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MULTISCALE ALGORITHMS AND COMPUTATIONS FOR THE
TIME-DEPENDENT MAXWELL--SCHR\"ODINGER SYSTEM IN

HETEROGENEOUS NANOSTRUCTURES\ast 

CHUPENG MA\dagger , LIQUN CAO\ddagger , AND YANPING LIN\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we discuss the multiscale computations of the time-dependent Maxwell--
Schr\"odinger system with rapidly oscillating discontinuous coefficients. The multiscale asymptotic
method for the system is presented. We propose a novel multiscale asymptotic expansion for the
vector potential to capture the oscillations caused by the quantum current density. To solve the
homogenized Maxwell--Schr\"odinger system, we present an alternating Crank--Nicolson finite element
method. The stability estimates and the solvability of the discrete system are established. An
iteration algorithm together with its convergence analysis is given. Numerical examples are carried
out to demonstrate the efficiency and accuracy of the multiscale algorithms.
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1. Introduction. Most electronic devices and optical devices in the real world
are working under a complex electromagnetic environment. In the study of these de-
vices, researchers in the past usually only considered the impact of the electromagnetic
fields on the devices, i.e., on the behaviors of electrons in these devices. However, as
the size of electronic and optical devices reaches the scale of a few nanometers, quan-
tum effects become important or even dominant, and thus we cannot neglect the back
coupling effects of these nanostructures on the electromagnetic fields [19, 28]. In recent
years, more and more researchers have attempted to model the optical and electrical
properties of nanodevices within the framework of an electromagnetic--quantum me-
chanics coupled model [3, 24, 33]. In particular, the Maxwell--Schr\"odinger system is
widely used since Schr\"odinger's equation and Maxwell's equations are the fundamental
equations of nonrelativistic quantum mechanics and electromagnetics, respectively.

Maxwell's equations in a linear medium can be written as

(1.1)
\nabla \times E+

\partial B

\partial t
= 0, \nabla \cdot B = 0,

\nabla \times (\mu  - 1B) - \epsilon 
\partial E

\partial t
= J, \nabla \cdot (\epsilon E) = \rho ,
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A1092 CHUPENG MA, LIQUN CAO, AND YANPING LIN

where E, B, J, and \rho denote the electric fields, the magnetic fields, the current
density, and the charge density, respectively. \epsilon = (\epsilon ij) and \mu = (\mu ij) are the electric
permittivity and magnetic permeability, respectively.

In general, the electric fields E and the magnetic fields B can be given by the
vector potential A and the scalar potential \phi as follows:

(1.2) E =  - \nabla \phi  - \partial A

\partial t
, B = \nabla \times A.

Using A and \phi , Maxwell's equations are rewritten as

(1.3)
\epsilon 
\partial 2A

\partial t2
+\nabla \times (\mu  - 1\nabla \times A) + \epsilon 

\partial (\nabla \phi )
\partial t

= J,

 - \nabla \cdot (\epsilon \nabla \phi ) - \nabla \cdot 
\biggl( 
\epsilon 
\partial A

\partial t

\biggr) 
= \rho .

In the presence of electromagnetic fields, Schr\"odinger's equation for an electron is
written as [16]

(1.4) i\hbar 
\partial \Psi (x, t)

\partial t
=

\Bigl\{ 1

2m
( - i\hbar \nabla  - qA)2 + q\phi + Vc

\Bigr\} 
\Psi (x, t),

where \hbar is the reduced Planck's constant, \Psi is the wave function, Vc is the confine-
ment potential, m and q respectively denote the effective mass and the charge of the
electron, and A and \phi respectively are the vector potential and the scalar potential
given in (1.3).

The quantum charge and current density of the electron are given as

(1.5) \rho = q| \Psi | 2, J =
q

m
Im

\bigl[ 
\Psi \ast (\hbar \nabla  - iqA)\Psi 

\bigr] 
,

where \Psi \ast denotes the complex conjugate of \Psi . They satisfy the continuity equation

(1.6)
\partial \rho 

\partial t
+\nabla \cdot J = 0.

Combining (1.3)--(1.5), we have the Maxwell--Schr\"odinger coupled system

(1.7)

\left\{                     

i\hbar 
\partial \Psi 

\partial t
=

\Bigl\{ 1

2m
( - i\hbar \nabla  - qA)2 + q\phi + Vc

\Bigr\} 
\Psi in \Omega \times (0, T ),

\epsilon 
\partial 2A

\partial t2
+\nabla \times (\mu  - 1\nabla \times A) + \epsilon 

\partial (\nabla \phi )
\partial t

= Js + J in \Omega \times (0, T ),

 - \nabla \cdot (\epsilon \nabla \phi ) - \nabla \cdot 
\biggl( 
\epsilon 
\partial A

\partial t

\biggr) 
= \rho s + \rho in \Omega \times (0, T ),

\rho = q| \Psi | 2, J =
q

m
Im

\bigl[ 
\Psi \ast (\hbar \nabla  - iqA)\Psi 

\bigr] 
,

where \rho s and Js are respectively the given charge and current sources satisfying a
continuity equation similar to (1.6).

It is important to point out that the equation of Gauss's law in (1.7), i.e.,

(1.8)  - \nabla \cdot (\epsilon \nabla \phi ) - \nabla \cdot 
\biggl( 
\epsilon 
\partial A

\partial t

\biggr) 
= \rho s + \rho ,

is not an independent equation. In fact, it can be derived by taking the divergence
of the second equation of (1.7) and using the continuity equation (1.6) and the con-
sistent initial conditions. Due to this, the Maxwell--Schr\"odinger system (1.7) has an
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intrinsic gauge freedom. If (\Psi ,A, \phi ) satisfies (1.7), then for any smooth function
\chi : \Omega \times (0, T ) \rightarrow \BbbR , (\Psi \prime ,A\prime , \phi \prime ) = (eiq\chi \Psi , A + \nabla \chi , \phi  - \partial \chi 

\partial t ) also satisfies the sys-
tem. To eliminate this gauge freedom, an additional condition for the scalar and
vector potentials, known as gauge choice, is usually imposed on the solutions of the
Maxwell--Schr\"odinger system. The most commonly used gauge choices listed below
are, from left to right, the \itL \ito \itr \ite \itn \itt \itz ,\itC \ito \itu \itl \ito \itm \itb , and \itt \ite \itm \itp \ito \itr \ita \itl gauges,

(1.9) \nabla \cdot (\epsilon A) +
\partial \phi 

\partial t
= 0, \nabla \cdot (\epsilon A) = 0, \phi = 0,

under which (1.8) is respectively transformed as

(1.10)
\partial 2\phi 

\partial t2
 - \nabla \cdot (\epsilon \nabla \phi ) = \rho s + \rho ,  - \nabla \cdot (\epsilon \nabla \phi ) = \rho s + \rho ,  - \nabla \cdot 

\biggl( 
\epsilon 
\partial A

\partial t

\biggr) 
= \rho s + \rho .

The Maxwell--Schr\"odinger system under the Lorentz gauge and the temporal gauge
is a nonlinear hyperbolic system, whereas under the Coulomb gauge it is a nonlinear
hyperbolic-elliptic coupled system. The scalar potential under the temporal gauge
vanishes and (1.8) can be viewed as a constraint of the Maxwell--Schr\"odinger system.

In this paper, we take the temporal gauge and use the atomic units, i.e., \hbar = q = 1.
In view of the heterogeneity of practical nanostructures, we consider the following
Maxwell--Schr\"odinger system with the rapidly oscillating effective mass and magnetic
permeability:
(1.11)\left\{                         

i
\partial \Psi \varepsilon 

\partial t
=  - (\nabla  - i\bfA \varepsilon )

\biggl( 
H

\biggl( 
\bfx 

\varepsilon 

\biggr) 
(\nabla  - i\bfA \varepsilon )

\biggr) 
\Psi \varepsilon +

\biggl( 
Vc

\biggl( 
\bfx 

\varepsilon 

\biggr) 
+ Vxc(\rho 

\varepsilon )

\biggr) 
\Psi \varepsilon in \Omega \times (0, T ),

\epsilon 
\partial 2\bfA \varepsilon 

\partial t2
+\nabla \times 

\biggl( 
B

\biggl( 
\bfx 

\varepsilon 

\biggr) 
\nabla \times \bfA \varepsilon 

\biggr) 
= \bfJ s + \bfJ \varepsilon in \Omega \times (0, T ),

\rho \varepsilon = N | \Psi \varepsilon | 2, \bfJ \varepsilon = 2NH

\biggl( 
\bfx 

\varepsilon 

\biggr) 
Im

\bigl[ 
(\Psi \varepsilon )\ast (\nabla  - i\bfA \varepsilon )\Psi \varepsilon \bigr] ,

\Psi \varepsilon (\bfx , t) = 0, \bfA \varepsilon (\bfx , t)\times \bfn = 0, (\bfx , t) \in \partial \Omega \times (0, T ),

\Psi \varepsilon (\bfx , 0) = \Psi 0(\bfx ), \bfA \varepsilon (\bfx , 0) = \bfA 0(\bfx ), \bfA \varepsilon 
t (\bfx , 0) = \bfA 1(\bfx ) in \Omega ,

where N is the number of the electrons in the conduction band and Vxc(\rho 
\varepsilon ) is the

exchange-correlation potential function. \Omega \subset \BbbR 3 is a bounded Lipschitz polygonal
domain with a periodic microstructure occupied by a heterogeneous quantum device.
Figure 1.1(a) is an illustration of a quantum device with a great number of quantum
dots which are artificial semiconductor nanostructures that confine the motion of
conduction band electrons [14]. \varepsilon > 0 is the relative size of a periodic cell for the
quantum device, i.e., 0 < \varepsilon = lp/L < 1, where lp and L are the sizes of a periodic
cell and the device, respectively. H(\bfx \varepsilon ) = (hij(

\bfx 
\varepsilon ))3\times 3 and B(\bfx \varepsilon ) = (bij(

\bfx 
\varepsilon ))3\times 3 are

the inverses of the effective mass and the magnetic permeability of the material,
respectively.

\itR \ite \itm \ita \itr \itk 1.1. In this paper, we only consider the heterogeneity in the effective
mass and magnetic permeability of the material and assume that the electric permit-
tivity is constant in the quantum device (for convenience, we let \epsilon = 1 in the rest of
the paper). In fact, if the heterogeneity in the electric permittivity and magnetic per-
meability are both considered, it seems difficult to define the first-order cell function
and the homogenized equations for Maxwell's equations in (1.11). The Maxwell--
Schr\"odinger system with the rapidly oscillating electric permittivity will be investi-
gated in our future work.
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(a) (b)

Fig. 1.1. (a) A semiconductor device \Omega with a great number of quantum dots; (b) the periodic
cell Q.

\itR \ite \itm \ita \itr \itk 1.2. We impose the homogeneous Dirichlet boundary condition \Psi \varepsilon = 0
on \partial \Omega for the wave function. Physically, it implies that the electrons are confined
within the quantum device. For the vector potential, we impose the perfect electric
conductor boundary conditions A \times n = 0 on \partial \Omega . For a detailed discussion of the
boundary conditions for the vector and scalar potentials, we refer the reader to [9].

In this paper, the Einstein summation convention is used: summation is taken
over repeated indices. Let \xi = \varepsilon  - 1x. Using some notation given in section 3, we make
the following assumptions:

(A\bfone ) hij(\xi ), bij(\xi ), and Vc(\xi ) are rapidly oscillating 1-periodic real functions,
where hij(\xi ) and bij(\xi ) are the components of H(\xi ) and B(\xi ), respectively.

