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NONLINEAR STABILITY OF STRONG TRAVELING WAVES FOR THE
SINGULAR KELLER-SEGEL SYSTEM WITH LARGE PERTURBATIONS

HONGYUN PENG AND ZHI-AN WANG

ABSTRACT. This paper is concerned with the nonlinear stability of traveling wave solutions for
a conserved system of parabolic equations derived from a singular chemotaxis model describing
the initiation of tumor angiogenesis. When the initial datum is a continuous small perturbation
with zero integral from the spatially shifted traveling wave, the asymptotic stability of the
large-amplitude (strong) traveling waves has been established in a series of works [31, 36, 37]
by the second author with his collaborators. In this paper, we shall show that similar stability
results indeed hold true for large and discontinuous initial data (i.e. the initial perturbation
from the traveling wave could be discontinuous and has large oscillations) such as Riemann
data with large jumps. To the best of our knowledge, this paper provides a first result on
the asymptotic stability of large-amplitude traveling waves with large initial perturbation for a
system of conservation laws, although similar results have been available for the scalar equations
(cf. [10, 42]). We also extend existing results to the initial data with lower regularity.

1. INTRODUCTION

It is well known that chemotaxis, the movement of organism towards higher concentration of
chemical substance, can produce rich wave patterns in different circumstances, such as traveling
band of bacterial toward the oxygen [2], the outward propagation of concentric ring waves by
E. coli [4], the spiral wave patterns during the aggregation of Dictyostelium discoideum [11]
and the migration of Myzococcus zanthus in the early stage of starvation-induced fruiting body
development [55]. The mathematical study of chemotactic traveling waves was started by Keller
and Segel in their seminal paper [24] wherein the following model

uy = [Duy — xu(ln¢)zly,
{ Ct = ECpy — uUC™ (1.1)
was proposed to describe the propagation of traveling bands of chemotactic bacteria observed
in the celebrated experiment of Adler [2], where u(z,t) denotes the bacterial density and c(z,t)
the oxygen concentration. D > 0 and € > 0 are bacterial and chemical diffusion coefficients,
respectively, x > 0 is the chemotactic coeflicient and m > 0 is the oxygen consumption rate.

When 0 < m < 1, Keller and Segel [24] managed to use the model (1.1) with ¢ = 0 to interpret
the traveling bands observed in the experiment of [2], followed with a serious of works for the
case € > 0 (cf. [23, 39, 41, 44, 47]). When m > 1, the model (1.1) does not admit traveling
wave solutions (e.g., see [47, 53]). In the borderline case m = 1, the model (1.1) with € > 0 was
first used by Rosen [45, 46] to describe the chemotactic movement of motile aerobic bacterial
toward oxygen, and later was employed to describe the directed movement of endothelial cells
toward the signaling molecule vascular endothelial growth factor (VEGF) during the initiation
of angiogenesis (cf. [6, 9, 26, 27]).

While the existence of traveling wave solutions of the Keller-Segel model (1.1) with € > 0 and
m > 0 has been well established (see a review paper [53]), the stability of traveling wave solutions
still remains as a very challenging question due to the singularity caused by the logarithmic
sensitivity In ¢ whose mathematical derivation and biological relevance have been later presented
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in [22, 43]. For the case 0 < m < 1, expect some instability result [41] and classification of
essential spectrum (cf. [7, 8]) based on spectral analysis, no stability results on traveling wave
solutions are available so far. However, in the case m = 1, the stability of traveling wave
solutions to (1.1) with small € > 0 (or € = 0) has been gradually obtained (cf. [28, 31, 33-37])
by the (weighted) energy estimates. The success of these results heavily reply on the following
Cole-Hope type transformation (cf. [25, 36])

Cy

v=—(lnc), = 0

which converts (1.1) with m = 1 into a parabolic system of conservation laws without singularity
Ut — X(Zv)x = Dugy, (12)
v+ (ev° — u)y = €Uy

The transformation (1.2) significantly clears the obstruction caused by the logarithmic singu-
larity in the original Keller-Segel system (1.1). Consequently a great deal of interesting results
have been carried out for the transformed system (1.2) from various perspectives. For the global
dynamics of classical solutions and nonlinear stability of traveling wave solutions of (1.2), we
refer readers to [3, 9, 12, 21, 28-30, 32-35, 57] for ¢ = 0, and [5, 30, 31, 36, 37, 40, 49] for
e > 0. The diffusion limit and boundary layer problem of (1.2) as ¢ — 0 were investigated in
[19, 20, 30, 49, 54]. In addition, the well-posedness of system (1.1) has been studied recently
in [56] by a different transformation v = Inc in a bounded domain with Neumann boundary
conditions.

The main purpose of this paper will be to establish the stability of large-amplitude traveling
waves of (1.2) with large and discontinuous initial data in R:

(u,v)(z,0) = (ug,v0)(x) = (ux,vs), as x — oo (1.3)

where uy > 0 since u represents the density of biological species. Our work is motivated
in the following ways. In one dimensional whole space R, the nonlinear asymptotic stability
of large-amplitude traveling wave solutions to (1.2) has been established in [31, 36, 37] when
the initial datum (ug,v9) € H'(R) is a small perturbation around the background traveling
waves. However the numerical simulations in [31, 37] have illustrated that traveling waves
are still asymptotically stable under large initial perturbations, but rigorous justification still
remains open. Though the nonlinear stability of travelling wave solutions of the scalar (viscous)
conservation laws under large initial perturbations has been established (cf. [10, 42]), no results
have been available for a system of conservation laws as far as we know. In this paper, we shall
fully exploit the peculiar structure of the system (1.2) and establish the nonlinear stability of
traveling waves of (1.2) with initial data (ug,v9) € L?(R) which allows large oscillations and
discontinuity such as Riemann initial data with arbitrarily large jumps. Hence our present work
will not only provide a first result for the asymptotic stability of large-amplitude traveling waves
with large initial perturbation for a system of conservation laws, but also extend previous results
with lower regularity on initial data. The problem of global dynamics with discontinuous data
is an important topic of PDEs arising from fluid mechanics and gas dynamics. Hoff with his
collaborators [13-17] has developed a series of important results in this topic (see [18, 58] for
further development). Some ideas in these works will be employed to establish our results.

We remark that this paper will be focused on the transformed chemotaxis system (1.2) only.
The transfer of the results from (1.2) to the original Keller-Segel system (1.1) with m = 1 has
been standard (cf. [31, 37] for details) and hence will not be detailed in this paper for brevity.

