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Abstract This paper studies a class of stochastic linear-quadratic-Gaussian
(LQG) dynamic optimization problems involving a large number of weakly-
coupled heterogeneous agents. By “heterogeneous,” we mean agents are en-
dowed with different types of parameters thus they are not statistically i-
dentical. Specifically, discrete-type heterogeneous agents are considered here
which are more practical than homogeneous-type agents, and at the same time,
more tractable than continuum-type heterogeneous agents. Unlike well-studied
mean-field-game, these agents formalize a team with cooperation to minimize
some social cost functional. Moreover, unlike standard social optima litera-
ture, the state here evolves by some backward stochastic differential equation
(BSDE) in which the terminal instead initial condition is specified. Accord-
ingly, the related social cost is represented by some recursive functional for
which the initial state is considered. Applying a backward version of person-
by-person optimality, we construct an auxiliary control problem for each a-
gent based on decentralized information. The decentralized social strategy is
derived by a class of new consistency condition (CC) systems, which are mean-
field-type forward-backward stochastic differential equations (FBSDEs). The
well-posedness of such consistency condition system is obtained via Riccati
decoupling method. The related asymptotic social optimality is also verified.
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1 Introduction

The large-population system arises naturally in various fields in decision mak-
ing such as economics, engineering, social science and operational research,
and has been extensively studied from different perspectives. Its most strik-
ing feature is the existence of considerable negligible agents which are highly
interactive through their coupled state-average or possible admissible control-
s. Although the effect of each individual agent on overall population scale is
negligible, the effects of their statistical behaviors cannot be ignored at the
population scale. The central goal of individual agent is to obtain decentral-
ized strategies based on limited information of the individual agent since it is
unrealistic for a given agent to synthesize all other agents’ information instan-
taneously when the number of agents is sufficiently high. This is contrast to
the classical centralized control which assumes the full information upon all
agents is relatively tractable to be synthesized in a simultaneous manner. The
mean-field game offers a powerful scheme to obtain the decentralized strate-
gies through the limiting auxiliary control problem and the related consistency
condition. For this direction, the interested readers are referred to [4], [7], [17],
[19], [21]. In the basic mean field decision model, all agents are supposed to be
statistically identical. However, this assumption is over simplified, because all
the agents are “atomic” without diversities. Therefore, we continue to study
more realistic heterogeneous model by incorporating parameter diversity.

In some real models there exists an agent with a significant influence upon
other agents. Thus a modified framework is to introduce a major agent inter-
acting with a large number of minor agents. [16] considered linear-quadratic-
Gaussian (LQG) games with a major player and a large number of minor
players. [26] studied large population dynamic games involving nonlinear s-
tochastic dynamical systems with a major agent and N minor agents. [6]
studied two-person zero-sum stochastic differential games, in which one player
is a major one and the other player is a group of N minor agents which are col-
lectively interactive, statistically identical, and have the same cost functional.
[13] considered LQG mean-field games with a major agent and considerable
heterogeneous minor agents where the individual admissible controls are con-
strained in closed convex subsets.

The decisions in all aforementioned works are competitive, i.e., the agents
involved may have conflictive objectives and some (asymptotic) Nash equilib-
rium among them should be pursued. On the other hand, cooperative team
optimization in dynamic multi-agent decision has also been well addressed in
literature. Accordingly, it is necessary to discuss the mean-field team in the
context of large population system where considerable weakly-coupled agents
are cooperative to optimize some common objective functional. [18] studied a
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class of linear-quadratic-Gaussian control problems with N decision makers,
where the basic objective is to minimize a social cost as the sum of N individu-
al costs containing mean field coupling. [34] investigated social optima of mean
field linear-quadratic-Gaussian control models with Markov jump parameters.
[3] considered LQ mean field team-optimal problem by assuming mean field
sharing for a given population size N , which gives an optimal control problem
with special partial state information. [20] studied a linear-quadratic mean
field control problem involving a major player and a large number of minor
players, where the objective is to optimize a social cost as a weighted sum of
the individual costs under decentralized information. For other research and
applications of cooperative mean field control problems, interested readers are
referred to [2], [8], [27], [31], [33], [37] and the references therein.

In this paper, we investigate a class of stochastic linear-quadratic-Gaussian
(LQG) optimization involving a large number of weakly-coupled heterogeneous
agents, where the dynamic is driven by some backward stochastic differential
equation (BSDE). Moreover, all the heterogeneous agents are cooperative to
minimize a social cost as the sum of some individual costs. Note that such
optimization problem may occur for cooperative team with distributed infor-
mation but recursive utility or cost functionals. In LQG setup, this is also
the case where team agents aim to minimize some quadratic deviations with
prescribed terminal target. The feature of backward state makes our setting
rather different to existing works of mean-field LQG team wherein the indi-
vidual states evolve by some forward stochastic differential equations (SDEs).
Different to SDE, the terminal instead initial condition of BSDE should be
specified as the priori. As a consequence, the BSDE will admit one adapted
solution pair (yt, zt) where the second solution component zt (it is also called
the diffusion component) is naturally presented here due to the martingale
representation and the adaptiveness requirement. The linear BSDEs were in-
troduced in [5] and the general nonlinear BSDEs were first introduced in [28].
Based on them, the study of BSDE has undergone extensive discussions and it
has been found many applications in various areas. For instance, the BSDEs
has been found to be very important to characterize the nonlinear expectation
in decision making, or the stochastic differential recursive utility (say, [9]).
Later, [10] presented many applications of BSDEs in mathematical finance
and optimal control theory.

Considering the various applications of BSDE, it is also very promising
to study its associated dynamic control and game problems. Actually, there
already accumulated considerable literature along this line. For example, see
[36] and [11] for maximum principle of system driven by BSDE; [23] for linear-
quadratic backward control with related Riccati representation, [14] and [35]
for backward LQ control problems with partial information and related filter-
ing results, [22] for backward LQ control in mean-field type. There also arise
some works on mean-field game for large-population system driven by BSDE
such as [15], etc.

The innovative aspects of the obtained results in this paper are as follows:
Firstly, the BSDE drivers of agents depend on the state process itself and the
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state-average thus all agents become weakly-coupled. This bring additional
difficulties when we apply the variational method to obtain the auxiliary con-
trol problem. Specifically, we need carefully introduce some adjoint processes
to tackle the cross-terms in cost functional variation. Secondly, the social cost
variation can be divided into K parts due to the discrete-type heterogeneous
assumption. Thus the computations involved in person-by-person become more
intractable and involved. Thirdly, owning to the structure of backward dynam-
ics, the consistency system becomes mean-field backward forward stochastic
differential equations (BFSDE) which are mixed at the initial condition. In
addition, the consistency system becomes a highly-dimensional augmentation
because of the discrete-type heterogeneous setup. Its well-posedness also be-
comes intractable.

Let us now briefly explain how to solve the LQG backward team opti-
mization problem. Firstly, under some backward version of person-by-person
optimality principle, we can construct some auxiliary LQG control problem
by applying variational synthesization technique and solve it using stochastic
maximum principle ([30,14]). In this step, some frozen mean-field team is in-
troduced with related adjoint process. Secondly, to determine such frozen mean
field terms, we construct the consistency condition (CC) system by some fixed
point analysis in backward version. Finally, by applying standard estimations
of solutions of backward stochastic differential equations, we can verify that
the decentralized strategy obtained from the auxiliary control problem turns
to be some “good” approximation of centralized optimal control strategy (i.e.,
the social optima loss tend to 0 as the population number N tends to infinity).

The remaining of the paper is organized as follows: In Section 2, we give the
formulation of the LQG recursive heterogeneous agents problem. In Section
3, we apply person-by-person optimality to find the auxiliary control prob-
lem of the individual agent. The consistency conditions and well-posedness of
consistency systems are established in Section 4. In Section 5, we obtain the
asymptotic optimality of the decentralized strategy.

2 Problem formulation

Consider a finite time horizon [0, T ] for fixed T > 0. Assume that (Ω,F ,
{Ft}0≤t≤T ,P) is a complete filtered probability space satisfying the usual con-
ditions and {Wi(t), 1 ≤ i ≤ N}0≤t≤T is a N ×d-dimensional Brownian motion
on this space. Let Ft be the filtration generated by {Wi(s), 1 ≤ i ≤ N}0≤s≤t
and augmented by NP (the class of all P-null sets of F). Let F it be the aug-
mentation of σ{Wi(s), 0 ≤ s ≤ t} by NP.

Let 〈·, ·〉 denote standard Euclidean inner product. x> denotes the trans-
pose of a vector (or matrix) x. M ∈ Sn denotes the set of symmetric n × n
matrices with real elements. M > (≥)0 denotes that M ∈ Sn which is positive
(semi)definite, while M � 0 denotes that, for some ε > 0, M − εI ≥ 0. We
introduce the following spaces which will be used in the paper:

– L2
FT (Ω;Rn) :=

{
η : Ω → Rn|η is FT -measurable such that E|η|2 <∞

}
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– L2
F (Ω;C([0, T ];Rn)) :=

{
ζ(·) : [0, T ]×Ω → Rn|ζ(·) is Ft-adapted,

continuous, such that E
[

sup
s∈[0,T ]

|ζ(s)|2
]
<∞

}
– L2

F (0, T ;Rn) :=
{
ζ(·) : [0, T ]×Ω → Rn|ζ(·) is Ft-progressively measurable

process such that

E
∫ T
0
|ζ(·)|2dt <∞

}
– L∞(0, T ;Rn×n) :=

{
ζ(·) : [0, T ]→ Rn×n|ζ(·) is uniformly bounded

}
We consider a weakly coupled large population system with K-type discrete
heterogeneous agents {Ai : 1 ≤ i ≤ N}. The dynamics of the agents are
given by a system of linear backward stochastic differential equations with
mean-field coupling: that is, for 1 ≤ i ≤ N,

dyi(t) =−
[
Aθi(t)yi(t) +B(t)ui(t) + C(t)y(N)(t) + f(t)

]
dt

+ zi(t)dWi(t) +

N∑
j=1,j 6=i

zij(t)dWj(t),

yi(T ) =ξi,

(1)

where y(N)(·) = 1
N

∑N
i=1 yi(·) denotes the state-average of the agents. It is

remarkable that (zi(·), zij(·), 1 ≤ j ≤ N, j 6= i) is part of our solution in (1)
which are introduced here to enable yi to satisfy the adaptation requirement.
Note that while the coefficients (Aθi(·), B(·), C(·), f(·)) are dependent on the
time variable t, in what follows the variable t will usually be suppressed if
no confusion would occur. The number θi is a parameter of the agent Ai to
model a heterogeneous population. For simplicity, we only assume that the
coefficients A to be dependent on θi. Similar analysis can be proceeded in case
that all other coefficients are also dependent on θi. Moreover, we assume that
θi takes values in a finite set Θ := {1, 2, · · · ,K}. We call Ai a k-type agent if
θi = k ∈ Θ. In this paper, we are interested in the asymptotic behavior as N
tends to infinity. For 1 ≤ k ≤ K, introduce

Ik = {i|θi = k, 1 ≤ i ≤ N}, Nk = |Ik|,

where Nk is the cardinality of index set Ik. For 1 ≤ k ≤ K, let π
(N)
k = Nk

N ,

then π(N) = (π
(N)
1 , · · · , π(N)

K ) is a probability vector representing the empirical
distribution of θ1, · · · , θN . We introduce the following assumption:

(A1) There exists a probability mass vector π = (π1, · · · , πK) such that
lim

N→+∞
π(N) = π, min

1≤k≤K
πk > 0.