(A\bftwo ) The matrices H(\xi ) and B(\xi ) are symmetric and satisfy the uniform elliptic
conditions in \xi , i.e.,

\gamma 0| \eta | 2 \leq hij(\xi )\eta i\eta j \leq \gamma 1| \eta | 2, \beta 0| \eta | 2 \leq bij(\xi )\eta i\eta j \leq \beta 1| \eta | 2, | \eta | 2 = \eta i\eta i,

0 < \gamma 0 \leq \gamma 1, 0 < \beta 0 \leq \beta 1, \forall \eta = (\eta 1, \eta 2, \eta 3) \in \BbbR 3,

where \gamma 0, \gamma 1, \beta 0, \beta 1 are constants independent of \varepsilon .
(A\bfthree ) hij , bij , Vc \in L\infty (\BbbR 3), Js \in C(0, T ;L2(\Omega )), Vxc \in C(\BbbR ).
(A\bffour ) The initial conditions \Psi 0,A0, andA1 satisfy: \Psi 0 \in \scrH 1(\Omega ),A0 \in H0(curl; \Omega ),

and A1 \in L2(\Omega ).

Over the past decade, the Maxwell--Schr\"odinger system has become a popular
model for the simulation of light-matter interactions in nanostructures, and numeri-
cal algorithms for this system have attracted much attention. We list some interest-
ing studies. In [1], Ahmed and Li apply the finite-difference time-domain (FDTD)
approach to solve the Maxwell--Schr\"odinger coupled system for the simulation of plas-
monics nanodevices. In [24], Pierantoni and his collaborators simulate the interaction
between the electromagnetic fields and the electrons in the carton nanotube by solving
the Maxwell--Schr\"odinger system with the transmission line matrix (TLM) method. In
[10], structure-preserving geometric algorithms are developed for numerically solving
the Maxwell--Schr\"odinger system to model the photon-matter interactions. For other
more numerical methods for the Maxwell--Schr\"odinger system, we refer the reader to
[11, 18, 21, 22, 25, 32] and references therein.

It is worth noting that the existing studies on the Maxwell--Schr\"odinger system
all focus on the system in a homogeneous medium. In fact, most of electronic and
optical nanodevices in real-world applications are heterogeneous, and some of them
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are designed with a periodic microstructure [15]. The rapidly oscillating discontinu-
ous coefficients pose a great challenge to the numerical computations and theoretical
analysis of the Maxwell--Schr\"odinger system in these nanostructures, especially in the
cases when the relativistic size of the heterogeneities, i.e., \varepsilon in (1.11), is very small. To
overcome this difficulty, the homogenization method, which gives the overall behavior
of the solution by incorporating the fluctuation due to the heterogeneities, can be
applied. In addition, if \varepsilon > 0 is not sufficiently small, the accuracy of the homog-
enization method may not be satisfactory. In this case one needs to resort to the
multiscale asymptotic method and seek multiscale approximate solutions.

The homogenization and multiscale asymptotic method for Maxwell's equations
has been studied extensively. In [4], Bensoussan, Lions, and Papanicolaou studied
the homogenization method for the Maxwell-type equations with rapidly oscillating
coefficients and obtained the convergence results. Wellander [30, 31] proved the con-
vergence of the homogenization method for the time-dependent Maxwell equations
in a heterogeneous medium by using the two-scale convergence method. Cao's group
[6, 7, 35] developed the multiscale asymptotic method for the stationary and time-
dependent Maxwell equations and obtained the explicit convergence rates. Likewise,
many studies on the homogenization and multiscale methods for the Schr\"odinger equa-
tion with rapidly oscillating coefficients and potential have been reported [2, 8, 26, 34].
However, to the best of our knowledge, there exists little literature concerning the ho-
mogenization and multiscale asymptotic method for the Maxwell--Schr\"odinger coupled
system in heterogeneous materials.

In this paper, we develop the homogenization and multiscale asymptotic method
for the Maxwell--Schr\"odinger system with rapidly oscillating discontinuous coefficients.
In the Maxwell--Schr\"odinger coupled system (1.11), the rapidly oscillating quantum
current density J\varepsilon plays a vital role. The (traditional) multiscale asymptotic method
for Maxwell's equations fails to capture the oscillations of the vector potential A\varepsilon 

arising from the quantum current density, making its accuracy unsatisfactory in the
cases when the quantum current density causes considerable oscillations in the vector
potential. To overcome this difficulty, we propose a modified multiscale asymptotic
method for the vector potential and confirm its validity by numerical examples. Note
that most of the multiscale asymptotic methods for PDEs in heterogeneous materials
aim at capturing the oscillations of solutions caused by the discontinuous coefficients
and neglect the effects of the source term. Our method might provide some insights
into how to deal with the rapidly oscillating source term in the multiscale methods.
Another focus of this paper is the numerical method for the homogenized Maxwell--
Schr\"odinger system, i.e., the Maxwell--Schr\"odinger system with constant coefficients.
We propose an alternating Crank--Nicolson finite element method for the homogenized
Maxwell--Schr\"odinger system and establish the stability estimates. Compared to the
commonly used FDTDmethod [1, 25, 32], this scheme has two main advantages. First,
it can be applied to the Maxwell--Schr\"odinger system with discontinuous coefficients
directly. Second, our method conserves the charge and the energy of the discrete
system (Js = 0) and thus is more stable.

The rest of this paper is organized as follows. In section 2, we present the ho-
mogenization and multiscale asymptotic method for the Maxwell--Schr\"odinger system
(1.11). A modified multiscale asymptotic method for the vector potential is given.
In section 3, we propose the numerical algorithms for solving the cell functions and
the homogenized Maxwell--Schr\"odinger system. In section 4, numerical examples are
presented to demonstrate the validity and efficiency of our method.
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2. Homogenization and multiscale asymptotic method. In this section,
we present the homogenization and multiscale asymptotic method for the Maxwell--
Schr\"odinger system (1.11). We first give the multiscale asymptotic expansions for the
solution of the Maxwell--Schr\"odinger system. Formally, we set
(2.1)

\Psi \varepsilon = \Psi 0 + \varepsilon \theta m(\xi )

\biggl( 
\partial 

\partial xm
 - i\bfA 0

m

\biggr) 
\Psi 0 + \varepsilon 2\theta ml(\xi )

\biggl( 
\partial 

\partial xm
 - i\bfA 0

m

\biggr) \biggl( 
\partial 

\partial xl
 - i\bfA 0

l

\biggr) 
\Psi 0 + \cdot \cdot \cdot ,

\bfA \varepsilon = \bfA 0 + \varepsilon \Theta 1(\xi )\nabla \times \bfA 0 + \varepsilon 2\Theta 2(\xi )\nabla \times 
\bigl( 
\nabla \times \bfA 0\bigr) + \cdot \cdot \cdot ,

where A0
m is the mth component of A0, and \theta m(\xi ), \theta ml(\xi ), \Theta 1(\xi ), and \Theta 2(\xi ) are the

cell functions defined below.

\itR \ite \itm \ita \itr \itk 2.1. The formal expansions (2.1) are motivated by the multiscale asymp-
totic expansion

(2.2) u\varepsilon = u0 + \chi i(\xi )
\partial u0

\partial xi
+ \chi ij(\xi )

\partial 2u0

\partial xi\partial xj
+ \cdot \cdot \cdot 

in Chapter 1, page 12 of [4] for the Poisson equation  - \nabla (a(\bfx \varepsilon )\nabla u
\varepsilon ) = f (see also

Chapter 7 of [12]). In the asymptotic expansion of the vector potential A, we replace

the derivatives \partial 
\partial xi

and \partial 2

\partial xi\partial xj
with the curl and double curl operators, i.e., \nabla \times and

\nabla \times \nabla \times , respectively. The key step in our approach is the construction of the cell
functions.

Without loss of generality, we assume that the reference cell Q = (0, 1)3. Next we
substitute the expansions (2.1) into (1.11). Treating x and \xi as independent variables
and using the chain rule, the operators \nabla and \nabla \times in (1.11) become \nabla \bfx + \varepsilon  - 1\nabla \xi 

and \nabla \bfx \times + \varepsilon  - 1\nabla \xi \times , respectively. By equating the coefficients of power \varepsilon  - 1 in
(1.11), in a standard way (see Chapter 1, pages 12 and 139 of [4] and Chapter 7,
page 125 of [12]), we can define the first-order cell functions \theta m(\xi ) (m = 1, 2, 3) and
\Theta 1(\xi ) = (\Theta 1

1(\xi ),\Theta 
2
1(\xi ),\Theta 

3
1(\xi )) as follows:

(2.3)

\left\{             

\partial 

\partial \xi i

\biggl( 
hij(\xi )

\partial \theta m(\xi )

\partial \xi j

\biggr) 
=  - \partial 

\partial \xi i

\bigl( 
him(\xi )

\bigr) 
, \xi \in Q,

\theta m(\xi ) is 1-periodic in \xi ,\int 
Q

\theta m(\xi )d\xi = 0, m = 1, 2, 3,

and

(2.4)

\left\{       
\nabla \xi \times 

\bigl( 
B(\xi )\nabla \xi \times \Theta p

1(\xi )
\bigr) 
=  - \nabla \xi \times (B(\xi )ep), \xi \in Q,

\nabla \xi \cdot \Theta p
1(\xi ) = 0, \xi \in Q,

\Theta p
1(\xi )\times n = 0, \xi \in \partial Q, p = 1, 2, 3,

where n is the outward unit normal to \partial Q and e1 = \{ 1, 0, 0\} T , e2 = \{ 0, 1, 0\} T , e3 =
\{ 0, 0, 1\} T .

Next, by equating the coefficients of power \varepsilon 0 in Schr\"odinger's equation, we define
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the second-order cell functions \theta ml(\xi ) (m, l = 1, 2, 3) as

(2.5)

\left\{                     

\partial 

\partial \xi i

\biggl( 
hij(\xi )

\partial \theta ml(\xi )

\partial \xi j

\biggr) 
=  - \partial 

\partial \xi i

\bigl( 
him(\xi )\theta l(\xi )

\bigr) 
 - hmj(\xi )

\partial \theta l(\xi )

\partial \xi j
 - hml(\xi ) + \^hml, \xi \in Q,

\theta ml(\xi ) is 1-periodic in \xi ,\int 
Q

\theta ml(\xi )d\xi = 0, m, l = 1, 2, 3,

where \^hml (m, l = 1, 2, 3) are the components of the homogenized coefficients matrix
\^H for Schr\"odinger's equation:

(2.6) \^H =

\int 
Q

\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi )

\bigr) 
d\xi , \bfittheta (\xi ) = (\theta 1(\xi ), \theta 2(\xi ), \theta 3(\xi )), Q = (0, 1)3.

