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ON A DIFFUSIVE SUSCEPTIBLE-INFECTED-SUSCEPTIBLE
EPIDEMIC MODEL WITH MASS ACTION MECHANISM AND

BIRTH-DEATH EFFECT: ANALYSIS, SIMULATIONS, AND
COMPARISON WITH OTHER MECHANISMS∗

HUICONG LI† , RUI PENG‡ , AND ZHI-AN WANG§

Abstract. In the present paper, we are concerned with a susceptible-infected-susceptible epi-
demic reaction-diffusion model governed by a mass action infection mechanism and linear birth-death
growth with no flux boundary condition. By performing qualitative analysis, we study the stability of
the disease-free equilibrium, uniform persistence property in terms of the basic reproduction number
and the global stability of the endemic equilibrium in a homogeneous environment, and investigate
the asymptotic profile of endemic equilibria (when they exist) in a heterogeneous environment when
the movement rate of the susceptible and infected populations is small. Our results, together with
those in previous works on three other closely related modeling systems, suggest that factors such as
infection mechanism, variation of total population, and population movement play vital but subtle
roles in the transmission dynamics of diseases and hence provide useful insights into the strategies
designed for disease control and prevention.
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1. Introduction. The mathematical study of infectious diseases can be traced
back to the classic work of Kermack and McKendrick [29] in 1927. In [29], the
authors adopted the mass action infection mechanism (also called density-dependent
infection mechanism) to study a deterministic SIR (susceptible-infected-recovered)
epidemic model, meaning that the infection (incidence) rate is proportional to the
number of encounters between susceptible and infected individuals; mathematically,
such an infection rate is characterized by the bilinear function βSI, where β > 0 is
the disease transmission rate and S(t) and I(t) represent the density of susceptible
and infected populations respectively. The most significant achievement made in [29]
is perhaps the epidemic threshold result that the density of susceptible individuals
must exceed a critical value in order for the epidemic outbreak to occur. Due to
the seminal importance of the Kermack–McKendrick theory to the field of theoretical
epidemiology, their works were republished in 1991; see [30, 31, 32].
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2130 HUICONG LI, RUI PENG, AND ZHI-AN WANG

Employing the same infection mechanism and instead considering an SIS (suscep-
tible-infected-susceptible) model, one is led to the following ODE system (see, for
instance, [43]):

(1.1)

{
S′ = −βSI + γI, t > 0,
I ′ = βSI − γI, t > 0,

where γ > 0 is the disease recovery rate, together with initial data fulfilling S(0) +
I(0) = N > 0 and I(0) > 0. As one of the simplest models in mathematical epidemi-
ology, (1.1) still demonstrates the threshold result as Kermack and McKendrick [29]
observed. In fact, it is clear that S(t) + I(t) = N for all t ≥ 0 and, hence, (1.1) can
be reduced to the following logistic-type equation:

I ′ = βI

[(
N − γ

β

)
− I

]
.

Simple analysis shows that if N ≤ γ/β, then I(t) → 0 and in turn S(t) = N −
I(t) → N as t → ∞, while if N > γ/β, it holds I(t) → N − γ/β > 0, and S(t) →
γ/β > 0 as t → ∞. Defining the basic reproduction number R0 = Nβ/γ, then
the disease-free equilibrium (DFE) (N, 0) is globally attractive if R0 ≤ 1, while the
endemic equilibrium (EE) (γ/β,N − γ/β) is globally attractive if R0 > 1. We also
refer interested readers to the review paper [24] for various ODE models describing
infectious diseases.

Nowadays it is widely recognized that spatial spread of an infection is closely
related to the heterogeneity of the environment and the spatial-temporal movement
of the hosts. This is well supported by numerous studies on diseases including malaria
[38, 39], rabies [27, 28, 45], dengue fever [52], West Nile virus [34, 53], hantavirus [1, 2],
Asian longhorned beetle [22, 23], etc.; see [51] and references therein. A popular
way to incorporate spatial movement of hosts into epidemic models is to assume
host random movements, leading to coupled reaction-diffusion equations. Taking into
account spatial diffusion and environmental heterogeneity, we obtain the PDE version
of (1.1):

(1.2)

⎧⎨
⎩

St − dSΔS = −β(x)SI + γ(x)I, x ∈ Ω, t > 0,
It − dIΔI = β(x)SI − γ(x)I, x ∈ Ω, t > 0,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

where the spatial domain Ω ⊂ R
m (m ≥ 1) is bounded and has smooth boundary ∂Ω;

positive constants dS and dI represent the diffusion rate of susceptible and infected
individuals, respectively; β(x) and γ(x) are positive Hölder continuous functions on
Ω accounting for the disease transmission rate and recovery rate, respectively; the
Neumann boundary condition means that no population flux crosses the boundary
∂Ω. For this model, Deng and Wu [14] studied the global dynamics and existence of
EE, while [56, 57] investigated the asymptotic profile of EE (when it exists) as the dif-
fusion rate of susceptible or infected populations is small or large, which consequently
suggests interesting implications in terms of epidemiology; see the last section of our
paper for further discussion.

System (1.2) does not take into consideration the birth/death effect of susceptible
or infected individuals and thus the total population is conserved in the sense that∫

Ω

[S(x, t) + I(x, t)] dx =

∫
Ω

[S0(x) + I0(x)] dx =: N ∀t ≥ 0.
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However, it is quite natural to consider the situation that susceptible individuals are
subject to a recruitment (source) term modeling their birth and death rate, especially
a linear one [6, 24]. Therefore, in this paper we are motivated to study the following
reaction-diffusion epidemic system with varying total population and environmental
heterogeneity:

(1.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

St − dSΔS = Λ(x)− S − β(x)SI + γ(x)I, x ∈ Ω, t > 0,

It − dIΔI = β(x)SI − [γ(x) + μ(x)] I, x ∈ Ω, t > 0,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥, 	≡ 0, x ∈ Ω.

The recruitment term Λ(x)− S represents that the susceptible population is subject
to linear growth and μ(x) accounts for the death rate of the infected, with Λ and μ
being assumed to be positive Hölder functions on Ω. All the other parameters have
the same interpretation as before. Throughout the paper, the initial data S0 and I0
are nonnegative continuous functions on Ω, and there is a positive number of infected
individuals initially, i.e.,

∫
Ω
I0(x)dx > 0.

Another widely accepted type of infection mechanism is the so-called frequency-
dependent transmission (also called as standard incidence infection mechanism) of the
form βSI/(S + I), initiated by de Jong, Diekmann and Heesterbeek [13] in 1995. In
this scenario, (1.2) becomes

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

St − dSΔS = −β(x) SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

It − dIΔI = β(x)
SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

∂S

∂ν
=
∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

and its counterpart with linear recruitment reads

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

St − dSΔS = Λ(x)− S − β(x)
SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

It − dIΔI = β(x)
SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

∂S

∂ν
=
∂I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

We note that (1.4) was first proposed by Allen et al. [4] and then it (and its variants)
was (were) studied extensively by many researchers [11, 12, 16, 18, 19, 20, 25, 33,
46, 47, 49, 50] while (1.5) was analyzed by Li, Peng, and Wang [36]; see also [35] for
the case of logistic source instead of the linear one. One also observes that the total
population in (1.4) is conserved and that in (1.5) varies.

In [42], by comparing the outcomes of models with density-dependent and fre-
quency-dependent transmission rates to the observed epidemiology of certain diseases,
McCallum, Barlow and Hone concluded that both density-dependent and frequency-
dependent mechanisms have their own advantages in modeling disease spread, de-
pending on the transmission mode of the disease under consideration. They further
pointed out that the transmission mode could be in general decided by estimating the
force of infection.
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2132 HUICONG LI, RUI PENG, AND ZHI-AN WANG

On the other hand, epidemic theory for many ODE models has demonstrated that
the basic reproduction number, which may be considered as the fitness of a pathogen in
a given population, must be greater than unity for the pathogen to invade a susceptible
population; see [7, 8, 15, 26, 44, 54] and references therein. For the PDE models (1.2)–
(1.5), we can also find their respective basic reproduction number R0 and show that
R0 serves as the threshold value to determine the transmission dynamics of disease,
that is, if R0 > 1 the disease persists whereas it becomes extinct in the long run if
R0 < 1. However, the total population N , and the movement (migration) rates dI and
dS , may affect R0 of (1.2)–(1.5) in different ways. As a result, each of the parameters
N, dI , dS plays a subtle role in disease control; a more detailed description will be
made in the last discussion section.

