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Abstract

This article reports our explorations for solving interface problems of the Helmholtz equation by
immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated:
the partially penalized IFE (PPIFE) and discontinuous Galerkin IFE (DGIFE) methods. Optimal
convergence rates are observed for these IFE methods once the mesh size is smaller than the optimal
mesh size which is mainly dictated by the wave number. Numerical experiments also suggest that
higher degree IFE methods are advantageous because of their larger optimal mesh size and higher
convergence rates.

1 Introduction

Wave propagation in composite media formed with different materials appears in many areas of science
and engineering, for example, the study of the wave diffraction [21, 50], wave scattering [16, 55], and wave
reflection/transmission [11, 18], to name just a few. In a suitable physical configuration, the amplitude
of the wave can be described by the Helmholtz equation. In addition, across the interface between two
different materials, the amplitude is required to satisfy the jump conditions [37, 57] imposed according to
pertinent physics, such as the continuity of pressure, the normal velocity or volume flow [11, 18, 37, 54].
These considerations lead to the following interface problem for the Helmholtz equation [14, 38] posed
in a domain Ω ⊆ R2 divided by an interface curve Γ into two subdomains Ω1 and Ω2 each occupied a
different material: find u(X) such that

−∇ · (β∇u)− w2u = f, in Ω = Ω1 ∪ Ω2, (1.1a)

β
∂u

∂nΩ
+ iwu = g, on ∂Ω, (1.1b)

together with the jump conditions across the interface [11, 14, 18, 37, 38]:

[u]Γ := u1|Γ − u2|Γ = 0, (1.1c)[
β∇u · n

]
Γ

:= β1∇u1 · n|Γ − β2∇u2 · n|Γ = 0, (1.1d)

where us = u|Ωs , s = 1, 2 and n is the unit normal vector to the interface Γ. In this interface problem,
(1.1b) specifies the first order absorb boundary condition with i =

√
−1, w is the wave number, nΩ is the
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unit outward normal vector to ∂Ω, and the coefficient β is a piecewise positive constant function such
that

β(X) =

{
β1 for X ∈ Ω1,
β2 for X ∈ Ω2.

The Helmholtz boundary value problems (BVPs) without interface have been widely studied using
numerical methods, among them, are the classic finite element methods [6, 8, 33, 35]. More sophisticated
finite element methods such as the interior penalty Galerkin (IPG) method [15, 22] and discontinuous
Galerkin (DG) method (including interior penalty DG, IPDG for abbreviation) [23, 24, 25, 36, 39, 47]
have been developed for solving Helmholtz boundary value problems.

Finite element methods such as those mentioned above can be applied to solve interface problems
provided that they use a body-fitting mesh [7, 13, 17, 53] in which each element is essentially on one
side of the interface or each element is occupied by one of the materials. However, this body-fitting
requirement can hinder a finite element method in some applications such as a simulation in which an
interface problem has to be solved repeatedly for different geometries and locations of the interface which
demand the mesh to be regenerated again and again to accommodate the change of the material interface.
For such simulations, numerical methods based an interface-independent mesh are often preferred. For
example, extended finite element methods (X-FEM), immersed interface methods (IIM), and multi-scale
method have been developed to solve interface problems of elliptic partial differential equations with an
interface-independent mesh, readers are referred to [5, 9, 19, 32, 40, 42] for more details about these
methods. In particular, some of these methods have been applied to Helmholtz interface problems, see
[55] for IIM and [57] for X-FEM.

The immersed finite element (IFE) methods are another class of finite element methods developed
to solve interface problems with interface-independent meshes. With Hesie-Clogh-Tocher type [12, 20]
macro polynomials constructed according to the interface jump conditions as the local shape functions,
IFE methods allow the interface to split the interior of the elements in a mesh; therefore, IFE methods
are interface-independent methods that can use highly structured Catesian meshes for problems with
non-trivial interfaces, see [41, 43, 51] for some IFE spaces based on triangular Cartesian meshes and
[26, 27, 30, 44] for some IFE spaces based rectangular Catesian meshes. Partially penalized IFE (PPIFE)
and DGIFE methods [26, 28, 31, 45, 46, 56] have been developed for elliptic interface problems, and the
related extensions to higher degree IFE methods are presented in [1, 2, 3, 48].

The purpose of this article is to report our exploration for applying IFE methods to the Helmholtz
interface problem described by (1.1a)-(1.1d). Since the Helmholtz equation contains the elliptic operator
and the interface jump conditions specified in (1.1c) and (1.1d) are the same as those for the elliptic
interface problems, it is natural for us to consider IFE methods for the Helmholtz interface problem by
using the IFE spaces constructed for the elliptic interface problems. Both the partially penalized Galerkin
formulation and the discontinuous Galerkin formulation will be considered. We will also explore higher
degree IFE methods because it is well known that higher degree finite element methods have desirable
features for wave propagation problems [4, 10, 49], such as reducing the numerical dispersion and errors
in solution due to the pollution effect caused by a large wave number [34, 52]. Also it was found out that
employing higher degree finite elements requires less degrees of freedom for numerical solutions to attain
a specific accuracy [34]. Specifically, the layout of this article is as follows: in Section 2, we introduce the
notation and assumptions to be used in this article, and we recall the IFE spaces in the literature. In
Section 3, PPIFE and DGIFE schemes are derived for the Helmholtz interface problem (1.1). In Section
4, we present numerical examples to show the features of the proposed IFE methods. Some concise
conclusions and remarks are given in Section 5.
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2 IFE spaces