Similarly, by equating the coefficients of power \varepsilon 0 in the Maxwell's equations and
following the idea of [35], we give the second-order cell function \Theta 2(\xi ) = (\Theta 1

2(\xi ),\Theta 
2
2(\xi ),

\Theta 3
2(\xi )) by

(2.7)\left\{       
\nabla \xi \times 

\bigl( 
B(\xi )\nabla \xi \times \Theta p

2(\xi )
\bigr) 
=  - \nabla \xi \times (B(\xi )\Theta p

1(\xi )) +Gp(\xi ) +\nabla \xi \varphi 
p(\xi ), \xi \in Q,

\nabla \xi \cdot \Theta p
2(\xi ) = 0, \xi \in Q,

\Theta p
2(\xi )\times n = 0, \xi \in \partial Q, p = 1, 2, 3,

where Gp(\xi ) =  - B(\xi )\nabla \xi \times \Theta p
1(\xi )  - B(\xi )ep + \^Bep with \^B being the homogenized

coefficients matrix for Maxwell's equations

(2.8) \^B =

\int 
Q

\bigl( 
B(\xi ) +B(\xi )\nabla \xi \times \Theta 1(\xi )

\bigr) 
d\xi , Q = (0, 1)3,

and \varphi p(\xi ) (p = 1, 2, 3) are given by

(2.9)

\biggl\{ 
 - \Delta \xi \varphi 

p(\xi ) = \nabla \xi \cdot Gp(\xi ), \xi \in Q,
\varphi p(\xi ) = 0, \xi \in \partial Q, p = 1, 2, 3.

\itR \ite \itm \ita \itr \itk 2.2. If the heterogeneity in the electric permittivity is considered in
(1.11), it is difficult to define the first-order cell functions (2.4) and the homogenized
coefficient (2.8) for Maxwell's equations.

\itR \ite \itm \ita \itr \itk 2.3. Existence and uniqueness of solutions to the cell problems (2.3)--
(2.5) and (2.7) can be proved by using the assumptions (A\bfone )--(A\bfthree ) in section 1 and
the (generalized) Lax--Milgram theorem in Chapter 2 of [23]. In addition, under the
assumption (A\bftwo ), the homogenized matrices \^H and \^B are symmetric and positive
definite (see Chapter 1 of [4]).

Following the line of reasoning in Chapter 7, page 130, of [12] (see also Chapter
1 of [4]), we have the following homogenized Maxwell--Schr\"odinger system associated
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to (1.11):
(2.10)\left\{                       

i
\partial \Psi 0

\partial t
=  - (\nabla  - iA0)

\bigl( 
\^H (\nabla  - iA0)\Psi 0

\bigr) 
+
\bigl( 
\langle Vc\rangle + Vxc(\rho 

0)
\bigr) 
\Psi 0 in \Omega \times (0, T ),

\partial 2A0

\partial t2
+\nabla \times ( \^B\nabla \times A0) = Js + J0 in \Omega \times (0, T ),

\rho 0 = N | \Psi 0| 2, J0 = 2N \^H Im
\bigl[ 
(\Psi 0)\ast (\nabla  - iA0)\Psi 0

\bigr] 
,

\Psi 0(x, t) = 0, A0(x, t)\times n = 0, (x, t) \in \partial \Omega \times (0, T ),

\Psi 0(x, 0) = \Psi 0(x), A0(x, 0) = A0(x), A0
t (x, 0) = A1(x) in \Omega ,

where \langle Vc\rangle =
\int 
Q
Vc(\xi )d\xi , and \^H and \^B are given by (2.6) and (2.8), respectively.

\itR \ite \itm \ita \itr \itk 2.4. The homogenized Maxwell--Schr\"odinger system (2.10) is obtained
by a formal computation. A rigorous proof of the convergence of (\Psi \varepsilon ,A\varepsilon )\varepsilon to (\Psi 0,
A0) in a suitable sense is challenging for two main reasons. First, as of now, the
existence, uniqueness, and regularity of solutions to the Maxwell--Schr\"odinger system
(1.11) in a bounded domain are still an open problem. Second, a common and natural
regularity assumption of (\Psi \varepsilon ,A\varepsilon )\varepsilon , for example,

(2.11) \| \Psi \varepsilon \| L\infty (0,T ;H1(\Omega )) + \| A\varepsilon \| L\infty (0,T ;\bfH (\bfc \bfu \bfr \bfl ;\Omega )) \leq C \forall \varepsilon ,

seems insufficient for bounding the nonlinear terms in the convergence proof.

The first-order and second-order multiscale approximate solutions of (1.11) are
given by

(2.12)
\Psi \varepsilon 

1(x, t) = \Psi 0(x, t) + \varepsilon \theta m(\xi )

\biggl( 
\partial 

\partial xm
 - iA0

m

\biggr) 
\Psi 0(x, t),

A\varepsilon 
1(x, t) = A0(x, t) + \varepsilon \Theta 1(\xi )\nabla \times A0(x, t)

and

(2.13)
\Psi \varepsilon 

2(x, t) = \Psi \varepsilon 
1(x, t) + \varepsilon 2\theta ml(\xi )

\biggl( 
\partial 

\partial xm
 - iA0

m

\biggr) \biggl( 
\partial 

\partial xl
 - iA0

l

\biggr) 
\Psi 0(x, t),

A\varepsilon 
2(x, t) = A\varepsilon 

1(x, t) + \varepsilon 2\Theta 2(\xi )\nabla \times (\nabla \times A0(x, t)).

Numerical results presented in section 4 show that the multiscale approximation
solutions defined in (2.12)--(2.13) fail to capture the oscillations of the vector potential
caused by the quantum current density and thus produce the inaccurate results in the
region where the vector potential is greatly affected by the quantum current density.
As we can see from the equation

(2.14)
\partial 2A\varepsilon 

\partial t2
+\nabla \times 

\biggl( 
B

\biggl( 
x

\varepsilon 

\biggr) 
\nabla \times A\varepsilon 

\biggr) 
= Js + J\varepsilon ,

the oscillations of the vector potential A\varepsilon mainly arise from the discontinuous coef-
ficients matrix B(\bfx \varepsilon ) and the rapidly oscillating quantum current density J\varepsilon . In the
(traditional) multiscale asymptotic method, in order to capture the oscillations of the
vector potential A\varepsilon caused by B(\bfx \varepsilon ), the first-order corrector and the second-order
corrector via the cell functions \Theta 1(\xi ) and \Theta 2(\xi ) are defined. However, for the quan-
tum current density J\varepsilon , in the asymptotic expansions we simply replace it with its
integral average value over the reference cell Q. This may be reasonable if \varepsilon \rightarrow 0 or
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1099

the oscillation characteristic of J\varepsilon , which depends on the coefficient matrix H(\bfx \varepsilon ) and
the number of the electrons N , can be neglected. However, if \varepsilon is not sufficiently small
and the oscillations of A\varepsilon caused by J\varepsilon are comparable to those caused by B(\bfx \varepsilon ), the
multiscale solutions A\varepsilon 

1 and A\varepsilon 
2 may not be good approximations of A\varepsilon .

Taking what we have discussed above into consideration, we present the following
modified multiscale approximate solution for the vector potential A\varepsilon :
(2.15)
\~A\varepsilon (x, t) = (I +M(\xi , t)\rho 0)A0 + \varepsilon \Theta 1(\xi )\nabla \times A0(x, t) + \varepsilon 2\Theta 2(\xi )\nabla \times (\nabla \times A0(x, t)),

where \rho 0 is the quantum charge density, I is the unit matrix, and M(\xi , t) is the time-
dependent matrix-value cell function to be determined.

\itR \ite \itm \ita \itr \itk 2.5. The modified multiscale solution \~A\varepsilon is given by adding a new term
M(\xi , t)\rho 0A0 to the second-order multiscale solution A\varepsilon 

2. The quantum charge density
\rho 0 in (2.15) acts as a weight function. It is introduced based on the consideration
that the original multiscale solutions A\varepsilon ,1 and A\varepsilon ,2 should be mainly modified in
the domain where the quantum current density rapidly oscillates, which in general
coincides with the domain where the quantum charge density is concentrated.

Substituting (2.15) into (2.14) and recalling the definitions of cell functions \Theta 1(\xi )
and \Theta 2(\xi ), we have
(2.16)

\varepsilon  - 2\nabla \xi \times (B(\xi )\nabla \xi \times M(\xi , t))\rho 0A0 + \varepsilon  - 1\nabla \xi \times (B(\xi )M(\xi , t))\nabla \bfx \times (\rho 0A0)

+ \varepsilon  - 1B(\xi )\nabla \xi \times M(\xi , t)\nabla \bfx \times (\rho 0A0) +B(\xi )M(\xi , t)\nabla \bfx \times 
\bigl( 
\nabla \bfx \times (\rho 0A0)

\bigr) 
+
\partial 2(M(\xi , t)\rho 0A0)

\partial t2
= 2N

\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi ) - \^H

\bigr) 
Im

\bigl[ 
(\Psi 0)\ast (\nabla \bfx  - iA0)\Psi 0

\bigr] 
,

where we have dropped the terms with \varepsilon s (s \geq 1) and \bfittheta (\xi ) is given in (2.6). Next we
integrate (2.16) over the whole domain \Omega . By using integration by parts and the fact
that \rho 0 and \nabla \rho 0 both vanish on the boundary \partial \Omega , we obtain

(2.17)

\partial 2(M(\xi , t)f(t))

\partial t2
+ \varepsilon  - 2\nabla \xi \times (B(\xi )\nabla \xi \times M(\xi , t))f(t)

=
\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi ) - \^H

\bigr) \int 
\Omega 

2N Im
\bigl[ 
(\Psi 0)\ast (\nabla \bfx  - iA0)\Psi 0

\bigr] 
dx,

where f(t) =
\int 
\Omega 
A0\rho 0 dx. By keeping the second-order temporal and spatial derivative

terms of M(\xi , t) and discarding all the other terms on the left-hand side of (2.17), we
arrive at

(2.18)

\biggl( 
\partial 2M(\xi , t)

\partial t2
+ \varepsilon  - 2\nabla \xi \times (B(\xi )\nabla \xi \times M(\xi , t))

\biggr) 
f(t)

=
\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi ) - \^H

\bigr) \int 
\Omega 

2N Im
\bigl[ 
(\Psi 0)\ast (\nabla \bfx  - iA0)\Psi 0

\bigr] 
dx.

Now we can define the new cell function M(\xi , t) = (M1(\xi , t), M2(\xi , t), M3(\xi , t)) as
follows:
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A1100 CHUPENG MA, LIQUN CAO, AND YANPING LIN

(2.19)\left\{                   

\partial 2Mj(\xi , t)

\partial t2
+ \varepsilon  - 2\nabla \xi \times (B(\xi )\nabla \xi \times Mj(\xi , t)) =

\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi ) - \^H

\bigr) 
ej\eta 

j(t),

(\xi , t) \in Q\times (0, T ),

Mj(\xi , t)\times n = 0, (\xi , t) \in \partial Q\times (0, T ),

Mj(\xi , t) is 1-periodic in \xi ,

Mj(\xi , 0) = 0, Mj
t (\xi , 0) = 0, \xi \in Q, j = 1, 2, 3,

where \eta j(t) = 2
\int 
\Omega 
Im[(\Psi 0)\ast ( \partial 

\partial xj
 - iA0

j )\Psi 
0]dx

\big/ \int 
\Omega 
A0

j | \Psi 0| 2dx with A0
j being the jth

component of A0.

\itR \ite \itm \ita \itr \itk 2.6. The new cell function is defined when \varepsilon is not very small. Further-
more, the way to define the integral in \eta j(t) is not unique. For example, we can
define the integral over a subdomain of \Omega instead of the whole domain and avoid the
denominator in \eta i(t) vanishing. Thus Mj(\xi , t) is well defined in (2.19).