The rest of paper is organized as follows. In section 2, the existence and properties of traveling
wave solutions of (1.2) in the whole space R will be studied first. Then we state our main results.
In section 3, we show the nonlinear stability of traveling wave solutions of (1.2)-(1.3) and prove
our main results.
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2. STATEMENT OF MAIN RESULTS

In this section, we shall state our main results on the asymptotic stability of traveling wave
solutions of the Cauchy problem (1.2)-(1.3). We depart with the existence of traveling wave
solutions of (1.2), which is a non-constant special solution (U, V) € C*°(R) in the form of

(u,v)(x,t) = (U, V)(2), 2z =x — st,

which, upon a substitution onto (1.2), satisfies

—sU" — x(UV) = DU", 2.1)
—sV' + (V2 -U) =&V, .

where ' = dilz and s is called the wave speed. The traveling wave profile (U, V') satisfies the

following asymptotic conditions at far field from (1.3)
U(xoo) = uy, V(E£oo) =vy.

Integrating (2.1) in moving coordinate z over R with the above asymptotic conditions yields

DU = —sU — xUV + o1, (2.2)
eVl=—sV +eV2—U + g9, '
where
01 = SU_ + XU_v_ = Suy + XU4 V4,
2 2 (23)
02 =sv_ —e(v_)” +u_ = svy —e(vy)® + uy.

The wave speed s is uniquely determined by the Rankine-Hugoniot condition (cf. [51])
—s(us —us) = x(usvy —u_v_) =0,
—s(vy —v_) + [e(vy)? —uy —e(v_)? +u_]=0.

The traveling wave solution (U, V') exists for any asymptotic states v4 € R and us > 0 (cf. [36]).
However it has been shown in [37] that v; = u;y = 0 was the only biologically meaningful case
for which the results of transformed system (1.2) can be converted to the original chemotaxis
system (1.1). In this paper, we shall consider this meaningful case only which, along with (2.3),

gives rise to 01 = g2 = 0 and

_=0

shxv-=0 (2.4)
u_ = (x +e)vz.

Then the existence of traveling wave solutions of (1.2) is given below (cf. [31]).

Proposition 2.1. Let € > 0 and uy = vy = 0. Then the system (2.1) admits a unique (up to
a translation) monotone traveling wave solutio (U, V')(x — st) satisfying

U <0, V>0,
and
Vi<,
where the wave speed s = —xv— and C > 0 is a constant independent of €.

Our main purpose is to exploit the nonlinear asymptotic stability of traveling wave solutions to
the Cauchy problem (1.2)-(1.3) with discontinuous initial data having large oscillations. Roughly
speaking, the stability means that the solution of (1.2)-(1.3) approaches the traveling wave
solution (U, V')(z — st), properly translated by an amount x, i.e.,

sup |(u,v)(z,t) — (U, V)(x + zo — st)| = 0, as t = 400,
Tz€R
where z satisfies an identity derived from the “conservation of mass” principle (cf. [51])

) IO o
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with r1(u_,v_) denoting the first right eigenvector of the Jacobian matrix of (1.2) in the absence
of viscous terms evaluated at (u—_,v_). The coefficient g yields the diffusion wave in general.
Both § and z( are uniquely determined by the initial data (ug,vg). For the stability of small-
amplitude shock waves of conservation laws with diffusion wave (i.e. 5 # 0), we refer to [38, 52]
for details. In the present paper, we will not consider the diffusion wave by assuming 8 = 0,
but consider the stability of large-amplitude waves with large discontinuous data. Then by the
conservation property of (1.2), we derive that

[y e Ve [ T

(e (R e e
:/_ ( Eg gg;)dﬂe—;po( 721:1;: >

This, along with with 8 = 0, implies the zero integral of the initial perturbation

+oo
up(x) — U(x + x0) 0
= . 2.
/_OO ( vo(z) — V(x + o) dx 0 (2.6)
Then we employ the technique of taking anti-derivative to decompose the solution of (1.2)-(1.3)
as
(4, 0)(28) = (U, V) (@ + 20 — 58) + (6, ) (,). (2.7
That is

T

(¢(x,1), ¥(z,t)) = / (u(y,t) = Uy +xo — st),v(y,t) = V(y + zo — st))dy

—00
for (z,t) € R x Ry. The asymptotic states of the perturbation function (¢,1)) are given from
(2.5) as

d(F00,t) = 1p(Foo,t) =0, for all ¢ > 0.
The initial perturbation (¢g,vo)(z) = (¢(z,0),1(x,0)) is thus given by

T

(¢, ¥o) () = / (uo(y) = Uy + o), vo(y) — V(y + x0))dy, (2.8)

—0o0
with (¢g, 1) (£00) = 0 due to (2.6).

In the proof of our main results, we find that in the energy estimates (see the proof of Lemma
3.3) there is a singularity caused by uy = 0 (i.e. vacuum). To resolve this singularity, we invoke
the ideas of works [21, 31] to introduce an unbounded weight function and apply the weighted
energy estimates, where the weight function w(z) is defined by

w(z) =14 ¢, with \= % >0, zeR. (2.9)
It has been shown in [31] that there exist two constants Cy > C7 > 0 such that

Ciw(z) < < Cow(z) for all z € R. (2.10)

b
U(z)

To state our main result, we introduce some notations for the convenience of statement.

Notations. In what follows, C' denotes a generic positive constant which may vary in the
context. HF(R) denotes the usual k-th order Sobolev space on R with norm £l vy =
Z?:o Jz |8 f \?dx)l/ 2 and HE(R) denotes the weighted Sobolev space of measurable functions
[ so that y/wdy f € L*(R) for 0 < j < k with norm || f|| zrx gy := J _o Jo w(@)|d% f)?dx)' /2. For
simplicity, we denote |- || = |- |2z | lls == || 1ty and A
we use || - ||, to denote || - |72 .

= ||H5J (r)- Furthermore
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Then our main results are stated in the following theorem.

Theorem 2.2 (Stability of traveling waves). Let uy = vy =0 and (U, V)(xz — st) be a traveling
wave solution of (2.1) obtained in Proposition 2.1. Assume that there exists a constant xo such
that the initial perturbation from the spatially shifted traveling waves with shift xq is of zero
mass, namely ¢o(c0) = 1o(0c0) = 0, where (Po,o)(x) is defined in (2.8). If € > 0 is small, then

there exists a constant n > 0, such that if
g0l + lloll* + lluo = UIZ + [lvo = V[IZ, <, (2.11)
the Cauchy problem (1.2)-(1.3) has a global solution (u,v)(x,t) satisfying
u(z,t) — Uz — st) €L>([0,00); L2) N L*([0, 00); HY),
v(z,t) — V(z — st) €L>([0,00); L2) N L2(]0,00); H.)
and the following asymptotic stability:

sup |(u, v)(z,t) — (U, V)(x + z9 — st)| = 0 as t — 0.

zeR
Remark 2.1 (Relaxation on initial data). The above nonlinear stability results hold true re-
gardless of the size of amplitude of wave profiles and initial perturbations. In particular, either
of the initial oscillations ||ug — Up||ze and ||[vg — V||~ can be arbitrarily large in Theorem
2.2, which is a substantial improvement of previous works (cf. [21, 31, 32, 34-36]). From the
initial condition (2.11), we see that the initial datum (ug,vo) is allowed to be discontinuous.
In particular, it could be piecewise constant with arbitrarily large jump discontinuities such as
Riemann data. The property of large oscillation and discontinuity on the initial data brings
various difficulties to the analysis and make the present work distinct from the existing ones.