Given a polygonal domain Ω ⊂ R2, we let Th be a triangular or a rectangular mesh of Ω, and we use Eh
to denote the set of edges in Th. Without loss of generality, we assume that interface Γ does not intersect
with ∂Ω. Since the mesh Th is assumed to be independent of the interface Γ, some elements in the mesh
Th will be inevitably cut by Γ. Depending on whether an element intersects with the material interface Γ
or not, elements in the mesh Th are categorized as interface elements and non-interface elements, and we
use T ih to denote the set of interface elements and use T nh for the set of non-interface elements. Similarly,
edges in the mesh Th are also classified as interface edges and non-interface edges, and we will use E ih and
Enh for the set of interface edges and the set of non-interface edges, respectively. In addition, we will use

Ebh for the set of boundary edges, and use E̊h, E̊ ih and E̊nh for the set of interior edges, the set of interior
interface edges, and the set of interior non-interface edges, respectively. As usual, [26, 27, 29], we adopt
the following assumptions about the mesh Th:

(H1) The interface Γ cannot intersect an edge of any element at more than two points unless the edge is
part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection points must be on
different edges of this element.

(H3) The interface Γ is a piecewise C2 function, and for every interface element T ∈ T ih , Γ ∩ T is C2.

In the discussion from now on, we will use the following function spaces. For an open set Ω̃ ⊆ Ω, we
let Hp(Ω̃), p ≥ 0 be the standard Sobolev space. Furthermore, if Ω̃s = Ω̃ ∩ Ωs 6= ∅, s = 1, 2, we let

PHp(Ω̃) =
{
u : u|Ω̃s ∈ Hp(Ω̃s), s = 1, 2; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃

}
, p ≥ 2.

We will also use Pk to denote the space of polynomials with degree not more than an integer k ≥ 0, and
let Q1 be the space of bilinear polynomials.

2.1 Local linear and bilinear IFE spaces

We now recall the lower degree local IFE spaces, i.e., the local IFE spaces constructed with linear or
bilinear polynomials. We start from the linear case. For each element T = ∆A1A2A3 in a triangular mesh
Th, we let ψj,T , j = 1, 2, 3 be the standard linear finite element shape function associated with the vertices
Aj , j = 1, 2, 3. When T = ∆A1A2A3 ∈ T ih , we denote the intersection points of the interface Γ and ∂T
by D and E, see the left illustration in Figure 2.1. The line l = DE partitions T into two subelements:
T 1
l and T 2

l . We let
P1(T ) = {q : q|T s

l
∈ P1, s = 1, 2}.

Then, the linear IFE shape functions on T = ∆A1A2A3 are defined as piecewise linear functions in P1(T )
[41, 43] such that:

φi,T (x, y) =


φ−i,T (x, y) = a−x+ b−y + c−, if (x, y) ∈ Tl1,
φ+
i,T (x, y) = a+x+ b+y + c+, if (x, y) ∈ Tl2,
φ−(D) = φ+(D), φ−(E) = φ+(E),

β+ ∂φ+

∂nDE
− β− ∂φ−

∂nDE
= 0,

(2.1)

φi,T (Aj) = δij , ∀i, j ∈ {1, 2, 3}. (2.2)
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We note that the third and the fourth equations in (2.1) follow from the interface jump conditions (1.1c)
and (1.1d) for the Helmholtz interface problems which happen to be the same as those for the elliptic
interface problems discussed in [41, 43] where existence and uniqueness of linear IFE shape functions on
a triangular interface element have been proved. Thus, the local linear IFE space on each element T in a
triangular mesh Th is defined as:

S1
h(T ) =

{
Span{ψi,T , i = 1, 2, 3} = P1, T ∈ T nh ,
Span{φi,T , i = 1, 2, 3}, T ∈ T ih .

(2.3)

Figure 2.1: left: triangular interface element; right: rectangular interface element.

Similarly, for a typical rectangular element T = �A1A2A3A4, we let ψj,T , j = 1, 2, 3, 4 be the
standard bilinear finite element shape function associated with the vertices Aj , j = 1, 2, 3, 4. When
T = �A1A2A3A4 ∈ T ih , we denote the intersection points of the interface Γ and ∂T by D and E, see the
right illustration in Figure 2.1. The line l = DE partitions T into two subelements: T 1

l and T 2
l , and we

can use them to define the following space of piecewise bilinear polynomials:

Q1(T ) = {q : q|T s
l
∈ Q1, s = 1, 2},

Then, the local bilinear IFE shape functions are defined as the piecewise bilinear functions in Q1(T )
[26, 27, 44] such that:

φi,T (x, y) =


φ−i,T (x, y) = a−x+ b−y + c− + d−xy, if (x, y) ∈ Tl1,
φ+
i,T (x, y) = a+x+ b+y + c+ + d+xy, if (x, y) ∈ Tl2,
φ−(D) = φ+(D), φ−(E) = φ+(E), d− = d+,∫
DE(β+ ∂φ+

∂nDE
− β− ∂φ−

∂nDE
)ds = 0,

(2.4)

φi,T (Aj) = δij , ∀i, j ∈ {1, 2, 3, 4}. (2.5)

The existence and uniqueness of bilinear IFE shape functions on a rectangular interface element have
been proved in [26, 27]. Thus, the local bilinear IFE space on each element T in a rectangular mesh Th
is defined as:

S1
h(T ) =

{
Span{ψi,T , i = 1, 2, 3, 4} = Q1(T ), T ∈ T nh ,
Span{φi,T , i = 1, 2, 3, 4}, T ∈ T ih .

(2.6)
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2.2 Higher degree IFE spaces

We now recall a higher degree IFE functions based on a triangular mesh Th. For each interface element
T ∈ T ih , we use the interface curve Γ to partition it into two sub-elements T 1 and T 2, then, we use these
two sub-elements to define the following space of k-th degree piecewise polynomials:

Pk(T ) = {q : q|T s ∈ Pk, s = 1, 2}, k ≥ 2.