The term on the right-hand side of (2.16), i.e.,

(2.20) 2N
\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta (\xi ) - \^H

\bigr) 
Im

\bigl[ 
(\Psi 0)\ast (\nabla \bfx  - iA0)\Psi 0

\bigr] 
,

represents the difference between the leading term (zero order) in the expansion of the
quantum current density J\varepsilon and its integral average value over the reference cell (the
homogenized quantum current density J0), which is the source of difficulty. Although
it emerges as a zero-order term in the Maxwell equations (after substituting (2.1)
into (2.14)), this term is ignored in the definition of the second-order cell function
\Theta 2(\xi ); otherwise it will be difficult to find \Theta 2(\xi ). To pick it up, we introduce a new
cell function M(\xi , t) in the multiscale expansion of A\varepsilon , reinsert the expansion in the
Maxwell equations, and then identify powers of \varepsilon . Unlike the traditional cell functions,
the new cell function M(\xi , t) is time-dependent and satisfies a Maxwell-type equation.
If the coefficients matrix H(\xi ) =

\bigl( 
hij(\xi )

\bigr) 
is a constant matrix, i.e., hij(\xi ) \equiv const, the

term (2.20) vanishes and M(\xi , t) \equiv 0. Therefore, the modified multiscale solution \widetilde A\varepsilon 

is compatible with the original multiscale solutions since, in this case, the oscillation
characteristic of the quantum current density J\varepsilon can be neglected.

Now we define the modified first-order and second-order multiscale approximate
solutions of A\varepsilon :

(2.21)
\~A\varepsilon 
1(x, t) = (I +M(\xi , t, \varepsilon )\rho 0)A0(x, t) + \varepsilon \Theta 1(\xi )\nabla \times A0(x, t),

\~A\varepsilon 
2(x, t) =

\~A\varepsilon 
1(x, t) + \varepsilon 2\Theta 2(\xi )\nabla \times (\nabla \times A0(x, t)).

3. Finite element computations. In this section, we discuss the finite element
computations of the homogenized Maxwell--Schr\"odinger system (2.10) and the cell
functions \theta m(\xi ), \theta ml(\xi ),\Theta 1(\xi ),\Theta 2(\xi ), and M(\xi , t).

3.1. Finite element computations of the cell functions. For the scalar cell
equations (2.3) and (2.5), we employ the adaptive Lagrangian finite element method
to solve them. The computational details can be found in [34]. For the vector cell
equations (2.4) and (2.7), we apply the N\'ed\'elec edge finite element combined with an
adaptive multilevel method to solve them. For more computational details and error
analysis, we refer the reader to [6, 34].

Since the new cell equation (2.19) is formally similar to the time-dependent
Maxwell equations in second-order formulation, it can be solved by the numerical
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algorithms developed for the Maxwell equations. In this paper, we discretize it by
using the edge element in space together with the symplectic geometric scheme in
time as described in [35].

3.2. Numerical algorithms for the homogenized Maxwell--Schr\"odinger
system. In this section, we present the fully discrete finite element method for the
homogenized Maxwell--Schr\"odinger system (2.10) and establish the stability estimates.
The existence and uniqueness of solutions to the discrete system are proved. For the
sake of brevity, we omit the superscripts 0 of the functions for the homogenized
Maxwell--Schr\"odinger system in this section. Furthermore, we assume that \Omega is a
bounded Lipschitz polyhedron domain.

To begin, we introduce some notation. Let Hs(\Omega ) (s \in \BbbN +) and Lp(\Omega ) (p \geq 1) be
the standard Sobolev spaces and Lebesgue spaces of the real-valued functions defined
in \Omega , and let Hs

0(\Omega ) be the subspace of Hs(\Omega ) consisting of functions whose traces
vanish on the boundary \partial \Omega . Sobolev spaces and Lebesgue spaces of the complex-
valued functions are denoted by \scrH s(\Omega ) = \{ u + iv | u, v \in Hs(\Omega )\} and \scrL p(\Omega ) = \{ u +
iv | u, v \in Lp(\Omega )\} , respectively. Moreover, we denote Lp(\Omega ) = [Lp(\Omega )]3 as Lebesgue
spaces of the vector-valued functions. The dual spaces of \scrH s

0(\Omega ) and Hs
0(\Omega ) are

denoted by \scrH  - s(\Omega ) and H - s(\Omega ), respectively. L2 inner-products in L2(\Omega ), \scrL 2(\Omega ),
and L2(\Omega ) are abbreviated by (\cdot , \cdot ) without ambiguity.

Furthermore, we define

(3.1)
H(curl; \Omega ) = \{ u \in L2(\Omega ); \nabla \times u \in L2(\Omega )\} ,

H0(curl; \Omega ) = \{ u \in H(curl; \Omega ) ; u\times n = 0 on \partial \Omega \} ,

which are equipped with the norm

\| u\| \bfH (\bfc \bfu \bfr \bfl ;\Omega ) = \| u\| \bfL 2(\Omega ) + \| \nabla \times u\| \bfL 2(\Omega ).

The weak formulation of the homogenized Maxwell--Schr\"odinger system (2.10)
can be formulated as follows: given \Psi 0 \in \scrH 1

0(\Omega ), A0 \in H0(curl; \Omega ), and A1 \in L2(\Omega ),
find (\Psi ,A) \in \scrH 1

0(\Omega )\times H0(curl; \Omega ), such that for all t \in (0, T ), the equations
(3.2)\left\{       

\biggl( 
i
\partial \Psi 

\partial t
, \varphi 

\biggr) 
=

\bigl( 
\^H(\nabla  - iA)\Psi , (\nabla  - iA)\varphi 

\bigr) 
+

\bigl( 
\langle Vc\rangle \Psi , \varphi 

\bigr) 
+

\bigl( 
Vxc(N | \Psi | 2)\Psi , \varphi 

\bigr) 
,\biggl( 

\partial 2A

\partial t2
, v

\biggr) 
+
\bigl( 
\^B\nabla \times A, \nabla \times v

\bigr) 
 - 
\bigl( 
2N \^H Im[(\Psi )\ast (\nabla  - iA)\Psi ], v

\bigr) 
= (Js,v)

hold for any (\varphi ,v) \in \scrH 1
0(\Omega )\times H0(curl; \Omega ).

Let \scrT h = \{ K\} be a quasi-uniform partition of \Omega into tetrahedrons of maximal
diameter h. For a given partition \scrT h, we define the linear finite element subspaces of
H1

0 (\Omega ) and \scrH 1
0(\Omega ),

(3.3) Vh = \{ uh \in H1
0 (\Omega ) : uh| K \in P1 \forall K \in \scrT h\} , \scrV h = Vh \oplus iVh,

and the N\'ed\'elec finite element subspace of H0(curl; \Omega ) [23],

(3.4) Vh = \{ uh \in H0(curl; \Omega ) : uh| K \in R1 \forall K \in \scrT h\} ,

where

P1 = \{ a+ b \cdot x : a \in \BbbR , b \in \BbbR 3\} , R1 = \{ a+ b\times x : a ,b \in \BbbR 3\} .
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For \psi \in \scrH 1
0(\Omega ), let \scrR h\psi be the Ritz projection of \psi onto \scrV h which satisfies

(3.5)
\bigl( 
\nabla (\scrR h\psi  - \psi ), \nabla \varphi 

\bigr) 
= 0 \forall \varphi \in \scrV h.

Similarly, for u \in L2(\Omega ), we let Phu denote the L2 projection of u onto Vh satisfying

(3.6)
\bigl( 
Phu - u, v

\bigr) 
= 0 \forall v \in Vh.

To define our fully discrete scheme, we partition the time interval (0, T ) into M
uniform subintervals using the nodal points

0 = t0 < t1 < \cdot \cdot \cdot < tM = T,

with tk = k\tau and \tau = T/M . We denote uk = u(\cdot , tk) for any given functions u \in 
C
\bigl( 
(0, T ); W

\bigr) 
with a Banach space W . For a given sequence \{ uk\} Mk=0, we introduce

the following notation:

(3.7)
\partial \tau u

k = (uk  - uk - 1)/\tau , \partial 2\tau u
k = (\partial \tau u

k  - \partial \tau u
k - 1)/\tau ,

uk = (uk + uk - 1)/2, \widetilde uk = (uk + uk - 1)/2.

Here the superscript k denotes the exact value instead of the approximation at time
tk.

For convenience, we assume that the vector potential A is defined in the interval
[ - \tau , T ] in terms of the time variable t. Using the above notation, we now give the
fully discrete scheme for the homogenized Maxwell--Schr\"odinger system:

(3.8) \Psi 0
h = \scrR h\Psi 0, A0

h = PhA0, A0
h  - A - 1

h = \tau PhA1,

and we find (\Psi k
h,A

k
h) \in \scrV h \times Vh such that for k = 1, 2, . . . ,M ,

(3.9)\left\{               

 - i
\bigl( 
\partial \tau \Psi 

k
h, \varphi 

\bigr) 
+

\bigl( 
\^H(\nabla  - i\bfA 

k
h)\Psi 

k
h, (\nabla  - i\bfA 

k
h)\varphi 

\bigr) 
+

\bigl( 
\langle Vc\rangle \Psi 

k
h, \varphi 

\bigr) 
+

\bigl( 
\scrG (\Psi k

h, \Psi 
k - 1
h )\Psi 

k
h, \varphi 

\bigr) 
= 0 \forall \varphi \in \scrV h,\bigl( 

\partial 2
\tau \bfA 

k
h, \bfv 

\bigr) 
+

\bigl( 
\^B\nabla \times (\bfA k

h +\bfA k - 2
h )/2, \nabla \times \bfv 

\bigr) 
 - 

\bigl( 
2N \^H Im[(\Psi k - 1

h )\ast (\nabla  - i\widetilde \bfA k
h)\Psi 

k - 1
h ], \bfv 

\bigr) 
=

\bigl( 
\bfJ k - 1
s , \bfv 

\bigr) 
\forall \bfv \in \bfV h,

where

(3.10) \scrG (\Psi k
h, \Psi 

k - 1
h ) =

G(N | \Psi k
h| 2) - G(N | \Psi k - 1

h | 2)
N(| \Psi k

h| 2  - | \Psi k - 1
h | 2)

and G is an antiderivative of Vxc, i.e., G
\prime (s) = Vxc(s) \forall s \in \BbbR .

\itR \ite \itm \ita \itr \itk 3.1. The technique for the numerical discretization of Vxc(N | \Psi | 2) in the
Schr\"odinger equation was first used by Strauss and V\'azquez [27] for the nonlinear
Klein--Gordon equation and was later applied to the cubic nonlinear Schr\"odinger equa-
tion by Delfour, Fortin, and Payne [13]. This scheme is favored mainly because it can
preserve the energy of the discrete system. Note that

(3.11) \scrG (\Psi k
h, \Psi 

k - 1
h ) =

\int 1

0

Vxc
\bigl( 
\lambda N | \Psi k

h| 2 + (1 - \lambda )N | \Psi k - 1
h | 2

\bigr) 
d\lambda .

