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Abstract

This article presents a finite element method on a fixed mesh for solving a group of inverse geometric
problems for recovering the material interface of a linear elasticity system. A partially penalized immersed
finite element method is used to discretize both the elasticity interface problems and the objective shape
functionals accurately regardless of the shape and location of the interface. Explicit formulas for both the
velocity fields and the shape derivatives of IFE shape functions are derived on a fixed mesh and they are
employed in the shape sensitivity framework through the discretized adjoint method for accurately and effi-
ciently computing the gradients of objective shape functions with respect to the parameters of the interface
curve. The shape optimization for solving an inverse geometric problem is therefore accurately reduced to
a constrained optimization that can be implemented efficiently within the IFE framework together with a
standard optimization algorithm. We demonstrate features and advantages of the proposed IFE-based shape
optimization method by several typical inverse geometric problems for linear elasticity systems.

Keywords: Inverse problems, Elasticity systems, Inclusions reconstruction, Discontinuous Lamé param-
eters, Shape optimization, Immersed finite element methods.

1 Introduction

Elasticity inverse problems have attracted attentions because of their appearances in quite a few applications
such as elasticity imaging used for non-destructive testing of mechanical properties/structures in geophysics ex-
ploration and medical diagnosis [9, 29, 64]. In general, elasticity inverse problems can be categorized into inverse
geometric problems and parameter estimation problems. An inverse geometric problem is for reconstructing ge-
ometric structures inside an elastic body, such as inclusions, cavities (rigid inclusions) and cracks [6, 7, 8, 42, 55],
and a parameter estimation problem is for the determination of distributed parameters, such as elastic moduli
and mass density [24, 25, 30, 71]. It is well known that these inverse problems are usually ill-posed due to the
lack of information. We refer readers to the review article [15] for various inverse problems in the context of
elasticity and the related mathematical or numerical techniques.

The purpose of this article is to develop a numerical method for recovering inclusions in an elastic body with
different elastic properties than the surrounding materials through an IFE-based shape optimization method
on a fixed mesh. Without loss of generality, consider an elastic body Ω that is partitioned by an interface Γ
into two subdomains Ω− and Ω+ filled with different materials, and we assume the buried inclusion occupies
the subdomain Ω−. Due to the changes in elastic properties across the material interface Γ, and without loss of
generality, the Young’s modulus E and Poisson’s ratio ν in Ω are assumed to be piecewise constant functions:

E(X) = Es, ν(X) = νs, X ∈ Ωs, s = ±, (1)
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where X = (x1, x2)t with the superscript t for the transpose. Correspondingly, the Lamé parameters in Ω are
also piecewise constants:

λ(X) = λs(X), µ(X) = µs(X), X ∈ Ωs, s = ±,

with λs(X) =
Esνs

(1 + νs)(1− 2νs)
, X ∈ Ωs, µs(X) =

Es

2(1 + νs)
, X ∈ Ωs, s = ±. (2)

Assume that a set of body forces and boundary conditions fk,gkD,g
k
N , k = 1, 2, · · · ,K simulating unrelated

mechanisms are applied on this elastic body Ω, then the corresponding displacement fields uk = (uk1, u
k
2)t, k =

1, 2, · · · ,K are determined by the following direct problem for the linear elasticity system:

− div σ(uk) = fk, in Ω− ∪ Ω+, (3a)

uk = gkD, on ∂Ωk
D, and σ(uk)n = gkN on ∂Ωk

N , (3b)

with the stress tensor σ(u) = (σij(u))i,j=1,2 and strain tensor ε(u) = εij(u):

σij(u) = λ(∇ · u)δi,j + 2µεij(u), εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4)

where ∂Ωk
D ∪ ∂Ωk

N = ∂Ω, and n is the outward normal vector to ∂Ω. In addition, the displacement fields uk’s
are assumed to satisfy jump conditions across the material interface Γ:

[uk]Γ := uk,+ − uk,+ = 0, [σ(uk)n]Γ := σ+(uk,+)n− σ−(uk,−)n = 0, k = 1, · · · ,K, (5)

where n is normal to Γ.
In many applications, the values of material parameters are known a-priori, such as the elastic properties of

tissue and bone in medical problems [59, 67]. Hence, assuming the Young’s modulus Es, νs, s = ±, are given, our
focus in this work is to numerically solve the inverse geometric problem for recovering the shape and location of
the material interface Γ in the linear elasticity systems (3)-(5) by only boundary measurements or measurements
close to the boundary through a shape optimization method [40, 72]. Shape optimization methods have been
applied to various inverse geometric problems such as the electric impedance tomography (EIT), the related
electric resistance tomography (ERT), electrical capacitance tomography (ECP) [12, 23, 73], and the optical
tomography [1]. In particular, the authors in [71] studied simultaneous identification of both Lamé parameters
and a circular inclusion provided boundary measurements. Obstacle identification problems are studied in [8, 17]
also with boundary measurements. In [42], the authors proposed an algorithm to simultaneously recover both
the inclusions of general shape and Lamé parameters but with full internal measurements. We would like to
mention that the authors in [7] studied an inclusion reconstruction problem close to the one we investigate in this
article but with a different jump condition across interface which can be understood as extra measurements. In
addition, the inverse problem considered here has a certain similarity to the electrical impedance tomography
governed by scalar elliptic equations which seems to be a popular topic in the literature. Nevertheless, to
the best of our knowledge, there are relatively fewer publications on the inverse problem in the specific form
discussed in the present article.

By the shape optimization approach, we formulate the inverse geometric problem as finding the material
interface Γ∗ such that

Γ∗ = argmin J (u1(Γ),u2(Γ), · · · ,uK(Γ),Γ), (6)

with J (u1(Γ),u2(Γ), · · · ,uK(Γ),Γ) =

∫
Ωd

J(u1(Γ),u2(Γ), · · · ,uK(Γ);X,Γ)dX, (7)

where the displacement fields uk, 1 6 k 6 K satisfy the elasticity systems described by (3)-(5), but the shape
functional J , the related integrand J , the data/measurement region Ωd ⊆ Ω depend on the data available for
recovering the material interface. In general, the shape functionals should achieve the minimal values when the
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interface is the exact one. In practice, the solutions uk, 1 6 k 6 K, will be used to compute the simulated
measurements which are further used to be compared with the actual measurements. Then the construction of
such shape functionals satisfies the following principle: the minimal value is achieved at an interface when the
simulated measurements agree with the actual measurements. We refer readers to [15] for a detailed discussion of
this principle and some examples as well as other more sophisticated techniques in construction. In this article,
some representative examples of shape functionals will be given in Section 4 for various typical applications.

A good numerical method for the shape optimization (6)-(7) requires a reliable approximation to the dis-
placement fields uk, k = 1, · · · ,K for which one needs to solve the direct problems (3)-(5) with discontinuous
coefficients. Traditional finite element methods can be used to solve for uk, k = 1, · · · ,K from (3)-(5) provided
that the mesh keeps updating to conform with the modified interface in each iteration in the shape optimiza-
tion; otherwise, such a direct solver may produce unsatisfactory results [11]. Shape optimization methods based
on conforming meshes are referred as the Lagrange approach in some references [21], and we refer readers to
[12, 14, 71, 73] for the application of this approach to some inverse geometric problems. An obvious drawback
of a Lagrange type shape optimization method is its computational cost to resolve the interface by the mesh
again and again in the optimization iterations, especially when the interface becomes complicated.

In addition, since there is no explicit mathematical rules relating the mesh nodes and the design variables
for general auto mesh generators, it usually needs some special approximation techniques and requires a global
computation on Ω [21] to construct a velocity field within the Lagrange framework. This procedure is often
burdensome and time consuming. Also, according to [20], an inappropriate choice of velocity field for mesh
updating may result in a distorted mesh leading to inaccurate finite element solutions for the displacement
fields. Here, a velocity field is the derivatives of spatial variables X with respect to the design variables [21],
i.e., the parameters determining the interface curve. It is needed for computing the shape sensitivity which is a
necessary ingredient for minimizing the shape functional by a gradient-type numerical optimization algorithm.

Therefore, direct problem solvers that can handle discontinuous coefficients on a fixed mesh are desirable
alternatives for shape optimization applications, and shape optimization methods based on a fixed mesh are
referred as the Eulerian methods in some literatures [53]. One group of the Eulerian type shape optimization
methods [1, 17, 19, 23] use a local averaging method [18] to smooth the discontinuous coefficients such that
standard finite element methods can be applied on a fixed mesh. Another group of Eulerian type shape
optimization methods employ special finite difference/element methods such as the immersed interface methods
(IIM) in [46] for cavity reconstruction in scalar elliptic equations and the extended finite element methods
(XFEM) in [61, 68, 75] for crack detection.

In this article, we propose an Eulerian type shape optimization method based on the immersed finite elements
(IFE) [32, 33, 35, 56, 57, 58] for solving the inverse geometric problem of the linear elasticity system described
by (3)-(5). In the proposed method, we parameterize the interface curve Γ and use the coordinates of its control
points as the design variables in the shape optimization. We discretize the elasticity interface (direct) problems
(3)-(5) by a partially penalized IFE (PPIFE) method [36] using the IFE space developed in [35]. Regardless
of the interface location in a chosen mesh, the numerical displacement fields produced by this IFE method are
optimal approximations to the displacement fields described by (3)-(5). Consequently, the objective functional
(7) in many applications, such as those reported in Section 4, is also discretized optimally by the IFE solution on
the chosen fixed mesh. These optimal discretizations are then naturally used to reduce the shape optimization
described by (6)-(7) subject to the linear elasticity system (3)-(5) to a fully discrete constrained optimization
problem.

Furthermore, the fixed mesh used by the IFE methods enables us to introduce a velocity field that vanishes
over all the non-interface elements. And the intrinsic dependence of IFE shape functions on the interface
allows us to derive explicit formulas for their shape derivatives which are also non-zero only on interface
elements. Since the number of interface elements is only in the order of O(h−1) in a shape regular mesh and the
union of all interface elements form a small band around the interface for a fine mesh, these two fundamental
components together with a discretized adjoint method can be efficiently implemented in the standard material
derivative formula for accurately and efficiently computing the shape sensitivities. Moreover, the interface
parameterization in the proposed method results in an optimization algorithm to search the target interface in
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a relatively small space in order for a quick and good reconstruction. We believe this can be understood as a
“hidden” regularization mechanism of the proposed method.

We believe, these features, i.e., (a) accurate discretization for both the elasticity systems and the cost func-
tional on a fixed mesh, (b) the accurate and efficient computation for the shape sensitivities of the cost function
on a fixed mesh, and (c) the self/implicit regularization mechanism, collectively distinguish the proposed IFE-
based shape optimization method from other methods in the literature.

This article consists of four additional sections. In the next section, we provide a brief review of the vector
IFE shape functions and the PPIFE method for the direct elasticity interface problems. In Section 3, we
propose the IFE-based shape optimization for the inverse geometric problems for the elasticity system. Key
ingredients for the IFE-based shape optimization such as the velocity fields on interface independent mesh, the
shape derivatives of IFE shape functions, and the material derivatives of objective functions will be derived
in this section. Section 4 presents numerical examples for a class of typical inverse problems to demonstrate
the strength and versatility of the proposed IFE-based shape optimization method. The last presents some
conclusion remarks.