Higher degree IFE functions are constructed by functions in Pk(T ), k ≥ 2, but the construction procedure
is more complicated than linear and bilinear IFE functions because each function in Pk(T ), k ≥ 2 has
more coefficients so that the jump condition (1.1c) and (1.1d) are not sufficient to determine them. A
few explorations for constructing higher degree IFE functions for elliptic interface problems are reported
in [1, 2, 3, 48]. These research works suggest to add a suitable set of extended jump conditions so that
a higher degree IFE shape function can be determined on an interface element. To be specific, we follow
[3] to consider the following extended jump conditions:

Normal Extended Jump Conditions[
β
∂ju

∂nj

]
Γ

= 0, j = 2, 3, . . . k. (2.7)

For each element T in a triangular mesh Th, we let I = {1, 2, . . . , (k+1)(k+2)
2 } be the set of indices of the

local nodes Xi,T , i ∈ I associated with the standard k-th degree Lagrange finite element shape functions
ψj,T , j ∈ I in T such that

ψj,T (Xi,T ) = δij , i, j ∈ I.

When T is an interface element, we let T 1 = Ω1 ∩ T and T 2 = Ω2 ∩ T , accordingly, we define I1 = {i :
Xi ∈ T 1} and I2 = {i : Xi ∈ T 2} so that I = I1 ∪ I2. The k-th degree IFE shape function on this
interface element T is a piecewise polynomial in the following form:

φi,T (x, y) =

{
φ1
i,T =

∑
j∈I1 δij ψj,T (x, y) +

∑
j∈I2 cj ψj,T (x, y), on T 1,

φ2
i,T =

∑
j∈I2 δij ψj,T (x, y) +

∑
j∈I1 cj ψj,T (x, y), on T 2.

(2.8)

It is easy to see that φi,T (x, y) is in the set Pk and it can be directly verified that

φi,T (Xk,T ) = δik, i, k ∈ I.

Furthermore, it has been proved in [3] that the coefficient cj , j ∈ I can be determined by the interface jump
conditions (1.1c)-(1.1d) together with the extended jump conditions (2.7) in a least squares framework
such that c = (cj)j∈I is the minimizer of a cost function

J(c) = |ηTc + ξTv|J1 , (2.9)

defined for φi,T to satisfy interface jump conditions and the extended jump conditions in a weak sense,
where v = (δij)j∈I , ξ = (ξj,T )j∈I , η = (ηj,T )j∈I , with ξj,T and ηj,T defined in (2.3) in [3], the semi-norm
|.|J1 is defined in (2.12) in [3]. Finally, we define the local k-th degree IFE space on each element T ∈ Th
as follows:

Skh(T ) =

{
Span{ψi,T , i = 1, 2, ..., |I|} = Pk(T ), T ∈ T nh ,
Span{φi,T , i = 1, 2, ..., |I|}, T ∈ T ih .

(2.10)
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3 IFE methods for Helmholtz interface problems

Basically, all the IFE methods developed for the elliptic interface problems such as those in [1, 28,
41, 43, 45, 46] can be extended to Helmholtz interface problems. We will focus on the partially penalized
IFE (PPIFE) method and the discontinuous Galerkin IFE (DGIFE) method because it has been observed
that, for the elliptic interface problems, the penalty terms in these methods enhance the stability as well
as the accuracy.

PPIFE method and the DGIFE method use different IFE spaces defined on a mesh Th. To describe
these IFE spaces, we let Nh be the set of the standard nodes for the Lagrange global finite element basis
function, i.e.,

Nh =



⋃
T∈Th
{Xi,T , 1 ≤ i ≤ (k + 1)(k + 2)/2} when Th is a triangular mesh,

⋃
T∈Th
{Ai,T , 1 ≤ i ≤ 4} when Th is a rectangular mesh,

where Xi,T , 1 ≤ i ≤ (k+1)(k+2)/2 are the local nodes associated with the standard k-th degree Lagrange
finite element shape functions in a triangular element T and Ai,T , 1 ≤ i ≤ 4 are vertices of a rectangular
element T . The IFE space for the PPIFE method is defined with the local IFE space on every element
as follows:

Skh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ Skh(T ), ∀T ∈ Th, v is continuous at eachX ∈ Nh

}
. (3.1)

On the other hand, the IFE space for the DGIFE method is defined with the local IFE space on every
element without the continuity requirement at nodes of the mesh:

DSkh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ Skh(T ), ∀T ∈ Th

}
. (3.2)

We note that, according to the mesh, each function vh ∈ Skh(Ω) is either a piecewise k-th degree polynomial
or a piecewise bilinear polynomial. The continuity of vh ∈ Skh(Ω) at every X ∈ Nh implies that vh is

continuous across every non-interface edge e ∈ E̊nh , but, in general, vh ∈ Skh(Ω) can be discontinuous across

each interface edge e ∈ E̊ ih, see [41, 28] for more related explanations. As usual, each function vh ∈ DSkh(Ω)
can be discontinuous across all edges of the mesh. Furthermore, for each function vh ∈ Skh(Ω) or DSkh(Ω),
it can be shown that vh|T ∈ H1(T ) for k = 1 because vh|T is continuous across l = DE, see Figure 2.1,
and vh|T 6∈ H1(T ) for k ≥ 2 because the piecewise polynomial vh cannot be continuous across an interface
curve Γ in general.