We can replace the quotient with the right-hand side term of (3.11) in the case of
vanishing denominator.
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1103

\itR \ite \itm \ita \itr \itk 3.2. In practical computation, we should replace the homogenized ma-
trices \^H and \^B defined in (2.6) and (2.8) with
(3.12)

\^Hh0 =

\int 
Q

\bigl( 
H(\xi ) +H(\xi )\nabla \xi \bfittheta 

h0(\xi )
\bigr) 
d\xi , \^Bh0 =

\int 
Q

\bigl( 
B(\xi ) +B(\xi )\nabla \xi \times \Theta h0

1 (\xi )
\bigr) 
d\xi ,

where \bfittheta h0(\xi ) and \Theta h0
1 (\xi ) are the numerical solutions of the cell functions \bfittheta (\xi ) and

\Theta 1(\xi ), respectively. It has been proved in [6, 34] that if h0 is sufficiently small, then

(3.13) \| \^Hh0  - \^H\| F \leq Ch20, \| \^Bh0  - \^B\| F \leq Ch20,

where \| B\| F denotes the Frobenius norm of the matrix B. The error between (\Psi k
h,A

k
h)

and (\Psi k
h,h0

,Ak
h,h0

), where (\Psi k
h,h0

,Ak
h,h0

) is the solution of (3.9) with \^H and \^B replaced

by \^Hh0 and \^Bh0 , respectively, will be investigated in our future work. For convenience,
we drop the superscript h0 and still use \^H and \^B in this section.

At each time level, we first solve the discrete Maxwell equations (3.9)2 to get Ak
h,

insert it into the discrete Schr\"odinger equation (3.9)1, and then solve the equation
to obtain \Psi k

h. Thus the solution of the discrete system (3.9) can be obtained by
solving the two equations alternately. Due to the exchange-correlation function Vxc,
the discrete Schr\"odinger equation is a nonlinear equation whose solvability will be
proved later. Next we derive some stability estimates for the solution of the discrete
system (3.9). We first define the energy of the discrete system as follows:

(3.14)
Ek

h = N
\bigl( 
\^H(\nabla  - iA

k

h)\Psi 
k
h, (\nabla  - iA

k

h)\Psi 
k
h

\bigr) 
+N\langle Vc\rangle \| \Psi k

h\| 2\scrL 2 +

\int 
\Omega 

G(N | \Psi k
h| 2) dx

+
1

2
\| \partial \tau Ak

h\| 2\bfL 2 +
1

4

\bigl( 
\^B\nabla \times Ak

h, \nabla \times Ak
h

\bigr) 
+

1

4

\bigl( 
\^B\nabla \times Ak - 1

h , \nabla \times Ak - 1
h

\bigr) 
.

To prove the stability estimates, we need Kato's inequality.

Lemma 3.1 (Kato's inequality [20]). \itS \itu \itp \itp \ito \its \iti \itn \itg \itt \ith \ita \itt A \in L2
loc(\BbbR 3), f \in \scrL 2(\BbbR 3),

\ita \itn \itd (\nabla  - iA)f \in L2(\BbbR 3), \itt \ith \ite \itn | f | , \itt \ith \ite \itm \ito \itd \itu \itl \itu \its \ito \itf \itf , \iti \its \iti \itn H1(\BbbR 3) \ita \itn \itd \itt \ith \ite \itd \iti \ita \itm \ita \itg \itn \ite \itt \iti \itc 
\iti \itn \ite \itq \itu \ita \itl \iti \itt \ity \ith \ito \itl \itd \its \itp \ito \iti \itn \itt \itw \iti \its \ite \itf \ito \itr \ita \itl \itm \ito \its \itt \ite \itv \ite \itr \ity x \in \BbbR 3:\bigm| \bigm| \nabla | f | (x)

\bigm| \bigm| \leq | (\nabla  - iA)f(x)| .
Lemma 3.2. \itF \ito \itr k = 1, 2, . . . ,M , \itw \ite \ith \ita \itv \ite 

(3.15) \| \Psi k
h\| \scrL 2 = \| \Psi 0

h\| \scrL 2 .

\itI \itf G \its \ita \itt \iti \its fi\ite \its \forall s \in \BbbR +, G(s) \geq 0, \ito \itr | G(s)| \leq C(1 + | s| p), 0 \leq p < 5
3 , \itt \ith \ite \itn 

(3.16) \| \nabla | \Psi k
h| \| \bfL 2 + \| \Psi k

h\| \scrL 6 + \| Ak
h\| \bfH (\bfc \bfu \bfr \bfl ;\Omega ) \leq C,

\itw \ith \ite \itr \ite C \iti \its \ita \itp \ito \its \iti \itt \iti \itv \ite \itc \ito \itn \its \itt \ita \itn \itt \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \ito \itf h \ita \itn \itd \tau .

\itP \itr \ito \ito \itf . By choosing \varphi = \Psi 
k

h in the first equation of (3.9) and taking the imaginary
part, we obtain (3.15). Next we set \varphi = \partial \tau \Psi 

k
h in the same equation and take the real

part to get
(3.17)

2Re
\bigl[ \bigl( 

\^H(\nabla  - iA
k

h)\Psi 
k

h, (\nabla  - iA
k

h)\partial \tau \Psi 
k
h

\bigr) \bigr] 
+\partial \tau 

\bigl( 
\langle Vc\rangle \| \Psi k

h\| 2\scrL 2 +
1

N

\int 
\Omega 

G(N | \Psi k
h| 2) dx

\bigr) 
= 0,

D
ow

nl
oa

de
d 

06
/2

6/
24

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1104 CHUPENG MA, LIQUN CAO, AND YANPING LIN

where we have used the facts

Re
\bigl[ \bigl( 
\langle Vc\rangle \Psi 

k

h, \partial \tau \Psi 
k
h

\bigr) \bigr] 
=

\langle Vc\rangle 
2\tau 

\bigl( 
\| \Psi k

h\| 2\scrL 2  - \| \Psi k - 1
h \| 2\scrL 2

\bigr) 
,

Re
\bigl[ \bigl( 
\scrG (\Psi k

h, \Psi 
k - 1
h )\Psi 

k

h, \partial \tau \Psi 
k
h

\bigr) \bigr] 
=

1

2N\tau 

\int 
\Omega 

\bigl( 
G(N | \Psi k

h| 2) - G(N | \Psi k - 1
h | 2)

\bigr) 
dx.

Now we turn to the analysis of the first term of (3.17). It is easy to see that
(3.18)

Re
\bigl[ \bigl( 

\^H(\nabla  - i\bfA 
k
h)\Psi 

k
h, (\nabla  - i\bfA 

k
h)\partial \tau \Psi 

k
h

\bigr) \bigr] 
=

1

2
\partial \tau 

\bigl( 
\^H(\nabla  - i\bfA 

k
h)\Psi 

k
h, (\nabla  - i\bfA 

k
h)\Psi 

k
h

\bigr) 
+

1

2\tau 

\bigl[ \bigl( 
\^H(\nabla  - i\bfA 

k - 1
h )\Psi k - 1

h , (\nabla  - i\bfA 
k - 1
h )\Psi k - 1

h

\bigr) 
 - 

\bigl( 
\^H(\nabla  - i\bfA 

k
h)\Psi 

k - 1
h , (\nabla  - i\bfA 

k
h)\Psi 

k - 1
h

\bigr) \bigr] 
+

1

2\tau 
Re

\bigl[ \bigl( 
\^H(\nabla  - i\bfA 

k
h)\Psi 

k - 1
h , (\nabla  - i\bfA 

k
h)\Psi 

k
h

\bigr) 
 - 

\bigl( 
\^H(\nabla  - i\bfA 

k
h)\Psi 

k
h, (\nabla  - i\bfA 

k
h)\Psi 

k - 1
h

\bigr) \bigr] 
.

It is obvious that the last term on the right-hand side of (3.18) vanishes. By a tedious
calculation, we find
(3.19)\bigl( 

\^H(\nabla  - iA
k - 1

h )\Psi k - 1
h , (\nabla  - iA

k - 1

h )\Psi k - 1
h

\bigr) 
 - 

\bigl( 
\^H(\nabla  - iA

k

h)\Psi 
k - 1
h , (\nabla  - iA

k

h)\Psi 
k - 1
h

\bigr) 
= 2

\bigl( 
\^H Im[(\Psi k - 1

h )\ast (\nabla  - i\widetilde Ak
h)\Psi 

k - 1
h ], A

k

h  - A
k - 1

h

\bigr) 
.

Substituting (3.18) and (3.19) into (3.17), we obtain

(3.20)
\partial \tau 

\biggl( \bigl( 
\^H(\nabla  - iA

k

h)\Psi 
k
h, (\nabla  - iA

k

h)\Psi 
k
h

\bigr) 
+ \langle Vc\rangle \| \Psi k

h\| 2\scrL 2 +
1

N

\int 
\Omega 

G(N | \Psi k
h| 2) dx

\biggr) 
+

\bigl( 
2 \^H Im[(\Psi k - 1

h )\ast (\nabla  - i\widetilde Ak
h)\Psi 

k - 1
h ], \partial \tau A

k

h

\bigr) 
= 0.

To proceed further, we take v = \partial \tau A
k

h = \partial \tau Ak
h in the second equation of (3.9) to find

(3.21)
\partial \tau 

\biggl( 
1

2
\| \partial \tau Ak

h\| 2\bfL 2 +
1

4

\bigl( 
\^B\nabla \times Ak

h, \nabla \times Ak
h

\bigr) 
+

1

4

\bigl( 
\^B\nabla \times Ak - 1

h , \nabla \times Ak - 1
h

\bigr) \biggr) 
 - 

\bigl( 
2N \^H Im[(\Psi k - 1

h )\ast (\nabla  - i\widetilde Ak
h)\Psi 

k - 1
h ], \partial \tau A

k

h

\bigr) 
=

\bigl( 
Jk - 1
s , \partial \tau A

k

h

\bigr) 
.

Multiplying (3.20) by N , adding it to (3.21), and recalling the definition of Ek
h in

(3.14), we arrive at

(3.22) \partial \tau E
k
h =

\bigl( 
Jk - 1
s , \partial \tau A

k

h

\bigr) 
,

which leads to

(3.23) En
h = E0

h + \tau 

n\sum 
k=1

\bigl( 
Jk - 1
s , \partial \tau A

k

h

\bigr) 
\leq C +

\tau 

2

n\sum 
k=1

\| \partial \tau Ak
h\| 2\bfL 2 \forall 1 \leq n \leq M.

Note that the homogenized matrices \^H and \^B are positive definite. Thus there exist
constants C1 and C2 such that

(3.24)

\bigl( 
\^H(\nabla  - iA

n

h)\Psi 
n
h, (\nabla  - iA

n

h)\Psi 
n
h

\bigr) 
\geq C1\| (\nabla  - iA

n

h)\Psi 
n
h\| 2\bfL 2 ,\bigl( 

\^B\nabla \times An
h, \nabla \times An

h

\bigr) 
\geq C2\| \nabla \times An

h\| 2\bfL 2 .
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1105

Applying (3.24) to (3.23) and using (3.15), we have

(3.25)

C1\| (\nabla  - iA
n

h)\Psi 
n
h\| 2\bfL 2 +

1

2
\| \partial \tau An

h\| 2\bfL 2 +
C2

4
\| \nabla \times An

h\| 2\bfL 2

\leq C +
\tau 

2

n\sum 
k=1

\| \partial \tau Ak
h\| 2\bfL 2  - 

\int 
\Omega 

G(N | \Psi n
h| 2) dx.

If for all s \in \BbbR +, | G(s)| \leq C(1 + | s| p), then

(3.26)

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

G(N | \Psi n
h| 2) dx

\bigm| \bigm| \bigm| \bigm| \leq C + C\| \Psi n
h\| 

2p
\scrL 2p .