Remark 2.2 (New ingredient in the proof). The proofs of Theorem 2.2 differs from those in
the existing literatures (cf. [21, 31, 32, 34-36]) in the following two ways. First in the existing
results, the initial perturbation has small oscillation (i.e. ||ug—U]||re and ||[vg— V||~ are small)
which was essentially used to estimate higher-order nonlinear terms. In our present paper, we
have to devise some new refined estimates to estimates these terms (see the proof of Lemma 3.6).
Second, the initial data (ug — U,vo — V') € L2 (R) considered presently has lower regularity than
those in the existing works wherein (ug — U, vo— V) € H}(R). The old ideas on the second-order
estimates reply heavily on this higher regularity but fail in our present work. In this paper,
we invoke the idea of Hoff [16] on the Navier-Stokes equations by introducing a time-dependent
weight function combined with the parabolic smoothing effect to gain the desired second-order
estimates (see the proof of Lemma 3.7).

3. PROOF OF THEOREM 2.2

3.1. Reformulation of the problem. Substituting (2.7) into (1.2), using (2.1) and integrating
the system with respect to z, we find that (¢,)(z,t) satisfies

¢t:D¢xw+XV¢x+XU¢x+X¢xwxv t>07 reR (3 1)
Vi = Wz — 26V + @y _ﬂp;%w '
with initial perturbation
(G0, v0)(a) = [ (woly) = Uly -+ 0. voly) = Vg + 0))dy,
and
o(x) € Hy(R), ¢o(z) € L*(R), thoz(2) € Li,(R). (3.2)
We denote

mo := | doll% s + 1ol® + |0z 3 (3-3)
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For the reformulated problem (3.1)-(3.2), we have the following results.

Theorem 3.1. If € > 0 is small, then there exists a constant n > 0, such that if mg < n, the
problem (3.1)-(3.2) has a global strong solution (¢,1) satisfying for any 0 < T < oo

T
16113 o + 19117 + l[¥all2 +/0 (1623 + 10allZ + ellvall} + elltbeslln) dt < C, (3.4)

/ o (61 + 19ell? + lpazll? + elltbael®) da
& (3.5)

T
[ [0 (6l + el + ellbazall + & oasel ) e < C.
0 R
where 0 = o(t) = min{1,t} and C is a positive constant independent of t and €. Moreover, it

follows that

Sup‘¢$(x7t)7 1/},1;(x,t)| — 0 ast— oo. (3 6)
z€R .

In view of (2.7), Theorem 2.2 is a consequence of Theorem 3.1. We now outline the main
procedures for the proof of Theorem 3.1. First, we mollify the (coarse) initial data (g, o) as
follows:

3 -0 1) -0
d)O:] *¢07 1/}023 *¢07

where jo is the standard mollifying kernel of width & (e.g. see [1]). Then we consider the
following augmented system

) = Dl + XV + XU + X%, t >0, 2 €R, 57
) = ey, — 26V + ¢ — e(v])?, '
with smooth initial perturbation functions (qﬁg, 1/18) which satisfies
¥h(x) € LA(R), g, (x) € Hy(R), ¢p(z) € H(R), (3.8)
and
18011F w + 1017 + 1982 1% < llollF w + I0ll® + 0z = mo, (3.9)
where we have used (3.3) and the following properties:
10k 63l < 100 llws 10588l < 1Bktb0]lu for every k = 0,1, &> 0. (3.10)

Next, by standard approaches, we prove the local existence of solutions to the system (3.7)
with initial data (69, ¥Q) satisfying (3.8)-(3.9). Then by the continuation argument, the global
existence of (¢, °) follows from the a priori estimates. Finally, we show that the limit of (¢%, %)
as 0 — 0 is a global strong solution of the Cauchy problem (3.1)-(3.2), and thus Theorem 3.1 is
proved.

Lemma 3.2 (Local existence). Assume that (¢3,13) € H2(R). Then there exist a time Ty =
To (Hd)gHHa(R)v ||¢8”H3,(R)) > 0 such that the system (3.7) has a unique solution (¢°,¢°) €
3.2. A priori estimates. In this subsection, we shall employ the technique of a priori assump-

tion to derive the a priori estimates for the smooth solutions of (3.7)-(3.8). To this end, we first
assume that the solution (¢°,¢°) satisfies for any t € [0, T)] that

16°113 o + 119° 1% + [[21% < 2r0, (3.11)

where kg is a positive constant. Then we derive the a priori estimates to obtain global solutions.
Finally, we show the obtained global solutions in turn satisfy the above a priori assumption and
close our argument.
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We depart with the L2-estimate of (¢°,1°). The main procedures for the proof are similar
to those in the existing works (cf. [31]). For clarity and completeness, we present some details
below.

Lemma 3.3 (L’-estimates). Let the conditions of Theorem 3.1 hold and (¢°,4°) be a smooth
solution of (3.7)-(3.8) satisfying (3.11). Then there exists a constant C > 0 independent of t,e
and § such that

T T T
l6°11% + WH%/O HaﬁillidHE/O lal®dt < Cmo+0no/0 loglsdt. (3.12)

Proof. Multiplying the first and second equation of (3.7) by ¢°/U and i, respectively, and
adding the resulting equalities, we obtain

1 ((¢5)2> (¢%)? (1> N (x(¢5)2>
2\ U ), 2 \UJ/, 2 ),
5 10 S 40 6 40 ,/,0
:%jw((ﬁawa)ﬁwz O XO zx% (3.13)

— 2xe VS’ — xe(¥d)2® + xeyl,y°.