We will also adopt the following standard notations for the penalty terms on edges of a mesh Th. On
each e ∈ E̊h shared by two elements T e1 and T e2 , we let

[v]e = v|T e
1
− v|T e

2
, and {v}e =

1

2

(
v|T e

1
+ v|T e

2

)
. (3.3)

For e ∈ Ebh, we define
[v]e = {v}e = v|e, (3.4)

Similarly, on the interface Γ ∩ T inside an interface element T , we let

[v]Γ = v|T 1 − v|T 2 , and {v}Γ =
1

2
(v|T 1 + v|T 2) . (3.5)
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3.1 PPIFE methods for Helmholtz interface problems

To derive a PPIFE scheme, multiply equation (1.1a) by the complex conjugate of a function vh ∈ Skh(Ω)
and integrate on each element T ∈ Th. Then, by Green’s formula and the interface jump condition (1.1d),
it follows:∫

T
β∇u∇vhdX −

∫
∂T
β∇u · nT vhds−

∫
Γ∩T
{β∇u · nΓ}[vh]ds− w2

∫
T
uvhdX =

∫
T
fvhdX, (3.6)

where the third term on the left of (3.6) disappears when T ∈ T nh . Summing (3.6) over all T ∈ Th leads
to ∑

T∈Th

∫
T
β∇u∇vhdX −

∑
e∈E̊h

∫
e
{β∇u · ne}[vh]ds−

∑
e∈Ebh

∫
e
β∇u · nevhds

−
∑
T∈T i

h

∫
Γ∩T
{β∇u · nΓ}[vh]ds− w2

∫
Ω
uvhdX =

∫
Ω
fvhdX. (3.7)

Because of the continuity of vh ∈ Skh(Ω) across non-interface edges, we can write (3.7) as∑
T∈Th

∫
T
β∇u∇vhdX −

∑
e∈E̊ih

∫
e
{β∇u · ne}[vh]ds−

∑
e∈Ebh

∫
e
β∇u · nevhds

−
∑
T∈T i

h

∫
Γ∩T
{β∇u · nΓ}[vh]ds− w2

∫
Ω
uvhdX =

∫
Ω
fvhdX.

Applying the boundary condition (1.1b), we can reduce the above equation to∑
T∈Th

∫
T
β∇u∇vhdX −

∑
e∈E̊ih

∫
e
{β∇u · ne}[vh]ds+ iw

∑
e∈Ebh

∫
e
uvhds

−
∑
T∈T i

h

∫
Γ
{β∇u · nΓ}[vh]ds− w2

∫
Ω
uvhdX =

∫
Ω
fvhdX +

∑
e∈Ebh

∫
e
gvhds,

(3.8)

By assuming that u is in PH2(Ω) so that [u]e = 0, ∀e ∈ E̊h and applying the interface jump condition
(1.1c), we have

ε
∑
e∈E̊ih

∫
e
{β∇vh · ne}e[u]eds = 0, i

∑
e∈E̊ih

σ0
e

|e|

∫
e
[u]e [vh]eds = 0,

ε
∑
T∈T i

h

∫
Γ∩T
{β∇vh · nΓ}Γ[u]Γds = 0, i

∑
T∈T i

h

σ0
e

|e|

∫
Γ∩T

[u]Γ [vh]Γds = 0,

(3.9)

with parameters ε, and σ0
e ≥ 0. Adding these four terms to (3.8), we can see that the solution u to the

Helmholtz interface problem (1.1) satisfies the following form:

aPPh (u, vh)− w2(u, vh)L2(Ω) = Lf (vh), ∀vh ∈ Skh(Ω), (3.10)
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where the bilinear form aPPh (·, ·) : PH2(Ω)× Skh(Ω)→ R is defined as

aPPh (u, vh) =
∑
T∈Th

∫
T
β∇u · ∇vhdX −

∑
e∈E̊ih

∫
e
{β∇u · ne}e[vh]eds+ ε

∑
e∈E̊ih

∫
e
{β∇vh · ne}e[u]eds

+iw
∑
e∈Ebh

∫
e
uvhds+ i

∑
e∈E̊ih

σ0
e

|e|

∫
e
[u]e [vh]eds−

∑
T∈T i

h

∫
Γ∩T
{β∇u · nΓ}[vh]Γds

+ε
∑
T∈T i

h

∫
Γ∩T
{β∇vh · nΓ}Γ[u]Γds+ i

∑
T∈T i

h

σ0
e

|e|

∫
Γ∩T

[u]Γ [vh]Γds,

(3.11)

and the linear form Lf (·) : Skh(Ω)→ R is defined as

Lf (vh) =

∫
Ω
fvhdX +

∑
e∈Ebh

∫
e
gvhds. (3.12)

The weak form (3.10) suggests the PPIFE method for the Helmholtz interface problem (1.1): find uh ∈
Skh(Ω), k ≥ 1 such that

aPPh (uh, vh)− w2(uh, vh)Ω = Lf (vh), ∀vh ∈ Skh(Ω). (3.13)

Remark 3.1. The continuity of vh|T, ∀T ∈ Th for every vh ∈ S1
h(Ω) implies that the last three terms in

the bilinear form aPPh (·, ·) defined in (3.11) can be ignored in the PPIFE method based on the linear and
bilinear IFE spaces.