2 An IFE Method for the Elasticity Interface Direct Problems

In this section, we first describe our parameterization approach of the interface as it is a key component
of the proposed shape optimization algorithm. Then based on this parameterization, we proceed to recall the
IFE space developed in [35] according to the jump conditions (5), and then recall the PPIFE method [36] for
the discretization of the elasticity interface problems (3)-(5) on an interface independent mesh. We will put the
PPIFE discretization in a matrix form suitable for shape optimization.

In this work, we employ the cubic spline to parameterize the interface curve because of its accuracy, versa-
tility, and popularity. Given a series of points Yj = (yj1, y

j
2), j = 1, 2, · · · , N , with a positive integer N , we use

their coordinates to form a vector α = (y1
1, · · · , yN1 , y1

2, · · · , yN2 ). On a reference interval I = [0, 1], we divide
I into N − 1 subintervals: Ij = [(j − 1)/(N − 1), j/(N − 1)], j = 1, 2, · · · , N − 1. Then the interface Γ corre-
sponding to the points {Yj}Nj=1 is the parametric curve (y1(τ), y2(τ)), τ ∈ [0, 1] such that on each sub-interval
Ij , j = 1, 2, · · · , N − 1,

yl(t) = yjl (t) := ajl t
3 + bjl t

2 + cjl t+ djl , l = 1, 2. (8)

Here the coefficients ajl , b
j
l , c

j
l and djl , 1 ≤ j ≤ N−1, l = 1, 2 are constructed such that the function yl(t), l = 1, 2

is the cubic spline interpolations of the corresponding coordinates in Yj = (yj1, y
j
2), j = 1, 2, · · · , N and satisfy

the end point matching condition, i.e.,

(y1
l )
k(0) = (yN−1

l )k(1), j = 1, 2, · · · , N − 2, l = 1, 2, k = 0, 1, 2.

It well known that, as cubic splines, functions yl(t), l = 1, 2 have continuous derivatives up to the second order.
This so called front-tracking approach is also used in [37] for the discretization of interface. By this set-up, we
therefore denote the interface curve as Γ = Γ(t,α), t ∈ [0, 1], and we note that the shape and location of Γ
depends and only depends on the points Yj = (yj1, y

j
2), j = 1, 2, · · · , N , i.e., the vector α. Following [13], we

call Yj the control points and call the entries of α the design variables. We note that the design variables are
basically the coordinates of control points and they will be used as variables for shape optimization. We refer
readers to numerical results presented in Figures 3-6 for a visualization of these control points. For the sake of
simplicity, in the rest of this article, we will denote the vector α = (αi)i∈D with D = {1, 2, · · · , 2N}. Also we
emphasize that the proposed method works readily with other parameterizations.

Without loss of generality, we consider a rectangular domain Ω and let Th be a fixed Cartesian mesh for this
domain. The sets of nodes and interior nodes are denoted by Nh = {X1, X2, · · · , X|Nh|} and N̊h, respectively.
We call T ∈ Th an interface element if the interior of T intersects the interface Γ(t,α); otherwise, we call it
a non-interface element. Similarly, we define the interface and non-interface edges. Denote T ih (E ih) and T nh
(Enh ) as the sets of interface and non-interface elements (edges), respectively. Furthermore, let E̊ ih be the set of
interior interface edges.
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We start from recalling the vector bilinear IFE space on a mesh Th discussed in [35]. On each element
T = �A1A2A3A4 ∈ Th, we define an index set I = {1, 2, 3, 4}. Let ψnoni,T , i ∈ I be the standard scalar Lagrange
bilinear shape functions associated with the vertices of T , and let ψnoni,T , i = 1, · · · , 8 be the corresponding vector
bilinear shape functions on T [16], i.e., ψnoni,T (Aj) = [δi,j , 0]t, ψnoni+4,T (Aj) = [0, δi,j ]

t, i, j ∈ I. Further denote the
matrix shape functions: Ψnon

i,T = [ψnoni,T ,ψ
non
i+4,T ], i ∈ I. Then the local IFE space Sh(T ) on every non-interface

element T ∈ T nh is defined as

Sh(T ) = Span{ψnoni,T , i = 1, · · · , 8} = [Q1(T )]2 . (9)

(a) Case 1 interface element (b) Case 2 interface element

Figure 1: Typical bilinear elements

On an interface element T ∈ T ih with the edge length h, we denote the two interface-mesh intersection points
of ∂T and the interface Γ(t,α) by P = (xP , yP )t and Q = (xQ, yQ)t, and let l be the line connecting P and Q
whose normal and tangential vectors are as follows:

n̄ =
1

||P −Q||
(yP − yQ,−(xP − xQ))t, t̄ =

1

||P −Q||
(xP − xQ, yP − yQ)t. (10)

Then the equation for the line l is L(X) = 0 with L(X) = n̄·(X−P ). Denote T+ and T− as the two sub-elements
partitioned by the line l, see the illustrations in Figure 1. We divide I into two subsets I− = {i : Ai ∈ T−} and
I+ = {i : Ai ∈ T+}. We recall from [35] that the vector bilinear IFE function with the nodal value vi = (v1

i , v
2
i )
t

at the node Ai, i ∈ I assumes the format of piecewise polynomials:

ψintT (X) =


ψint,−T (X) = ψint,+T (X) + L(X)c0 if X ∈ T−,

ψint,+T (X) =
∑
i∈I+

Ψnon
i,T (X)vi +

∑
i∈I−

Ψnon
i,T (X)ci if X ∈ T+, (11)

where the coefficients c0 = (c1
0, c

2
0)t, ci = (c1

i , c
2
i )
t, i ∈ I− are determined by

c0 = K−1σ̂(ψint,+T )(F0)n̄, with K = R

[
(λ− + 2µ−) 0

0 µ−

]
Rt, R = [n̄, t̄], (12)

and ci = vi − L(Ai)R
tΞ−1R

∑
j∈I

(
v1
j σ̂(ψnonj,T )(F0)n̄ + v2

j σ̂(ψnonj+4,T )(F0)n̄
)
, i ∈ I−, (13)

with σ̂(p) = (σ̂ij(p))16i,j62, σ̂ij(p) = (λ+ − λ−)(∇ · p)δi,j + 2(µ+ − µ−)εij(p), ∀p ∈ [H1(T )]2, (14)

and Ξ =

[
(λ− + 2µ−) 0

0 µ−

]
+

[
((λ+ − λ−) + 2(µ+ − µ−))gn(F0) (λ+ − λ−)gt(F0)

(µ+ − µ−)gt(F0) (µ+ − µ−)gn(F0)

]
, (15)

wtih gn(F0) =
∑
i∈I−

L(Ai)∇ψnoni,T (F0)n̄, gt(F0) =
∑
i∈I−

L(Ai)∇ψnoni,T (F0)t̄, (16)

where ∇ψnoni,T are understood as 1-by-2 vectors, and F0 = F0(P,Q) is a specific point on the line l specified in
[35] depending on P and Q to guarantee the matrix Ξ is invertible such that ci in (13) is well defined. This
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format is derived such that the two polynomial components in the IFE shape functions in (11) can satisfy the
nodal value condition ψintT (Ai) = vi, i ∈ I and the following approximate jump conditions:{

ψint,−T |l = ψint,+T |l,
σ+(ψint,−T )(F0) n̄ = σ−(ψint,+T )(F0) n̄.

(17)

Here, we present these detailed formulas in (12)-(16) in order to derive the formulas of shape derivatives of
IFE functions later. Setting vi to be [1, 0]t, [0, 1]t or [0, 0]t suitably in the formulation (11)-(13), we obtain the
vector IFE shape functions ψinti,T (X), i = 1, · · · , 8 on the interface element T such that ψinti,T (Aj) = [δi,j , 0]t and

ψinti+4,T (Aj) = [0, δi,j ]
t, i, j ∈ I. Then, the local IFE space on each interface element T ∈ T ih is defined as

Sh(T ) = Span{ψinti,T , ψinti+4,T , i ∈ I}. (18)

From now on, for simplicity, we only use ψi,T = [ψ1
i,T , ψ

2
i,T ]t, i = 1, · · · , 8, to denote the IFE shape functions on

either an interface or non-interface element T . Then, using (9) and (18), we define the global vector bilinear
IFE space:

Sh(Ω) =
{
v ∈ [L2(Ω)]2 : v|T ∈ Sh(T ), ∀T ∈ Th and v is continuous at each X ∈ Nh

}
, (19)

and the associated space S0
h(Ω) = {v ∈ Sh(Ω) : v(X) = 0, ∀X ∈ Nh ∩ ∂ΩD}. Let φ2i−1(X) and φ2i(X) be the

global IFE basis functions associated with the node Xi ∈ Nh such that φ2i−1(Xj) = [δi,j , 0]t, φ2i(Xj) = [0, δi,j ]
t,

i, j = 1, · · · , |Nh|. Then, we have

Sh(Ω) = Span{φ2i−1(X),φ2i(X), i = 1, 2, · · · , |Nh|}.

We now describe how to use the bilinear IFE space to discretize the elasticity interface forward problems
described by (3)-(5). As usual, letting ⊗ be the Kronecker product, we adopt the operators [·]e, [·]

e
and {·}e

for every v ∈ Sh(Ω) on each interface edge:

[v]e = (v|T 1 + v|T 2), [v]
e

= (vt|T 1 ⊗ n1
e + vt|T 2 ⊗ n2

e), {σ(v)}e = (σ(v|T 1) + σ(v|T 2)) /2, if e ∈ E̊ ih, (20)

and [v]e = v|T , [v]
e

= vt|T ⊗ ne, {σ(v)}e = σ(v|T ), if e ∈ E ih ∩ ∂Ω, (21)

where T 1 and T 2 are the two elements sharing e, the normal vector n1
e = −n2

e points to T 2 from T 1 if e ∈ E̊ ih
in (20), and T is the element containing e, ne is the outward normal vector to ∂Ω if e ∈ E ih ∩ ∂Ω in (21).

Then, with the bilinear IFE space, we employ the symmetric PPIFE (SPPIFE) method [36] to discretize
the elasticity interface direct problems (3)-(5) as follows: find ukh ∈ Sh(Ω), k = 1, · · · ,K, such that

ah(ukh,vh) = Lkf (vh), ∀vh ∈ S0
h(Ω), ukh(X) = gkD(X), ∀X ∈ Nh ∩ ∂Ωk

D, (22)

where ah(ukh,vh) =
∑
T∈Th

∫
T

2µε(ukh) : ε(vh)dX +
∑
T∈Th

∫
T
λ(∇ · ukh)(∇ · vh)dX (23)

−
∑

e∈Eih\∂ΩkN

∫
e
{σ(ukh)}e : [vh]

e
ds−

∑
e∈Eih\∂ΩkN

∫
e
{σ(vh)}e : [ukh]

e
ds+

∑
e∈Eih\∂ΩkN

ρ

|e|

∫
e
[ukh]e · [vh]eds,

and Lkf (vh) =
∑
T∈Th

∫
T

fk · vhdX +
∑

e∈∂ΩkN

∫
e
gkN · vhds

−
∑

e∈Ei∩∂ΩkD

∫
e
(σ(vh)ne) · gkDds+

∑
e∈Ei∩∂ΩkD

ρ

|e|

∫
e
vh · gkDds, (24)

and we choose ρ = 10 max{λ±, µ±}. We note that in (23)-(24), the penalties are only added on interface edges
to alleviate the adverse impacts possibly caused by the discontinuity of IFE functions across the interface edges.
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Also the involved IFE space has the same degrees of freedom as the standard continuous finite element space
defined on the same mesh. This feature makes it advantageous in moving interface problems because both the
location and total number of degrees of freedom do not change. Therefore, the PPIFE method to be used in
the proposed IFE-based shape optimization is essentially different from the interior penalty DG methods in
[10, 28]. We refer readers to [36, 56] for the detailed discussions of this IFE scheme.