(A2) For i = 1, · · · , n, ξi = ξi(ω; θi) are F iT -measurable random variables.
If θi = θj = k, ξi and ξj are identically distributed and the common
distribution is denoted by ηk.

(A3) Aθi(·), C(·) ∈ L∞(0, T ;Rn×n) (i = 1, · · · , N), B(·) ∈ L∞(0, T ;Rn×m),
f(·) ∈ L∞(0, T ;Rn).
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It follows that under (A1)-(A3), the state equation in (1) admits a unique
solution for all ui ∈ Ui. In fact, if we denote by
Ŷ =

( y1

...
yN

)
, Ẑ =

 z1 z12 ··· z1,N−1 z1N
z21 z2 ··· z2,N−1 z2N

...
...

...
...

...
zN1 zN2 ··· zN,N−1 zN

 , Û =

(
u1

...
uN

)
, Ŵ =

(
W1

...
WN

)
, ξ̂ =

(
ξ1

...
ξN

)
,

Â =

(Aθ1

. . .
AθN

)
, B̂ =

(
B

. . .
B

)
, Ĉ =

(
C

. . .
C

)
, f ′ =

(
f

...
f

)
, JN =

(
1 ··· 1
...

...
1 ··· 1

)
.

Then (1) can be rewritten as

dŶ (t) = −

[(
Â(t)+

1

N
Ĉ(t)JN

)
Ŷ (t)+B̂(t)Û(t)+f ′(t)

]
dt+Ẑ(t)dŴ (t), Ŷ (T ) = ξ̂,

which is a Linear BSDE of vector value and admits a unique solution (Ŷ , Ẑ) ∈
L2
F (0, T ;RNn) × L2

F (0, T ;RNn×Nd) for U ∈ L2
F (0, T ;RNm), (see [28]). Thus,

for any 1 ≤ i ≤ N , the state equation (1) admits a unique solution
(
yi, zi, zij(j 6=

i)
)
∈ L2

F (Ω;C([0, T ];Rn))×L2
F (0, T ;Rn×d)×L2

F (0, T ;Rn×d)× · · · × L2
F (0, T ;Rn×d)︸ ︷︷ ︸

N−1

.

Let u = (u1, · · · , uN ) be the set of strategies of all N agents and u−i =
(u1, · · · , ui−1, ui+1, · · · , uN ), 1 ≤ i ≤ N . The cost functional for Ai, 1 ≤ i ≤
N , is given by

Ji(ui(·), u−i(·))

=
1

2
E
{∫ T

0

[〈
S(t)(yi(t)−G(t)y(N)(t)), yi(t)−G(t)y(N)(t)

〉
+
〈
Rθi(t)ui(t), ui(t)

〉]
dt

+
〈
Q(yi(0)−Hy(N)(0)), yi(0)−Hy(N)(0)

〉}
.

(2)
The aggregate team functional of N agents is

J (N)
soc (u(·)) =

N∑
i=1

Ji(ui(·), u−i(·)). (3)

We impose the following assumptions on the coefficients of the cost func-
tionals:

(A4) S(·) ∈ L∞(0, T ;Sn), S(·) ≥ 0,G(·) ∈ L∞(0, T ;Rn×n),Rθi(·) ∈ L∞(0, T ;Sm),
Rθi(·)� 0 (i = 1, · · · , N), Q ∈ Sn×n, H ∈ Rn×n , Q ≥ 0.

For i = 1, · · · , N , the centralized admissible strategy set for the ith agent is
given by

Uci =
{
ui(·)|ui(·) ∈ L2

F (0, T ;Rm)
}
.

Correspondingly, the decentralized admissible strategy set for the ith agent is
given by

Udi =
{
ui(·)|ui(·) ∈ L2

Fi(0, T ;Rm)
}
.
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We propose the following optimal problem:

Problem 1. Find a strategy set ū = (ū1, · · · , ūN ) where ūi(·) ∈ Uci , 1 ≤
i ≤ N , such that

J (N)
soc (ū(·)) = inf

ui∈Uci ,1≤i≤N
J (N)
soc (u1(·), · · · , ui(·), · · · , uN (·)). (4)

Definition 1 A strategy ũi(·) ∈ Udi , i = 1, · · · , N is an ε-social decentralized
optimal strategy if there exists ε = ε(N) > 0, limN→∞ ε(N) = 0 such that

1

N

(
J (N)
soc (ũ(·))− inf

ui(·)∈Uci ,1≤i≤N
J (N)
soc (u(·))

)
≤ ε.

Remark 1 In reality, the linear BSDE in (1) stands for the dynamics of some
investment behaviors such as in stocks and bonds in a self-financed market,
that is, there is no infusion or withdrawal of funds over [0, T ]. In recursive or
hedging problems ( finance, optimal control, etc.), the BSDE dynamics have
been deeply studied in the existing literature, such as [11], [35] and so on. The
individual cost used to be applied in some terminal hedging problems with
possible nonlinear expectation, taking mean variance model as an example. In
particular, the initial state yi(0) in our cost (2) can be viewed as the initial
hedging cost ( or, cash surplus) for the ith participant, which aims to reach
some future payoff or obligation target ξi at given time T . In our social optima
setting, we eager to minimize the aggregate team functional of N agents,
which contains N benchmarks between the individual costs and the average
costs. Besides, the constrained forward LQ control problem with state average
coupling in state dynamics can also be transferred to the backward LQ control
with state given by the linear BSDE, as given in (1).

Remark 2 Note that yi(·) is F-adapted due to the existence of y(N)(·). Thus,
in (1) we write zi(·) as a part of solution to stand for the information of
Ai corresponding to Wi(·); while zij(·) as a part of solution to stand for the
information of Ai corresponding to Wj(·), 1 ≤ j ≤ N, j 6= i. This is the feature
of backward stochastic problems.

Remark 3 In (1) and (2), zi(·), zij(·), 1 ≤ j ≤ N, j 6= i does not enter in the
drift term of the state equation and the cost functional. The reason is that
there exists essential difficulties while doing the error estimations, because
if zi(·), zij(·) enter in the drift term or the cost functional, we have to deal

with the error estimation of
∑N
i=1 zi(·), which is an impossible task under the

existing BSDE theory. In the future, we may focus on this problem and try to
derive some new technique to overcome this difficulty.

3 Stochastic optimal control problem for the agents Ai

In this section, we try to solve the optimal control problem and derive the
decentralized control.
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3.1 Backward person-by-person optimality

In mean-field social optima scheme (mean-field team), person-by-person opti-
mality is a critical technique, which has been used in the recent social optima
literature, e.g. [34], etc. There is significant difference between mean-field team
scheme and mean-field game scheme, where the auxiliary control problem is
usually derived directly by fixing the state-average. This would lead to some
ineffective control in social optima scheme. Thus, in this section under the
person-by-person optimality principle, variation method will be applied to an-
alyze the mean-field approximation.

Let {ūi, ū−i ∈ Uci }Ni=1 be centralized optimal strategy of all the agents.
Now consider the perturbation that the agent Ai use the strategy ui ∈ Uci and
all the other agents still apply the strategy ū−i = (ū1, · · · , ūi−1, ūi+1, · · · , ūN ).
The realized states (1) corresponding to (ui, ū−i) and (ūi, ū−i) are denoted by
((y1, z1, z1j), · · · , (yN , zN , zNj)) and ((ȳ1, z̄1, z̄1j), · · · , (ȳN , z̄N , z̄Nj)), respec-
tively. For j = 1, · · · , N , denote the perturbation

δuj = uj − ūj , δyj = yj − ȳj , δzj = zj − z̄j ,

δzjl = zjl − z̄jl (l 6= j), δJj = Jj(ui, ū−i)− Jj(ūi, ū−i).
Therefore, the variation of the state for Ai is given by

dδyi =−
[
Aθiδyi +Bδui + Cδy(N)

]
dt+ δzi(t)dWi(t)

+

N∑
l=1,l 6=i

δzil(t)dWl(t), δyi(T ) = 0,
(5)

and for Aj , j 6= i,

dδyj = −
[
Aθjδyj + Cδy(N)

]
dt+ δzj(t)dWj(t) +

N∑
l=1,l 6=j

δzjl(t)dWl(t),

δyj(T ) = 0.

(6)

For k = 1, · · · ,K, define δy(k) =
∑
j∈Ik,j 6=i δyj , thus

dδy(k) = −
[
Akδy(k) + (Nk − I({i ∈ Ik}))Cδy(N)

]
dt+

∑
j∈Ik,j 6=i

δzjdWj(t)

+
∑

j∈Ik,j 6=i

N∑
l=1,l 6=j

δzjl(t)dWl(t),

δy(k)(T ) = 0.

By some elementary calculations, we can further obtain the variation of the
cost functional of Ai as follows

δJi =E
{∫ T

0

[〈
S(ȳi −Gȳ(N)), δyi −Gδy(N)

〉
+
〈
Rθi ūi, δui

〉]
dt

+
〈
Q(ȳi(0)−Hȳ(N)(0)), δyi(0)−Hδy(N)(0)

〉}
.
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For j 6= i, the variation of the cost functional of Aj is given by

δJj =E
{∫ T

0

[〈
S(ȳj −Gȳ(N)), δyj −Gδy(N)

〉]
dt

+
〈
Q(ȳj(0)−Hȳ(N)(0)), δyj(0)−Hδy(N)(0)

〉}
.