Noting that

L)L),

¢5¢ix_<¢5¢i> NGO (1> _<¢5¢i> _(62) | Unds
v \uU ), U \v), \v ), U Uz

T ),

—2xeVydy = — xe(V(¥°)?)a + xeVa (¥°)?,

Xeg, 0 =xe(d9’)e — xe ()%,
we get from (3.13) that

! <W - x<w5>2)

2\ U
S 10
= (w%‘* -~ D%qu +

* D(zi)? N Gl (”XV)

2 U
XV(¢°)?
2U

t

xeV ()% + xswi¢5> (3.14)

xT

5 40 0 40 01,0
DU, ¢ d)x + X9 stq/}x +X€V£(¢6)2 —X€(¢2)2¢6~

T2 U

A direct calculation along with % = —s — xV due to (2.2) gives

(3.15)

U U? U Us -

(s + XV) Ve (s+xV)VU, xV. DU?
- = =22z
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Substituting (3.15) into (3.14) and integrating the resulting equation over R x [0, 7], we have

that
[ (G enw)arn [ G e [ [ wtana
;C/OT/IR I(U(; dmdﬂ?/g /RU“?W dzdt
<¢§)2 x(1d) >d:E+D/ /Uqﬁ&%d 0t 4 x / /qb%&%:d y (3.16)

— e / / (W) 20 dadt + e / / )2dadt

=Jo+ J1+ Jo + J3 + Jy.

We proceed to estimate J;(i =0,---,3). We first have from (2.10) and (3.9) that

Jo < C (16812 + 1wb1?) < Cmo.

For Ji, by the Cauchy-Schwarz inequality, we have the following estimate:

3D T (¢6)2 D T U2(¢6)2
J < — L dxdt + — z dxdt.
= /o /R v +3/0 /R v

For Jo, by the Cauchy-Schwarz inequality and the Sobolev inequality || f||%e < 2|/ ||| fzll, we
derive from (3.11) and ||¢°|; < C||¢°||1 .4 that

JgsD/OT/R((% ddt+/ / (¢°)( % [CORC
SD/OT/R((% & dt+/ H¢5||Loo/ Wl 4y
A e S T ‘@dm

18_)/0T/R (qb(%)Qdmdt—i—Cmo /OT/R (dg)dedt.

IN

IN

Similarly, we have

T
) 0\2
Ty <xe / 10° = /R (40)?davdt
T 1 1
<Viye / WLIEITAT: / (40)2dedt
S%éxe/ /@ZJ‘S )2dadt
Xe / / (40)?devdt,
0 R
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provided that ko < -

Substituting the above estimates of Jy — J3 into (3.16), we obtain that

/(((ﬁé) X’ )d +D/ / (62)° dftdtJrXE/ /1/% )2dxdt
/ / dxd”% /0 /RUIQU3 dudt (3.17)

5 T ()2
<Cmyg + 2)(8/ / V(v )dedt + Clﬁo/ / 7 dxdt.
o Jr o Jr U

Next, we need to estimate fo Jz Va (¢%)2dadt. Multiplying the first equation of (3.7) by V¢° /U
and the second one by xV1°, and then adding the results to get

L(YGR) L () () iy

2
DV¢Ped, XV H 5.6 5.5, XVl (3.18)
=T e Ly (V) —avaely 4 A

— 2xeV2You® — xeV (¥)2¢° + xeVpd, ¢’

A direct calculation leads to
Vel (VL  V(eh)? 90 \4
U N U . U *\U x’

VEOs 1 (VA (@) (V2
o (), (),

—2xeV2° = — xe(V2(¥°)%)s + xe(V3)a (¥°)?,

XVl 0 =xe(Vydy?)

» — XeV (D)2 — xeVayp'yl.

Substituting the above equalities into (3.18) and integrating the resultant equation over Rx [0, T']
we have

;/(V(gs) + V(¢5)>d +D/ / (92)° 2 dxdt

+x5/ / () 2dwdt + X / /V ()2 dxdt — Xs/ / (V) ()2 dxdt
L i) 08 () o

—/ / ("VQ) ddt—D/ /¢5¢5< > dxdt—x/(JT/va&wdxdt
+xATAdedt—XaA /RV(ng)dedt—XE/OT/RVmwwgdxdt.

By a direct computation, we have

sV xV? 1 VeV —v_) xVoV DVU?
i TV S S| =
(7). (), = [t rnw] - 200 X5 P,

(3.19)
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where we have used the fact that s = —yv_ and s+ xV = —% due to (2.2) and (2.4). Thus,
1 T 1 T 2
—/ /(¢5)2 sV dmdt—/ /(¢5)2 VN et
x 2 0 R U x
:_/ /¢5 [ s+XV)V] dxdt
2(49)
:—X//V ¢5)ddt //VV¢5ddt D//VU¢ddt

and
82X/OT/RVx(@ZJ‘s)Qdmdt—Xs/OT/Rs(VQ)x(@Da)Qdmdt:X/OT/R (§+26|V|) Vo (¢ dadt.

By the Cauchy-Schwarz inequality, we have

D/T/ <V> ¢° P dadt
o [ [ (5 57)
SD/O /R< xU +vx<gi)2)dxdt+12?/oT/R<|V|<;5;i)2+ |V’U5§¢5>2)dxdt,

Vo dadt < = Vo (¢°)2dadt + X »°)2dadt,
of | S AAGEEEE AT
—Xs/OT/Rwa%idxdt < 52)‘/0T/R ((w2)2+vﬁ(¢5)2) dzdt.

Similar to the estimates of Jo and J3, we have from |V| < —ov_ that

/ /qu%%“”d dt < D/OT/R@[%)dedtJrcno/oT/ng)dedt,
ex /0 ) /R V(65?0 dadt <=+ /0 ' /R (18)?dadt.

Substituting the above estimates into (3.19), we get from 0 < U < u_, v— <V <0, V, >
0, |Vz| < C that

[ ) vt [ [ )
< [ (Her +XV(¢5)2—W—XV(¢S)2> o

FVL D XIU\// LG

[ [ (358 [ [
+5X1+|V\/ /w ddt+vy/ / 2dxdt+Cf<c/

and

and
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which, along with (3.17), implies that

e ! T )
X/ / (* + 26\V]> Vm(w‘s)Qd:rdt <Cmg + Cs/ / Vm(w‘s)dedt + C,fo/ / z) dedt.
0 R 4 0 R 0 R U

Then choosing & small enough such that Ce < §, we have

T T (¢5)2
/ / Ve () 2dadt < Cmg + Cry / / 2l dadt,
o Jr o Jr U

which, combined with (3.17), gives that

(¢°)? 5 2) Tl (45)? T 512
/R(U + x(¥°) dw—l—D/O /R U dxdt+xs/0 /R(wx) dxdt
T
SCmo—l—Cﬂo/ / (wg)QdSEdt.
o Jr

U
This completes the proof of Lemma 3.3 by using (2.10). 0

Next we shall derive the a priori estimates of the first order derivatives of (¢%,¢°). To this
end, we first derive some estimates that will be used later.

Lemma 3.4. Under the conditions of Theorem 3.1, the solution of (3.7) satisfies for any 0 <
T < oo that

T T T
| [ v@hrdude < omo s Crg [0+ Cno [t Ra (320)
o JR 0 0
where C' is a positive constant independent of t,e and 6.