We now put this IFE method in a matrix form in order to describe how it can be used in the shape
optimization for the inverse geometric problems. By the standard assembling procedure, we can generate the

matrix Ã = (ai,j)
2|Nh|
i,j=1 associated with the bilinear form defined in (23) by the following local matrices associated

with elements and edges of Th:

K1
T =

(∫
T

2µε(ψp,T ) : ε(ψq,T )dX

)
p,q

, K2
T =

(∫
T
λ(∇ ·ψp,T )(∇ ·ψq,T )dX

)
p,q

, ∀T ∈ Th, (25a)

Er1r2
e =

(∫
e
σ(ψp,T r1 ) : (ψq,T r2 ⊗ nr2e )ds

)
p,q

, Gr1r2
e =

(
ρ

|e|

∫
e
ψp,T r1 ·ψq,T r2ds

)
p,q

, ∀e ∈ E ih, (25b)

where for e ∈ E̊ ih, r1, r2 = 1, 2, and for e ∈ E ih ∩ ∂Ω, r1 = r2 = 0, then n0
e = ne and T 0 = T , which all have

the same meaning in the notations (20) and (21). Here and from now on, we use p, q = 1, · · · , 8 for the entries

in these matrices in (25). Similarly, the load vector F̃k = (fki )
2|Nh|
i=1 corresponding to the linear form defined in

(24) is assembled from the following local vectors:

Fk
T =

(∫
T

fk ·ψp,TdX
)
p

, ∀T ∈ Th, (26a)

Bk
e =

(∫
e
(σ(ψp,T )ne) · gkDds

)
p

, Ck
e =

ρ

|e|

(∫
e
gkD ·ψp,Tds

)
p

, ∀e ∈ E ih ∩ ∂ΩD, (26b)

Nk
e =

(∫
e
gkN ·ψp,Tds

)
p

, ∀e ∈ E ih ∩ ∂ΩN . (26c)

where, again, we use p = 1, · · · , 8 for the entries in these vectors.
When the k-th (1 ≤ k ≤ K) interface direct problem has the boundary condition such that

∣∣∂Ωk
D

∣∣ 6= 0, we

let Nm
h = {Xi ∈ Nh | Xi ∈ N̊h ∪ ∂ΩN} and assume that the nodes in Nm

h are ordered first. Then the IFE
solution ukh from the SPPIFE scheme (22)-(24) can be expressed as

ukh(X) =

|Nmh |∑
i=1

(
uk2i−1φ2i−1(X) + uk2iφ2i(X)

)
+

|Nh|∑
i=|Nmh |+1

(
gkD,1(Xi)φ2i−1(X) + gkD,2(Xi)φ2i(X)

)
, (27)

where gkD = [gkD,1 g
k
D,2]t is the Dirichlet boundary condition in (3b). In such a case, the Dirichlet boundary

condition is implemented through the vector Ãm,k
b = (akb,i)

2|Nh|
i=1 = Ã

[
0 bkD

]t
, where 0 is the 1 × 2 |Nm

h | zero

vector and bkD = [gkD,1(X|Nmh |+1), gkD,2(X|Nmh |+1), · · · , gkD,1(X|Nh|), g
k
D,2(X|Nh|)] ∈ R1×2(|Nh|−|Nmh |). With these

preparations, we can put the SPPIFE method described by (22)-(24) in the following matrix form:

Am,kūm,k = Fm,k, with Am,k = (ai,j)
2|Nmh |
i,j=1 , Fm,k = (fki )

2|Nmh |
i=1 − (akb,i)

2|Nmh |
i=1 , (28)

where ūm,k = [uk1, u
k
2, · · · , uk2|Nmh |]

t.

When the k-th interface direct problem has the pure Neumann boundary condition, i.e., ∂Ωk
N = ∂Ω, vectors

assembled from (26b) are not needed and (27) does not have the second summation. For uniquely determining
the solution, as usual, we need the extra conditions:

∫
Ω u

k
i dX = ωi, i = 1, 2 and

∫
Ω rot(uk)dX = ω3 imposed

through three Lagrange multipliers λ1, λ2, λ3. Let ω = [ω1, ω2, ω3]t, then the matrix form for the SPPIFE
method in this case is expressed as

Anūn,k = Fn,k, with An =

[
Ã R
Rt 0

]
, Fn,k =

[
F̃k

ω

]
, (29)
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where ūn,k = [uk1, u
k
2, · · · , uk2|Nh|, λ1, λ2, λ3]t and R = [R1,R2,R3] ∈ R|Nh|×3 is assembled from the following

local vectors

R1
T =

(∫
T
ψ1
p,TdX

)
p

, R2
T =

(∫
T
ψ2
p,TdX

)
p

, R3
T =

(∫
T

rot(ψp,T )dX

)
p

, ∀T ∈ Th. (30)

Based on (28) and (29), we summarize the SPPIFE discretization (22)-(24) with the mixed or pure Neumann
boundary conditions into a unified matrix form for all K elasticity interface direct problems as follows:

Akūk = Fk, k = 1, 2, · · · ,K, (31)

with ūk =

{
ūm,k,

ūn,k
Ak =

{
Am,k,

An,k,
Fk =

{
Fm,k, for the boundary condition |∂Ωk

D| 6= 0,

Fn,k, for a pure Neumann boundary condition.

We emphasize that, on a fixed mesh, the size and algebraic structure of the symmetric positive definite matrices
Aks in (31) remain the same as the interface Γ(t,α), t ∈ [0, 1] evolves due to variation in the design variable α.

To facilitate simple discussions, we further rewrite (27) in a matrix-vector form:

ukh(X) = Φm(X)ūk + ΦD(X)ḡD, (32)

where ūk is given in (31), and

ḡD = [gkD,1(X|Nmh |+1), gkD,2(X|Nmh |+1), · · · , gkD,1(X|Nh|), g
k
D,2(X|Nh|)]

t, (33)

Φm(X) and ΦD(X) are 2-by-2|Nm
h | and 2-by-2(|Nh| − |Nm

h |) matrix functions:

Φm =
[
φ1, · · · ,φ2|Nmh |

]
, ΦD =

[
φ2|Nmh |+1, · · · ,φ2|Nh|

]
, and denote Φ = [Φm,ΦD] . (34)

Again, when the direct problem has a pure Neumann boundary condition, (32) does not have the second term.

3 IFE Shape Optimization

In this section, we use the IFE functions and the PPIFE method (31) discussed in the previous section to
discretize the shape optimization described by (6) and (7) subject to the governing interface problems (3)-(5)
for solving the inverse geometric problem. We will also derive the formulas for the velocity field and the shape
derivatives of IFE shape functions which are two key ingredients for calculating the shape sensitivities for the
discretized shape optimization.

3.1 Discretization of Shape Optimization Problem

In shape optimization, in terms of the continuous mechanism, the movement of the interface deforms the
shape of each subdomain of Ω accordingly. Therefore, each point X ∈ Ω can be tacitly considered to depend on
the interface curve Γ, i.e., they are functions of Γ, see [21, 69]. Hence, we denote X = X(Γ) = X(Γ(α)) = X(α)
to emphasize the dependence of X on the design variable α.

In addition, the IFE shape functions intrinsically depend on α not only through X(α) but also through
those coefficients c0 = c0(α), ci = ci(α) and the function L(X) = L(X;α) in (12)-(13) of the IFE shape
functions because of their dependence on points P and Q where the interface Γ(α) intersects with the edges of
the interface element T . These dependencies on α motivate us to rewrite a global IFE function as φi(X(α),α)
in which X(α) indicates the dependence of φi on α through X, and the second α emphasizes the dependence of
φi on α through those coefficients in IFE shape functions. Furthermore, we note that the matrices and vectors
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in (25) and (26) are all defined by the integration of the IFE functions φi(X(α),α); therefore, by similar
considerations, we denote Ak = Ak(X(α),α) and Fk = Fk(X(α),α). Consequently, the vector solutions to
the IFE equations (31) also depend on α, and we denote them by ūk = ūk(α), 1 ≤ k ≤ K so that we express
the IFE solutions (32) as

ukh(α) = ukh(ūk(α), X(α),α) = Φm(X(α),α)ūk(α) + ΦD(X(α),α)ḡD. (35)

Then, using the IFE solutions to approximate the displacement functions leads to the following disretized
integrand for the objective functional in (7):

Jh(ū1(α), ū2(α), · · · , ūK(α), X(α),α) := J(u1
h(α),u2

h(α), · · · ,uKh (α);X(α),Γ(·,α)). (36)

Then, the discretized integrand defined in (36) can be used to define a discretized objective function:

Jh(ū1
h(α), ū2

h(α), · · · , ūKh (α),α) =

∫
Ωd

Jh(ū1
h(α), ū2

h(α), · · · , ūKh (α), X(α),α)dX. (37)

We recall that the IFE solutions ukh, k = 1, · · · ,K, can approximate the exact solutions uk of the di-
rect interface problems (3)-(5) with an optimal convergence rate regardless of the interface location on a
fixed mesh [36]. This means that the IFE equations (31) are optimal disretizations of the elasticity sys-
tems (3)-(5). Furthermore, for many applications such as those demonstrated in Section 4, we can show that
Jh(ū1(α), ū2(α), · · · , ūK(α), X(α),α) is also an optimal approximation to the continuous objective functional
(7) in the shape optimization, see the derivation in (57) for an example. Hence, the shape optimization pro-
cedure described by (6) and (7) and the optimal discretizations for its components motivate us to propose an
IFE-based shape optimization method on a fixed mesh of Ω for the inverse geometric problem: find the design
parameter α∗ by carrying out the constrained optimization:

α∗ = argmin Jh(α), Jh(α) := Jh(ū1
h(α), ū2

h(α), · · · , ūKh (α),α),

subject to Ak(X(α),α)ūk(α)− Fk(X(α),α) = 0, k = 1, 2, · · · ,K.
(38)

This optimal design parameter α∗ leads to a parametric curve Γ(α∗) that is expected to be a good approximation
to Γ∗, the solution to the inverse geometric problem produced by the shape optimization (6) and (7).

It is well known that the inverse problems concerned in this article are ill-conditioned [8, 7, 47]. By choosing
a reasonably small number of control points, our algorithm actually searches the target interface curve in a
small space on fixed meshes. Therefore, the parameterization Γ(α) in the optimization problem (38) can be
interpreted as a “hidden” regularization for the inverse problem. Indeed, the numerical experiments presented
in Section 4 show that the reconstructions produced by the proposed IFE-based shape optimization method
are quite satisfactory without additional regularization such as the geometric regularization [46], total variation
regularization [23] and Tikhonov regularization [50]. We will discuss this feature in more details in Subsection
5.