3.2 DGIFE method for the Helmholtz interface problems

For the DGIFE method, instead of using vh ∈ Skh(Ω), by using vh ∈ DSkh(Ω) in (3.7) and then adding
those four terms in (3.9), we can see that the solution u to the Helmholtz interface problem (1.1) satisfies
the following form:

aDGh (u, vh)− w2(u, vh)Ω = Lf (vh), ∀vh ∈ DSkh(Ω), (3.14)

where the bilinear form aDGh (·, ·) : PH2(Ω)×DSkh(Ω)→ R is defined by

aDGh (u, vh) =
∑
T∈Th

∫
T
β∇u · ∇vhdX −

∑
e∈E̊h

∫
e
{β∇u · ne}e[vh]eds+ ε

∑
e∈E̊h

∫
e
{β∇vh · ne}e[u]eds

+iw
∑
e∈Ebh

∫
e
uvhds+ i

∑
e∈E̊h

σ0
e

|e|

∫
e
[u]e [vh]eds−

∫
Γ
{β∇u · nΓ}[vh]Γds

+ε

∫
Γ
{β∇vh · nΓ}Γ[u]Γds+ i

σ0
e

|e|

∫
Γ
[u]Γ [vh]Γds,

(3.15)

and the linear functional Lf (·) : DSkh(Ω)→ R has the same form as (3.12). The weak form (3.14) suggests
the DGIFE method for the Helmholtz interface problem: find uh ∈ DSkh(Ω), k ≥ 1 such that

aDGh (uh, vh)− w2(uh, vh)Ω = Lf (vh), ∀vh ∈ DSkh(Ω). (3.16)

Remark 3.2. Similar to the PPIFE method, the continuity of vh|T, ∀T ∈ Th for every vh ∈ DS1
h(Ω)

implies that the last three terms in the bilinear form aDGh (·, ·) defined in (3.15) can be ignored in the
DGIFE method based on the linear and bilinear IFE spaces.
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4 Numerical Examples

We now present a few numerical examples to illustrate features of IFE methods for the Helmholtz
interface problems. In these numerical example, the solution domain is Ω = (−1, 1) × (−1, 1) on which
we form a rectangular mesh Th by partitioning Ω into N × N congruent squares of size h = 2/N or we
construct a Cartesian triangular mesh Th by further dividing each rectangular element in the previous
rectangular mesh into two congruent triangles along its diagonal line. The Helmholtz interface problem
to be considered is such that it has an interface Γ : x2 + y2 − r2

0 = 0, r0 = π/6.28 separating Ω into two
subdomains

Ω1 = {(x, y) : x2 + y2 < r2
0}, Ω2 = Ω\Ω1.

Functions f and g in the Helmholtz interface problem (1.1) are chosen such that its exact solution is:

u(x, y) =


1

β1
U(r), (x, y) ∈ Ω1,

1

β2
U(r) + (

1

β1
− 1

β2
)U(r0) (x, y) ∈ Ω2,

(4.1)

where r =
√
x2 + y2, U(r) = cos(wr)

w − cos(w)+isin(w)
w(J0(w)+iJ1(w))J0(wr), and Jγ(z), γ = 0, 1 are the 0-th and 1-st

order Bessel functions of the first kind.
For the PPIFE and DGIFE scheme, we choose ε = −1, so the PPIFE and DGIFE schemes are

symmetric PPIFE (SPPIFE)/symmetric DGIFE (SDGIFE) schemes, respectively, and we choose the
penalty parameter σ0

e = 30max{β1, β2}. We apply these IFE methods to Helmholtz interface problems
with β1 = 1, β2 = 5 or 50 representing small and moderately large discontinuity in the coefficient β, and
to Helmholtz interface problems with w = 10 or 50 for small and larger wave numbers.

Figures 4.1-4.4 compare the cubic DGIFE solutions to the exact solutions of two groups of Helmholtz
interface problems. Figures 4.1 and 4.2 are for the interface problems whose coefficient β is such that
β1 = 1, β2 = 50, but Figures 4.3 and 4.4 are for β1 = 50, β2 = 1. These plots demonstrate that the
proposed IFE methods can satisfactorily solve the Helmholtz interface problems with either a small wave
number w = 10 or a moderately large wave number w = 50.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 4.1: magnitude of cubic DGIFE solution, exact solution and errors between them at finite element
nodes when w = 10, β1 = 1, β2 = 50, N = 160.
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(a) cubic DGIFE solution (b) exact solution (c) error

Figure 4.2: magnitude of cubic DGIFE solution, exact solution and errors between them at finite element
nodes when w = 50, β1 = 1, β2 = 50, N = 160.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 4.3: magnitude of cubic DGIFE solution, exact solution and errors between them at finite element
nodes when w = 10, β1 = 50, β2 = 1, N = 160.

(a) cubic DGIFE solution (b) exact solution (c) error

Figure 4.4: magnitude of cubic DGIFE solution, exact solution and errors between them at finite element
nodes when w = 50, β1 = 50, β2 = 1, N = 160.

From Figures 4.1-4.4, we also observe that the solution u oscillates more for the Helmholtz interface
problem with a larger wave number, and u has a smaller magnitude in the subdomain where β has a
larger value. It is well known that the oscillation in the exact solution u in the Helmholtz equation
dictates the mesh size for its numerical solution; otherwise, the accuracy or convergence of the numerical
solution cannot be guaranteed if the mesh size is not sufficiently small to resolve the oscillation. For the
convergence, we recall the critical mesh size discussed in [24] that indicates when the numerical solutions
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start to converge:

Definition 4.1. (critical mesh size) For fixed w and f , the critical mesh size is defined to be the
maximum mesh size H(w, f) such that

(C1) e(h,w) < 1 for h < H(w, f),

(C2) e(h,w)→ 0 as h→ 0,
where e(h,w) = |u− uh|1,Ω/|u|1,Ω is the relative error in semi-H1 norm.

By the data in Table 1, we can see that the linear PPIFE solution converges from a coarse mesh with
h = 2/10 when the wave number in the interface problem is small w = 10, and this suggests the critical
mesh size H(10, f) / 2/10. However, for the interface problem with a large wave number w = 50
but a small discontinuity in β, the critical mesh size for the PPIFE solution seems to be much smaller
H(50, f) / 2/170. When the discontinuity in β is larger, the critical mesh size for the linear IFE solution
H(50, f) / 2/230 which is even smaller. Even though not presented here for the sake of controlling
the page consumption, we have observed in our numerical experiments that, for either small or large
discontinuity in β, the critical mesh size for the cubic PPIFE solution is about 2/10 when the wave
number is small ω = 10, but for a large wave number ω = 50 it becomes about 2/30. Therefore, higher
degree IFE methods can start to converge on rather coarse mesh even for higher wave numbers. Similar
behaviors are also observed for the DGIFE solutions.