It follows from the Gagliardo--Nirenberg inequality [17], Kato's inequality, and Young's
inequality that

(3.27)
C\| \Psi n

h\| 
2p
\scrL 2p \leq C\| \nabla | \Psi n

h| \| 
3(p - 1)
\bfL 2 \| \Psi n

h\| 
3 - p
\scrL 2 \leq C1

2
\| \nabla | \Psi n

h| \| 2\bfL 2 + C\| \Psi n
h\| 

2(3 - p)
5 - 3p

\scrL 2

\leq C1

2
\| (\nabla  - iA

n

h)\Psi 
n
h\| 2\bfL 2 + C,

where we have used the assumption that 0 \leq p < 5
3 . Substituting (3.26) and (3.27)

into (3.25), we obtain
(3.28)

C1

2
\| (\nabla  - iA

n

h)\Psi 
n
h\| 2\bfL 2 +

1

2
\| \partial \tau An

h\| 2\bfL 2 +
C2

4
\| \nabla \times An

h\| 2\bfL 2 \leq C +
\tau 

2

n\sum 
k=1

\| \partial \tau Ak
h\| 2\bfL 2 .

If for all s \in \BbbR +, G(s) \geq 0, we also have (3.28). Without loss of generality, we assume
that \tau < 1. Now applying the discrete Gronwall inequality to (3.28), we have

(3.29) \| (\nabla  - iA
k

h)\Psi 
k
h\| \bfL 2 + \| Ak

h\| \bfH (\bfc \bfu \bfr \bfl ;\Omega ) \leq C, k = 1, 2, . . . ,M.

Using (3.29) together with Sobolev's inequaltiy and Kato's inequality, we complete
the proof of (3.16).

\itR \ite \itm \ita \itr \itk 3.3. Equation (3.22) implies that if Js = 0, then the energy of the dis-
crete system is preserved.

Next we establish the existence and uniqueness of solutions to the discrete system
(3.9).

Lemma 3.3. \itF \ito \itr k = 1, 2, . . . ,M , \itt \ith \ite \itr \ite \ite \itx \iti \its \itt \its \ita \its \ito \itl \itu \itt \iti \ito \itn 
\bigl( 
\Psi k

h,A
k
h

\bigr) 
\itt \ito \itt \ith \ite \itd \iti \its \itc \itr \ite \itt \ite 

\its \ity \its \itt \ite \itm (3.9). \itU \itn \itd \ite \itr \itt \ith \ite \ita \its \its \itu \itm \itp \itt \iti \ito \itn \ito \itf \itL \ite \itm \itm \ita 3.2, \iti \itf Vxc \its \ita \itt \iti \its fi\ite \its 

(3.30) \forall s1, s2 \in \BbbR +, | Vxc(s1) - Vxc(s2)| \leq C(1 + | s1| p + | s2| p)| s1  - s2| , p \geq 0,

\ita \itn \itd \tau h - 2(p+1) \iti \its \its \itu ffi\itc \iti \ite \itn \itt \itl \ity \its \itm \ita \itl \itl , \itt \ith \ite \itn \itt \ith \ite \its \ito \itl \itu \itt \iti \ito \itn \iti \its \itu \itn \iti \itq \itu \ite .

\itP \itr \ito \ito \itf . Since the two equations of (3.9) can be solved alternately at each time
level and it is not difficult to show that (3.9)2 has a unique solution, we only need to
consider the solvability of (3.9)1. The existence of solutions can be proved by using
the (Browder) fixed point theorem, and we refer the reader to [29] for more details.
Next we consider the uniqueness of solutions to (3.9)1.
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A1106 CHUPENG MA, LIQUN CAO, AND YANPING LIN

Let \Psi k
h and \psi k

h be two solutions of (3.9)1. Set \eta 
k
h = \Psi k

h  - \psi k
h. It satisfies

(3.31)

i
\bigl( 
\eta kh, \varphi 

\bigr) 
=
\tau 

2

\bigl( 
\^H(\nabla  - iA

k

h)\eta 
k
h, (\nabla  - iA

k

h)\varphi 
\bigr) 
+
\tau 

2

\bigl( 
\langle Vc\rangle \eta kh, \varphi 

\bigr) 
+
\tau 

4

\bigl( \bigl( 
\scrG (\Psi k

h, \Psi 
k - 1
h ) - \scrG (\psi k

h, \Psi 
k - 1
h )

\bigr) 
(\Psi k

h + \psi k
h + 2\Psi k - 1

h ), \varphi 
\bigr) 

+
\tau 

4

\bigl( \bigl( 
\scrG (\Psi k

h, \Psi 
k - 1
h ) + \scrG (\psi k

h, \Psi 
k - 1
h )

\bigr) 
\eta kh, \varphi 

\bigr) 
\forall \varphi \in \scrV h.

Choosing \varphi = \eta kh in (3.31) and taking the imaginary part, we have

(3.32) \| \eta kh\| 2\scrL 2 \leq \tau 

4

\bigm| \bigm| \bigl( \bigl( \scrG (\Psi k
h, \Psi 

k - 1
h ) - \scrG (\psi k

h, \Psi 
k - 1
h )

\bigr) 
(\Psi k

h + \psi k
h + 2\Psi k - 1

h ), \eta kh
\bigr) \bigm| \bigm| .

By using (3.11) and (3.30), we find
(3.33)\bigm| \bigm| \bigl( \scrG (\Psi k

h, \Psi 
k - 1
h ) - \scrG (\psi k

h, \Psi 
k - 1
h )

\bigr) \bigm| \bigm| \leq C
\bigl( 
1+ | \Psi k

h| 2p+ | \psi k
h| 2p+ | \Psi k - 1

h | 2p
\bigr) 
(| \Psi k

h| + | \psi k
h| ) | \eta kh| .

Applying (3.33) to (3.32), we arrive at

(3.34)
\| \eta kh\| 2\scrL 2 \leq C\tau 

\bigl( 
\| \Psi k

h\| 
2p+2
\scrL \infty + \| \psi k

h\| 
2p+2
\scrL \infty + \| \Psi k - 1

h \| 2p+2
\scrL \infty 

\bigr) 
\| \eta kh\| 2\scrL 2

+C\tau 
\bigl( 
\| \Psi k

h\| 2\scrL \infty + \| \psi k
h\| 2\scrL \infty + \| \Psi k - 1

h \| 2\scrL \infty 

\bigr) 
\| \eta kh\| 2\scrL 2 ,

which leads to

(3.35)

\| \eta kh\| 2\scrL 2 \leq C\tau h - 2(p+1)
\bigl( 
\| \Psi k

h\| 
2p+2
L6 + \| \psi k

h\| 
2p+2
L6 + \| \Psi k - 1

h \| 2p+2
L6

\bigr) 
\| \eta kh\| 2\scrL 2

\leq C\tau h - 2(p+1)
\bigl( 
\| \nabla | \Psi k

h| \| 
2p+2
\bfL 2 + \| \nabla | \psi k

h| \| 
2p+2
\bfL 2 + \| \nabla | \Psi k - 1

h | \| 2p+2
\bfL 2

\bigr) 
\| \eta kh\| 2\scrL 2

\leq C\tau h - 2(p+1)\| \eta kh\| 2\scrL 2

by an application of Lemma 3.2 and the following inverse inequality [5]:

(3.36) \| uh\| L\infty \leq Ch - 1\| uh\| L6 \forall uh \in Vh.

Therefore, if C\tau h - 2(p+1) < 1, we have \eta kh = 0 and obtain the uniqueness of
solutions to (3.9)1.

In practical computation, (3.9)1 can be solved by Picard or Newton iteration. Let

\sanst \sanso \sansl be the tolerance for the nonlinear iteration. At the time level k, if A
k

h and \Psi k - 1
h

are available, then we have the following Picard iteration algorithm:

Algorithm (Picard Iteration).

1: Given A
k

h, \Psi 
k - 1
h , set \Psi k,0

h = \Psi 
k - 1

h .

2: For l = 0, 1, 2, . . . , do

(1): Solve the equation
(3.37)

 - i

\biggl( 
\Psi k,l+1

h  - \Psi k - 1
h

\tau 
, \varphi 

\biggr) 
+

\biggl( 
\^H(\nabla  - iA

k

h)
\Psi k,l+1

h +\Psi k - 1
h

2
, (\nabla  - iA

k

h)\varphi 

\biggr) 
+

\biggl( 
\langle Vc\rangle 

\Psi k,l+1
h +\Psi k - 1

h

2
, \varphi 

\biggr) 
+

\biggl( 
\scrG (\Psi k,l

h ,\Psi k - 1
h )

\Psi k,l+1
h +\Psi k - 1

h

2
, \varphi 

\biggr) 
= 0 \forall \varphi \in \scrV h.

(2): If \| \Psi k,l+1
h  - \Psi k,l

h \| \scrH 1 \leq \sanst \sanso \sansl , then break.

3: Update solution: \Psi k
h = \Psi k,l+1

h .
Now we show the convergence of the nonlinear iteration.
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1107

Lemma 3.4. \itA \its \its \itu \itm \ite \itt \ith \ita \itt Vxc \its \ita \itt \iti \its fi\ite \its (3.30). \itI \itf \tau h - 3(p+1) \iti \its \its \itu ffi\itc \iti \ite \itn \itt \itl \ity \its \itm \ita \itl \itl ,

\itt \ith \ite \itn \itt \ith \ite \its \ite \itq \itu \ite \itn \itc \ite \{ \Psi k,l
h \} \infty l=1 \itg \ite \itn \ite \itr \ita \itt \ite \itd \itb \ity \itt \ith \ite \itP \iti \itc \ita \itr \itd \iti \itt \ite \itr \ita \itt \iti \ito \itn \itc \ito \itn \itv \ite \itr \itg \ite \its \itt \ito \itt \ith \ite \itu \itn \iti \itq \itu \ite 

\its \ito \itl \itu \itt \iti \ito \itn \ito \itf (3.9))1.

\itP \itr \ito \ito \itf . It is easy to see that \forall l \geq 1, \| \Psi k,l
h \| \scrL 2 = \| \Psi k - 1

h \| \scrL 2 . Define \scrE l+1
h = \Psi k,l+1

h  - 
\Psi k,l

h . By subtracting the equation (3.37) for \Psi k,l+1
h from the equation for \Psi k,l

h and
using an argument similar to that in Lemma 3.3, we have
(3.38)

\| \scrE l+1
h \| \scrL 2 \leq C\tau 

\bigl( 
\| \Psi k,l+1

h \| 2p+2
\scrL \infty + \| \Psi k,l

h \| 2p+2
\scrL \infty + \| \Psi k,l - 1

h \| 2p+2
\scrL \infty + \| \Psi k - 1

h \| 2p+2
\scrL \infty 

\bigr) 
\| \scrE l

h\| \scrL 2

+C\tau 
\bigl( 
\| \Psi k,l+1

h \| 2\scrL \infty + \| \Psi k,l - 1
h \| 2\scrL \infty + \| \Psi k,l - 1

h \| 2\scrL \infty + \| \Psi k - 1
h \| 2\scrL \infty 

\bigr) 
\| \scrE l

h\| \scrL 2

\leq C\tau h - 3(p+1)\| \scrE l
h\| \scrL 2 ,

where we have used the inverse inequality [5]

(3.39) \| uh\| L\infty \leq Ch - 
3
2 \| uh\| L2 \forall uh \in Vh.

If C\tau h - 3(p+1) \leq 1
2 , then (3.38) implies that the sequence \{ \Psi k,l

h \} \infty l=1 is a Cauchy
sequence and thus converges.