In the following subsections, we will derive the velocity fields and the shape derivatives of IFE shape
functions, and we will then proceed to discuss how these two key ingredients can be used to efficiently and
accurately implement the formula for the gradient of Jh(α) within the IFE framework so that common numerical
optimization algorithms such as descent direction methods and trust region methods [27, 62] can be employed
to solve this constrained optimization problem.

3.2 A Velocity Field on A Cartesian Mesh

As described above, when the interface Γ(α) evolves in the optimization, each subdomain changes its shape
and each point also moves accordingly, and this feature is reflected by the notation X(α), see the discussions at
the beginning of Subsection 3.1. In this subsection, we follow the idea in [37, 48, 53, 60] to develop the derivative

of X(α) with respect to the interface variation, i.e., we construct the velocity fields ∂X(α)
∂α , on a Cartesian mesh,
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which is a critical ingredient [40] for computing the shape sensitivities of the discrete cost function Jh(α) in
the proposed IFE-based method.

Figure 2: Interface elements and partitioning

On every non-interface element, since the spatial point X can be considered to be a constant function
of α, we obviously have ∂X

∂α = 0. For the velocity on interface elements, let us consider a typical interface
element T = �A1A2A3A4 with the interface-mesh intersection points of Γ(t,α) and ∂T denoted by P = P (α)
and Q = Q(α), see Figure 2 for an illustration. For simplicity’s sake, we assume P , Q do not coincide with
the vertices of T , all the results here are readily generalized to the case that the interface passes through the
mesh nodes. Note that the derivative of P = P (α) and Q = Q(α) with respect to the design variables α is
already described by Lemma 3.1 in [37] which is actually the velocity at these two points. This derivative only
depends on the chosen parameterization for the interface curve for which we also refer readers to [37] for a
detailed discussion. Since the vertices of T are fixed, the basic idea for constructing a suitable velocity field is to
establish a relation between the interior points of T and the intersection points P and Q, and use the movement
of P , Q to guide to the movement of other interior points. For this purpose, with out loss of generality, we
only discuss the Case 1 interface element illustrated by the 1st sketch in Figure 2, the Case 2 interface
element illustrated by the 2nd sketch in Figure 2 can be handled similarly. We partition T into 4 subelements:
T1 = 4A1PQ, T2 = 4A2A4P, T3 = 4A3QA4, T4 = A4QP , illustrated by the 1st sketch in Figure 2, and
let T̂ = 4B̂1B̂2B̂3 be the usual reference triangle with vertices B̂1 = [0, 0]t, B̂2 = [1, 0]t, B̂1 = [0, 1]t, shown
by the 3rd sketch in Figure 2. Then, following the idea used in [40, 48, 60], we can use the standard affine
mappings from the reference element T̂ to Tm,m = 1, 2, 3, 4 to describe the dependence of the spatial point X
on the design variable α as follows:

X(α) = Fm(α, ξ, η) = Jm(α)

[
ξ
η

]
+Am, for

[
ξ
η

]
∈ T̂ , m = 1, 2, 3, 4, (39)

in which the Jacobian matrices Jm(α) are given by

J1(α) = [P (α)−A1, Q(α)−A1] , J2(α) = [A4 −A2, P (α)−A2] ,

J3(α) = [Q(α)−A3, A4 −A3] , J4(α) = [Q(α)−A4, P (α)−A4] .

Note that X(α) in (39) is a piecewise differentiable function on each subelement Tm ⊂ T , m = 1, 2, 3, 4.
Also, the formulas for calculating DαjP (α), DαjQ(α), j ∈ D, i.e., the velocity at these two points, have been
established in Lemma 3.1 in [37]. Therefore, the derivatives of X with respect to αj , j ∈ D, can be calculated
by

DαjX(α) = (DαjJm(α))J−1
m (α)(X(α)−Am) for X(α) ∈ Tm ⊆ T, m = 1, 2, 3, 4, (40)

where DαjJ1(α) =
[
DαjP,DαjQ

]
, DαjJ2(α) =

[
0, DαjP

]
,

DαjJ3(α) =
[
DαjQ,0

]
, DαjJ4(α) =

[
DαjQ,DαjP

]
.

(41)

10



Thus, combining the zero velocity field on non-interface elements and the formulas in (40) on interface elements,
we piecewisely define the velocity field Vj corresponding to the j-th design variable αj , j ∈ D as:

Vj(X) =

{
Vj
T (X) = 0, for X ∈ T ∈ T nh ,

Vj
T (X) = (DαjJm(α))J−1

m (α)(X(α)−Am), for X ∈ T ∈ T ih and X ∈ Tm,m = 1, 2, 3, 4.
(42)

We note that the velocity in (42) in each sub-triangle can be considered as a linear interpolation of those
velocities on intersection points and element vertices. Furthermore, we note that the proposed velocity fields
(42) are close to the one constructed in [37], the difference is on the element shape. Also the velocity fields (42)
share properties similar to those given in Theorem 3.1 in [37] which is copied below for reader’s convenience:

Theorem 3.1. The velocity fields Vj(X), j ∈ D, defined in (42) are such that:

(P1) on each interface element T = 4A1A2A3A4 ∈ T ih , there hold

Vj
T |AiP =

‖X −Ai‖
‖P −Ai‖

DαjP, i = 1, 2, 4 Vj
T |AiQ =

‖X −Ai‖
‖Q−Ai‖

DαjQ, i = 1, 3, 4 (43a)

Vj
T |PQ =

‖X −Q‖
‖P −Q‖

DαjP +
‖X − P‖
‖P −Q‖

DαjQ, (43b)

Vj
T |A3A4 = 0, Vj

T |A2A4 = 0, (43c)

div(Vj
Tm

) = tr
(
(DαjJm)J−1

m

)
, m = 1, 2, 3, 4; (43d)

(P2) Vj ∈ H1(Ω) and supp(Vj) ⊆
⋃
T∈T ih

T ;

(P3) Vj |e has the same direction as the edge e, if e ∈ E ih.

3.3 Shape Derivatives of IFE Shape Functions

In shape optimization, it is inevitable to consider the rate of change of a quantity with respect to the design
variable α not directly through the spatial variable X(α) itself considered as a function of the design variable,
and this rate of change is referred as the shape derivative in the literature [40]. The shape derivatives of the
scalar IFE shape functions have been presented in [37] for solving shape optimization problems governed by the
scalar elliptic equations. In this subsection, we derive the formulas for the shape derivatives of the vector IFE
shape functions which are needed for computing the gradient of the cost function in the IFE shape optimization
described by (38).

First of all, on each non-interface element, every IFE shape function is actually the usual finite element
shape function that is just a polynomial independent of the design variable; hence, the shape derivative of an
IFE shape function should be zero on all the non-interface elements. On every interface element T , we write
an IFE shape functions as as ψinti,T (X) = ψinti,T (X(α),α), 1 ≤ i ≤ 8 where again the first variable X(α) reflects

the influence of the design variable α on the IFE shape function ψinti,T according to the formula X = X(α)

given in (39), and the second variable α is for the influence of α on the IFE shape function ψinti,T through its

coefficients according to (12) and (13). Hence the shape derivatives of ψinti,T are denoted as the partial derivatives
∂
∂αj
ψinti,T (X(α),α), j ∈ D.

The formulas (11)-(13) for the IFE shape functions suggest that, to compute their shape derivatives, we
only need to calculate the derivatives of L(X) , ci, i ∈ I−, and c0 with respect to the design variables α. By
inspecting the formulas (12)-(16), we note that they are functions of intersection points P and Q; so the desired
shape derivatives should only rely on the velocity at these two intersection points given by Lemma 3.1 in [37].
More specifically, given a tensor r ∈ Rr×1 which could be the coefficients c, c0 or the function L(X) in the IFE
function (11), its shape derivatives can be decoupled by the standard chain rule:

∂r

∂αj
=

∂r

∂P
·DαjP +

∂r

∂Q
·DαjQ (44)
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where ∂r
∂P and ∂r

∂Q are understood as r-by-2 row vector. Since the derivatives ∂P
∂αj

and ∂Q
∂αj

are already known

(Lemma 3.1 in [37]), we herein only need to derive the formulas of ∂r
∂P and ∂r

∂Q with r = c, c0 and L(X) for
the IFE functions used in this article. Their calculations are simply based on standard multivariable calculus
together with the chain rule. Here, in order for any interesting readers to directly implement the proposed
shape optimization algorithm, we present the explicit formulas of these derivatives in Appendix A.

Finally, we put (65), (69), (66) in the Appendix A together with the generic formula (44) to have the
following formula for the shape derivatives of the IFE shape functions on an interface element T :

∂ψintT (X,α)

∂αj
=


∂ψint,−T (X,α)

∂αj
=
∂ψint,+T (X,α)

∂αj
+
∂L(X,α)

∂αj
c0 + L(X,α)

∂c0

∂αj
, if X ∈ T−,

∂ψint,+T (X,α)

∂αj
=
∑
i∈I−

Ψnon
i,T (X)

∂ci
∂αj

, if X ∈ T+,

(45)

for every j ∈ D.

3.4 Shape Sensitivities for The IFE Shape Optimization

In this subsection, we apply the results established in the previous subsections to derive the formulas for
calculating the shape sensitivity or the gradient of the discretized objective function Jh(α) in (38) with respect
to the design variable αj , j ∈ D.

By Lemma 3.3 in [40], we have the following formula for the material derivatives of Jh(α):

DαjJh(α) =
K∑
k=1

(
∂Jh
∂ūk

·Dαj ū
k

)
+

∫
Ωd

∂Jh
∂αj

dX +

∫
Ωd

∇Jh ·VjdX +

∫
Ωd

Jh div
(
Vj
)
dX. (46)

In this formula, we note that Vj is given in (42), div
(
Vj
)

is given in (43d) computed element-wisely, and ∂Jh
∂ūk

=∫
Ωd

∂Jh
∂ūk

dX, ∇Jh, ∂Jh
∂αj

and Jh are problem dependent but they are usually easy to compute as demonstrated

by the representative examples provided in the next section. For the first term on the right of (46), by the
standard discretized adjoint method [31], we have(

∂Jh
∂ūk

)
·Dαj ū

k = Yk ·
(
DαjF

k(X(α),α)−DαjA
k(X(α),α) ūk(α)

)
, k = 1, · · · ,K, (47)

where Yk is solved from (
Ak(X(α),α)

)T
Yk =

∂Jh
∂ūk

. (48)

The matrixDαjA
k(X(α),α), j ∈ D in formula (47) is the material derivative of the stiffness matrix Ak(X(α),α),

and it is assembled from the corresponding material derivative of the local matrices listed in (25) through the
standard element-by-element procedure. Furthermore, the material derivatives of those local matrices can be
straightforwardly derived in terms of the formulas of the velocity fields and the shape derivatives of the IFE shape
functions presented in the previous subsections, see Appendix B for these formulas. Similarly, DαjF

k(X(α),α)
is the material derivative of the load vector Fk(X(α),α), and it is made by the corresponding material deriva-
tive of the local vectors listed in (26), formulas for these material derivatives of the local vectors are given in
Appendix C.