Proof. Multiplying the first equation of (3.7) by 1, we get

XUW9)? = 674 — Dby — XVl — xda(2)%. (3.21)
Integrating (3.21) over R x [0, 7], using the second equation of (3.7) and following results

R0 =(0"00)s — 6", = (600 — 6 [etles — 26(VUL)s + 0, — (1))
=(°02)e — e(6"00, )0 + edSud, + 26(V™ul), — 26V @Sl — (¢962),
+(62)° + (@ (12)%)s — e (v3)?,
—D,ud =Dyl |4, + v,y — 26(Vi) — e((¥3)?)a ]

D [—i«wzm (Ul )e — (W) — e(VE))s — eVa(wd)? - ifuwim} ,

we obtain that

127/R(gug)gda:+X/OT/RU(wg)?dxdtJrDE/OT/R(ng)?d:cdHDE/OT/RVx(gug)dedt
=0 [T horar s [ ot~ [ ptanse [ [ sbutana
— 2% /0 ' /R VSl drdt + /0 ! /R (¢2)2dadt — & /0 ' /R ¢ (22 dadt

- X/OT/RVGbilﬂgdxdt — X/OT/R¢§(1!)§§)2dxdt.
(3.22)
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By the Cauchy-Schwarz inequality and the fact € and V are bounded, we have the following
estimates:

[ Puito— [ dhutte <5 [ @iyar+ g [0hant 5 [(@ar+ T [ @i
a/OT/Rqsiwﬁzdxdt < ga/oT/ngx)?dxdt—i—;)ATA(¢2)2dxdt,
% /0 ! /R Vlpldadt < Ce /0 ' /R (¢2)2dadt + Ce /0 ! /IR ()2 dxdt,
o [ [owsraa <X [ [ vedpaae [ [ G gy,

and

T T T 20 18\2
X / / V@l ypldadt < X / / U@ 2dadt + C / / Mdmdt.
0 R 4 0 R 0 R U

Substituting the above estimates into (3.22), we have

2 [wiraex [ [vwsrave [* [ @it pe [ [ viwspasa
<2 [horars [@rans 3 [(@ras D [ ke

w5 [ [@sraa e [ [ @i e [ i

+cg/ /wé Vdadt + X / / U dxdt+C’/ /V2 dudt

ro [ [ Ry,

For the last term on the right-hand side of the above inequality, by the Sobolev inequality
[ £17 < 21l fz]l, (3.11) and (3.12), we have from 1 < %+ that

T 6\2(,/,0\2 T 512 T
C/O /R o dadt SC/O H¢x”L°°/R i da:dtSCno/D 1681111 || dt

<C/~eo+0m0/ / 90 ot + O //¢ deat (324

<Cm0+Cl€0/ H%det—FC’m/ / Goa)® ot

(3.23)
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From the fact V,, >0, |V| < C, 1 < %=, (3.12), (3.23) and (3.24), we have that

/wx d:c+/ / (12) 2d:cdt+5/ /¢m )2dadt
C (4(¢3x)2dx+4(¢3x)2dm) +C/R(¢5)2dx+0/o /R(qj(%ydxdt

T T (¢5)2(,¢6)2 (3'25)
+C’5/ /(¢§)2dwdt+c/ /‘”dexdt
0o JR 0 JR
T T (¢6 )2
SCmo—l-Cﬁo/ HzpiH?ﬂdt—i—Cm/ /“dwdt.
0 o Jr U
This immediately leads to (3.20) and completes the proof. O

Lemma 3.5. Under the conditions of Theorem 3.1, the solution of (3.7) satisfies for any 0 <

T < oo that
[ wtwiras+ | ' [ wwtpdede+= | ' [ wi s

T
<Crmg + Cr ( / 1 12dt + / Io%alie+2 [ uwzxwdt),
0

where C' is a positive constant independent of t,e and §.

(3.26)

Proof. Note that U is monotone decreasing in (—oo, 00) and hence 0 = uy < U(0) < U(2) < u_.

From (2.9), we see that 1 < w(z) < 2 for all z € (—o0,0]. Then we have U(z) > Uéo)w(z) for

U0
all z € (—00,0]. This means U(z) > ;)w(z) hold for all z € (—oo, st]. Then from (3.25), it

follows that
/ w(d)?dx + / / w(y)2dxdt + ¢ / / V2 dadt

(3.27)
<Crmo + Cro / 10812 dt + +Cirg / 160, 12.dt.
0 0

Now, we multiply the the second equation of (3.31) by e**y% and obtain that
Yoty = e gty — 206 (VUL)aty + € Uadg, — e (¥2))atis,

which gives

Az (1,0
<€ (;px)2> I <8; n 25Vx> e)\z(wg)Q + geAz(wgz)Q
t

=e (Yo, ) e — e Yo, — 26V N PS4 My, — 2ee™ (10) 240,

Integrating the above equation over R x [0, 7], we get

/ (1) W), +/ /< +ng> M (40)? dmdt+s/ / (), dwdt

Az
:/R(;ﬂox)dx 5)\/ AZ¢$w$$d$dt+2€/ /V@AZ¢I¢zxd$dt

+ /O ' /R P2 0 dadt — 2 / / A2 (0)24)° dadt

Ax (1,0
:/‘Z(;de+R1+R2+R3+R4.
R

(3.28)
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By the Cauchy-Schwarz inequality, we have

T T
<< / / N (90 V2dzdt + e / / X (9°)2dadt,
4Jo Jr o Jr
T T
Ry<© / / N (Y0 )2 dxdt + 4ev? / / N (Y2) 2 dxdt
4 Jo Jr o Jr

and
Rs < S’A/ A2 ()2 dxdt + / A2 (0) 2 dadt
8 Jo Jr sA Jo Jr
Using the Sobolev and Cauchy-Schwarz inequalities, (3.11) and the fact e** < w < & due to

(2.10), we have from (3.12) that

Sg/T/ N (2 ,) dxdt + 4e /T/ e () dudt
< [ [ ewhrana e [C it [ Ostpa

6 Z
< [ [ e o [l ar

c T T T
g/ /e)‘z(ipiz)Qda;dt—kCnoa/ ||¢g||2dt+cw/ |45, || ?dt
4 0 R 0 0

T r ‘
gi/ /eAZ(Q/)gI)2d:cdt+Cmo+Cﬁo/ Wf;llfudt+0f€o€/ 40,11 dt.
o Jr 0 "

Substituting the estimates of R; — Ry into (3.28) and choosing £ > 0 is small enough such that

e < w)‘zlg) we have from (3.9) and (3.12) that

T T
/ M (Y0)2dx + / / M (Y0)2dadt + ¢ / / N (Y2,) dxdt
R 0 R 0 R
T T T
§C<W8:;;H12U+mo+f€o /O 1112, dt + /0 /R w(¢3)2dadt + e /O uwmdt) (3.29)