From the data in Table 1, we can see that IFE solutions do not converge optimally until the mesh is
further reduced beyond the critical mesh size, and this motivates us to introduce the optimal mesh size
to characterize this phenomenon:

Definition 4.2. (optimal mesh size) For fixed w and f , the optimal mesh size is defined to be the
maximum mesh size H̃(w, f) such that

(O1) ‖u− uh‖0,Ω ≈ Chk+1 for h < H̃(w, f),

(O2) |u− uh|1,Ω ≈ Chk for h < H̃(w, f),
where k ≥ 1 is the degree of polynomials used in Skh(Ω) and DSkh(Ω).

From the data presented in Table 1 and Table 2, we can see that when the wave number is small w = 10
and the discontinuity in β is small, the optimal mesh size for the linear PPIFE solution seems to be
H̃(10, f) / 2/360. But when the discontinuity in β is larger, the optimal mesh size for the linear PPIFE
solution seems to be a little smaller H̃(10, f) / 2/420. However, for a larger number w = 50, the
data in Table 1 indicate that the optimal mesh size for the linear PPIFE solution seems to be drastically
smaller such that H̃(50, f) / 2/1280, and we note that H̃(50, f) � H(50, f), i.e., the optimal mesh
size for the linear PPIFE solution is much smaller than its critical mesh size. Similar characteristics
is observed for bilinear PPIFE solution, linear DGIFE solution, and bilinear DGIFE solution, and this
strongly demonstrates the inefficiency of using lower degree method to solve a Helmholtz interface problem
with a large wave number.

On the other hand, for this Helmholtz interface problem with a small wave number ω = 10, the data in
Table 3 show that the optimal mesh size for cubic PPIFE solution seems to be such that H̃(10, f) / 2/40
when β has a small discontinuity, and H̃(10, f) / 2/80 when β has a larger discontinuity. For a large
wave number ω = 50, the data in Table 3 show that the optimal mesh size for cubic PPIFE solution
seems to be such that H̃(50, f) / 2/260 which is much larger than the optimal mesh size for the linear
PPIFE solution. Therefore, the higher degree IFE methods are advantageous because they can converge
optimally on much coarser mesh than lower degree PPIFE methods. Similar behavior has also been
observed for DGIFE methods in our numerical experiments.
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We can also see the advantage of higher degree IFE methods from the point of view of the global
degrees of freedom and accuracy. According to the discussions above, for a small wave number ω = 10
and a small discontinuity in β, the linear PPIFE solution starts to converge optimally once its mesh
size is such that h = H̃(10, f) / 2/360, and on such a mesh, the global degrees of freedom (GDOF) in
this linear PPIFE solution is about (361)2 = 130321. In comparison, the cubic PPIFE solution starts to
converge optimally once its mesh size is such that h = H̃(10, f) / 2/40, and the GDOF in this cubic
PPIFE solution is about (3 × 40 + 1))2 = 14641 which is about 9 times smaller than the GDOF of the
linear PPIFE solution. Far more importantly, by comparing data in Table 1, Table 2, and Table 3, we
can see that, on meshes whose mesh sizes are smaller than the optimal mesh sizes, the cubic PPIFE
solution is obviously far more accurate than the linear PPIFE solution even though the GDOF of the
linear PPIFE solution is much larger. Similar advantages are also observed for higher degree DGIFE
methods. Therefore, for wave propagation interface problems, the higher degree IFE methods should be
preferred even though the development of higher degree IFE methods is still in its early stage, its research
deserves more attention.

By design, the linear and bilinear IFE spaces are consistent with their corresponding FE spaces, i.e.,
the linear/bilienar IFE space becomes linear/bilinear FE space when β1 = β2. Also, the formulations
for the PPIFE method and the FE method are quite close to each other, they differ only on interface
elements whose union forms a small band around the interface. Therefore, it is interesting to know how
the PPIFE and FE solutions behave from the point of views of the critical mesh size and the optimal
mesh size. From the data in Table 4, when the wave number is small ω = 10, the critical mesh size for the
linear FE solution is about 2/10 which is not much different from the critical mesh size for the linear IFE
solution according to the data in Table 1. For a larger wave number ω = 50, the data in Table 4 indicate
that the critical mesh size for the linear FE solution is about 2/140 which is again not much different
from the critical mesh size for the linear IFE solution which is about 2/170 when the discontinuity in
β is small according to the data in Table 1, but the difference becomes a little more obvious when the
discontinuity is larger. We also have observed that the critical mesh size of a cubic IFE method is just
slightly smaller than that of its FE counterpart.As for the optimal mesh size, by Table 4, when the wave
number is small ω = 10, the optimal mesh size for the linear FE solution seems to be about 2/100 which
is obviously larger than the optimal mesh for the linear PPIFE solution which is about 2/360 when the
discontinuity in β is small. However, for a large wave number ω = 50, the data in Table 5 suggest that
the optimal mesh for the cubic FE solution is about 2/260 which is comparable to the optimal mesh
size for the cubic PPIFE solution suggested by the data in Table 3. Similar behaviors are also observed
for DGIFE and DG methods. In summary, for Helmholtz problems, higher degree IFE methods and FE
method behave somewhat similarly, especially when the discontinuity in β is small or from the point of
view of the optimal mesh size.