3.5 Implementation of the IFE Shape Optimization Method

We now finish this section by summarizing the discussions and derivations above into the following IFE-based
shape optimization algorithm for solving the inverse geometric problems for the elasticity interface problems.
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Algorithm The IFE-based Shape Optimization Algorithm

1: Choose a mesh and choose an initial value for the design variable α.
2: Loop until convergence

i: Prepare data:
a: use the design variable α to generate a parametric curve Γ(t,α) as the current numerical interface.
b: find the interface-mesh intersection points, interface edges, and the interface elements.
ii: Prepare matrices and vectors for the IFE systems and compute the cost function:
a: use IFE local matrices/vectors given in (25), (26), and (30) to assemble the global matrices and vectors
Ak(X(α),α) and Fk(X(α),α) in the IFE systems (31).
b: compute the PPIFE solutions ūk, 1 ≤ k ≤ K by (31), and use them to compute Jh(α) in (38).
iii: Compute the shape sensitivities:
a: generate the velocity fields Vj (42), j ∈ D, and shape derivatives of IFE shape functions (45);
b: assemble the global matrices DαjA

k(X(α),α) and vectors DαjF
k(X(α),α);

c: use (47) to compute ∂Jh
∂ukh
·Dαju

k
h for k = 1, · · · ,K;

d: compute the terms
∫

Ωd

∂Jh
∂αj

dX,
∫

Ωd
∇Jh ·VjdX and

∫
Ωd
Jhdiv(Vj)dX according to the specific form of

the given objective functional;
e: compute the material derivatives of the objective function Jh(α) according to (46).
iv: Use Jh(α) and its material derivatives to update the design variable α by a chosen gradient-based
optimization algorithm.

3: End loop

In step 2ia of the Algorithm, we follow the procedure described at the beginning of Section 2 to generate
a cubic spline as a parametric interface Γ(t,α). We repeat this procedure at each iteration according to the
updated design variable α. Therefore, the design variable α consisting of coordinates of control points totally
controls the evolutions of shape and location of the interface. Namely, we only need to update α to move the
interface curve.

In step 2ib, the mesh for finite element computation is generated a-priori and fixed during optimization.
On this fixed mesh, we only need to update those interface-mesh intersection points, the related edges, and
elements at each iteration. The interface edges and elements are determined by whether their nodes are inside
or outside the interface. Once the interface edges are found, then the Cartesian coordinates and parametric
coordinates of the interface-mesh intersection points are computed by applying the standard Newton’s method
to the equation formed by the parametric function (8) of the interface and the linear functions of each interface
edge.

In step 2iia, the global stiffness matrices Ak(X(α),α) and load vectors Fk(X(α),α) inherit most of their
entries from their counterparts in the previous iteration, we only need to reassemble those entries involving the
interface elements in the current and previous iterations. This feature makes the assembling process for the
global stiffness matrices and load vectors very efficient in a shape optimization, and this is one advantage of
IFE method for moving interface problems.

For the computations of shape sensitivities in step iii of the Algorithm, the two critical ingredients, i.e.,
the velocity fields and shape derivatives of IFE shape functions, are computed accurately by formulas (42)
and (45). In addition, their computations are very local in the sense that they only need to be computed
on interface elements because they vanish on all non-interface elements. Consequently, the assemblage for
DαjA

k(X(α),α) and DαjF
k(X(α),α) is performed only over interface elements and interface edges by using

the explicit formulas for their local counterparts given in Appendix B and Appendix C. Furthermore, the terms∫
Ωd

∂Jh
∂αj

dX,
∫

Ωd
∇Jh ·VjdX and

∫
Ωd
Jhdiv(Vj)dX in (46) also only need to be computed on Ωd∩(∪T∈T ihT ) since

the involved velocity fields are zero outside the interface elements. Therefore, compared to Lagrange approaches
in the literature that generally require global computations over all the elements/edges for sensitivity analysis
[21], the shape sensitivity computation in the IFE-based shape optimization algorithm can be executed very
efficiently because the number of interface elements/edges is only in the order of O(h−1) compared to the total
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number of elements/edges in the order of O(h−2).
We also note that the proposed IFE-based shape optimization algorithm is suitable for a highly parallel

implementation from two perspectives. Firstly, computing the material derivatives with respect to each indi-
vidual design variable is independent with each other; hence, these computations can be done very efficiently
in parallel. Secondly, in the case that there are K available measurements, the elasticity systems (3)-(5) need
to be solved K times in general, but they can be also solved efficiently in parallel.

In summary, these features together with the optimal accuracy of the IFE systems and the resulted optimal
accuracy of discretized objective functions, regardless of the interface location in a chose mesh, strongly indicate
the competitiveness of the proposed IFE-based shape optimization method for the inverse geometric problems
of the planar elasticity interface problems.

4 Numerical Examples

In this section, we apply the IFE-based shape optimization algorithm developed in the previous sections
to recover the material interface in three groups of representative inverse problems that are derived from
applications such as ultrasound elastography in medical diagnosis [9, 29, 64] where the displacement fields
caused by the applied stress on the boundary are measured to detect the changes of mechanic properties inside
tissue. We choose these examples to demonstrate the versatility of this IFE-based method for dealing with a
wide spectrum of inverse interface problems in terms of different types of data and objective functionals. Of
course, the application of the proposed algorithm is not limited to the examples discussed here.

All the examples to be presented are posed on the domain Ω = (−1, 1) × (−1, 1) on which an interface-
independent rectangular Cartesian mesh will be used. As for the optimization algorithm, we use the standard
BFGS optimization algorithm, a well known quasi-Newton method [62], to update the design variables α in the
shape optimization iterations. For the data to be used to recover the interface in the numerical examples, we
consider the displacement measurements provided in a domain Ωd = Ωθ defined by:

Ωθ = {X ∈ Ω : dist(X, ∂Ω) 6 θ}, θ ∈ [0, 1] (49)

which consists of points in the vicinity of ∂Ω, in particular, Ω1 = Ω and Ω0 = ∂Ω. For 0 < θ 6 1, we show Ωθ

on the plots by shaded region, see Figures 3-10. Note that when θ = 0, the shaded data region reduces to the
boundary. Similar measurement domains were used in [46].

A suitable number of control points to generate the cubic spline used in the shape optimization is one of the
keys for a successful reconstruction. Overall, we believe the choice of this number may be effected by two factors:
the geometric complexity of the unknown interface and ill-posedness nature of inverse problems. On one hand,
ideally, more control points enable us to numerically represent more complicated interface curves with higher
resolution, and thus this number may depend on some a-priori information of the actual interface. On the other
hand, the considered problem of reconstructing elastic inclusions is ill-posed and even the uniqueness remains
an issue, i.e., whether the single or multiple boundary measurements can uniquely determine the interface is
still open [2, 3]. We also refer readers to [44, 52] for the ill-posedness issue in related inverse problems for scalar
elliptic equations which is more documented. Alternatively, instead of pursuing highly accurate reconstruction
for arbitrary interface, following the general ideas described in [2, 3], we think it can be more stable and efficient
to just recover a few geometric parameters of the unknown interface. Thus, we expect that a relatively small
number of control points may actually help for a successful reconstruction which can be considered as certain
self-regularization mechanism of the proposed parameterized shape optimization algorithm. We remark that
this is also one of the advantages compared with interface-capturing methods in the literature.

In the presented numerical experiments, we all choose the number of control points to be 20 (40 design
variables) which is not only enough to represent a large class of interface curves in many real applications but
also yields a searching space with a moderate dimension for the purpose of efficient reconstruction. See the
plots in Figures 3-6 for an illustration of these control points.

We consider three interface shapes defined by the zero level set function S(x1, x2) = 0 and the corresponding
data functions ukθ as follows. It can readily verified that these functions ukθ , 1 ≤ k ≤ K are exact solutions to
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the interface problems of the linear system (3)-(5). However, these functions are employed only to generate the
data fk,gkD,g

k
N , k = 1, 2, · · · ,K for interface direct problems (3)-(5) and the data measurements on Ωd = Ωθ for

inverse geometric problems. The proposed IFE-based shape optimization algorithm does not use these functions
ukθ , 1 ≤ k ≤ K outside data region Ωd = Ωθ.

Case 1 (Ellipse) : S(x1, x2) = (x1 − 0.3)2/0.32 + (y − 0.1)/0.52 − 1, and

u1
θ =



[
0.0225
λ− (S + 1)

0.0225
λ− (S + 1)

]
if X ∈ Ω−,[

0.0225
λ+

(S + 1) + 0.0225
(

1
λ− −

1
λ+

)
0.0225
λ+

(S + 1) + 0.0225
(

1
λ− −

1
λ+

) ] if X ∈ Ω+;

(50)

Case 2 (Star): S(x1, x2) = ((x1 − 0.2)2 + x2
2)2(1 + 0.5 sin(6 arctan(x2/(x1 − 0.2))))− 0.015, and

ukθ =



 (2.1−x21−x22)β
k
1

λ− S

(2.1−x21−x22)β
k
2

λ− S

 if X ∈ Ω−, (2.1−x21−x22)β
k
1

λ+
S

(2.1−x21−x22)β
k
2

λ+
S

 if X ∈ Ω+,

1 ≤ k ≤ K. (51)

Case 3 (Kidney): S(x1, x2) = (2((x1 + 0.2)2 + x2
2)− (x1 + 0.2))2 − (0.7(x1 + 0.2)2 + x2

2) + 0.15, and

ukθ =



 (2.1−x21−x22)β
k
1

λ− S

(2.1−x21−x22)β
k
2

λ− S

 if X ∈ Ω−, (2.1−x21−x22)β
k
1

λ+
S

(2.1−x21−x22)β
k
2

λ+
S

 if X ∈ Ω+,

1 ≤ k ≤ K. (52)

These interfaces to be recovered have distinct geometric features: The interface curve in Case 1 is a simple
ellipse with a convex shape, the one in Case 2 has an alternating local convexity and concavity, and the one
in Case 3 has a large concave portion. The exponents βk1 and βk2 in the data functions (51), (52) in Case
2 and Case 3 are for generating different data, i.e., multiple stress data and the corresponding displacement
measurements for each individual interface. To be specific, we employ the following values for βk1 and βk2 :

(β1
1 , β

1
2) (β2

1 , β
2
2) (β3

1 , β
3
2) (β4

1 , β
4
2) (β5

1 , β
5
2) (β6

1 , β
6
2) (β7

1 , β
7
2)

(0, 0) (1, 0) (0, 1) (2, 0) (0, 2) (3, 0) (0, 3)
(53)

(βk1 , β
k
2 ) =

{
(3 + (k − 6)/4, 0) if k is an even integer,

(0, 3 + (k − 7)/4) if k is an odd integer,
k > 8. (54)

These different data functions simulate the unrelated mechanisms applied on an elastic body in the elastography
which cause uncorrelated echogenicity and stiffness, and then provide new information about the structure of
the elastic body [64]. In our numerical experiments, it is observed that using multiple measurements indeed

15



enables the proposed IFE-based shape optimization algorithm to produce a better reconstruction, especially
when the target interface has a challenging shape. On the other hand, we note that K measurements correspond
to K different boundary value problems in (3), and thus, the shape optimization is more expensive when we use
more measurements in the objective functional because we need to solve more direct problems in each iteration.
When multiple measurements are available, one approach we employ here to reduce the computational cost is
to start the optimization with only a single measurement and gradually use other available measurements as
the shape optimization proceeds.