The main goal of the current paper is twofold. The first one is to rigorously
investigate qualitative properties of (1.3) and the asymptotic profile of EE (when
it exists) with respect to the small movement rate dI or dS . Theorem 2.4 below
tells us that once R0 > 1, the infectious disease will uniformly persist in space.
Thus it becomes important to understand how the mobility of population migration
affects the spatial distribution of disease, because this will help decision makers to
predict the pattern of disease occurrence and, henceforth, to conduct effective/optimal
control strategies of disease eradication. Our result in Theorem 3.1 indicates that
restricting the motility rate of susceptible individuals cannot eradicate the disease for
(1.3), while this strategy works perfectly for (1.2) with small total population size
[57, Corollary 2.4]. A similar phenomenon was also observed in models (1.4) and
(1.5). Therefore, this suggests that varying total population tends to enhance the
persistence of infectious disease. The second goal is to compare our main results on
the model (1.3) with those on models (1.2), (1.4), and (1.5), so as to understand the
influence of the factors such as infection mechanism, movement rate, and source term
on the eradication of epidemics, and to discuss possible applications in disease control.
Numerical simulations are also carried out to reinforce the theoretical findings and
illustrate possible outcomes for those unknown situations and hence provide clues for
further analytical pursuits. We refer to section 4 for a detailed discussion on the
implications of analytical results and comparisons between four related SIS epidemic
models mentioned above.

The remainder of this paper is organized as follows. In section 2, we first obtain
the global existence and boundedness of solutions to the parabolic problem (1.3),
then discuss the stability of equilibrium and the uniform persistence property via the
basic reproduction number R0, and finally we consider the global attractivity of DFE
and EE in spatially homogeneous environments. Section 3 is devoted to the study
of the asymptotic profile of EE when the diffusion rate of a susceptible population
or an infected population approaches zero. In the last section, we perform numerical
simulations, compare our results for (1.3) with those of the other three models, and
discuss the implication of our findings in detail from the viewpoint of disease control.

In the rest of the paper, for notational convenience, we denote

g∗ = max
x∈Ω

g(x) and g∗ = min
x∈Ω

g(x) for g = Λ, β, γ, and μ.

2. Properties of solutions to (1.3). In this section, we consider the parabolic
system (1.3) by first establishing the global existence and uniform boundedness of
solutions, and then show the local stability of DFE and uniform persistence via the
basic reproduction number. Last we investigate the global attractivity of DFE and
EE in a homogeneous environment.
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ON A DIFFUSIVE SIS EPIDEMIC MODEL 2133

2.1. Global existence and uniform boundedness. We now establish the
global existence and boundedness of solutions to (1.3).

Theorem 2.1. The solution (S(x, t), I(x, t)) of problem (1.3) exists uniquely and
globally. Furthermore, there exist a positive constant M depending on initial data and
the parameters dS , dI , Λ, β, γ, and μ such that

(2.1) ‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤M ∀t ≥ 0.

Moreover, there exists some M ′ > 0 independent of initial data fulfilling

(2.2) ‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤M ′ ∀t ≥ T

for some large T > 0.

Proof. From the standard theory for semilinear parabolic systems [5], it follows
that (1.3) admits a unique solution (S(x, t), I(x, t)) for x ∈ Ω and t ∈ [0, Tmax) with
Tmax being the maximal existence time. Moreover, the strong maximum principle for
parabolic equations yields that the solution is positive on Ω × (0, Tmax). Integrating
both PDEs of (1.3) and adding the resulting two identities, we are led to

d

dt

∫
Ω

(S(x, t) + I(x, t))dx =

∫
Ω

Λ(x)dx −
∫
Ω

(S(x, t) + μ(x)I(x, t))dx

≤
∫
Ω

Λ(x)dx − θ

∫
Ω

(S(x, t) + I(x, t))dx,(2.3)

where θ = min{1, μ∗} > 0. Then the well-known Gronwall’s inequality applied to
(2.3) asserts that there exists some constant M1 > 0, such that

(2.4)

∫
Ω

(S(x, t) + I(x, t))dx ≤M1 ∀t ∈ (0, Tmax).

We now consider

(2.5)

⎧⎨
⎩

St − dSΔS = Λ(x)− S + [γ(x)− β(x)S] I, x ∈ Ω, t ∈ (0, Tmax),
∂S
∂ν = 0, x ∈ ∂Ω, t ∈ (0, Tmax),
S(x, 0) = S0(x), x ∈ Ω.

For any nonnegative I, it is straightforward to verify that the positive constant

M2 := max

{
‖Λ‖L∞(Ω), ‖S0‖L∞(Ω),

∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

}

is an upper solution of (2.5). The comparison principle for parabolic equations gives

S(x, t) ≤M2 ∀x ∈ Ω, t ∈ (0, Tmax).

Since S is uniformly bounded and the L1-norm of I(·, t) is also bounded for t ∈
(0, Tmax) thanks to (2.4), in view of [3, Theorem 3.1] or [50, Lemma 3.1] and using
the I-equation, we deduce that I is also uniformly bounded in Ω × (0, Tmax). As a
result, we must have Tmax = ∞ and (2.1) is proved.

We next show (2.2). To this aim, we need to construct a more accurate upper
solution of problem (2.5), which is independent of S0 for all large time. In fact, let
u(t) be the unique solution of the following ODE:

u′(t) = Λ∗ + ‖γ/β‖L∞(Ω) − u(t), t > 0; u(0) = ‖S0‖L∞(Ω) + ‖γ/β‖L∞(Ω).
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2134 HUICONG LI, RUI PENG, AND ZHI-AN WANG

It is clear that

u(t) =

(
‖S0‖L∞(Ω) +

∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

)
e−t +

(
Λ∗ +

∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

)(
1− e−t

) ≥ ∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

,

which implies γ(x)− β(x)u(t) ≤ 0, ∀x ∈ Ω, t > 0. It can be easily checked that u(t)
is an upper solution of (2.5) and consequently,

S(x, t) ≤ u(t) → Λ∗ +
∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

as t→ ∞, ∀x ∈ Ω.

That is, we obtain an upper bound of ‖S(·, t)‖L∞(Ω) which is independent of initial
data for all large time. Now applying [50, Lemma 3.1] to the I-equation, we deduce
that ‖I(·, t)‖L∞(Ω) can also be bounded by a positive constant independent of (S0, I0)
for large t > 0.

2.2. Basic reproduction number and uniform persistence. It is easily seen
that the following elliptic problem

(2.6) − dSΔS = Λ(x) − S, x ∈ Ω;
∂S

∂ν
= 0, x ∈ ∂Ω

admits a unique positive solution S̃, which is globally asymptotically stable for the
corresponding parabolic equation with nonnegative initial data. Then (S̃, 0) is an
equilibrium of (1.3), which we call the DFE. Clearly, it is the unique DFE.

We define the basic reproduction number R0 as follows:

(2.7) R0 = sup
0�=ϕ∈H1(Ω)

∫
Ω βS̃ϕ

2dx∫
Ω [dI |∇ϕ|2 + (γ + μ)ϕ2] dx

.

Indeed, one can follow the idea of next generation operators as in [50] to introduce the
basic reproduction number, which coincides with the value R0. It is worth mentioning
that the basic reproduction number R0 defined here is qualitatively different from
that in [4] and [14] in that it also depends implicitly on the diffusion rate dS of the
susceptible individuals.

Let (λ∗, ψ∗) be the principal eigenpair of the eigenvalue problem

(2.8) dIΔu+ (βS̃ − γ − μ)u+ λu = 0, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω.

Then, we have the following properties of R0, the proof of which resembles that of [4,
Lemma 2.3] and hence is omitted.

Proposition 2.2. The following assertions hold.
(a) R0 is a monotone decreasing function of dI with R0 → maxΩ βS̃/(γ + μ) as

dI → 0 and R0 → ∫
Ω
βS̃dx/

∫
Ω
(γ + μ)dx as dI → ∞.

