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A DELAYED SUCCESSION MODEL WITH DIFFUSION FOR THE
IMPACT OF DIAPAUSE ON POPULATION GROWTH\ast 

ZHENGUO BAI\dagger , YIJUN LOU\ddagger , AND XIAO-QIANG ZHAO\S 

Abstract. Diapause, a period of arrested development driven by adverse environmental con-
ditions, plays an important role in the establishment and invasion of insects and other invertebrate
organisms in temperate and subtropical areas. In order to describe the spatial dynamics of diapaus-
ing species, we propose a novel model involving (a) seasonal succession to distinguish the normal
growth period, diapause period, and postdiapause period; (b) a diffusion term to represent the ran-
dom movement of species; and (c) a maturation delay term to describe the developmental duration
of species. We first study the model in a bounded domain for the survival and establishment of a
species. The extinction and persistence of the species can be predicted by the basic reproduction
ratio \scrR 0. Then we investigate the model in an unbounded domain for the spreading of the species.
Our results show that the minimal wave speed for a periodic traveling wave is equal to the spread-
ing speed. Numerical simulations are performed to validate theoretical results and in particular to
compare the effects of two diapausing strategies: diapausing in the adult stage and in the immature
stage.
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1. Introduction. In a thermally stressful environment, insects, which have lim-
ited ability to regulate their body temperature, require a range of strategies to over-
come unfavorable seasons, to exploit favorable seasons, and to mitigate the stresses
of unfavorable seasons [23, 40]. For example, during the long dry season, mosquitoes
are expected to perish since no larval sites are available. However, days after the first
rains, mosquitoes reappear in large numbers. Diapause is hypothesized to contribute
to the persistence of some mosquito species during the dry season [1]. This process of
physiological rest can be commonly found among other invertebrate organisms, which
include temperate zone insects or some tropical species occasionally and their arthro-
pod relatives [7, 22], such as ticks [14], ladybirds [19], dragonflies [39], and silkworms
[17]. Diapause is a widespread adaptation to seasonality across invertebrate taxa [40],
which is a genetically programmed preemptive developmental response to changing
seasons and environmental conditions [3] and can be triggered by climactic signals,
especially the photoperiod and relative humidity [10]. It is a genetically mediated
process of increased resistance to environmental extremes associated with low meta-
bolic activity, a reduced morphogenesis, and altered or reduced physical activities [44].
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Diapause plays a key role in the life cycle of species therefore poses a fascinating
question in developmental biology. Knowledge of diapause is essential for under-
standing the seasonal distribution of a species, and such information is essential to
generate effective management strategies for economically important insect pests [8],
manipulate domesticated species used in pollination and silk production, increase
the shelf-life of parasitoids and predatory mites used in the biological control indus-
try [8], and accurately predict insect populations' responses to climate change [23].
Studies on different aspects of diapause are believed to contribute to understand-
ing how inherent mechanisms regulate organisms surviving through diapause [7] and
the critical roles of the diapause stage on linking the favorable and adverse seasons
and synchronizing the life cycle of organisms with seasonal environmental variations
[1, 9]. Despite some promising progress that has been made in recent studies, such as
[4, 11, 13, 20, 32, 45, 53], few modeling efforts have been made to qualitatively and
quantitatively evaluate the impact of diapause on species persistence and spreading
in a spatial habitat.

There are several possible ways to incorporate the diapause effects into the pop-
ulation modeling process, for example, using piecewise parameter functions to differ
either the survival or the development rates between the normal growth and diapause
periods [11, 13, 45] or regarding the diapause period as an independent dynamic
process during which the population dynamics are completely different from that in
the normal growth period [4, 20]. In this paper, we are going to formulate a theoreti-
cal model by extending that in [32] with the consideration of the spatial movement of
individuals in section 2. Then the model in a bounded domain and an unbounded do-
main will be analyzed in sections 3 and 4, respectively. Finally, numerical simulations
and discussions will be performed to validate the theoretical results and investigate
the effect of diapause on species establishment and spreading in section 5.

2. Model formation. Recently, there are expanding studies on the population
models to incorporate the seasonal development duration, for example, [2, 31, 34, 50].
However, the periodic development duration induced by diapause is a discontinuous
delay, which makes the previous modeling framework invalid. In this section, we ex-
tend the model in [32] by considering the diffusion of individuals during the favorable
season. Suppose in each year there are generally two seasons in terms of population
growth: favorable (with good environment) and unfavorable ones (with adverse envi-
ronmental conditions, such as winter seasons in temperate zones and dry seasons in
tropical zones, and its duration is \tau d year). Then the duration for the favorable sea-
son in each year is 1 - \tau d year. Species development is paused during the unfavorable
season due to diapause while the development duration during the favorable season
is \tau . It is easy to see that immature individuals surviving through the unfavorable
season need a longer developmental duration \tau + \tau d; therefore, a careful account of
this extended development duration should be incorporated. For that purpose, in-
stead of partitioning 1 year into two seasons based on the environmental conditions,
we divide 1 year into three intervals and formulate equations of population density in
each interval. These intervals are set in such a way one by one: (a) the unfavorable
season is denoted as T2 with length \tau d; (b) following interval T2, there is an interval
T3 with favorable environmental conditions, and its length is set exactly being \tau ; and
(c) the remaining favorable season in 1 year is denoted as T1 with length 1 - \tau  - \tau d.
Due to the succession of years, we set the starting time as the beginning of the in-
terval T1, and then the population growth process can be described as in Figure 2.1.
We also assume that both the immature and the adult individuals can diffuse during
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1495

Fig. 2.1. Diagram for the population growth in 1 year. The 1-year period is divided into three
seasons T1, T2, T3 with lengths 1 - \tau d  - \tau , \tau d, and \tau , respectively.

the favorable season while remaining immobile during the diapausing season. Since
diapause may occur in various stages of growth, a two-stage structured model is the
simplest choice to characterize this important feature, and we use I(t, x) and M(t, x)
to represent the population densities of juveniles and adults at time t and spatial
location x \in \Omega \subseteq \BbbR N (N \geq 1) Then we can write down a seasonal succession system
based on the diagram in Figure 2.1.

During the normal growth period of the nth year, t \in Tn
1 :=(n, n + 1  - \tau  - \tau d],

n = 0, 1, 2, . . . , population densities for juveniles and adults can be described by the
system

(2.1)

\left\{             

\partial I(t, x)

\partial t
=DI\Delta I(t, x)\underbrace{}  \underbrace{}  

diffusion

+ b(M(t, x))\underbrace{}  \underbrace{}  
birth

 - B1(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu II(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t, x)

\partial t
=DM\Delta M(t, x)\underbrace{}  \underbrace{}  

diffusion

+B1(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu MM(t, x)\underbrace{}  \underbrace{}  
death

with the maturation rate

B1(t, x;M) = e - \mu I\tau 

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau , y))dy

by incorporating the immature diffusion and the survival probability of the immature
population e - \mu I\tau during the development process. Here \Gamma (t, x, y) is the fundamen-
tal solution corresponding to the partial differential operator [\partial t  - \Delta ]. The term
B1(t, x;M) can be derived from the evolution viewpoint, and the details are given in
Appendix A. All parameters are summarized in Table 1.

During the diapause period of the nth year, t \in Tn
2 :=(n+1 - \tau  - \tau d, n+1 - \tau ], there

is no birth, development, and diffusion by taking the extreme case of low metabolic
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1496 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Table 1
Biological interpretations for parameters in model.

Parameter Description
\tau Developmental duration under favorable environmental conditions
\tau d Diapause period (same as the length of the unfavorable season)
\mu I Mortality rate for juveniles during the favorable season
\mu M Mortality rate for adults during the favorable season
dI Mortality rate for juveniles during the diapause period
dM Mortality rate for adults during the diapause period
DM Diffusion coefficient for adults
DI Diffusion coefficient for juveniles

activity and reduced physical activity. The system becomes

(2.2)

\left\{         
\partial I(t,x)

\partial t =  - dII(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t,x)
\partial t =  - dMM(t, x)\underbrace{}  \underbrace{}  

death

.

Normally, the death rates dI and dM during the diapause period are greater than
those during the favorable season \mu I and \mu M .

After the diapause period, there is a short postdiapause period: t \in Tn
3 :=(n+1 - 

\tau , n+ 1]. During this period, we have the system

(2.3)

\left\{             

\partial I(t, x)

\partial t
=DI\Delta I(t, x)\underbrace{}  \underbrace{}  

diffusion

+ b(M(t, x))\underbrace{}  \underbrace{}  
birth

 - B2(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu II(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t, x)

\partial t
=DM\Delta M(t, x)\underbrace{}  \underbrace{}  

diffusion

+B2(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu MM(t, x)\underbrace{}  \underbrace{}  
death

with the maturation rate

B2(t, x;M) = e - \mu I\tau  - dI\tau d

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau  - \tau d, y))dy.

We would like to highlight that the survival probability contains two terms by taking
into account the probabilities of surviving through the diapause period e - dI\tau d and
normal development duration e - \mu I\tau . The individuals matured in this period take a
longer time duration \tau + \tau d to mature. However, the nonlocal kernel is the same as
that in (2.1), as juveniles are not able to move during the diapause period. More
details on model derivation can be found in Appendix A.

Here and in what follows, unless stated otherwise, n is taken as n = 0, 1, 2, . . . .
We make the following assumptions for the birthrate b(\cdot ) and the delays:

(H1) b(\cdot ) is Lipschitz continuous and strictly increasing on \BbbR + with b(0) = 0 and
b\prime (0) > 0;

(H2) there exists L > 0 such that b(M)e - \mu I\tau > \mu MM when 0 < M < L,
b(M)e - \mu I\tau < \mu MM whenever M > L;

(H3) b(\cdot ) is strictly subhomogeneous on \BbbR + in the sense that b(su) > sb(u) \forall u > 0,
s \in (0, 1);

(H4) 2\tau + \tau d < 1.
In fact, many birth functions satisfy these assumptions; see, e.g., those in [33]. It is
biologically reasonable to assume that 2\tau + \tau d is smaller than 1 year. For example,
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1497

the unfavorable season may range from 3 to 5 months among different species and
geographies for mosquitoes, while the lifespan of mosquitoes is averaged at around
2--4 weeks [41]. However, we should mention that (H4) can be released with a more
complicated model.