4.1 Internal Displacement Measurements

In this group of examples, we consider the inverse geometric problem in which there are K > 1 internal
displacement measurements ukθ , k = 1, · · · ,K, available on Ωθ defined in (49). The shape functional for the
inverse geometric problem is in an output-least-squares form as follows:

J (u1(Γ), · · · ,uK(Γ),Γ) =

K∑
k=1

∫
Ωθ

‖uk − ukθ‖2dX, (55)

where uk is the solution to the k-th elasticity interface problem described by (3)-(5) with the pure Dirichlet
boundary condition given by the measurements gkD = ukθ |∂Ω. This shape functional also has been used in [46] for
a similar inverse problem. It is easy to see that the simulated solutions uk can match the actual measurements
ukθ when Γ is the actual interface, and this certainly satisfies the general principle for the choice of the cost
functional discussed in Section 1. We also note that it employs all the available data in its formulation to
enhance the reconstruction. In addition, we will see in the following that it requires only one adjoint equation
to solve for each iteration and each pair of data regardless of number of design variables. These properties make
the shape functional suitable for the considered inverse problems and measurements. But for the case θ = 0,
i.e., the data is only given on the boundary, a different shape functional in contrast to (55) will be employed
for reconstruction with other features, see the details in Subsection 4.3.

Then, the proposed IFE-based shape optimization method for reconstructing the material interface is to
seek the design variable α∗ by carrying out the following constrained optimization:

α∗ = argmin Jh(α), Jh(α) =

∫
Ωθ

Jh(ū1(α), · · · , ūK(α), X(α),α)dX,

with Jh(ū1(α), · · · , ūK(α), X(α),α) =
K∑
k=1

‖Φm(X(α), α)ūk(α) + ΦD(X(α), α)ḡD − ukθ‖2,

subject to Ak(X(α),α)ūk(α)− Fk(X(α),α) = 0, k = 1, 2, · · · ,K,

(56)

where ūk(α), ḡD, k = 1, · · · ,K, and Φm(X(α),α), ΦD(X(α),α) are given in (31) and (35) with Nm
h = N̊h.

We note that the discretized objective objective function in (56) is an optimal discretization of its continuous
counterpart (55) because ∣∣J (u1(Γ), · · · ,uK(Γ),Γ)− Jh(ū1(α), · · · , ūK(α), X(α),α)

∣∣
=

∣∣∣∣∣
K∑
k=1

(∫
Ωθ

‖uk − ukθ‖2dX −
∫

Ωθ

‖ukh − ukθ‖2dX
)∣∣∣∣∣

=

∣∣∣∣∣
K∑
k=1

(∫
Ωθ

(uk − ukh) · (uk + ukh − ukθ)dX

)∣∣∣∣∣ 6 Ch2,

(57)

where in the last inequality above we have used the Hölder’s inequality and the optimality for ukh approximating
uk [36], and the constant C is independent of how the interface cuts each element. For the objective function
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in (56), the computations for ∇Jh = [∂x1Jh, ∂x2Jh], ∂Jh
∂αj

, j ∈ D, and ∂Jh
∂ūk

can be carried with the following

formulas :

∂xiJh = 2
(
Φmūk + Φk

DḡD

)t (
∂xiΦmūk + ∂xiΦDḡD − ∂xiukθ

)
, i = 1, 2, (58)

∂Jh
∂αj

= 2
(
Φmūk + Φk

DḡD

)t(
(
∂

∂αj
Φm)ūk + (

∂

∂αj
ΦD)ḡD

)
, j ∈ D, (59)

∂Jh
∂ūk

= 2

(∫
Ωθ

Φt
mΦ

[
ūk

ḡD

]
dX −

∫
Ωθ

Φt
mukθdX

)
, (60)

where ∂
∂αj

Φm and ∂
∂αj

ΦD are formed by the shape derivatives of IFE shape functions which only need to be

computed through (45) for those global basis functions whose supports are overlapped with interface elements,
since the shape derivatives of IFE shape functions on non-interface elements vanish. The formulas (58)-(60)
are implemented in the material derivative formula (46) for efficiently and accurately computing the shape
sensitivities with respect to the interface variation.

The Lamé parameters λ+ = 1, µ+ = 2 and λ− = 20, µ− = 40 are used in these examples. For the
displacement data provided on the whole domain, i.e., Ωθ = Ω1 = Ω, Figures 3, 4, and 5 present approximate
interfaces in solid blue color together with the target interfaces in dotted red color. In order to give readers a
visualization how the control points generate interface curve or guide its movement, in these plots we also show
the location of control points by blue ∗. These results indicate that the IFE-based shape optimization algorithm
converges quickly and recovers the target interfaces well with just a single displacement data, i.e., K = 1 in
(55). They also demonstrate that the proposed IFE-based shape optimization algorithm can capture the shape
sensitivities accurately and it can handle the large interface shape change on a fixed mesh independent of the
interface movement.

Figure 3: Elliptic interface with a single measurement on Ω

Figure 4: Star shape interface with a single measurement on Ω
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Figure 5: Kidney shape interface with a single measurement on Ω

Figure 6 presents numerical results for recovering the target interface in Case 2 with displacement data
provided on the data region Ω0.5 shown by the shaded region. We note that the majority of the target interface is
outside the data region Ω0.5. Even with only a single measurement, i.e., K = 1, the target interface is recovered
quite satisfactorily to a certain extend after 37 iterations. After that, we employ K = 9 measurements and the
reconstruction is indeed improved. These numerical results demonstrate that more measurements can provide
more information about the structure inside an elastic body for the proposed IFE-based shape optimization
algorithm to consequently produce a better reconstruction.

Figure 6: Star shape interface with a single and multiple measurements on Ω0.5

4.2 Boundary Stress Data and Internal Displacement Measurements

In this group of examples, we consider the inverse geometric problems in which the boundary stress data
gkN and internal displacement measurement ukθ are given for K ≥ 1 such that shape functional is

J (u1(Γ), · · · ,uK(Γ),Γ) =

K∑
k=1

∫
Ωθ

‖uk − ukθ‖2dX, (61)

where uk, k = 1, · · · ,K are solutions to (3)-(5) with the pure Neumann boundary conditions given by the
stress data gkN . This functional is similar to (55) such that formulas for discretized Jh, Jh and their related

derivatives ∇Jh, ∂Jh
∂αj

, j ∈ D, ∂Jh
∂ūk

are similar to (56)-(60). Also it is an optimal discretization of the continuous

one of which the derivation is similar to (57). The Lamé parameters used in these examples are λ+ = 1, µ+ = 2
and λ− = 20, µ− = 40.

To avoid redundancy and also to show how the reconstructed curve matches the exact interface more clearly,
we will not show control points in plots in this and the next section. Figures 7 and 8 present numerical results
for interface curves in Case 1 and Case 2 with the displacement measurement given on Ω0.1 which does not
cover the target curves. For the simple elliptic target interface, the proposed IFE-based shape optimization
algorithm is able to produce a satisfactory reconstruction with just one stress-displacement data. However, for
the more complicated star shape interface, with one stress-displacement data, the algorithm becomes staggered
after 32 iterations. Then we restart the iteration with 9 stress-displacement data and the IFE-based shape
optimization produces a numerical interface more satisfactory.
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Figure 7: Elliptic interface with a single measurement on Ω0.1

Figure 8: Star shape interface with single/multiple measurement on Ω0.1

Figures 9 and 10 present numerical curves generated with stress-displacement data for a kidney shape target
interface in Case 3 that has a large concave portion. The results demonstrate that using more measurements
in reconstruction leads to a better numerical interface. We note that the reconstruction with displacement
measurement on Ω0.2 is better than the one from Ω0.1 suggesting that the larger size/amount of data leads to
a better reconstruction.

Figure 9: Kidney shape interface with single/multiple measurements on Ω0.1

Figure 10: Kidney shape interface with single/multiple measurements on Ω0.2

For this group of examples, we also show the convergence the proposed algorithm by investigating the
Hausdorff distance between the numerical curve and exact interface. The Hausdorff distance is also used in [7]
as a criteria to terminate the iteration. We recall that the Hausdorff distance between two arbitrary sets A and
B is defined as follows:

dH(A,B) = min
a∈A
{min
b∈B

d(a, b)}, (62)

19



where d is certain distance. In our case, we let A and B be the numerical curve and target interface, respec-
tively, and let d(·, ·) be the standard Euclid distance in the plane. The evolution of Haudorff distance for the
experiments above are presented in Figure 11. In these plots, we can clearly observe a quick convergence at the
beginning of optimization. We believe this may be the consequence that the proposed method can accurately
capture the shape sensitivities.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Elliptic interface

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Star shape interface

0 50 100 150 200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.2

0.1

(c) Kidney shape interface

Figure 11: Hausdorff distance vs iterations

4.3 Stress-Displacement Data on The Boundary

In this group of examples, we consider the inverse problems to recover the material interface from the stress
and the related displacement data both measured on the boundary such that a Kohn-Vogelius type functional
[54, 63] is used in the shape optimization:

J (u1
D(Γ), · · · ,uKD(Γ),u1

N (Γ), · · · ,uKN (Γ),Γ) =
K∑
k=1

∫
Ω
‖ukD − ukN‖2dX, (63)

where ukN are solutions to (3)-(5) with the pure Neumann boundary conditions given by the stress data gkN , while
ukD are solutions to (3)-(5) with the pure Dirichlet boundary conditions given by the displacement measurements
gkD = ukθ |∂Ω.

Again, it is easy to verify that the shape functional (63) vanishes when the interface is the actual one. Other
shape functionals can also be formulated to use the available data. For instance, a shape functional similar
to (61) with θ = 0 can be used in this situation, i.e., considering the mismatch on the boundary between the
solution with the Neumann boundary condition and Dirichlet data or the mismatch between the solution with
the Dirichlet boundary condition and Neumann data. We refer readers to [39] for a comparison between these
two types of shape functionals for a similar inverse problem with only boundary data available. We prefer the
Kohn-Vogelius type functional (63) rather than the other type since our numerical experiments suggest that,
in general, it can produce a better reconstruction. We believe the following two reasons might contribute to
the better performance. Firstly, when the shape functional is defined by integration over the boundary such
as the one in (61), it suffers from the well known loss of accuracy of finite element solutions restricted to the
boundary. Secondly, the self-regularizing feature of the Kohn-Vogelius type functional as mentioned in [41] may
help improve the reconstruction. On the other hand, we note that, in order to use the Kohn-Vogelius type
functional (63), we need to solve two direct interface problems and two adjoint problems in each iteration and
for each pair of stress-displacement data, and this is twice more expensive than using a shape functional like
(61).