(b) If
∫
Ω
β(x)S̃(x)dx <

∫
Ω
[γ(x) + μ(x)]dx, and βS̃ − (γ + μ) changes sign, then

there exists a threshold value d∗I ∈ (0,∞) such that R0 > 1 for dI < d∗I and
R0 < 1 for dI > d∗I .

(c) If
∫
Ω
β(x)S̃(x)dx >

∫
Ω
[γ(x) + μ(x)]dx, then R0 > 1 for all dI > 0.

(d) R0 > 1 when λ∗ < 0, R0 = 1 when λ∗ = 0, and R0 < 1 when λ∗ > 0.

It turns out that the stability of the DFE (S̃, 0) is completely determined by the
size of R0.
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Proposition 2.3. The DFE (S̃, 0) is linearly stable if R0 < 1, and it is linearly
unstable if R0 > 1.

Proof. The linearization of (1.3) around the DFE (S̃, 0) reads⎧⎨
⎩

ηt − dSΔη = −η + (−βS̃ + γ)ξ, x ∈ Ω, t > 0,

ξt − dIΔξ = (βS̃ − γ − μ)ξ, x ∈ Ω, t > 0,
∂η
∂ν = ∂ξ

∂ν = 0, x ∈ ∂Ω, t > 0,

with η(x, t) = S(x, t)−S̃(x) and ξ(x, t) = I(x, t). Now suppose that (η(x, t), ξ(x, t)) =
(e−λtφ(x), e−λtψ(x)) is a solution of the above linear system with λ being a complex
number. Then simple calculations show that

(2.9)

⎧⎨
⎩

dSΔφ− φ+ (−βS̃ + γ)ψ + λφ = 0, x ∈ Ω,

dIΔψ + (βS̃ − γ − μ)ψ + λψ = 0, x ∈ Ω,
∂φ
∂ν = ∂ψ

∂ν = 0, x ∈ ∂Ω.

We first assume that R0 < 1 and shall show that (S̃, 0) is linearly stable, that is,
if (λ, φ, ψ) is any solution of (2.9) with φ or ψ not identically zero, then Re(λ) > 0.
There are two cases to consider: ψ ≡ 0 and φ 	≡ 0; ψ 	≡ 0.

In the former case, clearly (λ, φ) is an eigenpair of the eigenvalue problem

(2.10) dSΔu− u+ λu = 0, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω.

It is obvious that λ must be real due to the self-adjoint property of the operator
involved in (2.10) and hence λ ≥ 1, as we wanted. If the latter case happens, it
follows that (λ, ψ) is an eigenpair of the eigenvalue problem (2.8) and hence λ is real
and λ ≥ λ∗ > 0 due to Proposition 2.2(d). Thus, the linear stability of (S̃, 0) is
proved.

We now suppose R0 > 1 and show the instability of (S̃, 0). Proposition 2.2(d)
yields that λ∗ < 0. It is well known that the following linear problem

dSΔφ− φ+ λ∗φ = (βS̃ − γ)ψ∗, x ∈ Ω,
∂φ

∂ν
= 0, x ∈ ∂Ω

admits a solution φ∗. Consequently, (λ∗, φ∗, ψ∗) becomes a solution of (2.9) with
λ∗ < 0 and ψ∗ > 0 and so (S̃, 0) is linearly unstable.

Based on the “ultimately uniform boundedness” (2.2), we are able to establish the
uniform persistence property of (1.3) when the basic reproduction number R0 > 1.
In fact, one can easily adapt the arguments of [50, Theorem 3.3], developed by Magal
and Zhao (see [41, Theorem 4.5] and [58, Chapter 13]), to conclude the following
assertion.

Theorem 2.4. Suppose that R0 > 1. Then system (1.3) is uniformly persistent,
i.e., there exists some η > 0 independent of the initial data (S0, I0), such that

lim inf
t→∞ S(x, t) ≥ η and lim inf

t→∞ I(x, t) ≥ η uniformly for x ∈ Ω.

Furthermore, (1.3) admits at least one EE provided that R0 > 1.
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2136 HUICONG LI, RUI PENG, AND ZHI-AN WANG

2.3. Global stability in a homogeneous environment. In this subsection,
we consider the global stability of the DFE and EE of (1.3) in a homogeneous environ-
ment, i.e., all of the parameters Λ, β, γ, and μ are positive constants. In view of (2.7),
we now have an explicit expression for the basic reproduction number R0 = Λβ

γ+μ and

the unique DFE is given by (S̃, 0) = (Λ, 0). On the other hand, there exists a unique
constant EE (Ŝ, Î) if and only if R0 > 1, where

Ŝ =
γ + μ

β
=

Λ

R0
and Î =

Λ

μ

(
1− 1

R0

)
=
γ + μ

μβ
(R0 − 1) .

For later purposes, we recall a simple fact which can be found in [55, Lemma
2.5.1].

Lemma 2.1. Let a and b be positive constants. Assume that ϕ, ψ ∈ C1([a,∞)),
ψ(t) ≥ 0 in [a,∞), and ϕ is bounded from below. If ϕ′(t) ≤ −bψ(t) and ψ′(t) ≤ K in
[a,∞) for some constant K, then limt→∞ ψ(t) = 0.

By constructing suitable Lyapunov functionals, we can show the following.

Theorem 2.5. Assume that dS = dI . Then the following assertions hold.
(i) If R0 ≤ 1, then the DFE is globally attractive.
(ii) If R0 > 1, then the EE is globally attractive.

Proof. Set dS = dI = d. To verify (i), for any solution (S, I) of (1.3), we define

V (t) =
1

2

∫
Ω

[(S − Λ) + I]
2
dx+

μ+ 1

β

∫
Ω

Idx.

Then, for all t > 0, direct calculations show that

V ′(t) =
∫
Ω

[(S − Λ) + I] (St + It)dx +
μ+ 1

β

∫
Ω

Itdx

=

∫
Ω

[(S − Λ) + I] (dSΔS + Λ− S − μI + dIΔI)dx

+
μ+ 1

β

∫
Ω

(dIΔI + βSI − γI − μI)dx

= −d
∫
Ω

|∇(S + I)|2dx−
∫
Ω

(S − Λ)2dx− μ

∫
Ω

I(S − Λ)dx+

∫
Ω

I(Λ− S)dx

− μ

∫
Ω

I2dx+
μ+ 1

β

∫
Ω

(βSI − γI − μI)dx

≤ −
∫
Ω

(S − Λ)2dx− μ

∫
Ω

I2dx+
μ+ 1

β
[βΛ− (γ + μ)]

∫
Ω

Idx ≤ 0,

due to the assumption that R0 = βΛ/(γ + μ) ≤ 1. Define

ψ(t) =

∫
Ω

(S − Λ)2dx+ μ

∫
Ω

I2dx ≥ 0.

Recall that Theorem 2.1 tells us that both ‖S(·, t)‖L∞(Ω) and ‖I(·, t)‖L∞(Ω) are
bounded. Hence, by [10, Theorem A2], we have

(2.11) ‖S(·, t)‖C2+α(Ω) + ‖I(·, t)‖C2+α(Ω) ≤ C0 ∀t ≥ 1
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ON A DIFFUSIVE SIS EPIDEMIC MODEL 2137

for some positive constant C0. Furthermore, using both PDEs of (1.3), one can easily
see that ψ′(t) is bounded from above for t ∈ [1,∞). We deduce from Lemma 2.1 (by
taking ϕ(t) = V (t)) that

(S(x, t), I(x, t)) → (Λ, 0) = (S̃, 0) in
(
L2(Ω)

)2
as t→ ∞.

Furthermore, (2.11) indicates that (S(·, t), I(·, t)) is compact in C2(Ω) for t ≥ 1. This,
together with the above L2-convergence, yields that

(S(x, t), I(x, t)) → (S̃, 0) in
(
C2(Ω)

)2
as t→ ∞,

that is, (S̃, 0) attracts all solutions of (1.3).
We next prove (ii). Define

W (t) =
1

2

∫
Ω

[(
S − Ŝ

)
+
(
I − Î

)]2
dx +

μ+ 1

β

∫
Ω

(
I − Î − Î ln

I

Î

)
dx ≥ 0 ∀t > 0.