The purpose of the following two sections is to study the global dynamics of (2.1)--
(2.3) in a bounded domain and the spreading speed and periodic traveling waves of
(2.1)--(2.3) in an unbounded spatial domain, respectively.

3. Global dynamics in a bounded domain. In this section, we study the
global dynamics of (2.1)--(2.3) in a bounded domain \Omega \subset \BbbR N with smooth boundary
\partial \Omega . The main goal is to establish the well-posedness in subsection 3.1, and to derive
the basic reproduction ratio \scrR 0 in subsection 3.2. The threshold dynamics in terms
of \scrR 0 is obtained first for the adult mosquito system (3.1). Then we lift the dynamics
to the full model system (2.1)--(2.3) in subsection 3.3.

Assume that all individuals stay in the domain \Omega for all time, and hence we
impose the Neumann boundary condition

\partial I(t, x)

\partial \nu 
=
\partial M(t, x)

\partial \nu 
= 0, t \in Tn

1 \cup Tn
3 , x \in \partial \Omega ,

where \nu is the outward unit normal vector on \partial \Omega .
Note that equations for M(t, x) can be decoupled from system (2.1)--(2.3). Thus,

we first analyze the global dynamics of the following model:
(3.1)\left\{                       

\partial M(t, x)

\partial t
= DM\Delta M(t, x) +B1(t, x;M) - \mu MM(t, x), t \in Tn

1 , x \in \Omega ,

\partial M(t, x)

\partial t
=  - dMM(t, x), t \in Tn

2 , x \in \Omega ,

\partial M(t, x)

\partial t
= DM\Delta M(t, x) +B2(t, x;M) - \mu MM(t, x), t \in Tn

3 , x \in \Omega ,

\partial M(t, x)

\partial \nu 
= 0, t \in Tn

1 \cup Tn
3 , x \in \partial \Omega .

Before proceeding, we introduce several notations. Let \BbbX := C(\=\Omega ,\BbbR ) be the
Banach space with the supremum norm \| \cdot \| \BbbX . For \tau > 0, define \BbbY := C([ - \tau , 0],\BbbX )
with the norm \| \phi \| = max\theta \in [ - \tau ,0] \| \phi (\theta )\| \BbbX , \forall \phi \in \BbbY . Then \BbbY is a Banach space. Define
\BbbX + := C(\=\Omega ,\BbbR +) and \BbbY + := C([ - \tau , 0],\BbbX +). Then both (\BbbX ,\BbbX +) and (\BbbY ,\BbbY +) are
strongly ordered Banach spaces. For a continuous function z : [ - \tau , \sigma ) \rightarrow \BbbX for \sigma > 0
and t \in [0, \sigma ), we denote zt \in \BbbY by

zt(\theta ) = z(t+ \theta ) \forall \theta \in [ - \tau , 0].

For convenience, we identify an element \phi \in \BbbY as a function from [ - \tau , 0] \times \=\Omega to \BbbR 
defined as \phi (s, x) = \phi (s)(x). Set

\BbbY L := \{ \phi \in \BbbY : 0 \leq \phi (\theta , x) \leq L \forall \theta \in [ - \tau , 0], x \in \=\Omega \} .

3.1. Well-posedness. We first prove the existence, uniqueness, and positivity
and then establish the comparison principle for upper and lower solutions of (3.1).
For this purpose, we introduce the following definition.
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1498 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Definition 3.1. A function M : [ - \tau ,\infty )\times \Omega \rightarrow \BbbR is said to be an upper solution
of (3.1) if for t \geq 0, M t \in \BbbY L, and

M(t, x) \geq T (t - n)M(n, \cdot )(x) +
\int t

n

T (t - s)B1(s, \cdot ;M)(x)ds, t \in Tn
1 , x \in \Omega ,

M(t, x) \geq e - dM (t - (n+1 - \tau  - \tau d))M(n+ 1 - \tau  - \tau d, x), t \in Tn
2 , x \in \Omega ,

M(t, x) \geq T (t - (n+ 1 - \tau ))M(n+ 1 - \tau , \cdot )(x)

+

\int t

n+1 - \tau 

T (t - s)B2(s, \cdot ;M)(x)ds, t \in Tn
3 , x \in \Omega ,

\partial M(t, x)

\partial \nu 
\geq 0, t \in Tn

1 \cup Tn
3 , x \in \partial \Omega ,

(3.2)

where T (t) is the solution semigroup of the linear equation \partial M
\partial t = DM\bigtriangleup M  - \mu MM

subject to the Neumann boundary condition and B1(t, x;M) and B2(t, x;M) are de-
fined above in section 2. A lower solution can be defined similarly by reversing the
inequalities in (3.2).

Lemma 3.2. For any \phi \in \BbbY L, system (3.1) has a unique solution M(t, x;\phi ) which
exists globally for t \geq  - \tau such that M0 = \phi and Mt \in \BbbY L for all t \geq 0, where Mt is
defined by

Mt(\theta , x;\phi ) =M(t+ \theta , x;\phi ) \forall \theta \in [ - \tau , 0], x \in \=\Omega .

Moreover, if M(t, x) and M(t, x) are a pair of upper and lower solutions of (3.1) with
M0 \geq M0, then M t \geq Mt for all t > 0.

The proof of Lemma 3.2 is given in Appendix B. Moreover, by a similar method,
we can establish the existence and uniqueness of a solution to (2.1)--(2.3) with Neu-
mann boundary condition. Note that the spatially homogeneous system of (3.1) is of
the form

(3.3)

\left\{       
dM(t)

dt = b(M(t - \tau ))e - \mu I\tau  - \mu MM(t), t \in Tn
1 ,

dM(t)
dt =  - dMM(t), t \in Tn

2 ,

dM(t)
dt = b(M(t - \tau  - \tau d))e

 - \mu I\tau  - dI\tau d  - \mu MM(t), t \in Tn
3 .

By employing arguments similar to those in Lemma 3.2, it follows that for any \varphi \in 
C([ - \tau , 0], [0, L]), (3.3) admits a unique solution M(t, \varphi ) which exists globally for
t \geq  - \tau such that M0 = \varphi and Mt \in C([ - \tau , 0], [0, L]) for all t \geq 0.

3.2. Basic reproduction ratio. In what follows, we employ the theory devel-
oped in [51] to introduce the basic reproduction ratio for system (3.3). The linearized
system associated with (3.3) at M = 0 is

(3.4)

\left\{       
dM(t)

dt = b\prime (0)e - \mu I\tau M(t - \tau ) - \mu MM(t), t \in Tn
1 ,

dM(t)
dt =  - dMM(t), t \in Tn

2 ,

dM(t)
dt = b\prime (0)e - \mu I\tau  - dI\tau dM(t - \tau  - \tau d) - \mu MM(t), t \in Tn

3 .

Let \^\tau := \tau +\tau d, C = C([ - \^\tau , 0],\BbbR ) and C+ = C([ - \^\tau , 0],\BbbR +). For any given continuous
function v : [ - \^\tau , \sigma ] \rightarrow \BbbR with \sigma > 0, we define vt \in C by

vt(\theta ) = v(t+ \theta ) \forall \theta \in [ - \^\tau , 0]
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1499

for any t \in [0, \sigma ). Let

F (t)\phi =

\left\{   b\prime (0)e - \mu I\tau \phi ( - \tau ), t \in Tn
1 ,

0, t \in Tn
2 ,

b\prime (0)e - \mu I\tau  - dI\tau d\phi ( - \tau  - \tau d), t \in Tn
3 ,

and V (t) =

\left\{    - \mu M , t \in Tn
1 ,

 - dM , t \in Tn
2 ,

 - \mu M , t \in Tn
3

for any \phi \in C. Then the linear system (3.4) can be written as

(3.5)
du(t)

dt
= F (t)ut  - V (t)u(t) \forall t > 0.

For any \phi \in C, let u(t, s;\phi ), t \geq s, be the unique solution of (3.5) satisfying us = \phi .
Define the evolution family \{ U(t, s) : t \geq s\} on C associated with (3.5) as

U(t, s)\phi = ut(s, \phi ) \forall \phi \in C, t \geq s, s \in \BbbR .

Let \Phi (t, s), t \geq s, be the evolution family associated with system du(t)
dt =  - V (t)u(t).

It then follows that the exponential growth bound of \Phi (t, s), \omega (\Phi ) \leq  - min\{ \mu M , dM\} .
Let \BbbC 1 be the Banach space of all continuous and 1-periodic functions from \BbbR to

\BbbR , equipped with the maximum norm and the positive cone \BbbC +
1 := \{ u \in \BbbC 1 : u(t) \geq 

0 \forall t \in \BbbR \} . Following the procedure in [51, section 2], we define a linear operator
\scrL : \BbbC 1 \rightarrow \BbbC 1 by

[\scrL v](t) =
\int \infty 

0

\Phi (t, t - s)F (t - s)v(t - s+ \cdot )ds \forall t \in \BbbR , v \in \BbbC 1.

It can be checked that \scrL is well defined. Thus, we define the spectral radius of \scrL as
the basic reproduction ratio \scrR 0 = r(\scrL ) for (3.3). In light of [51, Theorem 2.1], one
finds that \scrR 0  - 1 has the same sign as r(U(1, 0)) - 1.

3.3. Global dynamics. Let P be the Poincar\'e map of (3.5) on the space
C([ - \tau , 0],\BbbR ). By the arguments similar to [49, Lemma 3.8], it follows that r(P ) =
r(U(1, 0)), and hence sign(\scrR 0  - 1) = sign(r(P )  - 1). Combining with [32, Theorem
2], we have the following threshold result in terms of \scrR 0.

Lemma 3.3. The following statements are valid:
(i) If \scrR 0 \leq 1, then 0 is globally asymptotically stable for (3.3) in C([ - \tau , 0], [0, L]).
(ii) If \scrR 0 > 1, then (3.3) admits a unique positive 1-periodic solution M\ast (t),

which is globally asymptotically stable for (3.3) in C([ - \tau , 0], [0, L]) \setminus \{ 0\} .

Following the procedure in [51], we can also define the basic reproduction ratio \widetilde \scrR 0

for (3.1). Since the coefficients in (3.1) are independent of spatial variable x and (3.1)

is subject to the Neumann boundary condition, it easily follows that \widetilde \scrR 0 = \scrR 0 (see,
e.g., [28, Theorem 3.8]). Further, Lemma 3.3 and the standard comparison principle
arguments lead to the following result.