Therefore, by combining above equalities, the variation of the social cost sat-
isfies

δJ (N)
soc =E

{∫ T

0

[〈
S(ȳi −Gȳ(N)), δyi −Gδy(N)

〉
+
∑
j 6=i

〈
S(ȳj −Gȳ(N)), δyj −Gδy(N)

〉
+
〈
Rθi ūi, δui

〉]
dt

+

N∑
j=1

〈
Q(ȳj(0)−Hȳ(N)(0)), δyj(0)−Hδy(N)(0)

〉}
.

(7)
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Step 1: First, replacing ȳ(N) in (7) by some mean-field term ŷ which will
be determined later,

δJ (N)
soc =E

{∫ T

0

[〈
S(ȳi −Gȳ(N)), δyi

〉
−
〈
S(ȳi −Gȳ(N)), Gδy(N)

〉
−
∑
j 6=i

〈
SGȳ(N), δyj

〉
+
∑
j 6=i

〈
Sȳj , δyj

〉
−
∑
j 6=i

〈
S(ȳj −Gȳ(N)), Gδy(N)

〉
+
〈
Rθi ūi, δui

〉]
dt

+

N∑
j=1

〈
Q(ȳj(0)−Hȳ(N)(0)), δyj(0)−Hδy(N)(0)

〉}
=E
{∫ T

0

[〈
S(ȳi −Gŷ), δyi

〉
−
∑
j 6=i

〈
SGŷ, δyj

〉
+
∑
j 6=i

〈
Sȳj , δyj

〉
−
〈
G>S(ŷ −Gŷ), Nδy(N)

〉
+
〈
Rθi ūi, δui

〉]
dt+

〈
Q(ȳi(0)−Hŷ(0)), δyi(0)

〉
−
∑
j 6=i

〈
QHŷ(0), δyj(0)

〉
+
∑
j 6=i

〈
Qȳj(0), δyj(0)

〉
−
〈
H>Q(ŷ(0)−Hŷ(0)), Nδy(N)(0)

〉}
+

2∑
l=1

εl

=E
{∫ T

0

[
〈Sȳi, δyi〉 − 〈(SG+G>S −G>SG)ŷ, δyi〉

−
K∑
k=1

〈(SG+G>S −G>SG)ŷ, δy(k)〉+

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Sȳj , Nkδyj〉

+ 〈Rθi ūi, δui〉
]
dt+ 〈Qȳi(0), δyi(0)〉 − 〈(QH +H>Q−H>QH)ŷ(0), δyi(0)〉

−
K∑
k=1

〈(QH +H>Q−H>QH)ŷ(0), δy(k)(0)〉

+

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Qȳj(0), Nkδyj(0)〉
}

+

2∑
l=1

εl,

where

 ε1 = E
∫ T

0

〈(G>S + SG−G>SG)(ŷ − ȳ(N)), Nδy(N)〉dt,

ε2 = 〈(H>Q+QH −H>QH)(ŷ(0)− ȳ(N)(0)), Nδy(N)(0)〉.
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Step 2: Next, for k = 1, · · · ,K, introduce the limit y∗∗k to replace δy(k),
and for j ∈ Ik, introduce the limit (y∗j , z

∗
j ) to replace (Nkδyj , Nkδzj), where

dy∗j = −
[
Aky

∗
j + Cπkδyi + Cπk

K∑
l=1

y∗∗l

]
dt+ z∗j dWj(t) +

N∑
l=1,l 6=j

z∗jldWl(t),

dy∗∗k = −
[
Aky

∗∗
k + Cπkδyi + Cπk

K∑
l=1

y∗∗l

]
dt+

N∑
l=1

z∗∗kl dWl(t),

y∗j (T ) = 0, y∗∗k (T ) = 0.
(8)

Therefore,

δJ (N)
soc =E

{∫ T

0

[
〈Sȳi, δyi〉 − 〈(SG+G>S −G>SG)ŷ, δyi〉

−
K∑
k=1

〈(SG+G>S −G>SG)ŷ, y∗∗k 〉

+

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Sȳj , y∗j 〉+ 〈Rθi ūi, δui〉
]
dt+ 〈Qȳi(0), δyi(0)〉

− 〈(QH +H>Q−H>QH)ŷ(0), δyi(0)〉

−
K∑
k=1

〈(QH +H>Q−H>QH)ŷ(0), y∗∗k (0)〉

+

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Qȳj(0), y∗j (0)〉
}

+

6∑
l=1

εl,

(9)

where 

ε3 =

K∑
k=1

E
∫ T

0

〈(SG+G>S −G>SG)ŷ, y∗∗k − δy(k)〉dt,

ε4 =

K∑
k=1

E
∫ T

0

1

Nk

∑
j∈Ik,j 6=i

〈Sȳj , Nkδyj − y∗j 〉dt,

ε5 =

K∑
k=1

〈(QH +H>Q−H>QH)ŷ(0), y∗∗k (0)− δy(k)(0)〉,

ε6 =

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Qȳj(0), Nkδyj(0)− y∗j (0)〉.

Step 3: Finally, we will substitute y∗j and y∗∗k by dual method. It is very
important to construct an auxiliary control problem for investigating decen-
tralized control in social optimal problem (see e.g. [18,34]). We may use a

duality procedure to break away δJ (N)
soc from the dependence on y∗j and y∗∗k .
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To this end, we introduce the following adjoint equations xj1 and xk2 of the
terms y∗j and y∗∗k , respectively, which are shown as follows{

dxj1 = αj1dt, xj1(0) = −Qȳj(0), j = 1, · · · , N,
dxk2 = αk2dt, xk2(0) = (QH +H>Q−H>QH)ŷ(0), k = 1, · · · ,K.

Applying Itô’s formula to 〈xj1, y∗j 〉, we have

d〈xj1, y∗j 〉 =
[
〈xj1,−(Aky

∗
j + Cπkδyi + Cπk

K∑
l=1

y∗∗l )〉+ 〈αj1, y∗j 〉
]
dt+

N∑
j=1

(· · · )dWj(t).

For j ∈ Ik, integrating from 0 to T and taking expectation, we obtain

E〈Qȳj(0), y∗j (0)〉

=E〈xj1(T ), y∗j (T )〉 − E〈xj1(0), y∗j (0)〉

=E
∫ T

0

[
〈xj1,−(Aky

∗
j + Cπkδyi + Cπk

K∑
l=1

y∗∗l )〉+ 〈αj1, y∗j 〉
]
dt

=E
∫ T

0

[
〈αj1 −A>k x

j
1, y
∗
j 〉 −

K∑
l=1

〈πkC>xj1, y∗∗l 〉 − 〈πkC>x
j
1, δyi〉

]
dt.

(10)

Similarly, we have

− E〈(QH +H>Q−H>QH)ŷ(0), y∗∗k (0)〉
=E〈xk2(T ), y∗∗k (T )〉 − E〈xk2(0), y∗∗k (0)〉

=E
∫ T

0

[
〈αk2 −A>k xk2 , y∗∗k 〉 −

K∑
l=1

〈πkC>xk2 , y∗∗l 〉 − 〈πkC>xk2 , δyi〉
]
dt.

(11)

Letting
αj1 =A>k x

j
1 − Sȳj ,

αk2 =A>k x
k
2 + (SG+G>S −G>SG)ŷ +

K∑
l=1

πlC
>Exl1 +

K∑
l=1

πlC
>xl2,

substituting (10) and (11) into (9), we have

δJ (N)
soc =E

{∫ T

0

[
〈Sȳi, δyi〉 − 〈(SG+G>S −G>SG)ŷ, δyi〉 −

K∑
k=1

〈πkC>xk2 , δyi〉

−
K∑
k=1

〈πkC>Exk, δyi〉+ 〈Rθi ūi, δui〉
]
dt

+ 〈Qȳi(0), δyi(0)〉 − 〈(QH +H>Q−H>QH)ŷ(0), δyi(0)〉
}

+

8∑
l=1

εl,
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where
dxj1 = [A>k x

j
1 − Sȳj ]dt, xj1(0) = −Qȳj(0), j = 1, · · · , N,

dxk2 = [A>k x
k
2 + (SG+G>S −G>SG)ŷ +

K∑
l=1

πlC
>Exl1 +

K∑
l=1

πlC
>xl2]dt,

xk2(0) = (QH +H>Q−H>QH)ŷ(0), k = 1, · · · ,K,
(12)

and

ε7 =

K∑
k=1

E
∫ T

0

〈 K∑
l=1

πlC
>Exl −

K∑
l=1

πl
Nl

∑
j∈Il,j 6=i

C>xj1, y
∗∗
k

〉
dt,

ε8 =

K∑
k=1

E
∫ T

0

〈πkC>Exk −
1

Nk

∑
j∈Ik,j 6=i

πkC
>xj1, δyi〉dt.

Note that the states xj1, j ∈ Ik, j 6= i are exchangeable. When we consider

the expectations, we will use xk denote the process xj1 defined in (12) of the
representative agent of type k. Moreover, in Section 5 we still use this kind of
notations, i.e., use xk,yk,pk to denote the involved processes of the represen-
tative agent of type k ε1 − ε8 are actually o(1) order and the rigorous proof
will be shown in Section 5. Therefore, we introduce the decentralized auxiliary
cost functional Ji with perturbation as follows:

δJi =E
{∫ T

0

[
〈Sȳi, δyi〉 − 〈(SG+G>S −G>SG)ŷ, δyi〉 −

K∑
k=1

〈πkC>xk2 , δyi〉

−
K∑
k=1

〈πkC>x̂k, δyi〉+ 〈Rθi ūi, δui〉
]
dt+ 〈Qȳi(0), δyi(0)〉

− 〈(QH +H>Q−H>QH)ŷ(0), δyi(0)〉
}
.

(13)

Remark 4 It is remarkable that due to the perturbation of control δui ∈
L2
F (0, T ;Rm), δyi is an Ft-adapted stochastic process in (5) and δzi, δzil, 1 ≤

l ≤ N, l 6= i cannot vanish, though the terminal value δyi(T ) is zero. So does
δyj in (6), because δy(N) is Ft-adapted. In the same way, we suppose y∗j , y

∗∗
k

are Ft-adapted stochastic processes satisfying the BSDE in (8). This is rather
different from the forward case, where one usually does not need to consider
these items.