4. Multiscale numerical algorithm and numerical examples. In this
section, we first summarize the multiscale numerical algorithm for the Maxwell--
Schr\"odinger system (1.11) and then provide some numerical examples to validate
our method.

As described in section 2, the multiscale numerical algorithm consists of the fol-
lowing steps:

\itS \itt \ite \itp I: Compute the cell functions \theta m(\xi ), \theta ml(\xi ),\Theta 1(\xi ),\Theta 2(\xi ) in the unit cell Q =
(0, 1)3 by solving the cell equations, and then compute the homogenized coefficients
matrices \^H and \^B via (2.6) and (2.8), respectively.

\itS \itt \ite \itp II: For k = 1, 2, . . . ,M , do

(1) Solve the homogenized Maxwell--Schr\"odinger system (2.10) in \Omega at the time
level k by the proposed scheme (3.9). Since the coefficients of the homogenized
Maxwell--Schr\"odinger system are constants, we can solve it on a coarse spatial mesh.

(2) Apply higher-order difference quotients to compute the partial derivatives
\partial \Psi k

h

\partial xm
,

\partial 2\Psi k
h

\partial xm\partial xl
, \nabla \times Ak

h, and \nabla \times 
\bigl( 
\nabla \times Ak

h

\bigr) 
numerically, and form the multiscale

approximate solutions (2.12)--(2.13), where
\bigl( 
\Psi k

h,A
k
h

\bigr) 
is the numerical solution of the

homogenized Maxwell--Schr\"odinger system at the time level k.

(3) If the oscillations of the quantum current density cannot be neglected in the
Maxwell equations, compute the cell function Mk

h and form the modified multiscale
solutions (2.21), where Mk

h is the numerical solution of (2.19) at the time level k.

\itR \ite \itm \ita \itr \itk 4.1. In general, whether the oscillations of the quantum current density
can be neglected or not depends on the relativistic size of the heterogeneities (\varepsilon ), the
number of the electrons (N), and the ratio of the effective mass of the semiconductor
matrix to the heterogeneities (denoted by \lambda ). If \varepsilon is sufficiently small, the oscillations
of the quantum current density are smeared out. The larger N and the smaller \lambda , the
more significant the oscillations of the quantum current density are. In our experience,
in cases when \varepsilon \geq 0.1, N \geq 5, and \lambda \leq 0.1, the oscillations of the quantum current
density cannot be neglected in the Maxwell equations.
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A1108 CHUPENG MA, LIQUN CAO, AND YANPING LIN

(a)
z y

x (b)

z

y

x

Fig. 4.1. (a) The whole domain \Omega = (0, 1)3 . (b) The unit cell Q.

To validate the numerical algorithms presented above, we give some numerical
examples.

\itE \itx \ita \itm \itp \itl \ite 4.1. In this example, we consider the Maxwell--Schr\"odinger system (1.11)
without the exchange-correlation potential, i.e., Vxc = 0. The whole domain \Omega and
the unit cell Q with \varepsilon = 1/8 are shown in Figure 4.1. Assume that the inclusion in the
unit cell is a quantum dot. We take N = 1, T = 0.5, and the time step \tau = 0.0025.
Vc and Js are given as follows:

Vc

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
0 in each dot,
1 else,

Js(x, t) =
\bigl( 
1000 sin(\pi t) + sin(2\pi x1) sin(2\pi x2) cos(2\pi x3)

\bigr) 
(1, 1, 1)T.

We consider the following cases:

Case 4.1.1. hij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
0.025\delta ij in each dot,
\delta ij else,

bij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
\delta ij in each dot,
100\delta ij else,

Case 4.1.2. hij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
0.025\delta ij in each dot,
\delta ij else,

bij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
\delta ij in each dot,
400\delta ij else.

Here \delta ij is the Kronecker symbol.

Table 4.1
Comparison of computational costs to solve the Schr\"odinger equation.

Original problem Cell problem Homogenized problem
Dof 2478213 180135 76410

Elements 13573655 1034688 403590
CPU time (s) 1518 11 53

Table 4.2
Comparison of computational costs to solve the Maxwell equations.

Original problem Cell problem Homogenized problem
Dof 16125013 1229702 486888

Elements 13573655 1034688 403590
CPU time (s) 2756 24 74
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1109

Table 4.3
Comparison of computational results for Example 4.1: Relative errors in the approximation of

the density function n\varepsilon .

\| e0\| 0
\| n\varepsilon \| 0

\| e1\| 0
\| n\varepsilon \| 0

\| e2\| 0
\| n\varepsilon \| 0

\| e0\| 1
\| n\varepsilon \| 1

\| e1\| 1
\| n\varepsilon \| 1

\| e2\| 1
\| n\varepsilon \| 1

Case 4.1.1 0.057851 0.054876 0.009288 0.478132 0.449785 0.064030
Case 4.1.2 0.060731 0.057940 0.011570 0.487747 0.460989 0.069483

Table 4.4
Comparison of computational results for Example 4.1: Relative errors in the approximation of

the vector potential \bfA \varepsilon .

\| \bfe 0\| 0
\| \bfA \varepsilon \| 0

\| \bfe 1\| 0
\| \bfA \varepsilon \| 0

\| \bfe 2\| 0
\| \bfA \varepsilon \| 0

\| \bfe 0\| 1
\| \bfA \varepsilon \| 1

\| \bfe 1\| 1
\| \bfA \varepsilon \| 1

\| \bfe 2\| 1
\| \bfA \varepsilon \| 1

Case 4.1.1 0.083335 0.071058 0.029445 1.550864 1.062309 0.704374
Case 4.1.2 0.297918 0.293482 0.100150 5.307896 3.268900 0.896229

a b

c d

Fig. 4.2. The density function on the intersection x3 = 0.4 at time t = 0.3 in Case 4.1.1: (a)
Reference solution n\varepsilon in fine mesh; (b) homogenization solution n0 in coarse mesh; (c) first-order
multiscale solution n\varepsilon ,1; (d) second-order multiscale solution n\varepsilon ,2.

We let \Psi 0 be the ground state wave function of the time-independent Schr\"odinger
equation. For the computational details of \Psi 0, we refer the reader to [34]. We take
A0 = A1 = 0.

In order to demonstrate the numerical accuracy of the multiscale method, we need
the exact solution

\bigl( 
A\varepsilon (x, t), \Psi \varepsilon (x, t)

\bigr) 
of the Maxwell--Schr\"odinger system (1.11). Due

to the discontinuous coefficients matrices H(\bfx \varepsilon ) and B(\bfx \varepsilon ) and the nonlinear nature
of the system, it is extremely difficult, even impossible, to obtain the exact solution.
Here, we replace the exact solution

\bigl( 
A\varepsilon (x, t), \Psi \varepsilon (x, t)

\bigr) 
by the numerical solution of

(1.11) in a very fine mesh. It should be emphasized that this step is not necessary in
practical applications. Simulations are performed by using the parallel adaptive finite
element toolbox PHG on the Lenovo SD530, Xeon Gold 6140 18C/2.3GHz cluster
platform. The computational costs for Case 4.1.1 are listed in Table 4.1 and 4.2,
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A1110 CHUPENG MA, LIQUN CAO, AND YANPING LIN

which show the advantage of the multiscale numerical method.

a b

c d

Fig. 4.3. The x3 component of the vector potential \bfA on the intersection x3 = 0.4 at time
t = 0.3 in Case 4.1.2: (a) Reference solution \bfA \varepsilon 

3 in fine mesh; (b) homogenization solution \bfA 0
3 in

coarse mesh; (c) first-order multiscale solution \bfA \varepsilon ,1
3 ; (d) second-order multiscale solution \bfA \varepsilon ,2

3 .

Without confusion we let n\varepsilon = | \Psi \varepsilon | 2 and A\varepsilon respectively denote the numerical
solutions of the density function and the vector potential for the Maxwell--Schr\"odinger
system (1.11) in a fine mesh and regard them as the reference solutions for (1.11).
n0 = | \Psi 0| 2 and A0 are the numerical solutions of the density function and the
vector potential for the homogenized Maxwell--Schr\"odinger system (2.10), respec-
tively. Let n\varepsilon ,1 = | \Psi \varepsilon ,1| 2 and n\varepsilon ,2 = | \Psi \varepsilon ,2| 2 respectively denote the first-order and
the second-order multiscale approximate solutions for the density function based on
(2.12)--(2.13). Similarly, Let A\varepsilon ,1 and A\varepsilon ,2 respectively denote the numerical solu-
tions of the first-order and the second-order multiscale approximate solutions for the
vector potential based on (2.12)--(2.13). \~A\varepsilon ,1 and \~A\varepsilon ,2 are respectively the modified
first-order and second-order multiscale approximate solutions for the vector potential
based on (2.15). Set e0 = n\varepsilon  - n0, e1 = n\varepsilon  - n\varepsilon ,1, e2 = n\varepsilon  - n\varepsilon ,2, e0 = A\varepsilon  - A0,
e1 = A\varepsilon  - A\varepsilon ,1, e2 = A\varepsilon  - A\varepsilon ,2, \~e1 = A\varepsilon  - \~A\varepsilon ,1, \~e2 = A\varepsilon  - \~A\varepsilon ,2. For conve-
nience, we use \| n\| 0, \| n\| 1, \| A\| 0, and \| A\| 1 to denote the numerical approximations
of \| n\| L2(0,T ;L2(\Omega )), \| n\| L2(0,T ;H1(\Omega )), \| A\| L2(0,T ;\bfL 2(\Omega )), and \| A\| L2(0,T ;\bfH (\bfc \bfu \bfr \bfl ;\Omega )), re-
spectively.

The computational results of the relative errors for Example 4.1 are illustrated in
Tables 4.3 and 4.4.

Figures 4.2 (a)--(d) display the numerical results for the density function n\varepsilon , n0,
n\varepsilon ,1, and n\varepsilon ,2 on the intersection x3 = 0.4 at time t = 0.3 in Case 4.1.1.

Figures 4.3 (a)--(d) display the numerical results for the vector potential A\varepsilon , A0,
A\varepsilon ,1, and A\varepsilon ,2 on the intersection x3 = 0.4 at time t = 0.3 in Case 4.1.2.

Figures 4.4 (a)--(c) show the numerical results for the vector potential A\varepsilon , A0,
A\varepsilon ,1, and A\varepsilon ,2 on the line x1 = x2 = x3 at time t = 0.4 in Cases 4.1.1 and 4.1.2.
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1111

a

b

c

Fig. 4.4. The multiscale approximate solutions of the vector potential \bfA \varepsilon on the line x1 = x2 =
x3 at time t = 0.4 in Case 4.1.1 (left) and Case 4.1.2 (right): (a) x1 component; (b) x2 component;
(c) x3 component.

\itR \ite \itm \ita \itr \itk 4.2. Computational results displayed in Figures 4.2 and 4.3 clearly show
that the homogenization method and the first-order multiscale method fail to capture
the oscillations of the solutions caused by the rapidly oscillating coefficients matrix.
The second-order multiscale solutions are in much better agreement with the reference
solutions.
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A1112 CHUPENG MA, LIQUN CAO, AND YANPING LIN

\itR \ite \itm \ita \itr \itk 4.3. In Figure 4.4, we can see that the oscillations of the vector potential
A\varepsilon , i.e., the eight ``crests"" in the figures, mainly arise from the rapidly oscillating
coefficients matrix B(\bfx \varepsilon ). The oscillations caused by the quantum current density
between the eight ``crests"" are negligible. In this example, the (traditional) multiscale
asymptotic method is able to produce satisfactory results.

a b

Fig. 4.5. (a) Case 4.2.1: The quantum current density | \bfJ \varepsilon | on the line x1 = x2 = x3 at time
t = 0.25. (b) Case 4.2.2: The x1 component of the quantum current density \bfJ \varepsilon on the intersection
x3 = 0.4 at time t = 0.25.