Lemma 3.4. For any \phi \in \BbbY L, denote by M(t, x;\phi ) the solution of (3.1) with
M(\theta , x;\phi ) = \phi (\theta , x) for (\theta , x) \in [ - \tau , 0]\times \=\Omega . Then the following statements are valid:

(i) If \scrR 0 \leq 1, then 0 is globally asymptotically stable for (3.1).
(ii) If \scrR 0 > 1, then M\ast (t) is globally asymptotically stable for (3.1) in \BbbY L \setminus \{ 0\} .
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1500 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Next we consider the global dynamics of the following limiting system for I(t, x):
(3.6)\left\{                                 

\partial I(t, x)

\partial t
= DI\Delta I(t, x) + b(M\ast (t)) - b(M\ast (t - \tau ))e - \mu I\tau  - \mu II(t, x),

t \in Tn
1 , x \in \Omega ,

\partial I(t, x)

\partial t
=  - dII(t, x), t \in Tn

2 , x \in \Omega ,

\partial I(t, x)

\partial t
= DI\Delta I(t, x) + b(M\ast (t)) - b(M\ast (t - \tau  - \tau d))e

 - \mu I\tau  - dI\tau d  - \mu II(t, x),

t \in Tn
3 , x \in \Omega ,

\partial I(t, x)

\partial \nu 
= 0, t \in Tn

1 \cup Tn
3 , x \in \partial \Omega .

One easily sees that for any \varphi \in \BbbX +, system (3.6) has a unique solution I(t, x;\varphi ) with
I(0, \cdot ;\varphi ) = \varphi and admits the comparison principle. Further, we have the following
result with proof given in Appendix B.

Lemma 3.5. System (3.6) admits a unique positive 1-periodic solution I\ast (t), and
it is globally asymptotically stable in \BbbX +.

Based on the theory of chain transitive sets (see [18] or [52, section 1.2]), we can
lift the threshold-type result for system (3.1) to system (2.1)--(2.3). In fact, one can
easily adapt the arguments of [49, Theorem 3.6] to conclude the following assertion.

Theorem 3.6. The following statements are valid:
(i) If \scrR 0 \leq 1, then (0, 0) is globally attractive for (2.1)--(2.3) in \BbbX + \times \BbbY L.
(ii) If \scrR 0 > 1, then system (2.1)--(2.3) has a unique positive 1-periodic solution

(I\ast (t),M\ast (t)), and it is globally attractive for (2.1)--(2.3) in \BbbX +\times (\BbbY L \setminus \{ 0\} ).

4. Propagation dynamics. In this section, we consider the spreading speed
and traveling waves for system (2.1)--(2.3) in an unbounded spatial domain \Omega = \BbbR .
To this end, we first consider the equations of mature population
(4.1)\left\{                           

\partial M(t, x)

\partial t
= DM\Delta M(t, x) + e - \mu I\tau 

\int 
\BbbR 
\Gamma (DI\tau , x - y)b(M(t - \tau , y))dy

 - \mu MM(t, x), t \in Tn
1 , x \in \BbbR ,

\partial M(t, x)

\partial t
=  - dMM(t, x), t \in Tn

2 , x \in \BbbR ,

\partial M(t, x)

\partial t
= DM\Delta M(t, x) + e - \mu I\tau  - dI\tau d

\int 
\BbbR 
\Gamma (DI\tau , x - y)b(M(t - \tau  - \tau d, y))dy

 - \mu MM(t, x), t \in Tn
3 , x \in \BbbR ,

where \Gamma (DI\tau , x  - y) := \Gamma (DI\tau , x, y) and \Gamma (t, x) = 1\surd 
4\pi t

e - 
x2

4t is the Green function

of \partial tu(t, x) = \Delta u(t, x), x \in \BbbR . In subsection 4.1, we apply the theory developed in
[27, 30] to establish the existence of spreading speed and traveling waves for (4.1).
The spreading speed is also estimated through the linear operators approach. Then
we show that the immature population shares the same propagation dynamics in
subsection 4.2. In particular, the existence of a periodic traveling wave connecting
I\ast (t) to 0 for the immature population is investigated in a time-periodic shifting
environment. Throughout this section, we always assume that \scrR 0 > 1.
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1501

4.1. Propagation dynamics for adults. Recall that \^\tau := \tau +\tau d. Let \scrC be the
set of all bounded and continuous functions from \BbbR to \scrZ := C([ - \^\tau , 0],\BbbR ). Clearly,
any element in \scrZ can be regarded as a constant function in \scrC . For convenience,
we also identify an element \phi \in \scrC as a function from [ - \^\tau , 0] \times \BbbR to \BbbR defined by
\phi (\theta , x) = \phi (x)(\theta ). For any \phi , \psi \in \scrC , we write \phi \geq \psi (\phi \gg \psi ) if \phi (x) \geq \psi (x)
(\phi (x) > \psi (x)) \forall x \in \BbbR , and \phi > \psi provided \phi \geq \psi but \phi \not = \psi . For any \beta \in \scrZ with
\beta \gg 0, we denote \scrC \beta := \{ \phi \in \scrC : \beta \geq \phi \geq 0\} and \scrZ \beta := \{ \phi \in \scrZ : \beta \geq \phi \geq 0\} .
Moreover, we define the norm on \scrC :

\| \phi \| \scrC =

\infty \sum 
k=1

max| x| \leq k \| \phi (x)\| \scrZ 
2k

\forall u \in \scrC .

In addition, for a function \phi \in \scrC \beta and a bounded interval I = [a, b] \subset \BbbR , we define
the function \phi I : I \rightarrow \scrZ by \phi I(x) = \phi (x). Given a subset \scrU of \scrC , we define \scrU I :=
\{ \phi I : \phi \in \scrU \} and the norm | \cdot | in \scrU I by | \phi I | := maxx\in I \| \phi I(x)\| \scrZ .

Define the reflection operator \scrR by \scrR [\phi ](x) = \phi ( - x) and the translation operator
\scrT y by \scrT y[\phi ](x) = \phi (x - y) for any given y \in \BbbR . In order to use the theory of spreading
speeds and traveling waves developed in [27, 30], we choose \scrK = \scrC \beta and let Q be a
map from \scrC \beta to \scrC \beta satisfying the following assumptions:

(A1) Q[\scrR [\phi ]] = \scrR [Q(\phi )], \scrT y[Q[\phi ]] = Q[\scrT y[\phi ]] \forall \phi \in \scrC \beta , y \in \BbbR .
(A2) Q : \scrC \beta \rightarrow \scrC \beta is continuous with respect to the compact open topology.
(A3) The set Q[\scrC \beta ](0, \cdot ) is precompact in the space C(\BbbR ,\BbbR ) equipped with the

compact open topology, and there is an equivalent norm \| \cdot \| \ast \scrZ in \scrZ such that
for any number r \geq 0, there exists k = k(r) \in [0, 1) such that for any interval
I = [a, b] of the length r and any \scrU \subset \scrC \beta with \scrU (0, \cdot ) being precompact in
C(\BbbR ,\BbbR ), we have \alpha ((Q[\scrU ])I) \leq k\alpha (\scrU I), where \alpha is the Kuratowski measure
of noncompactness on \scrC I with (\scrZ , \| \cdot \| \scrZ ) replaced by (\scrZ , \| \cdot \| \ast \scrZ ).

(A4) Q is monotone (order preserving) in the sense that Q[\phi ] \geq Q[\psi ] whenever
\phi \geq \psi in \scrC \beta .

(A5) Q : \scrZ \beta \rightarrow \scrZ \beta admits exactly two fixed points 0 and \beta , and limn\rightarrow \infty Qn[v] = \beta 
in \scrZ for any v \in \scrZ \beta with 0 \ll v \leq \beta .

It should be pointed out that the condition Q[\scrR [\phi ]] = \scrR [Q(\phi )] is added to (A1) in
[30] to guarantee that the rightward spreading speed equals the leftward one (see [30,
Remark 3.1]), and assumption (A3) here is assumption (A3)\prime in [30] due to the fact
that we consider the time-delayed evolution equations with spatial structure (see [30,
Remark 4.1]). Assumption (A6) in [30] is not listed since it is automatically satisfied
in the case where \scrK = \scrC \beta .

Let L be defined as in section 2, and we define \^L(\theta ) = L,\forall \theta \in [ - \^\tau , 0]. By a
similar analysis as in section 3, it follows that for any \phi \in \scrC \^L, (4.1) has a unique mild
solution M(t, x;\phi ) with M0 = \phi and Mt \in \scrC \^L for all t \geq 0 and that M(t, x, \phi ) is a
classic solution when t > \tau . Define Qt : \scrC \^L \rightarrow \scrC \^L by

Qt[\phi ](x) =Mt(x;\phi ) \forall t \geq 0, x \in \BbbR , \phi \in \scrC \^L.

It then follows that \{ Qt\} t\geq 0 is a 1-periodic semiflow on \scrC \^L. Moreover, we have the
following lemmas on the properties of the solution map Qt, whose proofs are given in
Appendix C.

Lemma 4.1. For each t > 0, the map Qt is strictly subhomogeneous.

Lemma 4.2. For any t > 0, the map Qt satisfies (A1)--(A4) with \beta = \^L, and
Q1 satisfies (A1)--(A5) with \beta = M\ast 

0 , where M
\ast 
0 \in \scrZ \^L with M\ast 

0 (\theta ) = M\ast (\theta ) for all
\theta \in [ - \^\tau , 0].
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1502 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Since Q1 satisfies (A1)--(A5) with \beta =M\ast 
0 , it follows from [30, Theorems 3.1--3.3

and Remark 3.1] that Q1 admits a spreading speed c\ast . To compute c\ast , we use the
linear operators approach (see, e.g., [38, Theorem 4.5]). Consider the linear system
of (4.1) at the zero solution:
(4.2)\left\{                           

\partial M(t, x)

\partial t
= DM\Delta M(t, x) + e - \mu I\tau b\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y)M(t - \tau , y)dy

 - \mu MM(t, x), t \in Tn
1 , x \in \BbbR ,

\partial M(t, x)

\partial t
= - dMM(t, x), t \in Tn

2 , x \in \BbbR ,

\partial M(t, x)

\partial t
= DM\Delta M(t, x) + e - \mu I\tau  - dI\tau db\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y)M(t - \tau  - \tau d, y)dy

 - \mu MM(t, x), t \in Tn
3 , x \in \BbbR .