Actually xj1 is an Ft-adapted stochastic process, satisfying the SDE in
(12). xk2 depends on ŷ and Exl, and the initial value xk2(0) is deterministic. By
Theorem 1 ( see below), we know ŷ is deterministic. Thus, in (12) xk2 is the
solution of ODE indeed. That is, the system (8) is a coupled BSDE system,
while the adjoint system is composed by a SDE and an ODE.
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Remark 5 In above analysis, we introduce N + K adjoint processes to break

away δJ (N)
soc from the dependence on y∗j and y∗∗k . This difficulty is brought by

the existence of y(N) in the drift item of state equation, that is C(·) 6= 0. By
contrast, if C(·) ≡ 0, then y∗j (·) ≡ 0 and y∗∗k (·) ≡ 0. There’s no additional
adjoint processes are needed to derive the auxiliary problem.

3.2 Decentralized strategy

Motivated by (13), introduce the following auxiliary backward LQG control
problem:

Problem 2. Minimize Ji(ui) over ui ∈ Udi subject to dyi(t) = −
[
Aθi(t)yi(t) +B(t)ui(t) + C(t)ŷ(t) + f(t)

]
dt+ zi(t)dWi(t),

yi(T ) = ξi,

(14)
where

Ji(ui) =
1

2

{
E
∫ T

0

[
〈Syi, yi〉 − 2〈Θ1, yi〉+ 〈Rθiui, ui〉

]
dt

+ 〈Qyi(0), yi(0)〉 − 2〈Θ2, yi(0)
}
,

(15)

Θ1 = (SG+G>S −G>SG)ŷ −
K∑
k=1

πkC
>xk2 −

K∑
k=1

πkC
>x̂k,

Θ2 = (QH +H>Q−H>QH)ŷ(0),

and ŷ, xk2 , x̂k will be determined by the consistency condition in the following
section.

Similar to [30] and [14], we will apply stochastic maximum principle to
study Problem 2. First introduce the following first order adjoint equation:

dpi(t) =
[
A>θipi + Syi −Θ1

]
dt, pi(0) = Qyi(0)−Θ2,

and the Hamiltonian function

Hi(t, y, u, p) =
〈
p,Aθiy +Bu+ Cŷ + f

〉
+

1

2

[
〈Sy, y〉+ 〈Rθiu, u〉 − 2〈Θ1, y〉

]
.

The global stochastic maximum principle takes the following form:

∂Hi

∂u
(t, yi, ūi, pi) = B>pi +R>θi ūi = 0, a.e., t ∈ [0, T ], P− a.s.. (16)

Therefore, the optimal control is given by

ūi(t) = −R−1θi (t)B>(t)pi(t), P− a.s..
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The related Hamiltonian system becomes

dyi(t) =−
[
Aθi(t)yi(t)−B(t)Rθi(t)

−1B>(t)pi(t) + C(t)ŷ(t) + f(t)
]
dt

+ zi(t)dWi(t),

dpi(t) =
[
A>θipi + Syi −Θ1

]
dt,

yi(T ) =ξi, pi(0) = Qyi(0)−Θ2.

4 Consistency condition

In this section, we focus on the solution of Problem 2 by constructing the
consistency condition system and decoupling it.

Theorem 1 Let (A1 )-(A4 ) hold. The parameters in Problem 2 can be de-
termined by

ŷ, xk2 , x̂k = (

K∑
l=1

πlEαl, x̌k2 ,Ex̌k1),

where (αk, βk, γk, x̌
k
1 , x̌

k
2) is the solution of the following mean-field FBSDEs,

which is so-called consistency condition (CC ) system: for k = 1, · · · ,K,

dαk(t) = −
[
Ak(t)αk(t)−B(t)Rk(t)−1B>(t)γk(t) + C(t)

K∑
l=1

πlEαl(t)

+ f(t)
]
dt+ βk(t)dWk(t),

dγk(t) =
[
A>k γk + Sαk − (SG+G>S −G>SG)

K∑
l=1

πlEαl(t)

−
K∑
l=1

πlC
>x̌l2 −

K∑
l=1

πlC
>x̌l1

]
dt,

dx̌k1(t) = [A>k x̌
k
1 − Sαk]dt,

dx̌k2(t) = [A>k x̌
k
2 + (SG+G>S −G>SG)

K∑
l=1

πlEαl +

K∑
l=1

πlC
>Ex̌l1

+

K∑
l=1

πlC
>x̌l2]dt,

αk(T ) = ξk, γk(0) = Qαk(0)− (QH +H>Q−H>QH)

K∑
l=1

πlEαl(0),

x̌k1(0) = −Qαk(0), x̌k2(0) = (QH +H>Q−H>QH)

K∑
l=1

πlEαl(0).

(17)
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Remark 6 (i) It is remarkable that if (17) is solved, by the estimates of BSDE,

we can easily obtain ŷ =
∑K
l=1 πlEαl, so does xk2 = x̌k2 , x̂k = x̌k1 . Actually, the

( CC) system (17) is a coupled FBSDE composed by not only three forward
SDEs and a BSDE, but also the mean-field terms. If taking the expectation
to (17), we can also obtain ŷ =

∑K
l=1 πlEαl. However, in the consideration of

the generalization, we focus the coupled FBSDE with mean-field terms here.

(ii) In (17), for k = 1, · · · ,K, the subscript k ( e.g., αk, βk, · · · ) stands for
a representative agent in the k-type.

In the following, we give two propositions to obtain the well-posedness of (CC)
system (17). Before solving (17), let us make some transformations and intro-
duce some notations. Define Y = (α>1 , · · · , α>K)>,X = (γ>1 , · · · , γ>K , (x̌11)>, · · · ,
(x̌K1 )>, (x̌12)>, · · · , (x̌K2 )>)>, W = (W>1 , · · · ,W>K )> and

Z =

β1 · · · 0
...

. . .
...

0 · · · βK


(Kn×Kd)

,

the mean-field FBSDEs (17) then take the following form:


dY = −

[
A1Y + Ā1E[Y ] + B1X + f̂

]
dt+ ZdW (t),

dX =
[
A2X + Ā2E[X] + B2Y + B̄2E[Y ]

]
dt,

X(0) = H1Y (0) + H2EY (0), Y (T ) = (ξ>1 , · · · , ξ>K)>,

(18)
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where

A1 =


A>1 0 ··· 0

0 A>2 ··· 0

...
...

. . .
...

0 0 ··· A>K


(Kn×Kn)

, Ā1 =

Cπ1 Cπ2 ··· CπK
Cπ1 Cπ2 ··· CπK

...
...

. . .
...

Cπ1 Cπ2 ··· CπK


(Kn×Kn)

, f̂ =

 f
f

...
f


(Kn×1)

,

B1 =


−BR−1

1 B> 0 ··· 0 0 ··· 0 0 ··· 0

0 −BR−1
2 B> ··· 0 0 ··· 0 0 ··· 0

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 ··· −BR−1
K B> 0 ··· 0 0 ··· 0


(Kn×3Kn)

,H1 =



Q 0 ··· 0
0 Q ··· 0

...
...

. . .
...

0 0 ··· Q
−Q 0 ··· 0
0 −Q ··· 0

...
...

. . .
...

0 0 ··· −Q
0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0


(3Kn×Kn)

,

A2 =



A>1 0 ··· 0 −π1C
> −π2C

> ··· −πKC> −π1C
> −π2C

> ··· −πKC>

0 A>2 ··· 0 −π1C
> −π2C

> ··· −πKC> −π1C
> −π2C

> ··· −πKC>

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 ··· A>K −π1C
> −π2C

> ··· −πKC> −π1C
> −π2C

> ··· −πKC>

0 0 ··· 0 A>1 0 ··· 0 0 0 ··· 0

0 0 ··· 0 0 A>2 ··· 0 0 0 ··· 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 ··· 0 0 0 ··· A>K 0 0 ··· 0

0 0 ··· 0 0 0 ··· 0 A>1 +π1C
> π2C

> ··· πKC
>

0 0 ··· 0 0 0 ··· 0 π1C
> A>2 +π2C

> ··· πKC
>

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 ··· 0 0 0 ··· 0 π1C
> π2C

> ··· A>K+πKC
>


(3Kn×3Kn)

,
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Ā2 =



0 ··· 0 0 ··· 0 0 ··· 0
...

. . .
...

...
. . .

...
...

. . .
...

0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 0 ··· 0 0 ··· 0
...

. . .
...

...
. . .

...
...

. . .
...

0 ··· 0 0 ··· 0 0 ··· 0
0 ··· 0 π1C

> ··· πKC> 0 ··· 0

...
. . .

...
...

. . .
...

...
. . .

...
0 ··· 0 π1C

> ··· πKC> 0 ··· 0


(3Kn×3Kn)

,B2 =



S 0 ··· 0
0 S ··· 0
...

...
. . .

...
0 0 ··· S
−S 0 ··· 0
0 −S ··· 0

...
...

. . .
...

0 0 ··· −S
0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0


(3Kn×Kn)

,

B̄2 =



−(SG+G>S−G>SG)π1 −(SG+G>S−G>SG)π2 ··· −(SG+G>S−G>SG)πK
−(SG+G>S−G>SG)π1 −(SG+G>S−G>SG)π2 ··· −(SG+G>S−G>SG)πK

...
...

. . .
...

−(SG+G>S−G>SG)π1 −(SG+G>S−G>SG)π2 ··· −(SG+G>S−G>SG)πK
0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0

(SG+G>S−G>SG)π1 (SG+G>S−G>SG)π2 ··· (SG+G>S−G>SG)πK
(SG+G>S−G>SG)π1 (SG+G>S−G>SG)π2 ··· (SG+G>S−G>SG)πK

...
...

. . .
...

(SG+G>S−G>SG)π1 (SG+G>S−G>SG)π2 ··· (SG+G>S−G>SG)πK


(3Kn×Kn)

,

H2 =



−(QH+H>Q−H>QH)π1 −(QH+H>Q−H>QH)π2 ··· −(QH+H>Q−H>QH)πK
−(QH+H>Q−H>QH)π1 −(QH+H>Q−H>QH)π2 ··· −(QH+H>Q−H>QH)πK

...
...

. . .
...

−(QH+H>Q−H>QH)π1 −(QH+H>Q−H>QH)π2 ··· −(QH+H>Q−H>QH)πK
0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0

(QH+H>Q−H>QH)π1 (QH+H>Q−H>QH)π2 ··· (QH+H>Q−H>QH)πK
(QH+H>Q−H>QH)π1 (QH+H>Q−H>QH)π2 ··· (QH+H>Q−H>QH)πK

...
...

. . .
...

(QH+H>Q−H>QH)π1 (QH+H>Q−H>QH)π2 ··· (QH+H>Q−H>QH)πK


(3Kn×Kn)

.