T T
<Crmo + Cro / 13112, dt + Croe / 10,12,
0 0

where we have used e < w and V, > 0. Recalling that w = 1 + e>‘z, we have e > % in
z €[0,00) (i.e. z € [st,00)). Then, it follows from (3.29) that

fe’) T o) T [e'e]
/ w(i/)g)de—i—/ / w(¢i)2dxdt+5/ / w(y?,) dxdt
st 0 st 0 st
T T
<Cmo+C/€0/ ||ngfudt+Cmoe/ 2. |2,

which, in combination with (3.27) gives

/ w(y?) da:+// w(d) d:cdt+5// w(yS,)2dzdt

<Cmo + Crig / 19812t + Cro / |68, I2.dt + Croe / 163, |12dt.
0 0 0

This completes the proof. O
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Lemma 3.6 (H'-estimates). Assume the conditions of Theorem 8.1 hold and let (¢°,v°) be a
smooth solution of (3.7) satisfying (3.11). Then it holds that

T
§ 1
161 101 + 1203+ [ (1020 + 121 + <207 + el e < Oomo, - (330
where C' is a positive constant independent of t,e and 6.

Proof. Differentiating (3.7) with respect to z yields
wmt = 5wrxm - ZS(Vwm)I + ¢xm - 5((#@) )I

Multiplying the first equation of (3.31) by ¢%/U and the second by xu and adding these
equalities, we obtain

¢5 ¢xt

(3.31)

& ,/,0 8 ,/,0 S
+x (#208) + ol | X(00¥a)a0h

¢33$x ¢6 Xnggz qb(sz XVI (¢5z)2
+ + U U

U U U
+ el ) — 2xe (V) — xe (1)) sl

Simple calculations give us that

0adh _ (@)Y | (62)? (s

Ut_<2U )ﬁ 2 (E)x
DQuats _ (DS2atl D(¢3.)* _ (D(¢2)? (1 D(¢3)* (1
=) e (0 ()) T ).

XVadte _ (xV(aﬁi)Z) (42)° <XV>
v\ 22U 2 uj),’

+ wm¢xt -

U U U + U? ’

X(0042)208 _ <X(¢§)2¢i>  XOUR%e | xUa(60)%00
~2xe(Ved)atd = — 2xe (V(¥D)?) +2xeVidvl,

el = - (B )

Thus we get from above equalities that
1 ((¢5)” 512 D(45,)” 5 \2
5 (G xwir) + 2k e

D¢d.¢%  D(4))* <1> +><V(¢i>2 x(cbi)?wi)
U

2xe

U 2 +

— 0,10

+ (xevtot - 2eviod? - 2wp) +GE[() - (2 |

0\2 8 ,/,0 8 ,/,0 40 19
+ va[(](px) + Xngxwz - X‘bzq(/}xéxx + ([(?920) w + 2xng6¢xz

By using (2.1) and the fact that uq = 0, it can be checked that

D s+ xV 2u
<U> —< - > = U;(s+xv+) U, =0. (3.33)

(3.32)
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Integratmg 32) over R x [0,7T] and using (3.33), we obtain

(3.3

( = )d +D/ / (¢5,) d:z:dt+x5/ /w ) dadt

_2/<(¢>o$) X(@) )dm—i— // (s)* 22 drdt + // xgb%xd dt (3.34)
/ / ¢w¢w¢mdazdt+x / / wxdxdt+2><€ / / Vs, dudt

=lgo+ 11+ 1+ Is+ Iy + I5.
For Iy, we have from (2.10) and (3.9) that

I < C (6811 + I813) < Cmo.
For Iy, by |V;| < C and (3.12), we have

T (¢9)? T s
L<c / / ) nat < Cmo + O / 10812 dt.
0 R 0

Using the Cauchy-Schwarz inequality and (3.12), we can estimate I as

T
n<c [ [ eviiasa
<C/0T/R((b[%ydwdHC/OT/RU(wg)%xdt

T T
<Cmo + Cro / [03)2.dt + C / / U)?dedt,

where in the first inequality we have used the fact ‘ ‘ = ——” = % < & due to (2.2).
Similarly, we have

13</ / (¢z) ddt+0/ /’%%'2d dt,

T 5\2,/,0
I <C/ /Mdmt
o JrR U
T 5\2 T 5,102
gc/ /(%)dxdwrc/ /mda:dt
0 R U 0 R U

T s T |¢6w6|2
gcmo+cn0/ ||1/1x||fvdt+(]/ / L dxdt,
0 o Jr U

XE r 5 \2 4 2/.167\2
I; <& (W0,)2dxdt + Ce V2(0)2dadt
2 Jo Jr o Jr

X€ T 5 \2 T 512
<= (1/):m) dxdt + Cmg + Ckg Hd’x”wdt'
0

Substituting the above estlmates into (3.34) to get

/(WS) X(¥2) )dx+D/ / (P2, dxdt+x€/ /wm ) dadt

T T T |¢5w6|2
§0m0+0/€0/ ngufudwc/ /U(wg)2dxdt+c/ /”dmdt.
0 0 R 0 R U

and

(3.35)
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We have from (3.24) and (3.35) that

/(WS) +x (1) )d +D/ / (¢a ddt+xe/ /z/;m )2dxdt
<C’mo+C’/<;0/ ||¢$\|wdt+C’/ / (?) 2dxdt+0n/ / (92 ddt

Then substituting (3.20) into (3.36) and choosing k¢ small enough such that Crg < £, we have

/<(¢5) + (¥9) >d +/ / (¢2, dxdt—i—e/ /wm ) dxdt

(3.36)

(3.37)
<Cmo+Cro [ IW3I2a
0
It follows from (3.12), (3.26) and (3.37) that
T
169+ %13+ ORI+ [ (VIR + 1203+ <203 + <l 1)
T
<cmo -+ ([ 1stzar+ [ loltar e [jurar).

0

where C is independent of ¢t and . Choosing Cry < %, we have
T
16?113 + N 115 + 2% + /0 (NI o + 131 + N3 + ellgll? ) de < Cmo.

Thus, the proof of Lemma 3.6 is completed. O

Now, taking my sufficiently small such that Cmg < k¢, we have from (3.30) that

T
A e T A (s

which closes the a priori assumption (3.11).