For \alpha > 0, let M(t, x)=e - \alpha xu(t). Note that

\Gamma (t, x) = \Gamma (t, - x) and
\int 
\BbbR 
\Gamma (DI\tau , y)e

\pm \alpha ydy = e\alpha 
2DI\tau .

Substituting M(t, x) into (4.2) yields
(4.3)\left\{               

du(t)

dt
=DM\alpha 

2u(t) - \mu Mu(t) + e - \mu I\tau +\alpha 2DI\tau b\prime (0)u(t - \tau ), t \in Tn
1 ,

du(t)

dt
= - dMu(t), t \in Tn

2 ,

du(t)

dt
= DM\alpha 

2u(t) - \mu Mu(t) + e - \mu I\tau  - dI\tau d+\alpha 2DI\tau b\prime (0)u(t - \tau  - \tau d), t \in Tn
3 .

Then M(t, x) = e - \alpha xu(t) satisfies (4.2) with \phi (\theta , x) = e - \alpha xu(\theta ) for \theta \in [ - \^\tau , 0] and
x \in \BbbR if u(t) satisfies (4.3) for t \geq 0.

Let Ft be the linear solution map defined by (4.2), and let u(t, u0) be the solution
of (4.3) with u(\theta , u0) = u0(\theta ) for \theta \in [ - \^\tau , 0], u0 \in \scrZ . Define a map Bt

\alpha : \scrZ \rightarrow \scrZ by

Bt
\alpha (u0)(\theta ) := Ft(u0e

 - \alpha x)(\theta , 0) \forall \theta \in [ - \^\tau , 0].

Then we have

Bt
\alpha (u0)(\theta ) =M(t+ \theta , x;u0e

 - \alpha x)(\theta , 0) = u(t+ \theta , u0) \forall \theta \in [ - \^\tau , 0];

that is, Bt
\alpha is the solution map associated with (4.3) on \scrZ .

For any given t \geq 0, let \^Bt
\alpha be the solution map of (4.3) on C([ - \tau , 0],\BbbR ), that is,

\^Bt
\alpha (\phi ) = zt(\phi ), where zt is defined by

zt(\phi )(\theta ) = z(t+ \theta , \phi ) \forall \theta \in [ - \tau , 0]

and z(t, \phi ) is the unique solution of (4.3) with z(\theta ) = \phi (\theta ) for all \theta \in [ - \tau , 0]. Let
r( \^B1

\alpha ) be the spectral radius of \^B1
\alpha . Similar to the arguments in [49, Lemma 3.5], we

can show that z(t, \phi ) \gg 0 for all t > \tau , \phi \in C([ - \tau , 0],\BbbR +) with \phi \not \equiv 0. Moreover,
[16, Theorem 3.6.1] implies that zt is compact on C([ - \tau , 0],\BbbR +) for all t > \tau . Thus,
\^B1
\alpha is compact and strongly positive due to (H4). By the Krein--Rutman theorem, it

follows that r( \^B1
\alpha ) is a simple eigenvalue of \^B1

\alpha having a strongly positive eigenvector
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1503

\=\phi \in C([ - \tau , 0],\BbbR +), that is, \^B1
\alpha (

\=\phi ) = r( \^B1
\alpha )

\=\phi . Using [48, Lemma 1], one obtains that
there exists a positive 1-periodic function w(t) in t \in \BbbR such that z(t) = e\lambda (\alpha )tw(t) is
a solution of (4.3), where \lambda (\alpha ) = ln r( \^B1

\alpha ).
Define \psi \in \scrZ by \psi (\theta ) = e\lambda (\alpha )\theta w(\theta ) for \theta \in [ - \^\tau , 0]. By the uniqueness of solutions,

u(t, \psi ) = e\lambda (\alpha )tw(t) is the solution of (4.3) on the space \scrZ . As a consequence, we
have

Bt
\alpha (\psi )(\theta ) = u(t+ \theta , \psi ) = e\lambda (\alpha )te\lambda (\alpha )\theta w(t+ \theta ) \forall \theta \in [ - \^\tau , 0], t \geq 0.

Using the periodicity of w(t), one obtains

B1
\alpha (\psi )(\theta ) = e\lambda (\alpha )e\lambda (\alpha )\theta w(\theta ) = e\lambda (\alpha )\psi (\theta ) \forall \theta \in [ - \^\tau , 0],

that is, B1
\alpha (\psi ) = e\lambda (\alpha )\psi . This implies that e\lambda (\alpha ) is the principal eigenvalue of B1

\alpha (\psi )
with a positive eigenfunction \psi .

Note that r(B1
\alpha ) = r( \^B1

\alpha ) due to [49, Lemma 3.8]. Let \Phi (\alpha ) := 1
\alpha ln e\lambda (\alpha ) =

\lambda (\alpha )
\alpha =

ln r(B1
\alpha )

\alpha . Then we have the following result on the spreading speed of the map
Q1.

Lemma 4.3. c\ast = inf\alpha >0 \Phi (\alpha ) = inf\alpha >0
ln r(B1

\alpha )
\alpha .

Proof. When \alpha = 0, (4.3) becomes (3.4). Note that \scrR 0 > 1 is equivalent to
r(P ) > 1. It then follows that r(B1

0) > 1, and hence (C7) in [29] holds true. Now
we prove that \Phi (\infty ) = \infty . Noticing that u(t, \psi ) = e\lambda (\alpha )tw(t) is the solution of (4.3),
from (4.3) one easily sees\left\{       

w\prime (t)
w(t) \geq DM\alpha 

2  - \mu M  - \lambda (\alpha ), t \in Tn
1 ,

w\prime (t)
w(t) =  - dM  - \lambda (\alpha ), t \in Tn

2 ,
w\prime (t)
w(t) \geq DM\alpha 

2  - \mu M  - \lambda (\alpha ), t \in Tn
3 .

Integrating the above equations from 0 to 1 yields

0 =

\int 1

0

w\prime (t)

w(t)
dt \geq 

\int 1 - \tau  - \tau d

0

(DM\alpha 
2  - \mu M  - \lambda (\alpha ))dt+

\int 1 - \tau 

1 - \tau  - \tau d

( - dM  - \lambda (\alpha ))dt

+

\int 1

1 - \tau 

(DM\alpha 
2  - \mu M  - \lambda (\alpha ))dt,

which implies that

\lambda (\alpha )

\alpha 
\geq \alpha DM (1 - \tau d) - 

\mu M (1 - \tau d) + dM\tau d
\alpha 

.

Letting \alpha \rightarrow \infty , one easily sees \Phi (\infty ) = \infty .
Since b(\cdot ) is subhomogeneous in u, it follows from [52, Lemma 2.3.2] that b(u) \leq 

b\prime (0)u for u \in [0, L]. By the comparison principle, we have Q1(\phi ) \leq F1(\phi ) for any
\phi \in \scrC \beta . As a consequence, we infer from [29, Theorem 3.10(i)] that c\ast \leq inf\alpha >0 \Phi (\alpha ).

It is easy to see that for any \epsilon \in (0, 1), there exists \delta = \delta (\epsilon ) \in (0, L) such that
b(u) \geq (1  - \epsilon )b\prime (0)u for u \in [0, \delta ]. Moreover, there exists \xi = \xi (\delta ) > 0 such that for

any \phi \in \scrC \^\xi with \^\xi (\theta ) = \xi , \theta \in [ - \^\tau , 0], we have

0 \leq M(t, x;\phi ) \leq M(t, x; \^\xi ) < \delta , t \in [0, 1], x \in \BbbR .
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Thus, for any \phi \in \scrC \^\xi , M(t, x;\phi ) satisfies\left\{                           

\partial M(t, x)

\partial t
\geq DM\Delta M(t, x) + e - \mu I\tau (1 - \epsilon )b\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y)M(t - \tau , y)dy

 - \mu MM(t, x), t \in (0, 1 - \tau  - \tau d], x \in \BbbR ,
\partial M(t, x)

\partial t
= - dMM(t, x), t \in (1 - \tau  - \tau d, 1 - \tau ], x \in \BbbR ,

\partial M(t, x)

\partial t
\geq e - \mu I\tau  - dI\tau d(1 - \epsilon )b\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y)M(t - \tau  - \tau d, y)dy

+DM\Delta M(t, x) - \mu MM(t, x), t \in (1 - \tau , 1], x \in \BbbR .

Let F \epsilon 
t be the solution map associated with the linear system\left\{                             

\partial \^M(t, x)

\partial t
= DM\Delta \^M(t, x) + e - \mu I\tau (1 - \epsilon )b\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y) \^M(t - \tau , y)dy

 - \mu M
\^M(t, x), t \in (0, 1 - \tau  - \tau d], x \in \BbbR ,

\partial \^M(t, x)

\partial t
= - dM \^M(t, x), t \in (1 - \tau  - \tau d, 1 - \tau ], x \in \BbbR ,

\partial \^M(t, x)

\partial t
= e - \mu I\tau  - dI\tau d(1 - \epsilon )b\prime (0)

\int 
\BbbR 
\Gamma (DI\tau , x - y) \^M(t - \tau  - \tau d, y)dy

+DM\Delta \^M(t, x) - \mu M
\^M(t, x), t \in (1 - \tau , 1], x \in \BbbR .

The comparison principle implies that F \epsilon 
t (\phi ) \leq Qt(\phi ) for all \phi \in \scrC \^\xi when t \in [0, 1].

Then we deduce from [29, Theorem 3.10(ii)] that c\ast \geq inf\alpha >0 \Phi \epsilon (\alpha ), and hence, by
letting \epsilon \rightarrow 0, we have c\ast \geq inf\alpha >0 \Phi (\alpha ). Consequently, c

\ast = inf\alpha >0 \Phi (\alpha ).

Theorem 4.4. The following statements are valid:
(i) For any c > c\ast , if \phi \in \scrC M\ast 

0
with 0 \leq \phi \ll M\ast 

0 and \phi (\cdot , x) = 0 for x outside a
bounded interval, then

lim
t\rightarrow \infty ,| x| \geq ct

M(t, x;\phi ) = 0.

(ii) For any c < c\ast , if \phi \in \scrC M\ast 
0
with \phi (\theta , \cdot ) \not = 0 for \theta \in [ - \tau , 0], then

lim
t\rightarrow \infty ,| x| \leq ct

(M(t, x;\phi ) - M\ast (t)) = 0.