The above system is highly-augmented due to the coupling in discrete-type
heterogenous agents. In the following, we will use the Riccati equation theory
to discuss the well-posedness of system (18), which is shown as a coupled
backward-forward stochastic differential equation.

Proposition 1 Let (A1 )-(A4 ) hold. Suppose the Riccati equation

{
Φ̇+ Φ

(
A2 +HB1

)
+
(
A1 + B1H

)
Φ+ Φ

[
HA1 +

(
A2 +HB1

)
H+ B2

]
Φ+ B1 = 0,

Φ(T ) = 0,

(19)
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where

A1 =

(
A1 + Ā1 0

0 A1

)
,B1 =

(
B1 0
0 B1

)
,z =

(
f̂
0

)
,Z =

(
0
Z

)
,

A2 =

(
A2 + Ā2 0

0 A2

)
,B2 =

(
B2 + B̄2 0

0 B2

)
,H =

(
H1 + H2 0

0 H1

)
,

Ξ = (Eξ>1 , · · · ,Eξ>K , ξ>1 − Eξ>1 , · · · , ξ>K − Eξ>K)>,

admits a unique solution Φ(·) over [0, T ] such that I+ΦH is invertible, then the
well-posedness of (CC) system (17) (which is equivalent to (18)) is obtained.

Proof Taking the expectation of (18), we can get
dE[Y ] = −

[
(A1 + Ā1)E[Y ] + B1E[X] + f̂

]
dt,

dE[X] =
[
(A2 + Ā2)E[X] + (B2 + B̄2)E[Y ]

]
dt,

E[X](0) = (H1 + H2)E[Y ](0), E[Y ](T ) = (Eξ>1 , · · · ,Eξ>K)>.

(20)

From (18) and (20), it follows that

d
(
Y − E[Y ]

)
= −

[
A1

(
Y − E[Y ]

)
+ B1

(
X − E[X]

)]
dt+ ZdW,

d
(
X − E[X]

)
=
[
A2

(
X − E[X]

)
+ B2

(
Y − E[Y ]

)]
dt,

X(0)− E[X](0) = H1(Y (0)− E[Y ](0)),

Y (T )− E[Y ](T ) = (ξ>1 − Eξ>1 , · · · , ξ>K − Eξ>K)>.

(21)

Denote

Y =

(
E[Y ]

Y − E[Y ]

)
, X =

(
E[X]

X − E[X]

)
.

Then the well-posedness of the mean-field FBSDE (18) is equivalent to the
following FBSDE 

dY = −
[
A1Y + B1X + z

]
dt+ ZdW,

dX =
[
A2X + B2Y

]
dt,

X (0) = HY(0), Y(T ) = Ξ.

(22)

Define

X̃ (t) = X (t)−HY(t), t ∈ [0, T ].

X (0) = HY(0) implies X̃ (0) = 0. By (22) and

dX̃ = dX −HdY,
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we have

dX̃ =
[
(A2 +HB1)X̃ +

(
HA1 +

(
A2 +HB1

)
H+ B2

)
Y +Hz

]
dt

−HZdW (t),

dY = −
[
(A1 + B1H)Y + B1X̃ + z

]
dt+ ZdW (t),

X̃ (0) = 0, Y(T ) = Ξ,

(23)

which is a common fully-coupled FBSDE.
We assume that X̃ and Y are related by

Y(t) = Φ(t)X̃ (t) + Ψ(t), t ∈ [0, T ], a.s.

where Φ : [0, T ] → R2Kn×6Kn is a deterministic matrix-valued function and
Ψ : [0, T ]×Ω → R2Kn is an {Ft}t≥0-adapted process. We are going to derive

the equation for Φ(·) and Ψ(·). It follows from the initial value of X̃ and Y
that

Φ(T ) = 0, Ψ(T ) = Ξ.

Since Ξ ∈ L2
FT (Ω;R2Kn) and Ψ(·) is required to be {Ft}t≥0-adapted, we

should assume that Ψ(·) satisfies a BSDE:{
dΨ(t) = a(t)dt+ b(t)dW (t),

Ψ(T ) = Ξ,
(24)

where a(·), b(·) ∈ L2
F (0, T ;R2Kn) being undetermine. Applying Itô’s formula,

we have

dY = Φ̇X̃dt+ ΦdX̃ + adt+ bdW (t)

=
{[
Φ̇+ Φ

(
A2 +HB1

)
+ Φ

[
HA1 +

(
A2 +HB1

)
H+ B2

]
Φ
]
X̃

+ Φ
[
HA1 +

(
A2 +HB1

)
H+ B2

]
Ψ + ΦHz + a

}
dt+ (b− ΦHZ)dW (t).

Comparing with the second equation in (23), we obtain that[
Φ̇+ Φ

(
A2 +HB1

)
+ Φ

[
HA1 +

(
A2 +HB1

)
H+ B2

]
Φ+

(
A1 + B1H

)
Φ+ B1

]
X̃

+ Φ
[
HA1 +

(
A2 +HB1

)
H+ B2

]
Ψ + ΦHz + a+

(
A1 + B1H

)
Ψ + z = 0

and
b− ΦHZ = Z.

Since I + ΦH is invertible, it follows that

Z = (I + ΦH)−1b.

Noting (19), we have

a = −
[
Φ
[
HA1 +

(
A2 +HB1

)
H+ B2

]
Ψ + ΦHz +

(
A1 + B1H

)
Ψ + z

]
.



Social Optima of Backward Linear-Quadratic-Gaussian Mean-Field Teams 21

Then the equation (24) has the following form
dΨ = −

{[
A1 + B1H+ Φ

(
HA1 +

(
A2 +HB1

)
H+ B2

)]
Ψ

+ ΦHz + z
}
dt+ bdW (t),

Ψ(T ) = Ξ.

(25)

When (19) admits a solution Φ(·) such that I + ΦH is invertible, then BSDE
(25) admits a unique adapted solution (Ψ(·), b(·)). Then the equation of X̃

dX̃ =
{[
A2 +HB1 +

(
HA1 +

(
A2 +HB1

)
H+ B2

)
Φ
]
X̃

+
(
HA1 +

(
A2 +HB1

)
H+ B2

)
Ψ

+Hz
}
dt−H(I + ΦH)−1bdW (t),

X̃ (0) = 0,

(26)

admits a unique solution X̃ (·). Furthermore, the second equation in (23) (BS-
DE) admits a unique solution (Y(·),Z(·)). Then the well-posedness of X (·) is
obtained. The proof is complete.

In the rest of this section, we will give another thinking about the well-
posedness of (17), where we decouple (22) directly.

Proposition 2 Let (A1 )-(A4 ) hold. Suppose the Riccati equation{
φ̇− φA1 −A2φ− φB1φ− B2 = 0,

φ(0) = H,
(27)

admits a unique solution φ(·) over [0, T ], and I + Pφ is invertible, then the
well-posedness of (CC) system (17) (which is equivalent to (18) and (22)) is
obtained.

Proof Define

X (t) = φ(t)Y(t) + ψ(t), t ∈ [0, T ].

X (0) = HY(0) implies φ(0) = H, ψ(0) = 0. Applying Itô’s formula, we have

dX = φ̇Y + φdY + dψ

=
(
φ̇− φA1 − φB1φ

)
Ydt−

(
φB1ψ + φz

)
dt+ dψ + φZdW (t)

=
(
A2φ+ B2

)
Ydt+A2ψdt.

Comparing the coefficients, we obtain (27) and dψ =
[(
A2 + φB1

)
ψ + φz

]
dt− φZdW (t),

ψ(0) = 0.
(28)
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Under the assumption, (27) admits a unique solution φ(·) over [0, T ]. Actually,
(25) is a SDE depending on φ and Z. By noting the first equation of (22), we
find Y and ψ are coupled together:

dψ =
[(
A2 + φB1

)
ψ + φz

]
dt− φZdW (t),

dY = −
[(
A1 + B1φ

)
Y + B1ψ + z

]
dt+ ZdW (t),

ψ(0) = 0, Y(T ) = Ξ.

(29)

Here, in (29) there’s no couple structure in the initial or terminal value, which
seems similar to (23). Applying the same method as Proposition 1, we define

Y(t) = P (t)ψ(t) + P̂ (t), t ∈ [0, T ], a.s.

By Itô’s formula and comparing the coefficients, we obtain{
Ṗ + P

(
A2 + φB1

)
+
(
A1 + B1φ

)
P + B1 = 0,

P (T ) = 0,
(30)

 dP̂ = −
[(
A1 + B1φ

)
P̂ + Pφz + z

]
dt+ qdW (t),

P̂ (T ) = Ξ,
(31)

and
Z = (I + Pφ)−1q.

Actually we can derive the explicit solution of (30) (see Proposition 3). Then
we obtain that BSDE (31) admits a unique solution (P̂ (·), q(·)). Then the
equation of ψ dψ =

[(
A2 + φB1

)
ψ + φz

]
dt− φ(I + Pφ)−1qdW (t),

ψ(0) = 0,
(32)

admits a unique solution ψ(·). Furthermore, the second equation (BSDE) in
(29) admits a unique solution (Y(·),Z(·)). Then the well-posedness of X (·) is
obtained.

Remark 7 For the fully-coupled FBSDE (22), from the initial value relation-
ship X (0) = HY(0), we conjecture that X has some representation of Y, like
X (·) = φ(·)Y(·) + ψ(·). However, ψ in (28) depends on Z, which cannot be
determined off-line. Actually, ψ and Y are still coupled, where ψ enters in
the generator of Y, while ψ does not depends on Y explicitly. Until now, the
decouple process has not completed.

Remark 8 In both of two decoupling processes, we assume the Riccati equa-
tions (19) and (27) admit unique solutions and some invertible conditions
hold. In Proposition 1, we use Itô’s formula and compare the coefficients for
one time, but the coefficients of (19) seem to be complicated. In Proposition
2, the decoupling process is more complex, while the coefficients of (27) is
relatively simple. In the following, we will give some explicit representations
and numerical solutions of (19) and (27).
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Remark 9 (22) is a fully-coupled FBSDE, and the initial value of SDE X de-
pends on that of BSDE Y, which has some difference as the common sense.
This type of FBSDE has attracted some attentions, see e.g., [22,23], etc. How-
ever, there’s essential difference between the coupled FBSDE in this paper and
those in the existing works. Note that A2 +HB1 6= (A1 + B1H)>, A2 6= A>1 ,
which means Φ and φ are both asymmetric. From the decoupling process, we
can see the reason why the Riccati equations are asymmetric is that Y and X
have different dimension, which is caused by the characteristics of the system
itself. To obtain the proof of Riccati equations of the solvability of (19) and
(27) is challenging. In the future, we may focus on this problem and try to get
some meaningful results on it.