By straightforward computations, we have

W ′(t) =
∫
Ω

[(
S − Ŝ

)
+
(
I − Î

)]
(St + It)dx +

μ+ 1

β

∫
Ω

(
1− Î

I

)
Itdx

=

∫
Ω

[(
S − Ŝ

)
+
(
I − Î

)]
(dΔS + Λ− S − μI + dΔI)dx

+
μ+ 1

β

∫
Ω

(
1− Î

I

)
(dΔI + βSI − γI − μI)dx

= −d
∫
Ω

|∇(S + I)|2dx− μ+ 1

β
dÎ

∫
Ω

|∇I|2
I2

dx+
μ+ 1

β

∫
Ω

(I − Î)(βS − βŜ)dx

+

∫
Ω

[
(S − Ŝ) + (I − Î)

] (
Ŝ + μÎ − S − μI

)
dx

≤ −
∫
Ω

(S − Ŝ)2dx− μ

∫
Ω

(I − Î)2dx ≤ 0,

where we have used the fact that Λ = Ŝ + μÎ and γ + μ = βŜ.
In Lemma 2.1, let

φ(t) =W (t), ψ(t) =

∫
Ω

(S − Ŝ)2dx+ μ

∫
Ω

(I − Î)2dx ∀t > 0.

Then arguing similarly as before, we eventually conclude that

(S(x, t), I(x, t)) → (Ŝ, Î) in
(
C2(Ω)

)2
as t→ ∞.

The proof is complete.

The above theorem tells us that system (1.3) is uniformly persistent in a homo-
geneous environment provided R0 > 1, at least in the equal diffusion rate case.

Remark 2.1. For general positive functions Λ, β, γ, μ and constants dS , dI > 0,
we suspect that (1.3) has a unique EE which is globally attractive if R0 > 1, and the
DFE is globally attractive if R0 ≤ 1. However the justification of this suspicion is
highly nontrivial and has to be left open in the current paper.
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2138 HUICONG LI, RUI PENG, AND ZHI-AN WANG

3. Asymptotic profile of EE. In this section, we are concerned with the
asymptotic behavior of EE of (1.3), which is a positive solution to the elliptic system

(3.1)

⎧⎨
⎩

−dSΔS = Λ(x)− S − β(x)SI + γ(x)I, x ∈ Ω,
−dIΔI = β(x)SI − [γ(x) + μ(x)]I, x ∈ Ω,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω

as one of the diffusion rates dS , dI goes to zero.

3.1. The case dS → 0. Using a singular perturbation argument, one can easily
show that S̃, being the unique positive solution of (2.6), converges uniformly to Λ as
dS → 0 (see [48, Lemma 3.2]). Therefore, according to the continuity of eigenvalues
with respect to the potential function, we see that the principal eigenvalue λ∗ of (2.8)
converges to the principal eigenvalue of the following eigenvalue problem

(3.2) dIΔu+ (βΛ − γ − μ)u+ λu = 0, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω,

which is denoted by λ0. To ensure the existence of EE for all small dS , one has to
assume λ0 < 0.

Now we are ready to establish the main result of this subsection.

Theorem 3.1. Assume that λ0 < 0. Fix dI > 0, and let dS → 0, then every
positive solution (S, I) of (3.1) satisfies (up to a subsequence of dS → 0)

(S, I) → (S, I) uniformly on Ω,

where S(x) = Λ(x)+γI(x)
1+βI(x) and I is a positive solution to

(3.3) − dIΔI = β(x)SI − (γ(x) + μ(x))I, x ∈ Ω;
∂I

∂ν
= 0, x ∈ ∂Ω.

Proof. As was mentioned before, (3.1) has at least one EE for all small dS > 0
when λ0 < 0. In the following, we divide our argument into three steps for sake of
clarity.

Step 1: A priori bounds for S and I. Assume S(x0) = maxx∈Ω S(x). We apply
the maximum principle [40, Proposition 2.2] to the first equation of (3.1) to derive
Λ(x0)− S(x0)− β(x0)S(x0)I(x0) + γ(x0)I(x0) ≥ 0 or

(3.4) Λ∗ ≥ Λ(x0) ≥ S(x0) + I(x0) (β(x0)S(x0)− γ(x0)) .

If β(x0)S(x0) − γ(x0) ≤ 0, then maxΩ S = S(x0) ≤ γ(x0)/β(x0) ≤ ‖γ/β‖L∞(Ω). If
β(x0)S(x0) − γ(x0) > 0, it follows from (3.4) that maxΩ S = S(x0) ≤ Λ∗. Thus, for
any dS , dI > 0, we have

(3.5) max
Ω

S ≤ max

{
Λ∗,

∥∥∥∥γβ
∥∥∥∥
L∞(Ω)

}
.

On the other hand, set S(x1) = minx∈Ω S(x). Then an application of the maxi-
mum principle [40, Proposition 2.2] implies that Λ(x1)− S(x1)− β(x1)S(x1)I(x1) +
γ(x1)I(x1) ≤ 0, equivalently,

Λ(x1) + γ(x1)I(x1)

1 + β(x1)I(x1)
≤ S(x1).
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ON A DIFFUSIVE SIS EPIDEMIC MODEL 2139

Obviously, there exists a positive constant c∗, independent of dS , dI > 0, such that

c∗ ≤ Λ(x1) + γ(x1)I(x1)

1 + β(x1)I(x1)
.

Hence, for any dS , dI > 0, it holds

(3.6) c∗ ≤ S(x) ∀x ∈ Ω.

Integrating both PDEs of (3.1) over Ω yields∫
Ω

{Λ(x) − S − β(x)SI + γ(x)I} dx = 0,

∫
Ω

{β(x)SI − [γ(x) + μ(x)]I} dx = 0,

from which it immediately follows that

(3.7) μ∗
∫
Ω

Idx ≤
∫
Ω

μIdx+

∫
Ω

Sdx =

∫
Ω

Λdx ≤ |Ω|Λ∗

and

(3.8) β∗
∫
Ω

SIdx ≤
∫
Ω

βSIdx ≤ (γ∗ + μ∗)
∫
Ω

Idx ≤ |Ω|Λ∗(γ∗ + μ∗)
μ∗

.

We now write the I-equation as

(3.9) −ΔI =
1

dI
[βS − (γ + μ)] I, x ∈ Ω;

∂I

∂ν
= 0, x ∈ ∂Ω.

According to the Harnack-type inequality (see, e.g., [37] or [48, Lemma 2.2]), (3.5)
and (3.7), we are led to

(3.10) max
Ω

I ≤ Cmin
Ω
I ≤ C

1

|Ω|
∫
Ω

Idx ≤ C.

Hereafter, C represents a positive constant independent of small dS > 0 which may
vary from place to place.

Step 2: Convergence of I. Recall that I satisfies (3.9). By (3.5) and (3.10), we
have ∥∥∥∥ 1

dI
[βS − (γ + μ)] I

∥∥∥∥
Lp(Ω)

≤ C ∀ p > 1.

From the standard Lp-estimate for elliptic equations (see, e.g., [21]), it follows that
‖I‖W 2,p(Ω) ≤ C for any given p > 1. Taking p to be sufficiently large, we see from

the Sobolev embedding that ‖I‖C1+α(Ω) ≤ C for some 0 < α < 1. As a result, there
exists a subsequence of dS → 0, say dn := dS,n, satisfying dn → 0 as n → ∞, and a
corresponding positive solution (Sn, In) of (3.1) with dS = dn, such that

(3.11) In → I uniformly on Ω as n→ ∞,

where 0 ≤ I ∈ C1(Ω). In view of (3.10),

(3.12) either I ≡ 0 on Ω or I > 0 on Ω.
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2140 HUICONG LI, RUI PENG, AND ZHI-AN WANG

Suppose the former holds in (3.12), that is,

(3.13) In → 0 uniformly on Ω as n→ ∞.