Proof. Note that \{ Qt\} t\geq 0 is a 1-periodic semiflow and c\ast is the spreading speed
for its Poincar\'e map Q1. Thus, statement (i) is a straightforward consequence of the
proof of [27, Theorem 2.1 (1)]. Since Q1 is subhomogeneous due to Lemma 4.1, it
follows from the proof of [27, Theorem 2.1 (2)] that for any c < c\ast , there exists a
positive number r such that if \phi \in \scrC M\ast 

0
with \phi (\cdot , x) \gg 0 for all x on an interval I of

length 2r, then limt\rightarrow \infty ,| x| \leq ct(M(t, x;\phi )  - M\ast (t)) = 0. For any given \phi \in \scrC M\ast 
0
with

\phi (\theta , \cdot ) \not = 0 for \theta \in [ - \tau , 0], by a similar argument to that in [21, Lemma 2.5], we see
that M(t, \cdot ;\phi ) \gg 0 for t > \tau . Therefore, we can choose an integer n0 > \tau + \^\tau such
that Qn0(\phi ) \gg 0 and take Qn0(\phi ) as a new initial value for M(t, x;\phi ). Then by the
above analysis, statement (ii) is valid.

Recall that \scrM (t, x - ct) is called to be a periodic traveling wave of (4.1) provided
that \scrM (t, z) is 1-periodic in t and M(t, x) = \scrM (t, x  - ct) satisfies (4.1), and we say
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1505

\scrM (t, x - ct) connects M\ast (t) to 0 if \scrM (t, - \infty ) = M\ast (t) and \scrM (t,\infty ) = 0 uniformly
for t \in [0, 1]. By the same arguments as in the proofs of [27, Theorems 2.2 and 2.3],
we have the following result about traveling waves of (4.1).

Theorem 4.5. Let c\ast be defined as in Lemma 4.3. Then for any c \geq c\ast , (4.1)
has a 1-periodic traveling wave solution \scrM (t, x - ct) connecting M\ast (t) to 0 such that
\scrM (t, z) is continuous and nonincreasing in z \in \BbbR . Moreover, for any c < c\ast , (4.1)
has no 1-periodic traveling wave \scrM (t, x - ct) connecting M\ast (t) to 0.

4.2. Propagation dynamics for juveniles. The spreading of the immature
population I(t, x) can be investigated through the system

(4.4)

\left\{     
\partial I(t,x)

\partial t = DI\Delta I(t, x) +H1(t, x;M) - \mu II(t, x), t \in Tn
1 , x \in \BbbR ,

\partial I(t,x)
\partial t =  - dII(t, x), t \in Tn

2 , x \in \BbbR ,
\partial I(t,x)

\partial t = DI\Delta I(t, x) +H2(t, x;M) - \mu II(t, x), t \in Tn
3 , x \in \BbbR ,

with

H1(t, x;M) = b(M(t, x)) - e - \mu I\tau 

\int 
\BbbR 
\Gamma (DI\tau , y)b(M(t - \tau , x - y))dy,

H2(t, x;M) = b(M(t, x)) - e - \mu I\tau  - dI\tau d

\int 
\BbbR 
\Gamma (DI\tau , y)b(M(t - \tau  - \tau d, x - y))dy.

Then the integral form of (4.4) is expressed as
(4.5)\left\{                               

I(t, x) = e - \mu I(t - n)

\int 
\BbbR 
\Gamma (DI(t - n), x - y)I(n, y)dy

+

\int t - n

0

e - \mu Is

\int 
\BbbR 
\Gamma (DIs, y)H1(t - s, x - y;M)dyds, t \in Tn

1 ,

I(t, x) = e - dI(t - (n+1 - \tau  - \tau d))I(n+ 1 - \tau  - \tau d, x), t \in Tn
2 ,

I(t, x) = e - \mu I(t - (n+1 - \tau ))

\int 
\BbbR 
\Gamma (DI(t - (n+ 1 - \tau )), x - y)I(n+ 1 - \tau , y)dy

+

\int t - (n+1 - \tau )

0

e - \mu Is

\int 
\BbbR 
\Gamma (DIs, y)H2(t - s, x - y;M)dyds, t \in Tn

3 .

For the sake of notational convenience, we define

J1(t) = b(M\ast (t)) - e - \mu I\tau b(M\ast (t - \tau )),

J2(t) = b(M\ast (t)) - e - \mu I\tau  - dI\tau db(M\ast (t - \tau  - \tau d)).

Then we have the following result.

Theorem 4.6. Let M(t, x) be a solution of (4.1) with spreading speed c\ast . Then
for any bounded initial value, the solution of (4.4) has the following property:

(i) \forall c > c\ast , limt\rightarrow \infty ,| x| \geq ct I(t, x) = 0.
(ii) \forall 0 < c < c\ast , limt\rightarrow \infty ,| x| \leq ct(I(t, x) - I\ast (t)) = 0.

Proof. By the arguments similar to those in [12, Theorem 3.2], we can prove that
for any s \in [0, t) and y \in \BbbR , we have (a) \forall c > c\ast , limt\rightarrow \infty ,| x| \geq ctM(t  - \eta , x  - y;\phi ) =
0, \eta = \tau (or \tau + \tau d) and limt\rightarrow \infty ,| x| \geq ctHi(t  - s, x  - y;M) = 0, i = 1, 2, and (b)
\forall 0 < c < c\ast , limt\rightarrow \infty ,| x| \leq ct(M(t  - \eta , x  - y;\phi )  - M\ast (t)) = 0, \eta = \tau (or \tau + \tau d).
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1506 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Furthermore,

lim
t\rightarrow \infty ,| x| \leq ct

[Hi(t - s, x - y;M) - Ji(t - s)] = 0, i = 1, 2.

Note that solutions of (4.4) are uniformly bounded. Thus, one can deduce from (4.5)
that limt\rightarrow \infty ,| x| \geq ct I(t, x) = 0 for c > c\ast .

In the case where 0 < c < c\ast , we write I\ast (t) as

I\ast (t) = e - \mu I(t - n)I\ast (n) +
\int t - n

0
e - \mu IsJ1(t - s)ds, t \in Tn

1 ,
I\ast (t) = e - dI(t - (n+1 - \tau  - \tau d))I\ast (n+ 1 - \tau  - \tau d), t \in Tn

2 ,

I\ast (t) = e - \mu I(t - (n+1 - \tau ))I\ast (n+ 1 - \tau ) +
\int t - (n+1 - \tau )

0
e - \mu IsJ2(t - s)ds, t \in Tn

3 ,

with I\ast (0) =
\int 0

 - \tau 
b(M\ast (s))e\mu Isds. Consequently,

| I(t, x) - I\ast (t)| \leq e - \mu I (t - n)

\int 
\BbbR 
\Gamma (DI(t - n), x - y)| I(n, y) - I\ast (t)| dy

+

\int t - n

0

e - \mu Is

\int 
\BbbR 
\Gamma (DIs, y)| H1(t - s, x - y;M) - J1(t - s)| dyds, t \in Tn

1 ,

| I(t, x) - I\ast (t)| \leq e - dI (t - (n+1 - \tau  - \tau d))| I(n+ 1 - \tau  - \tau d, x) - I\ast (n+ 1 - \tau  - \tau d)| , t \in Tn
2 ,

| I(t, x) - I\ast (t)| \leq e - \mu I (t - (n+1 - \tau ))

\int 
\BbbR 
\Gamma (DI(t - (n+ 1 - \tau )), x - y)

\times 
\bigm| \bigm| \bigm| I(n+ 1 - \tau , y) - I\ast (n+ 1 - \tau )

\bigm| \bigm| \bigm| dy
+

\int t - (n+1 - \tau )

0

e - \mu Is

\int 
\BbbR 
\Gamma (DIs, y)| H2(t - s, x - y;M) - J2(t - s)| dyds, t \in Tn

3 .

This implies that limt\rightarrow \infty ,| x| \leq ct(I(t, x)  - I\ast (t)) = 0 for c \in (0, c\ast ) thanks to the
induction method.

For any c \geq c\ast , let \scrM (t, x  - ct) be a periodic traveling wave of (4.1) satisfying
\scrM (t, - \infty )=M\ast (t) and \scrM (t,\infty ) = 0. Substituting M(t, x) = \scrM (t, x  - ct) into (4.4)
yields
(4.6)\left\{                               

\partial I(t, x)

\partial t
= DI\Delta I(t, x) + b(\scrM (t, x - ct)) - \mu II(t, x) t \in Tn

1 , x \in \BbbR ,

 - e - \mu I\tau 

\int 
\BbbR 
\Gamma (DI\tau , y)b(\scrM (t - \tau , x - y  - ct+ c\tau ))dy,

\partial I(t, x)

\partial t
=  - dII(t, x), t \in Tn

2 , x \in \BbbR ,

\partial I(t, x)

\partial t
= DI\Delta I(t, x) + b(\scrM (t, x - ct)) - \mu II(t, x) t \in Tn

3 , x \in \BbbR ,

 - e - \mu I\tau  - dI\tau d

\int 
\BbbR 
\Gamma (DI\tau , y)b(\scrM (t - \tau  - \tau d, x - y  - ct+ c\tau + c\tau d))dy.

Recall the definition of I\ast (t) in Lemma 3.5. Then the following result holds true.