First of all, we introduce a lemma as follows.

Lemma 1 (Existence and Uniqueness of Solutions, [1]) Let I0 ∈ R be an
open interval with t0 ∈ I0, A ∈ L∞(I0,Cn×n), B ∈ L∞(I0,Cm×m), C ∈
L∞(I0,Cn×m) and D ∈ Cn×m. The differential Sylvester equation

Ẋ(t) = A(t)X(t) +X(t)B(t) + C(t), X(t0) = D,

has the unique solution

X(t) = ΠA(t, t0)D
(
ΠB>(t, t0)

)>
+

∫ t

t0

ΠA(t, s)C(s)
(
ΠB>(t, s)

)>
ds.

ΠA(t, t0) and ΠB>(t, t0) are the unique state-transition matrices with respect
to t0 ∈ I0 defined by Π̇A(t, t0) :=

∂

∂t
ΠA(t, t0) = A(t)ΠA(t, t0),

ΠA(t0, t0) = In×n,

and  Π̇B>(t, t0) :=
∂

∂t
ΠB>(t, t0) =

(
B(t)

)>
ΠB>(t, t0),

ΠB>(t0, t0) = Im×m.

Similarly, we can also expand the existence and uniqueness of solution of the
Sylvester equation to the case that the terminal value is given.

Lemma 2 (Existence and Uniqueness of Solutions) Let T > 0, A ∈ L∞(0, T ;Cn×n),
B ∈ L∞(0, T ;Cm×m), C ∈ L∞(0, T ;Cn×m) and D ∈ Cn×m. The (backward)
differential Sylvester equation

Ẋ(t) = A(t)X(t) +X(t)B(t) + C(t), X(T ) = D, (33)

has the unique solution

X(t) = ΠA(t, T )D
(
ΠB>(t, T )

)>
−
∫ T

t

ΠA(t, s)C(s)
(
ΠB>(t, s)

)>
ds. (34)
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ΠA(t, T ) and ΠB>(t, T ) are the unique state-transition matrices with respect
to T defined by  Π̇A(t, T ) :=

∂

∂t
ΠA(t, T ) = A(t)ΠA(t, T ),

ΠA(T, T ) = In×n,

and  Π̇B>(t, T ) :=
∂

∂t
ΠB>(t, T ) =

(
B(t)

)>
ΠB>(t, T ),

ΠB>(T, T ) = Im×m.

The proof is trivial. Actually, it is not hard to verify that X(·) defined by (34)
satisfies the Sylvester equation (33).

Proposition 3 Let (A1 )-(A4 ) hold. For any s ∈ [0, T ], let Ψ1(·, s) and Ψ2(·, s)
be the solutions of the following ODEs:

d

dt
Ψ1(t, s) = Â1(t)Ψ1(t, s), t ∈ [s, T ],

Ψ1(s, s) = I,
(35)

and 
d

dt
Ψ2(t, s) = Â2(t)Ψ2(t, s), t ∈ [s, T ],

Ψ2(s, s) = I,
(36)

respectively, where
Â1(·) =

(
A2(·)+HB1(·) HA1(·)+[A2(·)+HB1(·)]H+B2(·)
−B1(·) −[A1(·)+B1(·)H]

)
,

Â2(·) =
(

A1(T−·)+B1(T−·)H B1(T−·)
−[HA1(T−·)+A2(T−·)H+HB1(T−·)H+B2(T−·)] −[A2(T−·)+HB1(T−·)]

)
.

Suppose [ (
0 I
)
Ψ1(T, t)

(
0
I

)]−1
∈ L1(0, T ;R2Kn×6Kn),

[ (
0 I
)
Ψ2(T, t)

(
0
I

)]−1
∈ L1(0, T ;R6Kn×2Kn).

Then Riccati equation (19) and (27) admit unique solutions Φ(·) and φ(·),
which are given by the followings:

Φ(t) = −

[ (
0 I
)
Ψ1(T, t)

(
0
I

)]−1 (
0 I
)
Ψ1(T, t)

(
I
0

)
, t ∈ [0, T ], (37)

and

φ(t) = H−

[ (
0 I
)
Ψ2(T, T − t)

(
0
I

)]−1 (
0 I
)
Ψ2(T, T − t)

(
I
0

)
, (38)
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respectively. The solution of (backward) Sylvester equation (30) is given as
follows:

P (t) =

∫ T

t

e
∫ s
t

(
A1(r)+B1(r)φ(r)

)
drB1(s)e

∫ s
t

(
A2(r)+φ(r)B1(r)

)
drds. (39)

Proof We can refer to [38, Theorem 5.3] for (37). Define

Γ (t) = φ(T − t)−H, t ∈ [0, T ].

φ(0) = H implies Γ (T ) = 0. By Γ̇ (t) = −φ̇(T − t), we obtain
Γ̇ + Γ

(
A1(T − t) + B1(T − t)H

)
+
(
A2(T − t) +HB1(T − t)

)
Γ + ΓB1(T − t)Γ

+HA1(T − t) +A2(T − t)H+HB1(T − t)H+ B2(T − t) = 0,

Γ (T ) = 0.
(40)

Then we have

Γ (t) = −

[ (
0 I
)
Ψ2(T, t)

(
0
I

)]−1 (
0 I
)
Ψ2(T, t)

(
I
0

)
, t ∈ [0, T ]. (41)

Furthermore, we get (38). With the help of Lemma 2, we can also derive (39).

In the following, we further discuss the explicit solutions of Riccati equa-
tions. We give the following proposition.

Proposition 4 Let Â1(·), Â2(·) be constant-valued matrices and denote by

Â1(t) ≡ Λ, Â2(t) ≡ ∆. Suppose

det

{(
0 I
)
eΛt
(

0
I

)}
> 0, det

{(
0 I
)
e∆t

(
0
I

)}
> 0, ∀ t ∈ [0, T ] (42)

holds, then (37) and (38) admit unique solutions Φ(·) and φ(·), which have the
following representations:

Φ(t) = −

[ (
0 I
)
eΛ(T−t)

(
0
I

)]−1 (
0 I
)
eΛ(T−t)

(
I
0

)
, t ∈ [0, T ], (43)

φ(t) = H−

[ (
0 I
)
e∆t

(
0
I

)]−1 (
0 I
)
e∆t

(
I
0

)
, t ∈ [0, T ]. (44)

Proof (43) is the direct corollary of [25]. Define Π(t) = φ(T−t)−H, t ∈ [0, T ],
by [25] we easily have

Π(t) = −

[ (
0 I
)
e∆(T−t)

(
0
I

)]−1 (
0 I
)
e∆(T−t)

(
I
0

)
, (45)

which implies (44).
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In the rest of this section, we set some numerical values to verify the as-
sumption (42) and invertible conditions in Proposition 1 and 2. Based on it,
we obtain the numerical solutions of Φ, Π and φ.

Example 1 Let n = m = d = 1, K = 1,

[
A,B,C,R,Q,H, S,G

]
=

[
5, 3,−1

5
, 5, 2,−2, 3,−3

]
,

and

[t1, t2, t3, t4, t5, t6, t7, t8, t9] = [1, 2, 3, 4, 5, 6, 7, 8, 9], T = 10.

Thus Λ is given as Λ =



−27.4 0.2 0.2 0 0 0 −362.4 0
3.6 5 0 0 0 0 42.2 0
28.8 −0.2 4.8 0 0 0 320.2 0

0 0 0 1.4 0.2 0.2 0 15.4
0 0 0 3.6 5 0 0 −15.8
0 0 0 0 0 4.8 0 0

1.8 0 0 0 0 0 27.6 0
0 0 0 1.8 0 0 0 −1.4


, which is

an 8× 8 matrix. Then we have

t t1 t2 t3 t4 t5

det
{

(0 I)eΛt(0 I)>
}

4.88× 106 3.32× 1013 2.19× 1020 1.39× 1027 8.47× 1033

and

t t6 t7 t8 t9

det
{

(0 I)eΛt(0 I)>
}

4.91× 1040 2.66× 1047 1.29× 1054 5.06× 1060

From above tables, we can see that

det

{(
0 I
)
eΛti

(
0
I

)}
= det

{(
0 I
)
eΛti

(
0 I
)> }

> 0, i = 1, . . . , 9.

Besides that, we can derive

t t1 t2 t3 t4 t5

det
{
I + Φ(t)H

}
0.0202 0.0196 0.0194 0.0193 0.0192

and

t t6 t7 t8 t9

det
{
I + Φ(t)H

}
0.0191 0.0190 0.0190 0.0189

Thus I + Φ(ti)H is invertible, i=1,. . . ,9.

Example 2 Let n = m = d = 1, K = 2,

[
A1, A2, B,C, π1, π2, R1, R2, Q,H, S,G

]
=

[
1, 2, 2,−3,

1

3
,

2

3
, 1, 2, 1, 1, 2, 3

]
,
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and
[t1, t2, t3, t4, t5, t6, t7, t8, t9] = [1, 2, 3, 4, 5, 6, 7, 8, 9], T = 10.

Then we have
t t1 t2 t3 t4 t5

det
{

(0 I)e∆t(0 I)>
}

4.25× 10−2 0.56× 10−2 7.34× 10−4 9.64× 10−5 1.27× 10−5

and

t t6 t7 t8 t9

det
{

(0 I)e∆t(0 I)>
}

1.66× 10−6 2.17× 10−7 3.96× 10−8 8.74× 10−7

From above tables, we can see that

det

{(
0 I
)
e∆ti

(
0
I

)}
= det

{(
0 I
)
e∆ti

(
0 I
)> }

> 0, i = 1, . . . , 9.

Furthermore, we obtain Π(ti) and φ(ti), which are all 12 × 4 matrix, for i =
1, . . . , 9. Here we list Π(1), Π(8) and φ(1), φ(8) as an example.

Π(1) =



0.4674 1.1003 0 0
0.3063 2.3709 0 0
0.1186 1.5221 0 0
0.5199 3.6292 0 0
−0.9357 −0.9921 0 0
−0.6085 1.7372 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



, Π(8) =



0.5081 1.1239 0 0
0.3570 2.3024 0 0
0.2595 0.7019 0 0
0.4498 −0.1523 0 0
−0.5854 −0.9060 0 0
−0.6992 −0.8458 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

φ(1) =



1.1707 0.4649 0 0
0.0215 2.6398 0 0
−0.7511 0.7143 0 0
0.4558 −1.1861 0 0
−0.2646 −0.2090 0 0
−0.3544 −0.1780 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



, φ(8) =



1.1737 0.4544 0 0
0.0225 2.6328 0 0
−0.7470 0.7066 0 0
−0.1508 −5.8453 0 0
−0.2607 −0.3452 0 0
0.4547 6.2165 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



.