The proposed IFE-based shape optimization method for reconstructing the material interface is to seek the
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design variable α∗ by carrying out the following constrained optimization:

α∗ = argmin Jh(α), Jh(α) =

∫
Ωd

Jh(ū1
D(α), · · · , ūKD(α), ū1

N (α), · · · , ūKN (α), X(α),α)dX,

with Jh(ū1
D(α), · · · , ūKD(α), ū1

N (α), · · · , ūKN (α), X(α),α)

=
K∑
k=1

∥∥∥Φm(X(α), α)ūkD(α) + ΦD(X(α), α)ḡD −Φ(X(α), α)ūkN (α)
∥∥∥2
,

subject to Ak
D(X(α),α)ūkD(α)− Fk

D(X(α),α) = 0, k = 1, 2, · · · ,K,
Ak
N (X(α),α)ūkN (α)− Fk

N (X(α),α) = 0, k = 1, 2, · · · ,K,

(64)

where Ak
D(X(α),α)/Fk

D(X(α),α) and Ak
N (X(α),α)/Fk

N (X(α),α) are the matrices/vectors in the IFE system
(31) corresponding to the Dirichlet and Neumann boundary conditions, respectively. The formulas for ∇Jh,
∂Jh
∂αj

, j ∈ D and ∂Jh
∂ūkD

, ∂Jh
∂ūkN

are similar to (58)-(60). The optimality of discretized shape functional in this case

follows from a similar derivation as (57). All the numerical results in this group of examples are generated with
the Lamé parameters λ− = 1, λ+ = 2, µ− = 5 and µ+ = 10.

Figure 12 presents numerical interfaces constructed by the IFE-based shape optimization algorithm for the
elliptic interface curve in Case 1. Even though only one stress-displacement date on the boundary is used,
the numerical interface quickly captures the basic shape of the target interface after about 15 iterations, and it
converges to a much better approximation after 51 iterations.

Initial interface Iteration 15 Iteration 35 Iteration 51

Figure 12: Elliptic interface with single measurement

Numerical results for the more complicated star shape target interface in Case 2 are presented in Figure 13.
With just a single stress-displacement data, the shape optimization quickly (after only 17 iteration) generates
a reconstruction quite satisfactory to a certain sense. Then, from the numerical interface at iteration 17, we
restart the iteration with additional 8 measurements so that the IFE-based shape optimization produces a good
reconstruction at iteration 57.

Initial interface
Iteration 10

(1 measurement )
Iteration 17

(1 measurement )
Iteration 57

(9 measurements )

Figure 13: Star shape interface with single/multiple measurements

For the kidney shape target interface in Case 3 with a large concave portion, with just one stress-
displacement data after 41 iterations, the algorithm produces a numerical interface that approximates the
target curve well over the portion close to the boundary, but less satisfactory for the concave part in the middle
of the domain. With more stress-displacement data, the algorithm generates better numerical interfaces even
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in the concave part. This example indicates that the proposed algorithm is able to recover the interface with a
large concave portion with sufficient stress-displacement data pairs measured only on the boundary.

Initial interface
Iteration 41

(1 measurement )
Iteration 134

(15 measurements )
Iteration 258

(32 measurements )

Figure 14: Kidney shape interface with single/multiples measurements

We finally present two experiments on the reconstruction of the star shape interface with the Dirichlet data
polluted by Gaussian noise. Figure 15 and Figure 16 present reconstruction results for data whose noise level are
set to be 1% and 5%, respectively. We obverse the noise in the data has a strong impact on the reconstruction
results when only a single measurement is available, see the iteration 60 and iteration 24 shown in the third
plot in Figures 15 and 16, compared with their counterparts in Figure 13. However, we note that, with multiple
measurements that nevertheless contain noise, the proposed IFE-based shape optimization algorithm can still
produces a reasonably good reconstruction comparable to the one presented in Figure 13 which is generated
with data without noise. Therefore, in a certain sense, we believe the proposed algorithm is robust with respect
to the noise.

Initial interface
Iteration 20

(1 measurement )
Iteration 60

(1 measurement )
Iteration 80

(9 measurements )

Figure 15: Star shape interface with 1% noise

Initial interface
Iteration 10

(1 measurement )
Iteration 24

(1 measurement )
Iteration 56

(9 measurements )

Figure 16: Star shape interface with 5% noise

4.4 Observations And Comparisons

Because of the ill-posedness of the considered inverse problems, it is known, see [49, 74] for example, that the
portion of the true interface curve close to the center of the domain is in general more difficult to retrieve from
the data on the boundary than the portion closer to the boundary. We have also observed such a phenomenon
in our numerical experiments. But we note that the proposed algorithm has the built-in mechanism that can
take advantage of multiple pairs of boundary data to produce a reasonably good approximation to the interface
curve near the center.

22



We note that the local minima of the shape functions in (61) and (63) may appear when the interface totally
moves out of the domain Ω or deteriorates into one point, and then the derivatives of shape functions vanish.
Since the considered shape functions are highly non-linear and non-convex, other types of local minima may
also exit which is a well-known issue for gradient type methods for inverse problems [15]. We also refer readers
to [19, 46] for discussions on the related issue of various numerical methods. Moreover we believe some local
minima may be intrinsic in the sense that the uniqueness of the considered inverse problem itself is a theoretical
concern [2, 3]. As mentioned in [19, 46, 15], these pitfalls may be circumvented by some a-prior information of
the true interface, i.e., a relatively good initial guess, or certain special numerical techniques.

However in our numerical experiments, we have observed that the numerical curve is rarely trapped at any
local minima far away from the true interface. As a matter of fact, in our extensive experiments, we have
observed that the numerical curve in general can quickly move into the neighborhood of the exact interface
which means that method can efficiently recover the essential feature of the exact interface within just a few
iterations, see, for example, Figure 11 and related discussions. Moreover, we note that the proposed method has
no explicit regularization added in the shape functional to ensure convergence or to avoid local minima. Similar
feature is also observed in [39] for a time-dependent inverse problem. We speculate that this is mainly thanks
to a “hidden” regularization mechanism of the proposed algorithm which can be understood from the following
two perspectives. The first one is the low dimensionality of the searching space due to the chosen relatively small
number of control points (also see the discussion at the beginning of this section) for the numerical interface.
Another one is the capability of the proposed algorithm to search for the interface in a manner of a topological
equivalence which can be understood as a geometric restriction naturally imposed. In other words, we believe
it is less possible for the numerical interface to be trapped at a local minima if the search is performed in a
relatively small space, and we think the topology information of the true interface can benefit the proposed
method for solving the considered geometric inverse problem.

This “hidden” regularization is significant in contrast to the interface capturing methods in the literature,
such as level-set methods, which in general rely on some explicit regularization techniques to guarantee conver-
gence, such as the geometric regularization [38, 46, 70], total variation regularization [19, 23], and the Tikhonov
regularization [50]. The advantage of these methods is the capability to represent a large group of interface
curves and to handle topological changes. But they have to search for the interface in a much larger space, and
consequently need much more iterations to converge in general. Most of these works in the literature are for
scalar elliptic interface problems such as the electrical impedance tomography (EIT). We note that an algorithm
similar to the one proposed here has already been applied to scalar elliptic interface problems in [37] where we
can observe similar features and a significant improvement on the efficiency and accuracy for reconstruction in
some representative situations. In addition, we refer readers to [7] for an application of a level-set method to
an elasticity inverse problem as an unstrict comparison because of its slightly different set-up. We would like
to mention that the method in [7] is unable to capture the concave-in portion of a non-convex interface, while
the reconstruction results of the proposed method for a star shape interface and a kidney shape interface are
quite satisfactory in the concave-in portion.

As a comparison in parametrization for the interface, we note the shape optimization methods in the
route of interface tracking approaches for shape representation [26, 39, 43, 65, 66]. Most of these methods
parameterize/represent the interface shape by Fourier series or harmonic functions which in some situations are
limited to star shape curves with a known center [39]. In contrast, the cubic spline parametrization employed
in the proposed method here can be used to approximate more general interface curves, and other types of
parametrization can be easily adopted for the proposed method.

Another feature of the proposed method distinguished from many methods for interface inverse problems in
the literature is its capability to perform all the computations, including computing direct interface problems,
shape functionals, and shape sensitivities optimally and stably on an interface-independent mesh which can be
fixed once for all. Neither the accuracy or the conditioning of the stiffness matrix for solving the direct interface
problem by IFE methods will deteriorate while the interface evolves in the background fixed mesh according
to an optimization procedure. Because of this property together with the “hidden” regularization mechanism
mentioned above, we believe the proposed algorithm is advantageous for solving geometric inverse problems.
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5 Conclusions And Further Issues

In a summary, we have developed an IFE-based parameterized shape optimization algorithm to solve ge-
ometric inverse problems for linear elasticity systems. The proposed work has several advantages. Firstly, all
the computations in the optimization can be carried on a fixed mesh independent of the interface change which
circumvents the burden of mesh generation or movement in contrast to the related traditional approaches in
the literature. Secondly, explicit formulas are derived to accurately compute the shape sensitivities on a fixed
mesh, and in this procedure almost all the computations are carried out on interface elements only, not on
the whole mesh. Therefore, the proposed algorithm is both accurate and efficient for updating the interface
during iterations. Thirdly, as discussed already, the parametrization technique of the interface equips the shape
optimization algorithm with a self-regularization mechanism to reduce the adverse effects from the ill-posedness
of the original inverse problem. The numerical results demonstrate the efficiency and accuracy of the proposed
algorithm as well as its stability with respect to measurement noise in the data for the inverse problems.

On the other hand, the proposed algorithm poses many questions for future researches. In particular, in the
current implementation, we need to start the optimization from a numerical curve which is topologically related
to the exact interface, namely a relatively good initial guess capturing some a-priori topological information
is required. Therefore it is interesting to develop an algorithm to recover such a satisfactory initial guess, for
example, we believe direct methods [22, 45] have such a potential. In addition, the extension of the proposed
algorithm to three dimensions is also desirable. Although IFE methods have been developed for three dimen-
sional interface problems [34, 51], we believe the application to three dimensional geometric inverse problems
requires more sophisticated interface parametrization techniques.

In addition, we believe that the proposed method can be employed to deal with more complicated inverse
problems. For example, the IFE-based shape optimization algorithm proposed in this article for elasticity
systems and the one in [37] for scalar elliptic equations may be combined to solve reconstruction problems in
thermoelasticity [8] governed by different physics. In addition to the geometric inverse problems, we believe
that the proposed algorithm also has the potential to be extended to solve optimal structure designing problems
related to mechanics such as the optimization of elastic compliance or target displacement [4, 5]. We note that
the optimization process of these problems can inevitably involve topological changes, and interface capturing
methods such as level-set methods might be more suitable. Due to the more complicated geometry or topology,
the computations in general can benefit from a reliable numerical solver for the underling PDEs that can use a
fixed mesh independent of the boundary/interface. This is where we believe the IFE-based shape optimization
methods can make contributions.