\itE \itx \ita \itm \itp \itl \ite 4.2. In this example, we consider the Maxwell--Schr\"odinger system (1.11)
with the number of electrons N = 5. We consider the following cases:

Case 4.2.1. hij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
0.025\delta ij in each dot,
\delta ij else,

bij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
\delta ij in each dot,
100\delta ij else,

Case 4.2.2. hij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
0.025\delta ij in each dot,
\delta ij else,

bij

\biggl( 
x

\varepsilon 

\biggr) 
=

\biggl\{ 
\delta ij in each dot,
400\delta ij else.

The other computational settings are the same as those in Example 4.1.
Figures 4.5 (a)--(b) display the numerical results for the quantum current density

J\varepsilon at time t = 0.25 in Cases 4.2.1 and 4.2.2.
Figures 4.6 and 4.7 compare the numerical results for the vector potential A\varepsilon 

based on the (traditional) second-order multiscale method and the modified second-
order multiscale method at time t = 0.4 on the line x1 = x2 = x3 in Cases 4.2.1 and
4.2.2.

From Figures 4.5--4.7, we can see that the region where the vector potential A\varepsilon 

is affected greatly by the quantum current density J\varepsilon lies at the heart of the domain,
where J\varepsilon oscillates rapidly.

\itR \ite \itm \ita \itr \itk 4.4. In this example, we can see that the oscillations of the vector po-
tential A\varepsilon caused by the quantum current density J\varepsilon are more considerable in this
example than in Example 4.1 by comparing Figures 4.6 and 4.7 to Figure 4.4. In Case
4.2.1, the oscillations of A\varepsilon caused by J\varepsilon at the heart of the domain are comparable to
those caused by the rapidly oscillating coefficients matrix B(\bfx \varepsilon ). From the numerical
results displayed in Figures 4.6 and 4.7, it is easy to see that the modified multiscale
method is more capable of capturing the oscillations of A\varepsilon caused by J\varepsilon than the
(traditional) multiscale method.
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1113

a

b

c

Fig. 4.6. The second-order multiscale solutions of the vector potential \bfA \varepsilon at time t = 0.4 on the
line x1 = x2 = x3 by the (traditional) multiscale method (left) and the modified multiscale method
(right) in Case 4.2.1: (a) x1 component; (b) x2 component; (c) x3 component.

\itE \itx \ita \itm \itp \itl \ite 4.3. In this example, we consider the Maxwell--Schr\"odinger system (1.11)
with the exchange-correlation potential and anisotropic coefficients. We take Vxc(\rho ) =

 - 3
2

\bigl( 
3
4\pi \rho 

\bigr) 1
3 . Js and B(x\varepsilon ) are respectively given by

Js(x, t) = 1000
\bigl( 
1 - cos(\pi t)

\bigr) \bigl( 
x21 + 1, x22 + 1, x23 + 1

\bigr) D
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A1114 CHUPENG MA, LIQUN CAO, AND YANPING LIN

a

b

c

Fig. 4.7. The second-order multiscale solutions of the vector potential \bfA \varepsilon at time t = 0.4 on the
line x1 = x2 = x3 by the (traditional) multiscale method (left) and the modified multiscale method
(right) in Case 4.2.2: (a) x1 component; (b) x2 component; (c) x3 component.

and

(4.1) B

\biggl( 
x

\varepsilon 

\biggr) 
=

\left[  1 0 0
0 2 0
0 0 3

\right]  in each dot; B

\biggl( 
x

\varepsilon 

\biggr) 
=

\left[  200 0 0
0 400 0
0 0 300

\right]  else.
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MULTISCALE COMPUTATIONS FOR MAXWELL--SCHR\"ODINGER A1115

a b

Fig. 4.8. Case 4.3.1: (a) The numerical results for | \bfA \varepsilon | 2 at time t = 0.5 on the line x1 = x2 =
x3. (b) The relative numerical errors of the different methods for \bfA \varepsilon in \bfL 2(\Omega )-norm.

a b

Fig. 4.9. Case 4.3.2: The relative numerical errors of the different methods for n\varepsilon as functions
of time in L2(\Omega )-norm (a) and H1(\Omega )-norm (b).

For the coefficient matrix H(\bfx \varepsilon ), we consider the following cases:

(4.2)
Case 4.3.1. H(\bfx \varepsilon ) = 0.02\times \widetilde H in each dot; H(\bfx \varepsilon ) =

\widetilde H else,

Case 4.3.2. H(\bfx \varepsilon ) = 0.02\times \v H in each dot; H(\bfx \varepsilon ) =
\v H else,

where

\widetilde H =

\left[  1 0 0
0 2 0
0 0 3

\right]  , \v H =

\left[  2  - 1 0
 - 1 2  - 1
0  - 1 2

\right]  .
The other computational settings are the same as those in Example 4.2. The

vector potential is computed by using the modified multiscale method.
Figures 4.8 (a)--(b) show the numerical results for the vector potential A\varepsilon in

Case 4.3.1. Here, (a) displays the numerical results for | A\varepsilon | 2 based on the modified
second-order multiscale method at time t = 0.5 on the line x1 = x2 = x3, and (b)
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A1116 CHUPENG MA, LIQUN CAO, AND YANPING LIN

displays the relative numerical errors of the homogenization method, the modified
first-order multiscale method, and the modified second-order multiscale method for
A\varepsilon as functions of time in the L2(\Omega )-norm.

Figures 4.9 (a)--(b) show the relative numerical errors of the homogenization
method, the first-order multiscale method, and the second-order multiscale method
for the density function n\varepsilon as functions of time in the L2(\Omega )-norm and H1(\Omega )-norm
in Case 4.3.2.

Figures 4.10 (a)--(d) display the numerical results for the density function n\varepsilon based
on the second-order multiscale method on the intersection x3 = 0.6 at time t = 0.4 in
Cases 4.3.1 and 4.3.2.

a b

c d

Fig. 4.10. The density function on the intersection x3 = 0.6 at time t = 0.4. (a) Reference
solution n\varepsilon in Case 4.3.1. (b) Second-order multiscale solution n\varepsilon ,2 in Case 4.3.1. (c) Reference
solution n\varepsilon in Case 4.3.2. (d) Second-order multiscale solution n\varepsilon ,2 in Case 4.3.2.

\itE \itx \ita \itm \itp \itl \ite 4.4. To test the convergence performance of the fully discrete finite el-
ement scheme (3.9), we consider an artificial problem,
(4.3)\left\{               

 - i
\partial \Psi 

\partial t
 - (\nabla  - iA)

\bigl( 
\^H (\nabla  - iA)\Psi 

\bigr) 
+
\bigl( 
\langle Vc\rangle + Vxc[N | \Psi | 2]

\bigr) 
\Psi = g in \Omega \times (0, T ),

\partial 2A

\partial t2
+\nabla \times ( \^B\nabla \times A) - 2N \^H Im

\bigl[ 
(\Psi )\ast (\nabla  - iA)\Psi 

\bigr] 
= f in \Omega \times (0, T ),

\Psi (x, t) = 0, A(x, t)\times n = 0, (x, t) \in \partial \Omega \times (0, T ),

\Psi (x, 0) = \Psi 0(x), A(x, 0) = A0(x), At(x, 0) = A1(x) in \Omega ,

where \Omega = (0, 1)3, T = 3.0, and N = 1. We take \langle Vc\rangle = 5.0 and Vxc(s) =
1
2s

2. The
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a b

Fig. 4.11. The errors at t = 1.5 and t = 3.0. (a) The error of the wave function \Psi in H1-norm.
(b) The error of the vector potential \bfA in \bfH (\bfc \bfu \bfr \bfl )-norm.

a b

Fig. 4.12. The relative errors of the wave function \Psi in L2-norm and H1-norm (a) and the
vector potential \bfA in \bfL 2-norm and \bfH (\bfc \bfu \bfr \bfl )-norm (b). h = 0.043; \tau = 0.01.

matrices \^H and \^B are given by

\^H =

\left[  2  - 1 0
 - 1 2  - 1
0  - 1 2

\right]  , \^B =

\left[  2 2 0
2 5 3
0 3 9

\right]  .
The functions g, f , \Psi 0, A0, and A1 are chosen corresponding to the exact solution

\Psi (x, t) =
\bigl( 
ei\pi t + 2i

\bigr) 
x1x2x3(1 - x1)(1 - x2)(1 - x3),

A(x, t) =
\bigl( 
cos(\pi t) + 2t

\bigr) \bigl( 
sin(\pi x2) sin(\pi x3), sin(\pi x1) sin(\pi x3), sin(\pi x1) sin(\pi x2)

\bigr) 
.

In Figure 4.11, we plot the errors at t = 1.5 and t = 3.0 for a sequence of successively
refined tetrahedral meshes starting from a uniform coarse mesh. The initial mesh is
obtained by a uniform subdivision of a finite difference grid of the domain \Omega . We
take a sufficiently small time-step \tau such that the errors are mainly due to spatial
discretization. The errors are displayed in logarithmic scale as a function of 1/h, which
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allows us to visualize the convergence rates as the slopes of the curves. We observe
that the convergence orders are slightly smaller than 1 as the mesh is successively
refined.

In Figure 4.12, we display the relative errors as functions of time in which the
system is solved with \tau = 0.01 and h = 0.043. The mesh used in this case consists of
384000 tetrahedrons.

5. Conclusions. We have developed the homogenization and multiscale asymp-
totic method for the Maxwell--Schr\"odinger system under the temporal gauge with the
rapidly oscillating effective mass and magnetic permeability. A novel multiscale ap-
proximation is proposed for the vector potential to capture the oscillations caused by
the quantum current density. In addition, we propose a Crank--Nicolson finite element
method for the homogenized Maxwell--Sch\"odinger system and establish the stability
estimates. Numerical examples are presented to show the efficiency and accuracy of
the algorithms. For now, some aspects of the algorithms proposed in this paper have
not been touched upon yet, including the following:

1. The homogenization and multiscale asymptotic method for the Maxwell--
Schr\"odinger system in which the heterogeneity in the electric permittivity
and the magnetic permeability are both considered.

2. A rigorous proof of the convergence of the homogenization method for the
Maxwell--Schr\"odinger system.

3. Theoretical analysis of the modified multiscale approximation for the vector
potential.

4. Theoretical analysis of the error introduced by replacing the homogenized
matrices \^H and \^B in the system (3.9) with the approximations \^Hh0 and \^Bh0 ,
respectively.

5. A rigorous proof of the convergence of the Crank--Nicolson finite element
method for the homogenized Maxwell--Schr\"odinger system.

Building on the work in this paper, in the near future we plan to investigate the
theoretical analysis of the modified multiscale approximation and the Crank--Nicolson
finite element method for the homogenized Maxwell--Schr\"odinger system. Moreover,
from the point of view of practical applications, extending the present results to
the Maxwell--Schr\"odinger system with the rapidly oscillating electric permittivity is
another focus of future work.
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