Theorem 4.7.
(i) For any c \geq c\ast , (4.6) has a unique periodic traveling wave \scrI (t, x - ct) satisfying

\scrI (t, - \infty ) = I\ast (t) and \scrI (t,+\infty ) = 0.
(ii) For any c \in (0, c\ast ), (4.6) admits no periodic traveling wave with speed c and

connecting I\ast (t) and 0.
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1507

Proof of case (i). Let \~T (t) be the solution semigroup of \partial I
\partial t = DI\bigtriangleup I - \mu II. Define

(4.7)

\scrI (t, \xi ) =
\int t

t - \tau 

\~T (t - s)Z(s, \cdot )(\xi + ct)ds, t \in Tn
1 ,

\scrI (t, \xi ) = \scrI (n+ 1 - \tau  - \tau d, \xi + c(t - (n+ 1 - \tau  - \tau d)))e
 - dI(t - (n+1 - \tau  - \tau d)), t \in Tn

2 ,

\scrI (t, \xi ) =
\int t

n+1 - \tau 

\~T (t - s)Z(s, \cdot )(\xi + ct)ds

+

\int n+1 - \tau  - \tau d

t - \tau  - \tau d

e\mu I\tau d - dI\tau d \~T (t - s)Z(s, \cdot )(\xi + ct)ds, t \in Tn
3 ,

where Z(s, x) = b(\scrM (s, x  - cs)). It is easy to verify that \scrI (t, x  - ct) is a solution

of (4.6) with initial condition \scrI (0, x) =
\int 0

 - \tau 
e\mu Is

\int 
\BbbR \Gamma ( - DIs, y)Z(s, x - y)dyds. Since

Z(s+1, x+ c) = Z(s, x), one can see that \scrI (t+1, \xi ) = \scrI (t, \xi ) for all t \geq 0. Note that
Z(s,\pm \infty ) = b(\scrM (s,\pm \infty )) uniformly in s \in \BbbR due to the periodicity in s. Then in
(4.7), passing \xi \rightarrow \pm \infty together with the Lebesgue dominated convergence theorem
and the periodicity of \scrI (t, \xi ) in t, we obtain

\scrI (t,\pm \infty ) =

\int t

t - \tau 

e - \mu I(t - s)Z(s,\pm \infty )ds, t \in Tn
1 ,

\scrI (t,\pm \infty ) = \scrI (n+ 1 - \tau  - \tau d,\pm \infty )e - dI(t - (n+1 - \tau  - \tau d)), t \in Tn
2 ,

\scrI (t,\pm \infty ) =

\int t

n+1 - \tau 

e - \mu I(t - s)Z(s,\pm \infty )ds

+

\int n+1 - \tau  - \tau d

t - \tau  - \tau d

e\mu I\tau d - dI\tau de - \mu I(t - s)Z(s,\pm \infty )ds, t \in Tn
3 .

Here we used the fact that
\int 
\BbbR \Gamma (DI(t  - s), y)dy = 1. In view of Z(s,+\infty ) = 0 and

Z(s, - \infty ) = b(M\ast (s)), we derive that \scrI (t,+\infty ) = 0 and \scrI (t, - \infty ) = I\ast (t). Moreover,
by applying an argument similar to that in [36, Theorem 5.3(i)], we can prove the
uniqueness of \scrI (t, x).

Proof of case (ii). The nonexistence of periodic traveling wave is a consequence of
the property of the spreading speed in Theorem 4.6(ii), as in the proof of [25, Theorem
3.4].

5. Numerical simulations and conclusion. By incorporating the discontin-
uous and periodic maturation delay due to the seasonal diapause, this paper proposes
a succession model with the nonlocal term accounting for the movement of imma-
ture individuals during maturation. The spatial dynamics are investigated in both
bounded and unbounded domains. In a bounded habitat, the establishment of the
species is thoroughly determined by the basic reproduction ratio \scrR 0; that is, when
\scrR 0 < 1, the population will go extinct, while the population density will stabilize at a
seasonal pattern when \scrR 0 > 1. For the unbounded domain case, the spreading speed
c\ast of the population invasion (when \scrR 0 > 1) is computed, which is consistent with
the minimal wave speed for traveling wave solution of M(t, x).

In what follows, we perform some numerical simulations to verify the results ob-
tained in sections 3 and 4, and reveal the biological insights into the spatial dynamics
of diapausing population growth by taking the mosquito species as a motivative exam-
ple. As in [32], we assume that the birthrate function is a special case of Beverton--Holt
function, that is, b(M) = pM

q+Mr , which only depends on the adult population M with
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1508 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

Table 2
Baseline values and ranges for parameters for the model.

Parameter Range Value Dimension Reference
\tau 0.4 \sim 1 0.5 Month [41]
\tau d 2.5 \sim 5 3 Month [9]
\mu I 0.3 \sim 1.8 0.6 Month - 1 [5, 6, 37]
\mu M 0.6 \sim 2.1 0.7 Month - 1 [5, 6, 37]
dI \geq 0.8 0.8 Month - 1 Assumed
dM \geq 0.9 0.9 Month - 1 Assumed
DM 0.01 \sim 25 1.25\times 10 - 2 km2\cdot day - 1 [24, 43]

DI DI \ll DM DI = DM
10

Assumed

Fig. 5.1. The evolution of I(t, x) and M(t, x) when \scrR 0 > 1.

the maximum recruitment rate p = 120 month - 1, the maximum capacity-related
parameter q = 5, and the dimensionless parameter r = 0.5. For model simulation
and investigation, we use data in stage-specific mortality and development rates from
the literature, which are summarized in Table 2. For mosquito dispersal, we choose
DM = 1.25 \times 10 - 2 \times 30.4 km2 \cdot month - 1 and set DI to be very small. We should
mention that DI may be zero, as the movement of immature mosquitoes is negligible.
More complicated modeling of mosquito dispersal can be found in existing studies,
such as [15].

5.1. Validation of analytic results. In the case of a bounded habitat, we as-
sume \Omega = (0, 10) under the Neumann boundary conditions. We use the backward
difference method to simulate the solutions of (2.1)--(2.3) with MATLAB since this
method is stable, which will allow us to take larger time steps. Here the second-order
partial derivative with respect to the spatial variable x is approximated by the second-
order central difference operator. The numerical scheme for dealing with the nonlocal
terms B1(t, x;M) and B2(t, x;M) is highly motivated by the numerical method pre-
sented in [26, Appendix A.2]. To numerically calculate\scrR 0, we use [28, Lemma 2.5] and
the bisection method. Using the parameter values in Table 2, we obtain\scrR 0 = 15.4962.
Figure 5.1 shows the evolution of population densities I(t, x) andM(t, x). If the mor-
tality rates for immature and the mature mosquitoes are, respectively, increased to
dI = 10 and dM = 20, then \scrR 0 = 0.6843. In this case, we observe that both the imma-
ture and the mature mosquito population tend to zero (see Figure 5.2). The simulation
results for I(t, x) and M(t, x) are consistent with our analytic results in Theorem 3.6.
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1509

Fig. 5.2. The evolution of I(t, x) and M(t, x) when \scrR 0 < 1.

To simulate the spatial spread of the model, we truncate the spatial domain \BbbR into
[ - 200, 200]. Using the given parameters in Table 2 such that\scrR 0 = 15.4962, we numer-
ically compute c\ast = 2.0959. Figure 5.3 shows numerical plots of the solution through
a given initial value. The traveling wave solution pattern is shown in Figure 5.4.

5.2. Effects of different diapausing strategies. Some species may survive
through the harsh environmental condition by diapausing at one specific stage. For
example, the immature individuals of Aedes albopictus diapause (restricted in the egg
stage) and the adults of Culex pipiens can undergo diapause to survive [46]. Therefore,
it would be interesting to compare two different diapausing strategies: immature
diapause and adult diapause, which can be distinguished by choosing different sets of
death rates during the unfavorable season. For the immature diapause species Aedes
albopictus, we take dI = d, dM = 10\times d with varying d \in (0.9, 8]; then most adults die
quickly during the unfavorable season. For the adult diapause species Culex pipiens,
we set dM = d, dI = 10 \times d by assuming juveniles are subject to a very large death
rate under a harsh environmental condition.

The relations between \scrR 0 (resp., c
\ast ) and d are shown in Figures 5.5. Figure 5.5(a)

demonstrates that the adult diapausing strategy produces a larger basic reproduction
ratio. It seems adult diapausing is better than immature diapausing in terms of
population establishment. Now we let DI = DM

2 with other parameters unchanged
as in Table 2. Figure 5.5(b) shows that for small d, diapausing in the immature
population can invade much more quickly to new habitats compared with the adult
diapausing strategy. However, the observed phenomenon is otherwise for large d. This
implies that adult diapusing is not always superior to juvenile diapausing in terms
of species invasion. We speculate that these predictions are closely dependent on the
model parameters in Table 2, for example, the larger diffusion rate of adults. However,
the current study provides a hypothetical framework to address these questions.

Finally, we would like to highlight some weaknesses and possible extensions of the
current work. The model is built on the extreme assumption that the development
and physical activity are halted during the unfavorable season. In fact, individuals
have low metabolic activity and reduced physical activity during diapause. It would
be interesting to incorporate this fact into the model formulation. Furthermore, there
may be several bad seasons in a 1-year period, for example, an extremely dry season
and a cold season. In this scenario, there would be two diapausing periods in 1
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(a) The evolution of I (b) The evolution of M
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(c) The density of I at t = n\omega 

-200 -150 -100 -50 0 50 100 150 200

x

0

200

400

600

800

1000

1200

M

(d) The density of M at t = n\omega 

Fig. 5.3. The spread of I(t, x) and M(t, x) and the densities I(t, x) and M(t, x) at t = n\omega 
(\omega = 12 months) with n = 0, 1, 2, 3, 4, 5, and 6, respectively.

Fig. 5.4. The evolution of I(t, x) and M(t, x) to a periodic traveling wave.
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1 2 3 4 5 6 7 8
0

5

10

15

d
I
=d,d

M
=10  d

d
M

=d,d
I
=10  d

(a) \scrR 0 versus d.

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

d
I
=d, d

M
=10  d

d
M

=d, d
I
=10  d

(b) c\ast versus d

Fig. 5.5. The effect of different strategies on \scrR 0 and c\ast and their relationship. In (b), DI is
set as 0.0125

2
km2\cdot day - 1.

year, which makes the modeling more complicated and brings new challenges to the
model analysis. Moreover, the modeling framework becomes invalid in describing
the diapause of multiple-stage species, for example, the Ixodes ticks [14], which may
diapause in both the larval and the nymphal stages. We leave these topics for future
consideration.

Appendix A. Model derivation. Let p = p(t, x, a) denote the density of
species with age a at time t and location x \in \Omega . According to the McKendrick--von-
Foerster framework for an age-structured population, the density p(t, x, a) during the
normal growth period is described by the following equations:\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
p = DI\Delta p - \mu Ip, a < \tau ,\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
p = DM\Delta p - \mu Mp, a \geq \tau ,

(5.1)

where DI , DM are the diffusion rates, \mu I , \mu M are the death rates, and \tau is the mat-
uration delay. Clearly, the total immature population I(t, x) and mature population
M(t, x) at time t and location x can be represented, respectively, by the integrals

(5.2) I(t, x) =

\int \tau 

0

p(t, x, a)da, M(t, x) =

\int \infty 

\tau 

p(t, x, a)da.