Appendix A Formulas of Shape Derivatives

In this appendix, we present a group of derivatives for quantities in the shape derivative formula (45) for
IFE shape functions. First of all, for L(X), we have

∂L

∂P
=

(X − P )tt̄n̄t

‖P −Q‖
+ n̄,

∂L

∂Q
= −(X −Q)tt̄n̄t

‖P −Q‖
, (65)

where n̄ and t̄ are the normal and tangential vectors given in (10) for the line l connecting the points P and
Q. For the coefficient c0 given in (12), and E = P or Q, we have

∂c0

∂E
=

(
∂K−1

∂E

)
σ̂(ψint,+T )(F0)n̄ +K−1

σ̂(ψint,+T )(F0)
∂n̄

∂E
+
∑
s=1,2

σ̂(ψint,+T )

(
∂F0

∂E

)
n̄

 , (66)

with
∂K−1

∂E
= 2

∂R

∂E

[
(λ− + 2µ−)−1 0

0 (µ−)−1

]
Rt,

∂R

∂E
=

[
∂n̄

∂E
,
∂t̄

∂E

]
, (67)

and
∂n̄

∂P
=

t̄n̄t

‖P −Q‖
,
∂n̄

∂Q
= − t̄n̄t

‖P −Q‖
,

∂t̄

∂P
= − n̄n̄t

‖P −Q‖
,

∂t̄

∂Q
=

n̄n̄t

‖P −Q‖
, (68)
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At last, for the coefficient vector ci given in (13) and E = P or Q, we have

∂ci
∂αj

=− ∂

∂E

(
L(Ai)R

tΞ−1R
)∑
k∈I

(
v1
kσ̂(ψnonk,T )(F0)n̄ + v2

kσ̂(ψnonk+4,T )(F0)n̄
)

+L(Ai)R
tΞ−1R

∑
k∈I

(
v1
kσ̂(ψnonk,T )(F0)

∂n̄

∂E
+ v2

kσ̂(ψnonk+4,T )(F0)
∂n̄

∂E

)
(69)

+L(Ai)R
tΞ−1R

∑
k∈I

(
v1
kσ̂(ψnonk,T )

(
∂F0

∂E

)
n̄ + v2

kσ̂(ψnonk+4,T )

(
∂F0

∂E

)
n̄

)
,

with
∂

∂E
(L(Ai)R

tΞ−1R) =
∂L(Ai)

∂E
RtΞ−1R+ L(Ai)

((
∂Rt

∂E

)
Ξ−1R−RtΞ−1

(
∂Ξ

∂E

)
Ξ−1R+RtΞ−1(DαjR)

)
,

and
∂Ξ

∂E
=

[
((λ+ − λ−) + 2(µ+ − µ−)) ∂gn(F0)/∂E (λ+ − λ−) ∂gt(F0)/∂E

(µ+ − µ−) ∂gt(F0)/∂E (µ+ − µ−) ∂gn(F0)/∂E

]
, (70)

∂gn(F0)

∂E
=
∑
i∈I−

(
∂L(Ai)

∂E

)
∇ψnoni,T (F0)n̄ + L(Ai)

(
∇ψnoni,T

(
∂F0

∂E

))
· n̄ + L(Ai)∇ψnoni,T (F0)

∂n̄

∂E
,

∂gt(F0)

∂E
=
∑
i∈I−

(
∂L(Ai)

∂E

)
∇ψnoni,T (F0)t̄ + L(Ai)

(
∇ψnoni,T

(
∂F0

∂E

))
· t̄ + L(Ai)∇ψnoni,T (F0)

∂t̄

∂E
,

in which ∂L(Ai)
∂E is given in (65) with X = Ai,

∂t̄
∂E , ∂t̄

∂E are given in (68), and gn(F0) and gt(F0) are given in (16).

Appendix B Material Derivatives of Local IFE Matrices

This appendix provides formula for the material derivatives of the local IFE matrices given in (25a). The
key technique used here is the standard formula given in Lemma 3.3 of [40] relating material derivatives, shape
derivatives and velocity fields for shape functionals defined by integration. Without loss of generality, we consider
the local IFE matrices associated with an interface element T ∈ T ih and interface edge e = A1P ∪ PA2 ∈ E ih
with the interface-mesh intersection point P and A1P ⊂ Ω−, A2P ⊂ Ω+. Then, we have the following formulas
for the material derivatives of local IFE matrices:

DαjK
1
T =

(∫
T

2µε(
∂ψp,T
∂αj

) : ε(ψq,T )dX

)
p,q

+

(∫
T

2µε(
∂ψp,T
∂αj

) : ε(ψq,T )dX

)t
p,q

+

(∫
T

2µ∇(ε(ψp,T ) : ε(ψq,T )) ·Vj
TdX

)
p,q

+

(
4∑
i=1

∫
Ti

2µε(ψp,T ) : ε(ψq,T ) dX tr
(
(DαjJi)J

−1
i

))
p,q

, (71a)

DαjK
2
T =

(∫
T
λ(∇ ·

∂ψp,T
∂αj

)(∇ ·ψq,T )dX

)
p,q

+

(∫
T
λ(∇ ·

∂ψp,T
∂αj

)(∇ ·ψq,T )dX

)t
p,q

+

(∫
T
λ∇((∇ ·ψp,T )(∇ ·ψq,T )) ·Vj

TdX

)
p,q

+

(
4∑
i=1

∫
Ti

λ(∇ ·ψp,T )(∇ ·ψq,T ) dX tr
(
(DαjJi)J

−1
i

))
p,q

, (71b)

DαjE
r1r2
e =

(∫
e
σ(
∂ψp,T r1

∂αj
) : (ψq,T r2 ⊗ nr2e )ds

)
p,q

+

(∫
e
σ(ψp,T r1 ) : (

∂ψq,T r2
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⊗ nr2e )ds
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p,q

+
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σ(ψ+

p,T r1 ) : (ψ+
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)
p,q

DαjP · (A2 −A1)

‖A2 −A1‖
, (71c)
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DαjG
r1r2
e =

ρ

|e|

(∫
e
(
∂ψp,T r1

∂αj
) · (ψq,T r2 )ds

)
p,q

+
ρ

|e|

(∫
e
(
∂ψp,T r1

∂αj
) · (ψq,T r2 )ds

)t
p,q

, (71d)

where j ∈ D, the subscripts p, q = 1, · · · , 8 are for the entries in the corresponding matrices or vectors,
∂ψp,T
∂αj

are the shape derivatives of the vector IFE shape functions given by the formula (45), and the velocity field Vj
T

is defined in (42).

Appendix C Material Derivatives of Local IFE Vectors

This appendix provides formula for the material derivatives of the local IFE vectors given in (26a) and (30).
As before, without loss of generality, we consider the local IFE vectors associated with an interface element
T ∈ T ih and interface edge e = A1P ∪ PA2 ∈ E ih with the interface-mesh intersection point P and A1P ⊂ Ω−,
A2P ⊂ Ω+. In addition, we assume that the boundary terms gkD, gkN and the force terms Fk are fixed and
independent of the evolution of the interface. Then, we have the following formulas for the material derivatives
of local IFE vectors:

DαjF
k
T =

(∫
T

fk ·
∂ψp,T
∂αj

dX

)
p

+

(∫
T
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p
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Ti
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(DαjJi)J

−1
i

))
p

, (72a)

D∂jB
k
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∂ψp,T
∂αj

)neds
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p

+
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gkD · σ(ψ+
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)
p

DαjP · (A2 −A1)

‖A2 −A1‖
, (72b)

D∂jC
k
e =

ρ

|e|

(∫
e
gkD ·
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∂αj

ds

)
p

+
ρ

|e|
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)
p

DαjP · (A2 −A1)
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, (72c)

D∂jN
k
e =

(∫
e
gkN ·

∂ψp,T
∂αj

ds

)
p

+

(
gkN ·ψ+

p,T |P − gkN ·ψ−p,T |P

)
p

DαjP · (A2 −A1)

‖A2 −A1‖
, (72d)

(72e)

DαjR
l
T =

(∫
T

∂ψlp,T
∂αj

dX

)
p

+

(∫
T
∇ψlp,T ·V

j
TdX
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p

+

(
4∑
i=1

∫
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ψlp,T dX tr
(
(DαjJi)J

−1
i
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p

, l = 1, 2, (72f)

DαjR
3
T =

(∫
T

∂rot(ψp,T )

∂αj
dX

)
p

+

(∫
T
∇(rot(ψlp,T )) ·Vj

TdX

)
p

+

(
4∑
i=1

∫
Ti

rot(ψlp,T ) dX tr
(
(DαjJi)J
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i
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p

, (72g)

where j ∈ D, the subscripts p = 1, · · · , 8 are for the entries the in corresponding vectors,
∂ψp,T
∂αj

are the shape

derivatives of the vector IFE shape functions given by the formula (45), and the velocity fields Vj
T are defined

in (42).
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elasticity. Computers & Mathematics with Applications, 56(2):431 – 443, 2008.

[48] Gang-Won Jang and Yoon Y. Kim. Sensitivity analysis for fixed-grid shape optimization by using oblique
boundary curve approximation. Int J Solids Struct., 42(11):3591–3609, 2005.

[49] Bangti Jin, Yifeng Xu, and Jun Zou. A convergent adaptive finite element method for electrical impedance
tomography. IMA J. Numer. Anal., 37(1):1520–1550, 2017.

[50] Jin, Bangti and Maass, Peter. An analysis of electrical impedance tomography with applications to tikhonov
regularization. ESAIM: COCV, 18(4):1027–1048, 2012.

[51] R. Kafafy, T. Lin, Y. Lin, and J. Wang. Three-dimensional immersed finite element methods for electric
field simulation in composite materials. Internat. J. Numer. Methods Engrg., 64(7):940–972, 2005.

[52] Hyeonbae Kang and Jin K. Seo. Inverse conductivity problem with one measurement: Uniqueness of balls
in R3. SIAM Journal on Applied Mathematics, 59(5):1533–1539, 1999.

[53] Nam H. Kim and Youngmin Chang. Eulerian shape design sensitivity analysis and optimization with a
fixed grid. Comput. Methods Appl. Mech. Engrg., 194(30):3291–3314, 2005.

[54] Robert V. Kohn and Michael Vogelius. Relaxation of a variational method for impedance computed
tomography. Commun. Pure Appl. Anal., 40(6):745–777, 1987.

[55] Hae S. Lee, Cheon J. Park, and Hyun W. Park. Identification of geometric shapes and material properties
of inclusions in two-dimensional finite bodies by boundary parameterization. Comput. Methods Appl. Mech.
Engrg., 181(1):1–20, 2000.

[56] Tao Lin, Yanping Lin, and Xu Zhang. Partially penalized immersed finite element methods for elliptic
interface problems. SIAM J. Numer. Anal., 53(2):1121–1144, 2015.

29



[57] Tao Lin, Dongwoo Sheen, and Xu Zhang. A locking-free immersed finite element method for planar
elasticity interface problems. J. Comput. Phys., 247:228–247, 2013.

[58] Tao Lin and Xu Zhang. Linear and bilinear immersed finite elements for planar elasticity interface problems.
J. Comput. Appl. Math., 236(18):4681–4699, 2012.

[59] Joyce R. McLaughlin, Ning Zhang, and Armando Manduca. Calculating tissue shear modulus and pressure
by 2d log-elastographic methods. Inverse Problems, 26, 2010.

[60] Ahmad R. Najafi, Masoud Safdari, Daniel A. Tortorelli, and Philippe H. Geubelle. A gradient-based shape
optimization scheme using an interface-enriched generalized fem. Comput. Methods Appl. Mech. Engrg.,
296:1–17, 2015.

[61] S. S. Nanthakumar, T. Lahmer, and T. Rabczuk. Detection of flaws in piezoelectric structures using
extended fem. International Journal for Numerical Methods in Engineering, 96(6):373–389, 2013.

[62] J. Nocedal and S. Wright. Numerical optimization. Springer Series in Operations Research. Springer,
second edition, 2006.
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