Then for sufficiently small ε > 0, we have 0 ≤ In(x) ≤ ε ∀x ∈ Ω for all large n. This
fact, together with the first equation of (3.1), implies that for all large n, Sn satisfies

−dnΔSn ≤ Λ− Sn + γ∗ε, x ∈ Ω;
∂Sn
∂ν

= 0, x ∈ ∂Ω

and

−dnΔSn ≥ Λ− Sn − β∗εSn, x ∈ Ω;
∂Sn
∂ν

= 0, x ∈ ∂Ω.

We consider the following two auxiliary problems:

(3.14) − dnΔu = Λ− u+ γ∗ε, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω,

and

(3.15) − dnΔv = Λ− v − β∗εv, x ∈ Ω;
∂v

∂ν
= 0, x ∈ ∂Ω.

It is clear that systems (3.14) and (3.15) admit a unique positive solution, denoted
by un and vn, respectively. A simple subsupsolution argument, combined with the
uniqueness, guarantees that vn ≤ Sn ≤ un on Ω for all large n. Using a singular
perturbation argument as in [17, Lemma 2.4], it can be shown that

un → Λ + γ∗ε, vn → Λ

1 + β∗ε
uniformly on Ω as n→ ∞.

Sending n→ ∞, we find

Λ(x)

1 + β∗ε
≤ lim inf

n→∞ Sn(x) ≤ lim sup
n→∞

Sn(x) ≤ Λ(x) + γ∗ε.

Thanks to the arbitrariness of small ε > 0, we obtain that

(3.16) Sn → Λ uniformly on Ω as n→ ∞.

Observe that In fulfills

(3.17) − dIΔIn = β(x)SnIn − (γ + μ)In, x ∈ Ω;
∂In
∂ν

= 0, x ∈ ∂Ω.

Define Ĩn := In
‖In‖L∞(Ω)

. Then ‖Ĩn‖L∞(Ω) = 1 for all n ≥ 1, and Ĩn solves

(3.18) − dIΔĨn = [β(x)Sn − (γ + μ)] Ĩn, x ∈ Ω;
∂Ĩn
∂ν

= 0, x ∈ ∂Ω.

As before, through a standard compactness argument for elliptic equations, after
passing to a further subsequence, if necessary, we may assume that

Ĩn → Ĩ in C1(Ω) as n→ ∞,
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where 0 ≤ Ĩ ∈ C1(Ω) with ‖Ĩ‖L∞(Ω) = 1. By (3.16) and (3.18), Ĩ satisfies

(3.19) − dIΔĨ = [βΛ− (γ + μ)] Ĩ , x ∈ Ω;
∂Ĩ

∂ν
= 0, x ∈ ∂Ω.

The Harnack-type inequality (see, [37] or [48, Lemma 2.2]) applied to (3.19) yields Ĩ >
0 on Ω. However, the positiveness of Ĩ indicates that the principal eigenvalue λ0 of the
eigenvalue problem (3.2) must be zero (with Ĩ being a corresponding eigenfunction),
contradicting our assumption that λ0 < 0. Thus, (3.13) cannot occur, and we must
have I > 0 on Ω. That is,

(3.20) In → I > 0 uniformly on Ω as n→ ∞.

Step 3: Convergence of S. Notice that Sn solves

(3.21) − dnΔSn = Λ− Sn − βSnIn + γIn, x ∈ Ω;
∂Sn
∂ν

= 0, x ∈ ∂Ω.

In view of (3.20), we see that for any small ε > 0, it holds that

(3.22) 0 < I(x)− ε ≤ In(x) ≤ I(x) + ε ∀x ∈ Ω

for all large n. Thus, for all sufficiently large n, we have

Λ−Sn−βSn(I+ε)+γ(I−ε) ≤ Λ−Sn−βSnIn+γIn ≤ Λ−Sn−βSn(I−ε)+γ(I+ε).

Given large n, we consider the following auxiliary problem

(3.23) − dnΔw = Λ− w − βw(I + ε) + γ(I − ε), x ∈ Ω;
∂w

∂ν
= 0, x ∈ ∂Ω.

It is clear that (3.23) admits a unique positive solution, denoted by wn. By similar
arguments to those in the proof of [17, Lemma 2.4]), we notice that

wn → Λ + γ(I − ε)

1 + β(I + ε)
uniformly on Ω as n→ ∞.

Since Sn is an upper solution of (3.23), it then follows that

(3.24) lim inf
n→∞ Sn(x) ≥ lim

n→∞wn(x) =
Λ(x) + γ(x)(I(x)− ε)

1 + β(x)(I(x) + ε)
uniformly on Ω.

Similarly, one can further show that

(3.25) lim sup
n→∞

Sn(x) ≤ Λ(x) + γ(x)(I(x) + ε)

1 + β(x)(I(x)− ε)
uniformly on Ω.

In view of (3.24) and (3.25), combined with the arbitrariness of small ε > 0, we have

lim
n→∞Sn(x) = S(x) :=

Λ(x) + γ(x)I(x)

1 + β(x)I(x)
uniformly on Ω.

Due to (3.17), it can be easily seen that I satisfies (3.3). The proof is complete.
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2142 HUICONG LI, RUI PENG, AND ZHI-AN WANG

3.2. The case dI → 0. This subsection is devoted to the investigation of the
asymptotic behavior of positive solutions of (3.1) with dS > 0 being fixed and dI → 0.
Because of mathematical difficulty, we can only deal with one space dimension case,
that is, the habitat of Ω is an interval. Without loss of generality, we take Ω = (0, 1).

In light of 2.2(a) and 2.4, we assume that {β(x)S̃(x) > γ(x) + μ(x) : x ∈ [0, 1]}
is nonempty so that R0 > 1 and thus (3.1) admits positive solutions for all small
dI > 0. Our main result reads as follows.

Theorem 3.2. Assume that the set {x ∈ [0, 1] : β(x)S̃(x) > γ(x)+μ(x)} is non-
empty. Fix dS > 0 and let dI → 0, then every positive solution (S, I) of (3.1) satisfies
(up to a subsequence of dI) that S → S0 uniformly on [0, 1], where S0 ∈ C([0, 1]) and

S0 > 0 on [0, 1], and
∫ 1

0 Idx→ I0 for some positive constant I0.

Proof. Notice that (3.5), (3.6), (3.7), and (3.8) remain true in the current situa-
tion. Since the spatial domain is one dimensional and S satisfies

(3.26) − dSS
′′(x) + S(x) = Λ− βS(x)I(x) + γI(x), x ∈ (0, 1); S′(0) = S′(1) = 0,

we deduce from the elliptic L1-theory in [9] that, for any p > 1, ‖S‖W 1,p(0,1) ≤ C,
where C is a positive constant independent of dI but is allowed to vary below. Then for
sufficiently large p, the Sobolev embedding theorem guarantees that ‖S‖Cα([0,1]) ≤ C
for some α ∈ (0, 1). Moreover, up to a sequence of dI → 0, say dn := dI,n → 0 with
dn → 0 as n→ ∞, the corresponding positive solution sequence (Sn, In) of (3.1) with
dI = dn satisfies Sn → S0 > 0 in C([0, 1]) as n→ ∞ due to (3.6).

In light of (3.7), by passing a subsequence of dn if necessary, we may assume

that
∫ 1

0
Indx → I0 as n → ∞ for some nonnegative constant I0. To show I0 > 0, we

proceed indirectly and suppose that I0 = 0. By integrating (3.26) from 0 to x, we
have

S′
n(x) = − 1

dS

∫ x

0

{Λ(y)− Sn(y)− β(y)Sn(y)In(y) + γ(y)In(y)}dy ∀x ∈ [0, 1].

By sending n→ ∞ and using
∫ 1

0
Indx→ 0, it then follows

S′
n(x) → − 1

dS

∫ x

0

[Λ(y)− S0(y)]dy uniformly on [0, 1].

As Sn(x)− Sn(0) =
∫ x
0
S′
n(y)dy for any n ≥ 1, we find that S0 solves

S0(x) − S0(0) = − 1

dS

∫ x

0

{∫ y

0

[Λ(z)− S0(z)]dz

}
dy,

which in turn implies that

(3.27) − dSS
′′
0 (x) = Λ(x)− S0(x), x ∈ (0, 1); S′

0(0) = 0.