IS + el + el I3 ) dt < ko,

Next, we derive appropriate estimates for the second order derivative of (¢5, 1/15). Since we
plan to use the limit of the mollified function (4°,4°) as & — 0 to obtain the solution (¢,)
of our target system (3.1)-(3.2), the estimates of the second order derivative of (¢°,1?) need
to be independent of 6. If we employ the similar energy estimates method for H!-estimates in
Lemma 3.6, we shall encounter the term [ (|¢9,,| + [¢/,,|*)dz which is out of control since the
boundedness of initial data (¢9,J) is assumed up to H'(R) only, see (3.8)-(3.10). Indeed in
general the bound of [, (|¢8,,|*+[¥,|?)dz is of order 1 given that H'(R)-norm is bounded (see
[48, Lemma 1.2]). Hence we have to find an idea to avoid the estimates of second-order derivative
of (qﬁg, 1/18) to attain the uniform boundedness of second-order estimates in §. Inspired by the
brilliant idea of Hoff [15, 16] of treating discontinuous data, we introduce a weight function
o = o(t) = min{1,t} to resolve this obstacle. The price paid by this idea is that the solution
behavior sufficiently close to time ¢ = 0 is unclear. However this is sufficient to study the
large-time behavior as we seek in this paper.

Lemma 3.7 (HZ-estimates). Let the conditions of Theorem 3.1 hold, and let (¢°,4°) be a
smooth solution of (3.7) satisfying (3.11). Then it holds that

[ o (16802 + 121 + 6%, P + el o
R (3.38)

T
[0 o (I8P + Ul + el + 20 ?) it < €,

where 0 = o(t) = min{1,t} and C is a positive constant independent of t,e and §.
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Proof. We differentiate (3.7) with respect to t to get

{‘lsft = D¢, — xsVad + XV &y — xsUastd + XUWE, + x%105 + x50, (3.39)

¢?t = 5¢§:xt + 253Vm¢§ - 2€V¢§ct + ¢?ct - €((¢§c)2)t-

Multiplying the first equation of (3.39) by aqﬁf and the second by m/)f and adding these equalities,
we obtain

OS] + TV
=Do @80 + colp ) + X0B (—sVadd + Vi, — sUatS + ¢5,00) (3.40)
+ XoUYS, 88 + xodfddab, + of (2esVyh — 26Vpd, + ¢, — 2e005,).

Integrating (3.40) over R x [0,7] and rearranging the resulting equation, we get
1 T T
2/00@V+ww2m+D/‘/ow®%muw/‘/awm%Mt
o(T) d d 6 .0
/ / (69)2 + (0)2)dadt + x / / a¢t —sVoe® + Vg, —sUm¢x+¢xt¢z) dadt
+ / / oy! 2€st1/Ji —2eVd, + ¢, —25w§¢§t) drdt + x / / oU S, ¢l dadt
0 R 0 R

T
+x / / ol $00, dodt
0 R

=K1+ Ko+ K3+ K4+ K5,
(3.41)

where we have used the fact that

/ / e ((62)% + (9)?2 dmdt / " / (#9)? )d:pdt

Because ¢, |V| and |U| are all bounded, we get from (3.7), (3.30) and (3.24) that

/ /¢t dmdt<0/ / (¢°.)2 + V2(40)2 +U2(wx)>da:dt+0/ /¢5 V(02 dadt

<o [* [ (08 + @)+ ) i v €

(3.42)

/ / V) 2dadt <C / / e2(¥2,) +V2(¢§)2+(¢§)2) dxdt 4 Ce? /0 ' /R () dacdt

SC/O A(e(¢§x)2+(¢i)2+(¢g)2> dmdt++C€/DT/R(wg)4dxdt (3.43)
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where we have used the following estimate

T T T
C= [ [ wytawdt <ce [l el < Cnoe [ udludas
0 R 0 0

T T
<Craz [ 08Pt + COre [ [udlde
0 0
<C.
Then, K7 can be bounded as

K < /OT/R ((gﬁf)z + (1/1?)2) dedt < C.

By the Cauchy-Schwarz inequality, |U,| < |%||U| < C, |V,| < C, |V| < C and (3.30), we have
D /T T T
Ko< [ [ ot pasderc [ otedudiasc [ (16017 + 10207 + 1) de

D [T 52 T 5262
< /0 /R o (62,2 dxdt + C /0 o ()2 (W2)%dt + C
nd

D [T 512 e (T 512
K3 <— o(¢po,) dxdt + — o(y) dxdt
8 Jo Jr 4Jo Jr
T
g

T
e /0 o (16312 + I2IP) e + Ce /0 (02 (vt

D (T T T
<3 ), Jowwrasas g [ [ ot i s o [ otutpiyac

For K4, using the integration by parts and Cauchy-Schwarz inequality, (3.30), (3.42) and (3.43),
we have from |U,| < C, |U| < C that

T
Ky :X/ /GU¢gt¢?d$dt
0o JR
(7 5.5 (" 5 .6
=—-X oUWy ¢gdadt — x Uty ¢y dadt
0 JR 0 JR
D [T g
<5 | [tz o [To (16 + 1u1?) de
0o Jr 0
D (T 5 \2
<— o(¢py,) dxdt + C.
o Jr

Since ¢, |V| and |V;| are all bounded, we get by the second equation of (3.31), the Cauchy-
Schwarz inequality and (3.30) that

K =x | ' JREETE
mx [ [ ootot (vt~ 2oV0D + 8 — ((212)) ot
<e? /OT/RU(wgm)dedt—kC/OT/RU(gbf)Z(gbg)Qd:cdt—szZ AT40V5(¢2)2dxdt
T T T
+ Ce? /O /R oV2(0,)dxdt + C /O /R o(¢2,)2dxdt + Ce? /0 /R o () (¥2, ) dxdt

2 5 y2 512/ 1612 2 512, 5 9

a,
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Substituting the estimates of K1 — K5 into (3.41), one has

Lo (2 v @) aen [ [ ot [ [ owhpa
T
g

T T
5\ 2 I\2 N2/ 10\2 9\2 I\2
<ctcC /O o (60)2(W2)%dt + C /0 /R o (60)2(62)2dadt + Ce /0 (W) (022 dt

T T
w2t [0 [ owiph v+ [ [ ool e

:C+K6—|—K7+K8+K9+K10.

(3.44)

By Sobolev inequality || f[%2. < 2|l fz]l, (3.30), (3.42), we have

T
Ko=C [ [ olohP(u)duar
0 R
T ) )
<c / o168 13 / (40)2ddt
0 R
T ) )
<c /O o165 11162, 1t
D [T T
D / o6, 12dt + C / oll¢f |2dt
D T
< | olletPa+c
4 Jo
and
T
Ky =C / / o (60)2(0) 2 dudt
0 R
T
< / o123 / (6%)2dudt
0 R
T J )
<c /0 o168 1162, |t
D T
L /0 olll, |2dt + C.