Differentiating both sides of (5.2) in time yields

\partial 

\partial t
I(t, x) =

\int \tau 

0

\partial 

\partial t
p(t, x, a)da

=

\int \tau 

0

\biggl[ 
 - \partial 

\partial a
+DI\Delta  - \mu I

\biggr] 
p(t, x, a)da

= DI\Delta I(t, x) - \mu II(t, x) + p(t, x, 0) - p(t, x, \tau ).

Similarly, we have

\partial 

\partial t
M(t, x) = DM\Delta M(t, x) - \mu MM(t, x) + p(t, x, \tau ) - p(t, x,\infty ).
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1512 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

The term p(t, x, 0) represents the birthrate of the population, and hence we assume
that p(t, x, 0) = b(M(t, x)), a function of the mature population density M(t, x). It is
biologically reasonable to assume that p(t, x,\infty ) = 0, as no individual can live forever.
To obtain a closed form of the model, one needs to express p(t, x, \tau ) by I and M in
a certain way. Note that p(t, x, \tau ) represents the newly matured population at time
t, and it is the evolution result of newborns at t  - \tau . That is, there is an evolution
relation between the quantities p(t, x, \tau ) and p(t - \tau , x, 0). From the first equation of
the growth law (5.1), we see that such a relation is the time-\tau solution map of the
evolution equation

(5.3)

\left\{   
\partial 

\partial s
q(s, x) = DI\Delta q(s, x) - \mu Iq(s, x), 0 < s \leq \tau ,

q(0, x) = p(t - \tau , x, 0) = b(M(t - \tau , x)).

This evolution equation describes the dynamics of the density of juveniles at time
s which were born at time 0. It involves the diffusion process and survival. This
evolution equation can also be derived through the integration along characteristics
for the first equation of (5.1). Solving the Cauchy problem (5.3), we obtain

p(t, x, \tau ) = q(\tau , x) = e - \mu I\tau 

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau , y))dy,

where \Gamma (t, x, y) is the fundamental solution associated with \partial t - \bigtriangleup . Therefore, during
the normal growth period of the nth year, t \in Tn

1 :=(n, n + 1  - \tau  - \tau d], population
densities for juveniles and adults can be described by the system\left\{             

\partial I(t, x)

\partial t
=DI\Delta I(t, x)\underbrace{}  \underbrace{}  

diffusion

+ b(M(t, x))\underbrace{}  \underbrace{}  
birth

 - B1(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu II(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t, x)

\partial t
=DM\Delta M(t, x)\underbrace{}  \underbrace{}  

diffusion

+B1(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu MM(t, x)\underbrace{}  \underbrace{}  
death

,

with the maturation rate

B1(t, x;M) = e - \mu I\tau 

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau , y))dy.

During the diapause period, t \in Tn
2 :=(n+1 - \tau  - \tau d, n+1 - \tau ], there is no birth,

development, or diffusion. The system becomes\left\{         
\partial I(t,x)

\partial t =  - dII(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t,x)
\partial t =  - dMM(t, x)\underbrace{}  \underbrace{}  

death

,

where dI and dM are the death rates during the diapause period.
After the diapause period, there is a short postdiapause period, t \in Tn

3 :=(n+1 - 
\tau , n+ 1]. During this period, the density p(t, x, a) satisfies\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
p = DI\Delta p - \mu Ip, a < \tau + \tau d,\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
p = DM\Delta p - \mu Mp, a \geq \tau + \tau d.
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A DELAYED SUCCESSION MODEL WITH DIFFUSION 1513

Clearly, the total immature and mature population at time t and location x are given
by

(5.4) I(t, x) =

\int \tau +\tau d

0

p(t, x, a)da, M(t, x) =

\int \infty 

\tau +\tau d

p(t, x, a)da.

Differentiating both sides of (5.4) in time yields

\partial 

\partial t
I(t, x) = DI\Delta I(t, x) - \mu II(t, x) + p(t, x, 0) - p(t, x, \tau + \tau d),

\partial 

\partial t
M(t, x) = DM\Delta M(t, x) - \mu MM(t, x) + p(t, x, \tau + \tau d).

As mentioned before, there is an evolution relation between the quantities p(t, x, \tau +\tau d)
and p(t  - \tau  - \tau d, x, 0). That is, such a relation can be described by the following
evolution system:\left\{           

\partial 
\partial sq(s, x) = DI\Delta q(s, x) - \mu Iq(s, x), 0 < s \leq \alpha t,
\partial 
\partial sq(s, x) =  - dIq(s, x), \alpha t < s \leq \alpha t + \tau d,
\partial 
\partial sq(s, x) = DI\Delta q(s, x) - \mu Iq(s, x), \alpha t + \tau d < s \leq \tau + \tau d,

q(0, x) = b(M(t - \tau  - \tau d, x)),

where \alpha t = n+ 1 - t, dependent of t. Similar to (5.3), the dynamic process involves
diffusion and death. However, during the bad season (\alpha t, \alpha t+\tau d], individuals undergo
diapause and do not diffuse. Moreover, they are subject to a different death rate dI .
Solving this Cauchy problem leads to

p(t, x, \tau + \tau d) = q(\tau + \tau d, x)

= e - \mu I\tau  - dI\tau d

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau  - \tau d, y)dy.

Hence, during this period, we have the system\left\{             

\partial I(t, x)

\partial t
=DI\Delta I(t, x)\underbrace{}  \underbrace{}  

diffusion

+ b(M(t, x))\underbrace{}  \underbrace{}  
birth

 - B2(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu II(t, x)\underbrace{}  \underbrace{}  
death

,

\partial M(t, x)

\partial t
=DM\Delta M(t, x)\underbrace{}  \underbrace{}  

diffusion

+B2(t, x;M)\underbrace{}  \underbrace{}  
maturation

 - \mu MM(t, x)\underbrace{}  \underbrace{}  
death

,

with the maturation rate

B2(t, x;M) = e - \mu I\tau  - dI\tau d

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M(t - \tau  - \tau d, y))dy.

Appendix B. Proofs of Lemmas 3.2 and 3.5.

Proof of Lemma 3.2. We first consider the following three systems:

(5.5)

\left\{                 

\partial M1(t, x)

\partial t
= DM\Delta M1(t, x) + e - \mu I\tau 

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M
1(t - \tau , y))dy

 - \mu MM
1(t, x), t > t\ast , x \in \Omega ,

\partial M1(t, x)

\partial \nu 
= 0, t > t\ast , x \in \partial \Omega ,

M1
t\ast = \varphi \in \BbbY +,
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1514 ZHENGUO BAI, YIJUN LOU, AND XIAO-QIANG ZHAO

(5.6)

\left\{   
\partial M2(t, x)

\partial t
=  - dMM2(t, x), t > t\ast , x \in \Omega ,

M2(t\ast , \cdot ) = \varphi \in \BbbX +,

and
(5.7)\left\{                 

\partial M3(t, x)

\partial t
= DM\Delta M3(t, x) + e - \mu I\tau  - dI\tau d

\int 
\Omega 

\Gamma (DI\tau , x, y)b(M
3(t - \tau  - \tau d, y))dy

 - \mu MM
3(t, x), t > t\ast , x \in \Omega ,

\partial M3(t, x)

\partial \nu 
= 0, t > t\ast , x \in \partial \Omega ,

M3
t\ast = \varphi \in C([ - \tau  - \tau d, 0],\BbbX +).

It then follows from [35, Corollary 5] that (5.5) admits a unique nonnegative con-
tinuous solution M1(t, t\ast , x;\varphi ) on [t\ast , t\varphi ) and 0 \leq M1(t, t\ast , x;\varphi ) \leq L for (t, x) \in 
[t\ast , t\varphi ) \times \Omega . Note that assumption (H2) implies that b(L)e - \mu I\tau = \mu ML. Then it is
easy to see that for any k \geq 1, kL is an upper solution of (5.5). This implies that
t\varphi = \infty . Moreover, the comparison principle holds for the lower and upper solu-
tions of (5.5). The solution M3(t, t\ast , x;\varphi ) of (5.7) has the same property with the
solution of (5.5). From (5.6), we deduce that M2(t, t\ast , x;\varphi ) = e - dM (t - t\ast )\varphi (x) and
0 \leq M2(t, t\ast , x;\varphi ) \leq L for t \geq t\ast and x \in \Omega .

The solutionM(t, x;\phi ) for t \geq 0 of (3.1) can be determined uniquely by induction.
For simplicity, we let sn = n, tn = n + 1  - \tau  - \tau d and zn = n + 1  - \tau for n \in \BbbN =
\{ 0, 1, 2, . . .\} . Hence,

(0,\infty ) = \cup \infty 
n=0(sn, tn] \cup (tn, zn] \cup (zn, sn+1],

and M(t, x;\phi ) can be written as

M(t, x;\phi ) =

\left\{                   

M1(t, s0, x;\phi ), t \in (s0, t0],
M2(t, t0, x;M

1(t0, \cdot ;\phi )), t \in (t0, z0],
M3(t, z0, x;M

2
z0), t \in (z0, s1],

\cdot \cdot \cdot ,
M1(t, sn, x;M

1
sn), t \in (sn, tn],

M2(t, tn, x;M
1(tn, \cdot ;\phi )), t \in (tn, zn],

M3(t, zn, x;M
3
zn), t \in (zn, sn+1],

where M1
sn and M3

zn , n \geq 1 are defined by

M1
sn(\theta , x) =M(sn + \theta , x;\phi ), (\theta , x) \in [ - \tau , 0]\times \Omega ,

M3
zn(\eta , x) =M(zn + \eta , x;\phi ), (\eta , x) \in [ - \tau  - \tau d, 0]\times \Omega .

This implies that the solution M(t, \cdot ;\phi ) of (3.1) exists globally on [0,\infty ). Moreover,
the mathematical induction can establish the comparison principle for the lower and
upper solutions of (3.1).