When integrating (3.26) from x to 1, one can use an analysis similar to the above to
know that S′

0(1) = 0. Therefore, this and (3.27) give that S0 = S̃, that is, Sn → S̃
uniformly on [0, 1] as n→ ∞.

On the other hand, observe that

λ1(dn, γ(x) + μ(x)− β(x)Sn(x)) = 0 ∀n ≥ 1,
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where λ1(dn, γ(x) + μ(x) − β(x)Sn(x)) stands for the principal eigenvalue of the fol-
lowing eigenvalue problem:

dnΔu+ [β(x)Sn(x)− γ(x)− μ(x)] u+ λu = 0, x ∈ (0, 1); u′(0) = u′(1) = 0.

Combined with the fact that the principal eigenvalue continuously depends on the
parameters, the argument as in [4, Lemma 2.3] yields

0 = λ1(dn, γ(x) + μ(x) − β(x)Sn(x)) → min
x∈[0,1]

{γ(x) + μ(x) − β(x)S̃(x)} as n→ ∞,

contradicting our assumption minx∈[0,1]{γ(x) + μ(x) − β(x)S̃(x)} < 0. Thus, it is
necessary that I0 > 0. The proof is complete.

4. Summary and discussion.

4.1. Summary of analytical results. In this paper, we are concerned with
the SIS epidemic model (1.3) with a mass action infection mechanism and linear
source. To study the parabolic problem (1.3), our first step is to establish the global
existence and uniform boundedness of solutions. Then a basic reproduction number
R0 is defined via a variational characterization, which determines the local stability of
the unique DFE. When the environment is spatially homogeneous and the diffusion
rates of the susceptible and infected are equal, by constructing suitable Lyapunov
functionals, we further prove the global attractivity of the DFE for R0 ≤ 1 and
that of the EE for R0 > 1. We are mainly interested in the asymptotic behavior of
positive steady states (S, I) of problem (1.3), which exist provided R0 > 1 in a general
heterogeneous environment, as the diffusion rates of the susceptible or the infected
tend to zero. For fixed dI > 0, Theorem 3.1 shows that the limiting functions of
both S and I as dS → 0, are positive throughout the habitat. In the one dimensional
interval, say [0, 1], for fixed dS > 0, Theorem 3.2 indicates that the limiting function
of S as dI → 0 is positive in [0, 1] while the total infected population tends to a
positive constant.

Since there are four principle models (1.2), (1.3), (1.4), and (1.5) to model the
SIS epidemic dynamics based on different infection mechanisms and modeling ideas,
it will be helpful to summarize their results and make a comparison so as to under-
stand the influence of the factors such as infection mechanism, movement rate, and
source term on the eradication of epidemics. Numerical simulations will be performed
to validate theoretical results and to predict possible outcomes for those cases that
remain unknown analytically. Then we discuss the implication of these theoretical
and numerical findings from the disease control viewpoint. Since the results of the
model (1.3) have been summarized above, below we shall briefly recall the results for
the SIS models (1.2), (1.4), and (1.5) obtained in the literature.

4.1.1. Results on (1.4). The steady state problem corresponding to (1.4) sat-
isfies

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dSΔS = −β(x) SI
S+I + γ(x)I, x ∈ Ω,

−dIΔI = β(x) SI
S+I − γ(x)I, x ∈ Ω,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω,∫
Ω[S(x) + I(x)]dx = N.

Hereafter, N is a fixed positive constant, representing the total number of the suscep-
tible and infected populations. That is N =

∫
Ω(S(x) + I(x))dx is a constant.
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As in [4, 49], we introduce the notion of low/high/moderate risk site/domain. We
say that x is a low (or high or moderate)-risk site if the local disease transmission rate
β(x) is lower than (or higher than or equal to) the local disease recovery rate γ(x).
Let

H− = {x ∈ Ω : β(x) < γ(x)} and H+ = {x ∈ Ω : β(x) > γ(x)}
denote the set of low-risk sites and high-risk sites, respectively.

Assume that both H− and H+ are nonempty. The authors in [4] defined the
basic reproduction number

R̂0 = sup
0�=ϕ∈H1(Ω)

∫
Ω
βϕ2dx∫

Ω
(dI |∇ϕ|2 + γϕ2)dx

and showed that the unique DFE (N/|Ω|, 0) is globally stable if R̂0 < 1, while it is
unstable and a unique EE exists if R̂0 > 1. Indeed, following the argument similar to
[12], one can show that the uniform persistence property holds once R̂0 > 1.

The asymptotic profile of the EE was also investigated in [4] when the diffusivity
of the susceptible individuals tends to zero. In particular, the result of [4] shows that
as dS → 0, the unique positive solution (S, I) (which exists if R̂0 > 1) of (4.1) fulfills
(S, I) → (Ŝ, 0) uniformly on Ω, where Ŝ satisfies a free boundary problem, is positive
at all low-risk sites, and is also positive at some (but not all) high-risk sites. This
result indicates that it may be possible to entirely eliminate the infectious disease by
restricting the motility rate of the susceptible to be small.

Further asymptotics of the EE in other cases were obtained by Peng [46] wherein
it was shown that if dI → 0 and d := dI/dS → d0 ∈ [0,∞], then the unique positive
solution (S, I) of (4.1) satisfies the following:

• If d0 = 0, then

S → N∫
Ω [1 + (β − γ)+γ−1]

and I → N(β − γ)+γ
−1∫

Ω [1 + (β − γ)+γ−1]

uniformly on Ω. In what follows, (s)+ = max{s, 0}.
• If d0 ∈ (0,∞), then

S → Nd0 [1−A(d0;x)]∫
Ω [A(d0;x) + d0(1 −A(d0;x))]

, I → NA(d0;x)∫
Ω [A(d0;x) + d0(1 −A(d0;x))]

uniformly on Ω, where A(d0;x) =
d0(β−γ)+
d0(β−γ)+γ .

• If d0 = ∞, then I → 0 uniformly on Ω, and S → N [1−A(∞;x)]∫
Ω
[1−A(∞;x)]

uniformly on

any compact subset of H− and H+, respectively, where

A(∞;x) =

{
0 if x ∈ H−,
1 if x ∈ H+.

Clearly the limiting function of I when dI → 0 and d → d0 ∈ [0,∞) is positive on
H+ while zero on H−. In particular, if dI → 0 and dS > 0 is fixed, we are in the first
scenario above. Thus, for model (1.4), we may conclude that the optimal strategy
of eliminating the infectious disease is to restrict the motility rate of the susceptible
population, while restricting the motility of infected population can only eradicate
the disease in low-risk and moderate-risk sites. Of course, another strategy is to set
dI → 0 and dS → 0 while the susceptible moves relatively slower than the infected.
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4.1.2. Result on (1.5). Now we consider the scenario that the susceptible in-
dividuals are allowed to have birth and death, and look at the SIS reaction-diffusion
system (1.5) with a linear external source. One of the main results in [36] states that
(1.5) admits at least one EE (S, I) if R̂0 > 1, which is in fact a positive steady state
of (1.5) satisfying

(4.2)

⎧⎪⎨
⎪⎩

−dSΔS = Λ(x) − S − β(x) SI
S+I + γ(x)I, x ∈ Ω,

−dIΔI = β(x) SI
S+I − γ(x)I, x ∈ Ω,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω.

Moreover, it was proved in [36] that
• as dS → 0, both limiting functions of S and I are inhomogeneous and positive
on the entire habitat Ω;

• as dI → 0, the limiting function of S is positive on the entire habitat Ω and
that of I is positive only on high-risk sites.

4.1.3. Result on (1.2). In [14, 57, 56], the authors treated the SIS system (1.2)
with mass action and its steady state problem:

(4.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dSΔS = −β(x)SI + γ(x)I, x ∈ Ω,

−dIΔI = β(x)SI − γ(x)I, x ∈ Ω,
∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω,∫
Ω[S(x) + I(x)]dx = N.

For the mass action system (1.2), the basic reproduction number depends on the total
population size N and is defined as

R̃0 = sup
0�=ϕ∈H1(Ω)

(N/|Ω|) ∫Ω βϕ2∫
Ω
(dI |∇ϕ|2 + γϕ2)

=
N

|Ω| R̂0.