5 Conclusion

We consider two IFE methods: the PPIFE and DGIFE methods for solving the Helmholtz interface
problem. For the Helmholtz interface problem with a small wave number, the proposed PPIFE and DGIFE
methods can produce optimally convergent approximate solutions on interface-independent meshes whose
mesh size is fine enough. However, when the wave number is large, the lower degree (linear or bilinear)
IFE methods do not seem to be good choices because they usually do not demonstrate the optimal
convergence unless the mesh size is extremely small. Instead, our explorations strongly suggest to use
higher degree IFE methods because they can quickly start to converge optimally and produce far more
accurate numerical solutions when the mesh size is reduced. Numerical experiments demonstrate that a
large discontinuity in the coefficient β will challenge the PPIFE and DGIFE methods, but this kind of
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challenge seems to be at a level far lower than the challenge from a large wave number. We also have
observed that higher degree IFE methods and higher FE methods behave somewhat similarly from the
point of view of the critical mesh size and the optimal mesh size.

w β2 N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)
10 8.2104e-02 NA 7.4639e-01 NA 7.2748e-01
20 4.9816e-02 0.7208 4.7736e-01 0.6448 4.6526e-01

10 5 40 1.6991e-02 1.5519 2.0544e-01 1.2164 2.0023e-01
80 4.5312e-03 1.9068 8.7699e-02 1.2281 8.5477e-02
160 1.1495e-03 1.9789 4.1293e-02 1.0867 4.0247e-02
320 2.8953e-04 1.9892 2.0298e-02 1.0245 1.9784e-02
640 7.2356e-05 2.0005 1.0106e-02 1.0062 9.8499e-03
1280 1.8062e-05 2.0021 5.0476e-03 1.0015 4.9197e-03
10 6.4644e-02 NA 7.5030e-01 NA 7.5659e-01
20 3.3762e-02 0.9371 4.0855e-01 0.8769 4.1197e-01

10 50 40 2.0716e-02 0.7047 2.4551e-01 0.7347 2.4756e-01
80 1.0567e-02 0.9712 1.2749e-01 0.9454 1.2856e-01
160 3.4762e-03 1.6039 5.1411e-02 1.3102 5.1841e-02
320 9.1923e-04 1.9190 2.1448e-02 1.2612 2.1627e-02
640 2.3301e-04 1.9800 1.0022e-02 1.0976 1.0106e-02
1280 5.8619e-05 1.9910 4.9165e-03 1.0275 4.9576e-03
80 3.9451e-02 -0.3967 1.6817e+00 -0.3401 1.4876e+00
160 2.8478e-02 0.4702 1.1843e+00 0.5059 1.0357e+00

50 5 170 2.5688e-02 1.7007 1.0693e+00 1.6846 9.4531e-01
180 2.2661e-02 2.1937 9.4548e-01 2.1536 8.3582e-01
190 1.9804e-02 2.4923 8.2939e-01 2.4231 7.3319e-01
200 1.7282e-02 2.6557 7.2717e-01 2.5642 6.4283e-01
320 5.1669e-03 2.5689 2.3826e-01 2.3740 2.1095e-01
640 1.2047e-03 2.1006 7.5049e-02 1.6666 6.6484e-02
1280 2.7773e-04 2.1170 3.0119e-02 1.3171 2.6673e-02
2560 6.8813e-05 2.0129 1.4235e-02 1.0813 1.2664e-02
160 4.0513e-02 0.0049 1.8752e+00 0.0178 1.7055e+00
210 3.3354e-02 0.7150 1.5637e+00 0.6680 1.4222e+00

50 50 220 2.7486e-02 4.1599 1.2931e+00 4.0842 1.1761e+00
230 2.2856e-02 4.1500 1.0792e+00 4.0680 9.8156e-01
240 1.9322e-02 3.9462 9.1595e-01 3.8543 8.3306e-01
250 1.6556e-02 3.7845 7.8804e-01 3.6846 7.1673e-01
320 7.5321e-03 3.1904 3.7059e-01 3.0562 3.3705e-01
640 1.4355e-03 2.3915 8.6787e-02 2.0943 7.8931e-02
1280 3.3874e-04 2.0833 3.1457e-02 1.4641 2.8610e-02
2560 8.3515e-05 2.0201 1.4101e-02 1.1576 1.2825e-02

Table 1: Errors in linear SPPIFE solution and convergence rates for β1 = 1, different β2 and w
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w β2 N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)
320 2.8953e-04 NA 2.0298e-02 NA 1.9784e-02
330 2.7060e-04 2.1969 1.9676e-02 1.0115 1.9178e-02

10 5 340 2.5617e-04 1.8364 1.9092e-02 1.0099 1.8608e-02
350 2.4053e-04 2.1725 1.8540e-02 1.0115 1.8070e-02
360 2.2829e-04 1.8539 1.8022e-02 1.0064 1.7565e-02
370 2.1555e-04 2.0964 1.7529e-02 1.0129 1.7084e-02
380 2.0469e-04 1.9384 1.7066e-02 1.0037 1.6633e-02
390 1.9430e-04 2.0050 1.6622e-02 1.0129 1.6201e-02
400 2.0469e-04 2.0265 1.6206e-02 1.0029 1.5795e-02
410 1.9430e-04 1.9657 1.5806e-02 1.0114 1.5405e-02
400 5.9551e-04 NA 1.5353e-02 NA 1.6780e-02
420 5.4036e-04 1.9919 1.5761e-02 1.1128 1.5893e-02

10 50 440 4.9144e-04 2.0400 1.4969e-02 1.1085 1.5094e-02
460 4.5041e-04 1.9613 1.4260e-02 1.0924 1.4379e-02
480 4.1440e-04 1.9577 1.4260e-02 1.0840 1.3731e-02
500 3.8156e-04 2.0225 1.3617e-02 1.0848 1.3136e-02
520 3.5217e-04 2.0434 1.3027e-02 1.0795 1.2591e-02
540 3.2554e-04 2.0840 1.1996e-02 1.0773 1.2090e-02
560 2.8306e-04 1.9568 1.1538e-02 1.0611 1.1207e-02
580 2.6451e-04 1.9994 1.1118e-02 1.0574 1.0812e-02