Using Sobolev inequality, (3.30), (3.43), we have

T
Ky =Ce / / o ()2 (4 2dudt

0 R
T ) )

<Ce / ol 13 / (402 dvdt
0 R
T i) )

<Ce /0 o8 12, e

€ T S5 112 T 5112
<S [ olvtPat+c [ ol Par
0 0

& T 5
< / ol |Pdt + C
4 /o
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and
T
Ko =C* [ [ o (ul,) dudt
0 R
T
<ce [l [ ()

T
<Ce? /0 o[98 462, it

2

e (" 52 2 [T 52
<5 | olvialiacs [ ol

2

€ T 52
< [ olvtlPa e,
0

where we have used the smallness of e.

21

(3.45)

We are left to estimate the term & / 0|9, ||2dt. Indeed multiplying the second equation of
0

(3.31) by —eo9),, and integrating the result over R x [0, T], we get by |V| < C, |V,| < C, o <1,

Cauchy-Schwarz inequality, (3.30) and (3.45) that

T
3 [owiaese [ ol e
R
. (o)
== / / o (2 ) dxdt + 2¢3 / / (Vpd)p  dadt,

2 Jo R

T
e [ [ottattaat e [ [ 0@ ttdoat

0 R 0 R

e T 62 T T
<= / / (2 ) dxdt + — / / o(2 . )dxdt + Ce? / / oV2(0)2dxdt
2Jo Jr 4 Jo Jr 0o Jr

T T r
vt [ [ oviulPastiec [ [ opinar o [ ] ol e

< / / o4 Vdwdt + O /O ' /R (W02 (W Vdadt + C
<< /0 /R o (4,) dadt + C,

which leads to

T
€ / o(y),)dx + € / / o(yS,, ) dxdt < C.
R 0 JR

It follows from (3.45) and (3.46) that

K9+ K9 < C.

Substituting the estimates of K¢ — K7 into (3.44), we have

/ (60?2 + )2 dx—i—D// quthxdt—i—e// o (0,2 dedt < C,

(3.46)

(3.47)
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which, combined with (3.7), (3.30) and (3.24) gives
0 9 9 1) 9 1)
7 [ @hade <Co [ (607 + VA +U*0?) da+ Co [ (60 da

<CG/ (612 + (622 + W3)?) da + C (3.48)
R

<C.

It follows from the Sobolev inequality, (3.30), (3.31) and (3.46)-(3.48) that

T
[ [ otheramr <ce [ [ o (16874 VAL + VS + U087 + 020 dodt

+C’5// (¢, degd:pdt—I—Cs// (2)2(2,) 2 dxdt

<0+ Ce /0 o6 12 1 19, 1 dt + Ce /0 o262 162, e

T 5 s
<+ Ce [ (21 + )

<C,
(3.49)

where we have used the fact that ¢, |U|, |V|, |Ug| and |V;| are all bounded. By (3.46), (3.47)
and (3.49), we have

o (602 + ) + @0 + () o

b [ [ (680 + et + e(0hn)? + 2(08n)?) ot < €

Thus, the proof of Lemma 3.7 is completed. O

Finally, we turn to prove Theorem 3.1.

3.3. Proof of Theorem 3.1. To prove Theorem 3.1, we shall invoke the the Aubin-Lions-Simon
lemma (cf. [50]). For convenience, we state it below.

Lemma 3.8 (Aubin-Lions-Simon lemma). Let Xo, X and X; be three Banach spaces with
Xo € X C Xy. Suppose that Xy is compactly embedded in X and that X is continuously
embedded in X1. For 1 <p,q < oo, let

W = {f € L*([0,T}; X0)|0:f € LI([0,T]; X1)}.

(i) If p < 00,, then the embedding of W into LP(]0,T]; X) is compact (that is W is relatively
compact in LP([0,T]; X));
(ii) If p =00 and q > 1, then the embedding of W into C([0,T]; X) is compact.

Next we prove Theorem 3.1. It first follows from (3.30) and (3.38) that

T
é 6 6 § é 13 1)
R e R A (e T R T [ N AP

/R o (6812 + 1 12 + 6312 + elll,|?) da (3.50)

b [ [ (1 + P + el + ) it <
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On the other hand, by (3.39) and (3.50), one has

/ / o) dudt <C / / (&) + (60)2 + (¢5,)7 + (WD) + (13)?) dudt

+C’/ /qs (W) 2dxdt+C/ /¢>5 (W2,)2dxdt  (3.51)

<C /0 o? /R (¢2,44)?dadt + C.
/ / Y22 dadt <C / / Y2 ) 2dxdt 4 C. (3.52)

It follows from (3.42), (3.43), (3.50), (3.51) and (3.52) that

((¢°,4°) € L([0,00), H'(R)), (40, ¢) € L*([0,00), L*(R)),
(03, 43) € L>((0,00), H'(R)), (43, 42;) € L*((0,00), L*(R)),
(600, ¥24) € L2((0,00), H'(R)), (6041, ¥24e) € L*((0,00), H™'(R)),
(07,99) € L*((0,00), H'(R)), (¢, ¥) € L*((0,00), H™'(R)).

By (3.53) and the Aubin-Lions-Simon lemma, we can extract a subsequence, still denoted by
(¢%,1?), such that the following convergence hold as § — 0

(0%, 9°)(t) = (6,9)(-,1) strongly in C([0, 00), C(R)),

(62, 92)( 1) = (6, 92) (-, t) strongly in C((0,00), C(R)),
(602, ¥22) (1) = (Gww, Yaa) (- 1) strongly in L*((0,00), L*(R)),
(67, 9) (- t) = (¢, ve) (-, 1) strongly in L*((0,00), L*(R)).

Thus, it is easy to show that the limit function (¢, ) is indeed a strong solution of the system
(3.7)-(3.8) and inherits all the bounds of (3.50) which yield (3.4) and (3.5).

To complete the proof of Theorem 3.1, it remains to prove (3.6). From o =1 for ¢t > 1, (3.4)
and (3.5), we have

Similarly, we have

(3.53)

/1 (Iell® + puel® + lbll® + lall?) dt < C,

which implies that
|-, ), Yz (-, t)]| = 0 as t — co.

Hence, for all z € R, ¢t > 1, it follows that

/ Gu P (Y5 )dy‘

1/2 1/2
<2 ( /IR ¢idy> ( /IR ¢imdy>
1/2 1/2
= 2d 2 d
2(/R¢xy) (/Raqﬁmy>

< Cllga(, )| = 0 as t = oo,

¢2xt

where we have used (3.5) and o(t) = 1 for ¢t > 1. Thus,
sup |¢z(z,t)| = 0 as t = oo.
r€R
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The same procedure applied to 1, leads to

sup |¢z(x,t)| = 0 as t — oo.
z€R

Hence (3.6) is proved and the proof of Theorem 3.1 is completed.
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