It is worthy pointing out that since P (·) depends on φ(·) in (30) (or (39)), the
numerical solution of P (·) is very complicated. Thus we just list the solution
of φ(·) and do not verify the invertible condition in Proposition 2.
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5 Asymptotic ε-optimality

Let ũ = (ũ1, · · · , ũN ) be the decentralized strategy given by

ũi(t) = −Rθi(t)−1B>(t)pi(t), i = 1, · · · , N,

where

dyi(t) =−
[
Aθi(t)yi(t)−B(t)Rθi(t)

−1B>(t)pi(t) + C(t)

K∑
k=1

πkEαk(t)

+ f(t)
]
dt+ zi(t)dWi(t),

dpi(t) =
[
A>θipi + Syi − (SG+G>S −G>SG)

K∑
k=1

πkEαk

+

K∑
k=1

πkC
>xk2 +

K∑
k=1

πkC
>x̂k

]
dt,

yi(T ) =ξi, pi(0) = Q>yi(0)− (QH +H>Q−H>QH)

K∑
k=1

αk(0).

Correspondingly, the realized decentralized state (ỹ1, · · · , ỹN ) satisfy

dỹi(t) =−
[
Aθi(t)ỹi(t)−B(t)R−1θi B

>(t)pi(t) + C(t)ỹ(N)(t) + f(t)
]
dt

+ z̃i(t)dWi(t) +

N∑
j=1,j 6=i

z̃ij(t)dWj(t),

ỹi(T ) =ξi,
(46)

and ỹ(N)(t) = 1
N

∑N
i=1 ỹi(t).

5.1 Representation of social cost

Rewrite the large-population system (1) as follows:{
dY = −(AY + Bu+ f)dt+ zdW,

y(T ) = Ξ,
(47)

where

Y =

( y1

...
yN

)
(Nn×1)

,A =


Aθ1+

C
N

C
N ··· C

N
C
N Aθ2+

C
N ··· C

N

...
...

. . .
...

C
N

C
N ··· AθN+ C

N


(Nn×Nn)

,
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B =

B 0 ··· 0
0 B ··· 0
...

...
. . .

...
0 0 ··· B


(Nn×Nm)

, f =

(
f

...
f

)
(Nn×1)

, u =

(
u1

...
uN

)
(Nm×1)

,

z =

1
...
i
...
N


z1 z12 ··· z1i ··· z1N
...

...
...

...
...

...
zi1 zi2 ··· zi ··· ziN
...

...
...

...
...

...
zN1 zN2 ··· zNi ··· zN


(Nn×Nn)

, Ξ =

(
ξ1

...
ξN

)
(Nn×1)

,W =

(
W1

...
WN

)
(Nd×1)

.

Similarly, the social cost takes the following form:

J (N)
soc (u) =

N∑
i=1

1

2
E
{∫ T

0

[〈
S(t)(yi(t)−G(t)y(N)(t)), yi(t)−G(t)y(N)(t)

〉
+
〈
Rθi(t)ui(t), ui(t)

〉]
dt+

〈
Q(yi(0)−Hy(N)(0)), yi(0)−Hy(N)(0)

〉}
=

1

2
E
∫ T

0

[
〈SY,Y〉+ 〈Ru, u〉

]
dt+ 〈QY(0),Y(0)〉,

(48)
where

S =


S+ 1

N (G>SG−SG−G>S) 1
N (G>SG−SG−G>S) ··· 1

N (G>SG−SG−G>S)
1
N (G>SG−SG−G>S) S+ 1

N (G>SG−SG−G>S) ··· 1
N (G>SG−SG−G>S)

...
...

. . .
...

1
N (G>SG−SG−G>S) 1

N (G>SG−SG−G>S) ··· S+ 1
N (G>SG−SG−G>S)


(Nn×Nn)

,

R =


Rθ1 0 ··· 0

0 Rθ2 ··· 0

...
...

. . .
...

0 0 ··· RθN


(Nm×Nm)

,

Q =


Q+ 1

N (H>QH−QH−H>Q) 1
N (H>QH−QH−H>Q) ··· 1

N (H>QH−QH−H>Q)
1
N (H>QH−QH−H>Q) Q+ 1

N (H>QH−QH−H>Q) ··· 1
N (H>QH−QH−H>Q)

...
...

. . .
...

1
N (H>QH−QH−H>Q) 1

N (H>QH−QH−H>Q) ··· Q+ 1
N (H>QH−QH−H>Q)


(Nn×Nn)

.

Therefore, there exist a bounded self-adjoint linear operators M2 : Uc1 ×
· · · UcN → Uc1×· · · UcN , a bounded operator M1 : L∞(0, T ;RNn)×L2

FT (RNn)→
L2(0, T ;RNm) and some M0 ∈ R depending on (f , Ξ) such that

J (N)
soc (u) =

1

2

{
〈M2(u)(·), u(·)〉+ 2〈M1, u(·)〉+M0

}
,

where

〈M2(u)(·) = Ru+B>Γ1, M1 = B>Γ2, M0 = E
∫ T

0

〈Γ2, f〉dt+E〈Γ2(T ), Ξ〉,

(49)
with 

dY1 = −(AY1 + Bu)dt+ Z1dW,

dΓ1(s) = (SY1 + A>Γ1)ds,

Y1(T ) = 0, Γ1(0) = QY1(0).
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and


dY2 = −(AY2 + f)dt+ Z2dW,

dΓ2(s) = (SY2 + A>Γ2)ds,

Y2(T ) = Ξ, Γ2(0) = QY2(0).

5.2 Agent Ai perturbation

Let us consider the case that the agent Ai uses an alternative strategy ui while
the other agents Aj , j 6= i use the strategy ũ−i. The realized state with the
i-th agent’s perturbation is



dy̌i = −
[
Aθi y̌i +Bui + Cy̌(N) + f

]
dt+ židWi(t) +

N∑
l=1,l 6=i

žildWl(t),

dy̌j = −
[
Aθj y̌j −BR−1θj B

>pj + Cy̌(N) + f
]
dt+ žjdWj(t) +

N∑
l=1,l 6=j

žjldWl(t),

y̌i(T ) = ξi, y̌j(T ) = ξj , 1 ≤ j ≤ N, j 6= i,

where y̌(N) = 1
N

∑N
i=1 y̌i. For j = 1, · · · , N , denote the perturbation

δuj = uj − ũj , δyj = y̌j − ỹj , δJj = Jj(ui, ũ−i)− Jj(ũi, ũ−i).

Similar as the computations in Section 3.1, we have

δJ (N)
soc =E

{∫ T

0

[
〈Sỹi, δyi〉 − 〈(SG+G>S −G>SG)

K∑
l=1

πlEαl, δyi〉

−
K∑
k=1

〈πkC>xk2 , δyi〉 −
K∑
k=1

〈πkC>Exk, δyi〉+ 〈Rθi ũi, δui〉
]
dt

+ 〈Qỹi(0), δyi(0)〉

− 〈(QH +H>Q−H>QH)

K∑
l=1

πlEαl(0), δyi(0)〉
}

+

8∑
l=1

εl,

(50)
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where

ε1 = E
∫ T

0

〈(G>S + SG−G>SG)(

K∑
l=1

πlEαl − ỹ(N)), Nδy(N)〉dt,

ε2 = 〈(H>Q+QH −H>QH)(

K∑
l=1

πlEαl(0)− ỹ(N)(0)), Nδy(N)(0)〉,

ε3 =

K∑
k=1

E
∫ T

0

〈(SG+G>S −G>SG)

K∑
l=1

πlEαl, y∗∗k − δy(k)〉dt,

ε4 =

K∑
k=1

E
∫ T

0

1

Nk

∑
j∈Ik,j 6=i

〈Sȳj , Nkδyj − y∗j 〉dt,

ε5 =

K∑
k=1

〈(QH +H>Q−H>QH)

K∑
l=1

πlEαl(0), y∗∗k (0)− δy(k)(0)〉,

ε6 =

K∑
k=1

1

Nk

∑
j∈Ik,j 6=i

〈Qỹj(0), Nkδyj(0)− y∗j (0)〉,

ε7 =

K∑
k=1

E
∫ T

0

〈 K∑
l=1

πlC
>Exl1 −

K∑
l=1

πl
Nl

∑
j∈Il,j 6=i

C>xj1, y
∗∗
k

〉
dt,

ε8 =

K∑
k=1

E
∫ T

0

〈πkC>Exk −
1

Nk

∑
j∈Ik,j 6=i

πkC
>xj1, δyi〉dt.

(51)

First, we need some estimations. In the proofs, L will denote a constant
whose value may change from line to line.

Lemma 3 [13, Lemma 5.1] Let (A1 )-(A4 ) hold. Then there exists a constant
L independent of N such that

K∑
l=1

E sup
0≤t≤T

[
|αl(t)|2 + |γl(t)|2 + |x̌l1(t)|2 + |x̌l2(t)|2

]
+ sup

1≤i≤N
E sup

0≤t≤T
|ỹi(t)|2

+

K∑
l=1

E
∫ T

0

|βl(t)|2dt ≤ L.

(52)

Similar to Lemma 3, we have

sup
1≤i≤N

E sup
0≤t≤T

|y̌i(t)|2 ≤ L. (53)

where L is a constant independent of N .
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Lemma 4 Let (A1 )-(A4 ) hold. Then there exists a constant L independent
of N such that

E sup
0≤t≤T

∣∣∣ỹ(N)(t)−
K∑
l=1

πlEαl(t)
∣∣∣2 ≤ L

N
+ Lε2N , (54)

where εN = sup1≤l≤K |π
(N)
l − πl|.

Proof For 1 ≤ k ≤ K, denote the k-type agent state average by

ỹ(k) :=
1

Nk

∑
j∈Ik

ỹj , (55)

thus 

dỹ(k) =−
[
Akỹ

(k) − 1

Nk

∑
j∈Ik

BR−1k B>pj + Cỹ(N) + f
]
dt

+
1

Nk

∑
j∈Ik

z̃jdWj(t) +
1

Nk

∑
j∈Ik

N∑
l=1,l 6=j

z̃jldWl(t),

ỹ(k)(T ) =
1

Nk

∑
j∈Ik

ξj .