It is shown that a positive solution (S, I) of (4.3) exists whenever R̃0 > 1. Indeed,
following an argument similar to [12], one can show the uniform persistence property

holds once R̃0 > 1. Moreover, one can show that R̃0 > 1 when N >
∫
Ω
γ(x)
β(x)dx, and

R̃0 > 1 is also possible when N ≤ ∫Ω γ(x)
β(x)dx depending on the parameters β, γ, and

dI . Furthermore, for fixed dI > 0, the following asymptotics as dS → 0 have been
shown in [56, 57]:

• If either N − ∫Ω γ
β >

1
4

∫
Ω

|∇β|2
β3 or N

|Ω| >
γ
β on Ω, then

(S, I) →
(
γ(x)

β(x)
,
N

|Ω| −
1

|Ω|
∫
Ω

γ(x)

β(x)
dx

)
uniformly on Ω.

• If N ≤ ∫
Ω
γ(x)
β(x)dx, then (S, I) → (S∗, 0) uniformly on Ω, where S∗ is a positive

function.
Under the assumption that Ω+ =

{
x ∈ Ω : N

|Ω|β(x)− γ(x) > 0
}
is nonempty, Wu and

Zou [57] further proved the following:
• If dI → 0 and dI/dS → d ∈ (0,∞), then (S, I) → (S∗∗, I∗∗) uniformly on Ω
and I∗∗ is the unique nonnegative solution of{

N

|Ω|β − γ − (1− d)β

|Ω|
∫
Ω

I∗∗

}
+

− dβI∗∗ = 0,
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and

S∗∗ =
N

|Ω| −
(1− d)

|Ω|
∫
Ω

I∗∗ − dI∗∗.

Therefore, the distribution of I∗∗ depends critically on the magnitude of d. In fact, if
d ∈ (0, 1), then {x ∈ Ω : I∗∗(x) > 0} is a proper subset of Ω+; if d ∈ (1,∞), then Ω+

is a subset of {x ∈ Ω : I∗∗(x) > 0}; if d = 1, then

S∗∗ =
N

|Ω| −
(
N

|Ω| −
γ

β

)
+

and I∗∗ =

(
N

|Ω| −
γ

β

)
+

.

On the other hand, in the case of a one dimensional domain, say Ω = (0, 1), if
γ < Nβ on [0, 1], then for fixed dS > 0, as dI → 0, the authors of [56] proved that any

EE (S, I) satisfies S → Ŝ uniformly on [0, 1] with a positive function Ŝ and
∫ 1

0
Idx

converges to a positive constant. Biologically, this implies that the infectious disease
still persists when the movement of the infected population is small.

4.2. Discussion and conclusions.

4.2.1. Comparison of the basic reproduction number. For readability,
hereafter we call models (1.2), (1.3), (1.4), and (1.5) and their corresponding EE
problem (when no confusion is caused) as MO, MW, SO, and SW, respectively, in
order that each label of models can bear a meaning (see Table 1). For convenience,
we also list the basic reproduction number for each of the models MO, MW, SO, SW
in Table 1, where three observations are worth mentioning as follows.

(a) MO is the only one whose basic reproduction number depends on N via
N/|Ω| which measures the total population per unit space. This implies that the total
population plays a role in the eradication of diseases only for MO, and also explains
why a disease is easier to become endemic in a more crowded population than a sparse
population as mentioned in [57]. (b) If the birth-death effect is considered, then MO
becomes MW whose basic reproduction number no longer depends on total population
N . This indicates that the birth and death effects could be an important factor for
the eradication of diseases in SIS models with a mass-action infection mechanism.
However, the birth-death effect is not important for models SO and SW anymore,
since both have the same basic reproduction number. (c) MW is the only model
whose basic reproduction number depends (implicitly) on the diffusivity dS of the
susceptibles.

Table 1

Basic reproduction numbers for SIS epidemic models, where S̃ in the basic reproduction number
for MW is the unique solution of (2.6).

Model Infection mechanisms Basic reproduction number

MO=(1.2) Mass-action incidence without
birth-death

R̃0 = N
|Ω| sup0�=ϕ∈H1(Ω)

∫
Ω βϕ2

∫
Ω(dI |∇ϕ|2+γϕ2)

MW=(1.3) Mass-action incidence with
birth-death

R0 = sup0�=ϕ∈H1(Ω)

∫
Ω βS̃ϕ2

∫
Ω(dI |∇ϕ|2+(γ+μ)ϕ2)

SO= (1.4) Standard incidence without
birth-death

R̂0 = sup0�=ϕ∈H1(Ω)

∫
Ω βϕ2

∫
Ω(dI |∇ϕ|2+γϕ2)

SW=(1.5) Standard incidence with birth-
death

R̂0 = sup0�=ϕ∈H1(Ω)

∫
Ω βϕ2

∫
Ω(dI |∇ϕ|2+γϕ2)
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Table 2

Asymptotic behavior of (S(x), I(x)) as dS → 0 or dI → 0.

Model Limit of (S(x), I(x)) as dS → 0 Limit of (S(x), I(x)) as dI → 0

MO S∗(x) > 0 and I∗(x) ≡ 0 (or > 0) for small (or
large) N

S∗(x) > 0 and
∫
Ω
I∗(x) > 0

MW S∗(x) > 0 and I∗(x) > 0 S∗(x) > 0 and
∫
Ω
I∗(x) > 0

SO S∗(x) ≥ 0 and I∗(x) ≡ 0 S∗(x) > 0 and I∗(x) ≡ 0 iff x ∈ H−

SW S∗(x) > 0 and I∗(x) > 0 S∗(x) > 0 and I∗(x) ≡ 0 iff x ∈ H−

Table 3

Asymptotic behavior of (S(x), I(x)) as both dS → 0 and dI → 0.

Model Limit of (S(x), I(x)) as dS → 0 and dI → 0
MO For the case dI/dS → d ∈ (0,∞), S∗(x) > 0, and

I∗(x) ≥ 0 but I∗(x) �≡ 0
MW Unknown

SO S∗(x) > 0 and I∗(x) ≡ 0 iff x ∈ H− when dI/dS →
[0,∞), S∗(x) ≥ 0, and I∗(x) ≡ 0 when dI/dS → ∞

SW Unknown
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Fig. 1. Numerical simulations of the profile of (S(x), I(x)) as dS → 0 for systems MO, MW,
SO, and SW, where parameters are chosen as dS = 10−6, dI = 1, Λ(x) = 3, μ(x) = 0.5 + x, and
β(x), and γ(x) are as plotted in Figure 4(a).

4.2.2. Asymptotic behavior of EE. From the disease control point of view,
one is mainly concerned with whether the infectious disease can be eradicated (namely,
whether I(x) can go extinct either throughout the entire domain Ω or partially). One
of the strategies as recalled above is to control the motility of susceptible and/or
infected populations. Below in Tables 2 and 3 we capsulize the asymptotic behavior
of EE (S(x), I(x)) as dS → 0 or dI → 0 or both. Furthermore we use numerical
simulations to illustrate known results and predict possible outcomes for unknown
cases. In the following, we shall use (S∗, I∗) to represent the asymptotic behavior
of EE for all models for simplicity. We remark that the parameter values chosen
in all simulations are sufficient to guarantee the existence of EE in models under
consideration. For example, in Figure 1, for any dS > 0 and dI > 0, R̂0 = R̃0 >∫ 1

0
β(x)dx/

∫ 1

0
γ(x)dx = 1.5/1.2 > 1 and R0 >

∫ 1

0
β(x)S̃(x)dx/

∫ 1

0
[γ(x) + μ(x)]dx =

4.5/2.2 > 1.
When the movement rate dS of the susceptibles tends to zero, the asymptotics

of solutions have been well understood to a large extent as seen in Table 2, and the
asymptotic profiles of EE illustrated in Figure 1 are consistent with analytical results.
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Fig. 2. Numerical simulations of the profile of (S(x), I(x)) as dI → 0 for systems MO, MW,
SO, and SW, where dS = 1, dI = 10−5, and other parameters are chosen the same as those in
Figure 1.
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Fig. 3. Numerical simulations of the profile of (S(x), I(x)) as dS , dI → 0 for systems MO,
MW, SO, and SW, where dS = dI = 10−5 and other parameters are chosen the same as those in
Figure 1.

