf,c®) and (u°, %) be solutions of (2.15) with € > 0
and ¢ = 0, respectively. The convergence rate in (2.17) between v and u® is a direct
consequence of Theorem 2.1. We are left to prove the convergence for ¢ in (2.17) and
for ¢£ in (2.18). Indeed from the second equation of (2.15) one deduces that

{(lnca)t =e(v®)? —evf —uf,

(Inc%), = —u’,
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v® = —(In¢),. We consider the difference of the two equations:
(Inc® —Inc%); = e(v®)? — evs — (u® — u?),
which, upon integration with respect to ¢, gives rise to

c(x,t)  (z,0

It follows from the initial condition ¢*(z,0) = c°(x,0) = c¢o(z) that

exp { /Ot[—(uf _ ) + () — evf] dT} - 1‘

(5.1) — |, 1) - ‘exp{G (z,1) + G5(x, t) + G5 (a, t)} 1’

|C€($C,t) - CO(:L‘,L‘)| = |CO(CL',t)| :

with G5( — fo 0 dr, G5(x,t) == sfo )2 dr and G§(z,t) := —¢ fo vE dr.
We next estlmate Gi(x, ) Gz(x t), and GB(;U t). Flrst Theorem 2. 1 gives

(5.2) |G (@, )] <T||u® = u®|| oo 0,11x(0.17) < Ce'2.
Using Theorem 2.1, (4.15), Lemmas 3.1-3.3, and 0 < € < 1, we estimate G§(x,t) as

(5.3)
1G5, O Te(I0" 2 o 70000) 105w 0,112, + 100012 e 75002) + CE/2) < Ce

For any integer m > 2, similar arguments as deriving (4.13) entail that [|b5, || 120, 7;1)
< Ce™/? < (Cée, which along with the definition of V= in (4.2), (2.2), the Sobolev
embedding inequality, and Lemmas 3.1-3.6 and Lemma 4.4, leads to

(5.4)

1G5 (@, )] < T ?e(lof |20, + &2 102 2 0mineey +71°

b,0
[og" M L2(0,7;L2))
=+ T1/2€(51/2”U;{c’1||L2(07T;L°°) + va’l”m(o,T;Lgc) + ||U2’1\|L2(0,T;Lg°))
+ TV 2e(|1bg, L2 0,z ) + €2 IVE L2 0,1501))
< ¥4,
Collecting (5.2)-(5.4) and noticing that 0 < & < 1, we end up with
G5 (2,t) + G5 (2, 1) + G5(,1)| < Ce'/?

for some positive constant C' independent of £ (but dependent on T'). Thus it follows
from the Taylor expansion and 0 < € < 1 that

c . - =1
(5.5) [eFilmNrGamDTE@ 1) < 3" TG, t) + Ga(w, ) + G5 (z,1)|F < Cel/2.
k=1

We proceed by employing (2.16) and find that

(5.6) 0 < O(a,t) = co(x)e™ Jo @D < ¢ (2) < Cy,
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subject to the fact u®(x,t) > 0 for (z,t) € [0,1] x [0,T]. The combination of (5.1),
(5.5), and (5.6) yields (2.17).

To prove (2.18), we use the transformation v¢ = —Z—%, Theorem 2.1, and (2.17)
and get
& — 2 =— v — 000

= —[(v° = 0%)e" +0%(c" = )]
= [(vB’O + %0 4 0(51/2))(00 + 0(81/2)) +° 0(51/2)]
= — PP 420 + O(e1/?),

which implies (2.18) and completes the proof of Theorem 2.2. d

Appendix A. In this section, we shall show the derivation of (2.3)—(2.12) by
the method of matched asymptotic expansions. The same approach has been used
in the appendix of [26] to determine the thickness of boundary layers, where for the
boundary layer profiles, only the equations on the leading-order left boundary layer
profile (vB9 uP1) have been obtained. Here we carry out further procedures to
deduce (2.6)—(2.12) for (v*°,u®!) and the higher-order profiles. For brevity, we shall
just outline the procedures that have not been demonstrated in [26].

Step 1. Initial-boundary conditions. Upon the substitution of (2.1) into the initial
and boundary conditions in (1.5) and following the arguments in [26, Appendix, Step
2], one gets the initial conditions

u'0(2,0) = up(z), uP0(z,0) =u>0(&,0) =0,

Al

(&) v"0(z,0) = vo(z), ©vP0(2,0) =v"0(£,0) =0,
and for j > 1

(A.2) ul (2,0) = uP7(2,0) = uP(,0) =0,

vl (2,0) = vB(2,0) = 0PI (€,0) = 0.