Table 2: Errors in linear SPPIFE solution and convergence rates for β1 = 1, different β2 and w

w β2 N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)
40 1.7107e-06 NA 4.1486e-04 NA 4.1486e-04
50 6.9536e-07 4.0343 2.1274e-04 2.9930 2.1274e-04

10 5 60 3.3424e-07 4.0180 1.2326e-04 2.9937 1.2326e-04
70 1.7995e-07 4.0168 7.7668e-05 2.9960 7.7668e-05
80 1.0543e-07 4.0033 5.2073e-05 2.9941 5.2073e-05
80 1.0522e-07 NA 5.1511e-05 NA 5.1942e-05
90 6.5444e-08 4.0319 3.6176e-05 3.0005 3.6478e-05

10 50 100 4.2864e-08 4.0164 2.6386e-05 2.9950 2.6607e-05
110 2.9224e-08 4.0187 1.9829e-05 2.9973 1.9995e-05
120 2.0628e-08 4.0033 1.5276e-05 2.9982 1.5404e-05
130 1.4951e-08 4.0218 1.2009e-05 3.0060 1.2110e-05

50 5 160 1.0869e-06 4.3450 9.8166e-04 2.9970 8.6781e-04
180 6.5893e-07 4.2427 6.8980e-04 2.9983 6.0979e-04
200 4.2458e-07 4.1736 5.0307e-04 2.9978 4.4472e-04
220 2.8662e-07 4.1252 3.7808e-04 2.9972 3.3423e-04
240 2.0079e-07 4.0882 2.9128e-04 2.9976 2.5750e-04
260 1.4498e-07 4.0646 2.2913e-04 2.9993 2.0256e-04
280 1.0736e-07 4.0497 1.8349e-04 3.0001 1.6220e-04
300 8.1240e-08 4.0363 1.4921e-04 2.9984 1.3190e-04
320 6.2625e-08 4.0245 1.2296e-04 2.9963 1.0870e-04

50 50 160 1.0830e-06 4.4365 9.4940e-04 2.9972 8.6348e-04
180 6.5049e-07 4.3017 6.6717e-04 2.9970 6.0680e-04
200 4.1663e-07 4.2111 4.8660e-04 2.9963 4.4257e-04
220 2.8016e-07 4.1513 3.6573e-04 2.9960 3.3263e-04
240 1.9577e-07 4.1099 2.8179e-04 2.9962 2.5629e-04
260 1.4112e-07 4.0807 2.2170e-04 2.9956 2.0164e-04
280 1.0438e-07 4.0646 1.7754e-04 2.9965 1.6147e-04
300 7.8916e-08 4.0491 1.4437e-04 2.9958 1.3131e-04
320 6.0794e-08 4.0364 1.1898e-04 2.9948 1.0821e-04

Table 3: Errors in cubic SPPIFE solution and convergence rates for β1 = 1, different β2 and w
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w β2 N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)
10 1.4494e-01 NA 1.5230e+00 NA 9.2162e-01
20 6.4454e-02 1.1692 7.9105e-01 0.9450 4.7870e-01

10 1 40 1.8912e-02 1.8572 3.1627e-01 1.3221 1.9139e-01
80 4.9128e-03 1.9713 1.3738e-01 1.1335 8.3135e-02
90 3.8919e-03 1.9778 1.2056e-01 1.1089 7.2956e-02
100 3.1583e-03 1.9823 1.0748e-01 1.0901 6.5040e-02
110 2.6138e-03 1.9856 9.7007e-02 1.0755 5.8703e-02
80 4.2659e-02 NA 2.1287e+00 NA 1.2300e+00
90 4.1340e-02 0.2668 2.0649e+00 0.2584 1.1931e+00

50 1 100 4.0504e-02 0.1937 2.0246e+00 0.1874 1.1698e+00
110 3.9731e-02 0.2023 1.9877e+00 0.1929 1.1485e+00
120 3.8340e-02 0.4094 1.9218e+00 0.3876 1.1104e+00
130 3.6248e-02 0.7011 1.8218e+00 0.6671 1.0527e+00
140 3.3800e-02 0.9438 1.7040e+00 0.9021 9.8458e-01
150 3.1281e-02 1.1224 1.5821e+00 1.0758 9.1415e-01
160 2.8836e-02 1.2611 1.4632e+00 1.2106 8.4544e-01

Table 4: Errors in linear FE solution for β1 = β2 = 1

w β2 N ‖u− uh‖0,Ω rate |u− uh|1,Ω rate e(h,w)
240 3.1879e-07 4.1290 4.6238e-04 2.9985 2.6717e-04
250 2.6955e-07 4.1100 4.0911e-04 2.9986 2.3638e-04
260 2.2952e-07 4.0982 3.6372e-04 2.9987 2.1016e-04

50 1 270 1.9674e-07 4.0840 3.2480e-04 2.9987 1.8767e-04
280 1.6963e-0 4.0763 2.9124e-04 2.9989 1.6828e-04
290 1.4708e-07 4.0655 2.6215e-04 2.9989 1.5147e-04
300 1.2816e-07 4.0607 2.3680e-04 2.9990 1.3683e-04
310 1.1222e-07 4.0518 2.1463e-04 2.9990 1.2401e-04
320 9.8681e-08 4.0491 1.9513e-04 2.9991 1.1275e-04

Table 5: Errors in cubic FE solution for β1 = β2 = 1.
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