It is worth mentioning that for MO, since the parameter values are taken so that

1 = N <
∫ 1

0
γ(x)
β(x)dx, we have the convergence I → 0 as dS → 0 according to the

results of [57] which our numerical simulations fit well.
With the same parameter values as in Figure 1, we illustrate the asymptotic

profiles of EE as dI → 0 in Figure 2. For the two standard incidence infection models
SO and SW, our simulations show that the limiting profile of I for both models is
positive only at high-risk sites which match well with the analytical results. The
limiting profile of S for model SW is constant because of the special choice of Λ (see
[36, Theorem 5.2]). For models MW and MO, the exact limiting behavior of I(x)
remains open except knowing that its total population is positive (see Table 2). Our
numerical simulations in Figure 2 demonstrate that the infectious disease tends to
aggregate in a narrow region and is eradicated outside this region, where model MO
has a narrower aggregation region than model MW. We remark that in our simulation
the condition γ < Nβ required in [56] is not satisfied on [0, 1], and we observe that S
tends to a positive constant though its rigorous proof still remains open.

The asymptotic behavior of EE as dS → 0 and dI → 0 is only partially understood
(see results in Table 3). The numerical simulations shown in Figure 3 verify the
known results on models SO and MO where the asymptotic profiles of (S, I) coincide
because of our choice of the parameter values. However, the asymptotic behavior of
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Fig. 4. (a) Graphs of β(x) = 1.5 + sin(2πx), γ(x) = 1.2 + cos(2πx) for x ∈ [0, 1], and the set
H− and H+ (reproduction of Figure 1 in [4]); (b) graphs of β(x) and γ(x) given by (4.4) with a
moderate-risk region in [0, 1].

EE as dS → 0 and dI → 0 for models MW and SW entirely remains open and our
numerical simulations have the following predictions. First, for MW, the simulation
implies that S∗(x) > 0 and I∗(x) ≥ 0 but I∗(x) 	≡ 0 as dS → 0 and dI → 0
with dI/dS → d ∈ (0,∞), which is analogous to the asymptotic behavior of EE
for MO. In other words, the birth-death effect seems not to be important for SIS
models with mass-action infection mechanisms if both diffusion rates of the susceptible
and infectious are small with the same order. Second, for model SW, the numerical
simulation shows that S∗(x) is a positive constant and I∗(x) ≥ 0, where I∗(x) ≡ 0
if and only if x ∈ H−. These simulations suggest possible asymptotic behavior of
models MW and SW as dS → 0 and dI → 0 for further analytical pursuits.

Finally, to see whether the inclusion of a moderate-risk region will affect the
asymptotic profiles of EE as considered in [49], we choose appropriate functions for
β(x) and γ(x) as

(4.4) β(x) =

{
1, x ∈ [0, 0.75],

2x− 0.5, x ∈ [0.75, 1],
γ(x) =

{
−2x+ 1.5, x ∈ [0, 0.25],

1, x ∈ [0.25, 1],

such that β(x) = γ(x) on the interval [0.25, 0.75] (moderate-risk region) (see a plot
in Figure 4(b)), and perform numerical simulations with small dI . For model MW,
Figure 5(a) indicates that the infected population tends to aggregate on two narrow
regions instead of one, compared to the case without a moderate-risk region as il-
lustrated in Figure 2. Moreover, the simulation in Figure 5(b) illustrates that the
limiting profile of I of SO, SW, and MO is positive only at high-risk sites. This is in
sharp contrast with Figure 2 where there is no moderate-risk region and the limiting
profile of I for model MO is positive only on a narrow part within the high-risk region.

4.2.3. Implication on disease control. We now discuss numerous implica-
tions/comments on disease control based on analytical and numerical results summa-
rized in the preceding subsections.

First consider models SO and MO which have conserved total population but are
subject to different infection mechanisms. For model SO with any magnitude of total
population, it is possible to eliminate the disease entirely by restricting dS while the
disease cannot be eradicated on high-risk sites by limiting dI (see Table 2 and Figures
1 and 2). As for model MO, restricting dS can eliminate the disease only if the total
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Fig. 5. Numerical simulations of the asymptotic profile of I(x) as dI → 0 for systems MO,
MW, SO, and SW with a moderate-risk site, where dS = 1, dI = 10−5, Λ(x) = 3, μ(x) = 0.5 + x,
and β(x) and γ(x) are given by (4.4) as plotted in Figure 4(b).

population is small (see Table 2), whereas the infected individuals tend to aggregate
on a narrow region if dI is small by the observation from Figure 2. Thus, if the total
population remains unchanged, we may conclude that the disease described by the
standard incidence infection mechanism modeled by SO is easier to control by limiting
the motility dS of the susceptible population compared to the mass-action infection
mechanism modeled by MO. Nevertheless, the disease subject to mass-action infection
mechanism can be eradicated to a larger extent (region) if the motility dI of infected
individuals is restricted.

Now consider models MW and SW that have the same linear recruitment but
different infection mechanisms. From Table 2 and Figures 2 and 3, we see that the
infectious disease cannot be eliminated at all by restricting dS for either models due
to the source term of susceptible population, while restricting dI can eliminate the
disease partially for both models but the standard incidence infection mechanism
seems to be more efficient than the mass-action one.

Let us also consider the effect of linear recruitment on the same infection mech-
anism, that is, we compare model SO with SW, and MO with MW. Recall that
restricting the motility of the susceptible population (dS is small) yields the extinc-
tion of disease subject to the standard incidence infection mechanism in SO, but this
strategy fails for SW with linear recruitment subject to the same infection mecha-
nism. Similar results hold between models MO and MW, but only with small total
population. When dI is small, the infectious disease modeled by SO and SW is erad-
icated/persistent at the same region but the latter has a larger total mass, whereas
the infectious disease modeled by MW is less condensed compared to its counterpart
MO. Thus, if dS is small, whichever the infection mechanism is, a varying total popu-
lation tends to enhance the persistence of disease, while this enhancement induced by
standard incidence infection mechanics is not as strong as the mass-action one does.
Nevertheless, for small dI , the disease subject to mass-action infection mechanism
modeled by MO and MW seems to be less endemic since the infected population is
more concentrated (see Figure 2).

If the environment is modified to include a moderate-risk region (see Figure 4(b)),
then we see that for small dI , the disease modeled by SO, SW, and MO can be erad-
icated precisely at low-risk and moderate-risk sites (see Figure 5(b)). This exhibits
quite different behavior than that of model MW for which the infected disease may
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also persist in low-risk or moderate-risk sites but can also be eradicated in part of
high-risk sites (see Figure 5(a)). Compared to the profiles shown in Figure 2 for
the case of small dI without a moderate-risk site, from the standing point of disease
control, this essentially implies that at least for model MO it is perhaps not a sound
strategy to create a moderate-risk domain in the environment and restrict the motility
of the infected population at the same time.

We also would like to mention that due to the conservative property of the total
population, the steady state problem of SO can be reduced to a single local elliptic
equation while that of MO can be reduced to a single nonlocal elliptic equation.
Hence, this property makes the corresponding system easier to attack, compared to
the case of varying total population. Moreover, it is exactly because of this property
that one can consider the asymptotic profiles of the positive solution for small dI and
dI/dS → d0 for some d0, as in [46, 57]. This seems to be a rather challenging task for
the steady state of models MW and SW due to lack of appropriate a priori estimates.

Finally, it is perhaps worth mentioning that one can also consider the effects of
the large motility rate of susceptible or infected populations, as in [35, 36, 46]. In
fact, one can easily follow the arguments there and conclude that when the motility
of the susceptible population tends to infinity, the density of the susceptibles becomes
positive and homogeneous and the density of the infected is also positive but inho-
mogeneous throughout the habitat; a similar result holds if the movement rate of
the infected population becomes large. Since these results are essentially the same as
before and they indicate that the large diffusion rate of the susceptibles or infected
does not help to eradicate the disease, we do not present these results in this paper.
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