Proof of Lemma 3.5. We first consider the spatially homogeneous system associ-
ated with (3.6):

(5.8)

\left\{       
dI(t)
dt = b(M\ast (t)) - b(M\ast (t - \tau ))e - \mu I\tau  - \mu II(t), t \in Tn

1 ,

dI(t)
dt =  - dII(t), t \in Tn

2 ,

dI(t)
dt = b(M\ast (t)) - b(M\ast (t - \tau  - \tau d))e

 - \mu I\tau  - dI\tau d  - \mu II(t), t \in Tn
3 .
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The solution of (5.8) on the interval (n, n+ 1] can be explicitly written as

I(t) =

\int t

t - \tau 

b(M\ast (s))e - \mu I(t - s)ds

+

\biggl[ 
I(n) - 

\int n

n - \tau 

b(M\ast (s))e - \mu I(n - s)ds

\biggr] 
e - \mu I(t - n), t \in Tn

1 ,

I(t) = I(n+ 1 - \tau  - \tau d)e
 - dI(t - (n+1 - \tau  - \tau d)), t \in Tn

2 ,

I(t) =

\int t

n+1 - \tau 

b(M\ast (s))e - \mu I(t - s)ds

+

\int n+1 - \tau  - \tau d

t - \tau  - \tau d

b(M\ast (s))e - \mu I(t - \tau d - s) - dI\tau dds

+

\biggl[ 
I(n+ 1 - \tau ) - 

\int n+1 - \tau  - \tau d

n+1 - 2\tau  - \tau d

b(M\ast (s))e - \mu I(n+1 - \tau  - \tau d - s) - dI\tau dds

\biggr] 
\times e - \mu I(t - (n+1 - \tau )), t \in Tn

3 .

By the above integral form of I(t) and the periodicity ofM\ast (t), a tedious but straight-
forward computation yields

I(n+ 1) =

\int 0

 - \tau 

b(M\ast (s))e\mu Isds+

\biggl( 
I(n) - 

\int 0

 - \tau 

b(M\ast (s))e\mu Isds

\biggr) 
e - dI\tau d - \mu I(1 - \tau d).

In order to find the periodic solution, we let I(n+ 1) = I(n) and then obtain

I(n) =

\int 0

 - \tau 

b(M\ast (s))e\mu Isds > 0, n \in \BbbN .

Let I\ast (0) =
\int 0

 - \tau 
b(M\ast (s))e\mu Isds. Then I\ast (t) := I\ast (t, I\ast (0)) is a positive 1-periodic

solution of (5.8). Since (5.8) is a linear system, one deduces that limt\rightarrow \infty (I(t)  - 
I\ast (t)) = 0. Moreover, by [52, Lemma 2.2.1], I\ast (t) is globally stable in \BbbR +.

Note that solutions of (5.8) are also solutions of (3.6) subject to the Neumann
boundary condition. Thus, by applying the above result and the standard comparison
principle, it follows that I\ast (t) is globally asymptotically stable for (3.6) in \BbbX +.

Appendix C. Proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. For any \phi \in \scrC \^L with \phi \gg 0, one easily finds thatM(t, x;\phi ) >
0 for t \geq 0 and x \in \BbbR . Fix k \in (0, 1). Let w(t, x) = M(t, x; k\phi )  - kM(t, x;\phi ). Then
w(\theta , x) = 0 for (\theta , x) \in [ - \tau , 0]\times \BbbR , and for t \in (0, 1 - \tau  - \tau d], w(t, x) satisfies

\partial w(t, x)

\partial t
= DM\Delta w(t, x) - \mu Mw(t, x) + F (t,M(t, x, k\phi )) - F (t, kM(t, x, \phi ))

+ F (t, kM(t, x, \phi )) - kF (t,M(t, x, \phi ))

= DM\Delta w(t, x) - (\mu M  - H(t, x))w(t, x) + h(t, x),

where

F (t,M(t, x, \varphi )) = e - \mu I\tau 

\int 
\BbbR 
\Gamma (DI\tau , x - y)b(M(t - \tau , y, \varphi ))dy,

H(t, x) =

\int 1

0

\partial 2F (t, sM(t, x, k\phi )) + (1 - s)kM(t, x, \phi ))ds, 0 \leq s \leq 1,

h(t, x) = F (t, kM(t, x, \phi )) - kF (t,M(t, x, \phi )).
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Let U(t, s), t \geq s \geq 0, be the evolution operator of the nonautonomous linear parabolic
equation

\partial w(t, x)

\partial t
= DM\Delta w(t, x) - (\mu M  - H(t, x))w(t, x), t > 0, x \in \BbbR .

By [42, Theorem 7.4.1], one easily sees that U(t, s), t > s \geq 0, is strongly positive,
i.e., for any \varphi > 0, U(t, s)\varphi \gg 0. By the formula of variation of constants, we have

w(t, x) =

\int t

0

U(t, s)h(s, \cdot )(x)ds, t \in (0, 1 - \tau  - \tau d], x \in \BbbR .

Since M(t, \cdot ;\phi ) > 0, t \geq 0, when \phi \gg 0 and b(u) is strictly subhomogeneous in u, we
have h(t, \cdot ) > 0 and hence w(t, \cdot ) > 0 for t \in (0, 1 - \tau  - \tau d].

For t \in (1  - \tau  - \tau d, 1  - \tau ], w(t, x) satisfies \partial w(t,x)
\partial t =  - \mu Mw(t, x). One easily

sees that w(t, \cdot ) > 0 for t \in (1  - \tau  - \tau d, 1  - \tau ]. Similar to the analysis of w(t, \cdot )
on (0, 1  - \tau  - \tau d], we can obtain that w(t, \cdot ) > 0 for t \in (1  - \tau , 1]. Repeating this
procedure on (n, n+1] for n \geq 1, we get w(t, x) > 0 for all t > 0 and x \in \BbbR . Therefore,
Qt(k\phi ) > kQt(\phi ) for each t > 0.

Proof of Lemma 4.2. Let Q
(i)
t : \scrC \rightarrow \scrC , i = 1, 2, 3, respectively, be the solution

maps of the following equations for all t > 0, x \in \BbbR :

\partial M1(t, x)

\partial t
= DM\Delta M1(t, x) + e - \mu I\tau 

\int 
\BbbR 
\Gamma (DI\tau , x - y)b(M1(t - \tau , y))dy  - \mu MM

1(t, x),

\partial M2(t, x)

\partial t
=  - dMM

2(t, x),

\partial M3(t, x)

\partial t
= DM\Delta M3(t, x) + e - \mu I\tau  - dI\tau d

\int 
\BbbR 
\Gamma (DI\tau , x - y)b(M3(t - \tau  - \tau d, y))dy

 - \mu MM
3(t, x).

Recalling the definition of sn, tn, and zn in the proof of Lemma 3.2, one infers that

Qt[\phi ] =

\left\{                       

Q
(1)
t [\phi ], t \in (s0, t0],

Q
(2)
t - t0 \circ Q

(1)
1 - \tau  - \tau d

[\phi ], t \in (t0, z0],

Q
(3)
t - z0 \circ Q

(2)
\tau d \circ Q(1)

1 - \tau  - \tau d
[\phi ], t \in (z0, s1],

\cdot \cdot \cdot ,
Q

(1)
t - sn \circ Qn[\phi ], t \in (sn, tn],

Q
(2)
t - tn \circ Q(1)

1 - \tau  - \tau d
\circ Qn[\phi ], t \in (tn, zn],

Q
(3)
t - zn \circ Q(2)

\tau d \circ Q(1)
1 - \tau  - \tau d

\circ Qn[\phi ], t \in (zn, sn+1],

for any \phi \in \scrC \^L, where Qn = Q1 \circ \cdot \cdot \cdot \circ Q1 and Q1 = Q
(3)
\tau \circ Q(2)

\tau d \circ Q(1)
1 - \tau  - \tau d

. It is easy

to verify that for each t > 0, Qt satisfies (A1) and (A4) with \beta = \^L.
Now we show that (A2) and (A3) are valid for Qt. By similar arguments in

[47, Lemma 3.2], we can prove that Q
(1)
t (Q

(3)
t ) is continuous in \phi \in \scrC \^L(\psi \in \scrC \^L) with

respect to compact open topology uniformly for t \in (0,\infty ). Clearly, Q
(2)
t is continuous

in \varphi \in \scrC \^L with respect to compact open topology uniformly for t \in (0,\infty ). Therefore,
Qt is continuous in \phi \in \scrC \^L with respect to compact open topology. Moreover, similar
to Lemma 3.2, we can show that Qt[\scrC \^L] is a uniformly bounded subset of \scrC for each
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t > 0. To verify (A3), let us define a family of linear operators \{ \=L(t)\} t\geq 0 on \scrZ by

\=L(t)[\psi ](\theta ) :=

\biggl\{ 
\psi (t+ \theta ) - \psi (0) for t+ \theta < 0,
0 for t+ \theta \geq 0.

From [30, Remark 4.1], we know that for any given \gamma > 0, there is an equivalent norm
\| \cdot \| \ast \scrZ in \scrZ such that \| \=L(t)\| \ast \scrZ \leq e - \gamma t \forall t \geq 0. Moreover, we define

L(i)(t)[\phi i](\theta , x) :=

\biggl\{ 
\phi i(t+ \theta , x) - \phi i(0, x) for t+ \theta < 0,
0 for t+ \theta \geq 0

and

S(i)(t)[\phi i](\theta , x) :=

\biggl\{ 
\phi i(0, x) for t+ \theta < 0,
M i(t+ \theta , x;\phi i) for t+ \theta \geq 0,

where i = 1, 2, 3 and in particularM2(t+\theta , x;\phi 2) = e - dM (t+\theta )\phi 2(0, x) when t+\theta \geq 0.
Let t > 0 be given. We can prove that Qt[\scrC \^L](0, x) is precompact in C(\BbbR ,\BbbR ) and

that S(i)(t)[\scrU ] is precompact in \scrC \^L with respect to the compact open topology for any
\scrU \in \scrC \^L with \scrU (0, \cdot ) being precompact in C(\BbbR ,\BbbR ). Thus, for any interval I = [a, b] of
length r, we have

\alpha ((Q
(i)
t [\scrU ])I) \leq \alpha ((L

(i)
t [\scrU ])I) + \alpha ((S

(i)
t [\scrU ])I) \leq e - \gamma t\alpha (\scrU I)

and hence

\alpha ((Qt[\scrU ])I) \leq e - \gamma t\alpha (\scrU I),

where \alpha is the Kuratowski measure of noncompactness on the space C(I, (\scrZ , \| \cdot \| \ast \scrZ )).
Thus, Qt satisfies (A3) with k = e - \gamma t.

Finally, it is easily seen that Q1 : \scrC \beta \rightarrow \scrC \beta satisfies (A1)--(A4) with \beta = M\ast 
0 .

Furthermore, by Lemma 3.3(ii), togerher with the uniqueness of solution, we have
that (A5) holds for Q1.
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