The boundary conditions are given by
(A.3)
and with 7 > 1

(A4)

Step 2. Equations for v, uP7, and ubJ. For profiles of ul7, uB7 we first

employ the argument of [26, Appendix, Step 3] to derive

J
(A.5) uf? = (@R = uld for j >0
k=0
and
(A.6) > PG (z,t) =0
j=—2
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with
G,Q = — UZBZ’O7
G ,=— uI’O(O,t)vf’O — UI’O(O,t)uZB’O — (uB’OvB’O)Z — usz’l,

Go =ul® —uP %1000, 1) — (u0(0,8) + uP )t — (ul1(0,8) + uP )P0
- ui,O(O’ t)UB’O

—uZ(@"(0,8) + 071 —u (010(0,8) + 07 0) —ul? — 2ug (0, 1)

where éj =0 for j > —2. In particular G_5 = 0, G_; = 0, and Gy = 0 along with
integration over (z,00) entail that

(A.7) uB(z,t) =0 for (z,t) €[0,00) x [0,T],
(A.8) ubt = —u"0(0,t)vP0 = —awB0,
and
B,2 1,0 B,1 11 B,1y, B,0
u =—u(0,t)v, " — (u(0,8) +u”7 vy
o) (0,5 = @ (0,6 +uP)

= ug? (0,070 —u (010(0,8) + ) — 2up®(0, v,

Then integrating (A.9) with respect to z twice, one finds that

(A.10) ub? ﬂ/ vB’l(y,t)dy—/ / D(s,t) dsdy
z z Yy

with ®(z,t) =
+ 2ul0(0, )0 B0,

For the right boundary layer profiles u®7, we modify the approach (detailed in [26,
Appendix, Step 3]) in deriving (A.6) by neglecting the left boundary layer profiles
uBJ vBJ in (2.1) and substituting the remaining terms into the first equation of
(1.5), then subtracting (A.5) and applying the Taylor expansion (at x = 1) to the
remaining u/+, v17 in the resulting equation, to derive an expression similar to (A.6),

Z Ej/2ﬁj (55 t) =0,

j>—2

(ul1(0,) + uB)oB0 + 4190, t)wB0 + uB1(w10(0,t) + vB0)

where Fj is defined as G, in (A.6) by replacing (uf* vB*) with (ubk, vbk),
(ulk, vTF)(0,2) with (u!*,01*)(1,¢), and z with £, for k € N. Hence, we deduce
from F o =0, F_1 =0, and Fy = 0 that

(A.11) uP0(&,t) =0 for (£,t) € (—00,0] x [0,T7,
(A.12) u?l = —av™?,
and

ub? = — uI’O(l,t)vé)’l — (ul’l(l,t) + ub’l)vé”o

133
(A.13)
—ul0(1, 070 — u (0101, 1) +070) — EulO(1, )0

x
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Thus
(A.14) ub? = 11/ Py, t) dy —/ / U(s,t) dsdy
3 3 y

with (&, ) := (ul (1, )4ub o O +ul O (1, ) o Ougt (010 (1, £)+0"0) +ul O (1, £)u”.
Step 3. Equations for v, vBJ  and v®7. Applying the above arguments in Step
2 to the second equation of (1.5), we have for the outer layer profiles v/ that

1,0 I0 _
vy —uy =0,

11 Il _
vy —uy =0,
Jj—2
Iy o . o )
vt’]+2g vhkli=2=k i 9 li=2 — 0 for j > 2
k=0

(A.15)

and for the left boundary layer profiles v2 that

B0 _

—uy " =0,
B,0 B,1
Ut — U,

vf;’l +2(v10(0,1) + UB’O)UE’O - UZB’2 — vfz’l =0,

B0 _
- )

— Uz

(A.16)

Moreover, the right boundary layer profiles v?7 satisfy that

b0
—ug = 0

b,0 b1 b0 _
v —ug —vg =0,

(A-17) b,1 1,0 b,0y,,b,0 b,2 b,1
v 2000 (L) + 07 vt —ugT — v =0,

Finally, we collect the results obtained in Steps 1 to 3 to derive the initial boundary
value problems (2.3)—(2.12) given in section 2. First, from (A.5) with j = 0, (A.15),
(A.1), (A.3), (A7), and (A.11), we get (2.3). Combining (A.8), (A.16), (A.1), and
(A.3), one gets (2.4)—(2.5). Similarly (A.12), (A.17), (A.1), and (A.3) lead to (2.6)—
(2.7). Moreover, (A.5) with j = 1, (A.15), (A.2), and (A.4) give rise to (2.8), and
(2.9)—(2.10) come from (A.10), (A.16), (A.2), and (A.4). Finally (2.11)-(2.12) follow
from (A.14), (A.17), (A.2), and (A.4).
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