Note that

dEαk = −
[
AkEαk − E

(
BR−1k B>pk

)
+ C

K∑
l=1

πlEαl + f
]
dt, Eαk(T ) = Eξk,

we have



d
(
ỹ(k) − Eαk

)
= −

[
Ak

(
ỹ(k) − Eαk

)
− 1

Nk

∑
j∈Ik

(
BR−1k B>pj − E

(
BR−1k B>pk

))
+ C

(
ỹ(N) −

K∑
l=1

πlEαl
)]
dt

+
1

Nk

∑
j∈Ik

z̃jdWj(t) +
1

Nk

∑
j∈Ik

N∑
l=1,l 6=j

z̃jldWl(t),

(
ỹ(k) − Eαk

)
(T ) =

1

Nk

∑
j∈Ik

ξj − Eξk.
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By Cauchy-Schwartz inequality, Burkholder-Davis-Gundy inequality and the
estimates of BSDE, we have

E sup
t≤s≤T

∣∣∣ỹ(k) − Eαk
∣∣∣2 + E

∫ T

t

( 1

N2
k

∑
j∈Ik

∣∣z̃j∣∣2 +
1

N2
k

∑
j∈Ik

N∑
l=1,l 6=j

∣∣z̃jl∣∣2)ds
≤E
∣∣∣ 1

Nk

∑
j∈Ik

(ξj − Eξk)
∣∣∣2 + LE

∫ T

t

[∣∣∣ỹ(k) − Eαk
∣∣∣2 +

∣∣∣ỹ(N) −
K∑
l=1

πlEαl
∣∣∣2]ds

+ LE
∫ T

t

∣∣∣ 1

Nk

∑
j∈Ik

(
BR−1k B>pj − E

(
BR−1k B>pk

))∣∣∣2ds.
By (A2), for 1 ≤ k ≤ K, {ξj , j ∈ Ik} are independent identically distributed.

Note that pj(·) ∈ Fjt , thus {pj , j ∈ Ik} are independent identically distributed.
Then we have

E
∣∣∣ 1

Nk

∑
j∈Ik

(ξj − Eξk)
∣∣∣2 =

1

Nk
E
∣∣ξj − Eξk

∣∣2 ≤ L

Nk

and

E
∫ T

t

∣∣∣ 1

Nk

∑
j∈Ik

(
BR−1k B>pj − E

(
BR−1k B>pk

))∣∣∣2ds
=

1

Nk
E
∫ T

t

∣∣∣BR−1k B>pj − E
(
BR−1k B>pk

)∣∣∣2ds ≤ L

Nk
.

Therefore,

E sup
t≤s≤T

∣∣∣ỹ(k) − Eαk
∣∣∣2

≤LE
∫ T

t

∣∣∣ỹ(k) − Eαk
∣∣∣2ds+ LE

∫ T

t

∣∣∣ỹ(N) −
K∑
l=1

πlEαl
∣∣∣2ds+

L

Nk
.

By Gronwall inequality, we have

E sup
t≤s≤T

∣∣∣ỹ(k) − Eαk
∣∣∣2 ≤ LE∫ T

t

∣∣∣ỹ(N) −
K∑
l=1

πlEαl
∣∣∣2ds+

L

Nk
.

Since

ỹ(N) −
K∑
l=1

πlEαl

=

K∑
l=1

(π
(N)
l ỹ(l) − πlEαl) =

K∑
l=1

π
(N)
l (ỹ(l) − Eαl) +

K∑
l=1

(π
(N)
l − πl)Eαl,
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we have

E sup
t≤s≤T

∣∣∣ỹ(N) −
K∑
l=1

πlEαl
∣∣∣2

≤L
K∑
l=1

E sup
t≤s≤T

∣∣∣ỹ(l) − Eαl
∣∣∣2 + Lε2N

≤LE
∫ T

t

∣∣∣ỹ(N) −
K∑
l=1

πlEαl
∣∣∣2ds+

L

N
+ Lε2N .

Therefore, the result follows from Gronwall inequality.

Lemma 5 Let (A1 )-(A4 ) hold. Then there exists a constant L independent
of N such that

sup
1≤j≤N,j 6=i

[
E sup

0≤t≤T
|δyj(t)|2 + E

∫ T

0

∣∣δzj(t)∣∣2dt+ E
∫ T

0

N∑
l=1,l 6=j

∣∣δzjl(t)∣∣2dt]

≤ L

N2
(1 + E

∫ T

0

|δui|2ds).

(56)

Proof Recall that
dδyi = −

[
Aθiδyi +Bδui + Cδy(N)

]
dt+ δzidWi(t) +

N∑
l=1,l 6=i

δzildWl(t),

δyi(T ) = 0,

for j 6= i,
dδyj = −

[
Aθjδyj + Cδy(N)

]
dt+ δzjdWj(t) +

N∑
l=1,l 6=j

δzjldWl(t),

δyj(T ) = 0,

and for k = 1, · · · ,K,

dδy(k) = −
[
Akδy(k) + (Nk − I({i ∈ Ik}))Cδy(N)

]
dt+

∑
j∈Ik,j 6=i

δzjdWj(t)

+
∑

j∈Ik,j 6=i

N∑
l=1,l 6=j

δzjldWl(t),

δy(k)(T ) = 0.
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Therefore,

E sup
t≤s≤T

|δyi|2 + E
∫ T

t

∣∣δzi∣∣2ds+ E
∫ T

t

N∑
l=1,l 6=i

∣∣δzil∣∣2ds
≤ L(1 + E

∫ T

0

|δui|2ds) + LE
∫ T

t

|δyi|2ds+ LE
∫ T

t

|δy(N)|2ds,

and

E sup
t≤s≤T

|δyj |2 + E
∫ T

t

∣∣δzj∣∣2ds+ E
∫ T

t

N∑
l=1,l 6=j

∣∣δzjl∣∣2ds
≤ LE

∫ T

t

|δyj |2ds+ LE
∫ T

t

|δy(N)|2ds,

and

E sup
t≤s≤T

|δy(k)|2 + E
∫ T

t

∑
j∈Ik,j 6=i

∣∣δzj∣∣2ds+ E
∫ T

t

∑
j∈Ik,j 6=i

N∑
l=1,l 6=j

∣∣δzjl∣∣2ds
≤LE

∫ T

t

|δy(k)|2ds+ LN2E
∫ T

t

|δy(N)|2ds.

Note that

δy(N) =
1

N
δyi +

1

N

K∑
l=1

δy(l),

we have

E sup
t≤s≤T

|δyi|2 + E
∫ T

t

∣∣δzi∣∣2ds+ E
∫ T

t

N∑
l=1,l 6=i

∣∣δzil∣∣2ds
≤ L(1 + E

∫ T

0

|δui|2ds) + LE
∫ T

0

|δyi|2ds+
L

N2

K∑
l=1

E
∫ T

t

|δy(l)|2ds,

and

E sup
t≤s≤T

|δy(k)|2 + E
∫ T

t

∑
j∈Ik,j 6=i

∣∣δzj∣∣2ds+ E
∫ T

t

∑
j∈Ik,j 6=i

N∑
l=1,l 6=j

∣∣δzjl∣∣2ds
≤LE

∫ T

0

|δy(k)|2ds+ LE
∫ T

t

|δyi|2ds+ L

K∑
l=1

E
∫ T

t

|δy(l)|2ds.

Therefore, it follows from Gronwall inequality that

E sup
t≤s≤T

|δyi|2 +

K∑
l=1

E sup
t≤s≤T

|δy(l)|2 ≤ L(1 + E
∫ T

0

|δui|2ds).
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Thus,

E sup
t≤s≤T

|δy(N)|2 ≤ L

N2
(1 + E

∫ T

0

|δui|2ds).

By Gronwall inequality again, we have

sup
1≤j≤N,j 6=i

[
E sup
t≤s≤T

|δyj |2+E
∫ T

t

∣∣δzj∣∣2ds+E
∫ T

t

N∑
l=1,l 6=j

∣∣δzjl∣∣2ds] ≤ L

N2
(1+E

∫ T

0

|δui|2ds).

Remark 10 Note that in (56), the upper bound depends on E
∫ T
0
|δui|2ds. How-

ever, when studying the asymptotic optimality, we only need to consider the
perturbations satisfying (??). Hence, in Section 5 when applying Lemma 5,
similar estimation still holds while the upper bound is L

N2 and L is general
constant.

Lemma 6 Let (A1 )-(A4 ) hold. Then there exist constants L independent of
N such that

K∑
l=1

E sup
0≤t≤T

|y∗∗l (t)− δy(l)(t)|2 ≤
L

N2
+ Lε2N , (57)

and for j ∈ Ik, 1 ≤ k ≤ K,

E sup
0≤t≤T

|Nkδyj(t)− y∗j (t)|2 ≤ L

N2
+ Lε2N . (58)

Proof First,

d(y∗∗k − δy(k)) = −
[
Ak(y∗∗k − δy(k)) + C

(
πk −

Nk − I({i ∈ Ik})
N

)
δyi

+ Cπk

K∑
l=1

(y∗∗l − δy(l)) + C
(
πk −

Nk − I({i ∈ Ik})
N

) K∑
l=1

δy(l)

]
dt

+

N∑
l=1

z∗∗kl dWl(t)−
∑

j∈Ik,j 6=i

δzjdWj(t)−
∑

j∈Ik,j 6=i

N∑
l=1,l 6=j

δzjldWl(t),

(y∗∗k − δy(k))(0) = 0,

and for j ∈ Ik,

d(y∗j −Nkδyj) = −
[
Ak(y∗j −Nkδyj) + C(πk − π(N)

k )δyi

+ C(πk − π(N)
k )

K∑
l=1

y∗∗l + Cπ
(N)
k

K∑
l=1

(y∗∗l − δy(l))
]
dt

+ (z∗j −Nkδzj)dWj(t) +

N∑
l=1,l 6=j

(z∗jl −Nkδzjl)dWl(t),

(y∗j −Nkδyj)(T ) = 0.
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Therefore, it follows from Burkholder-Davis-Gundy inequality that

E sup
t≤s≤T

|y∗∗k − δy(k)|2

≤LE
∫ T

t

|y∗∗k − δy(k)|2ds+ L

K∑
l=1

E
∫ T

t

|y∗∗l − δy(l)|2ds+
L

N2
+ Lε2N .

Thus,

K∑
l=1

E sup
t≤s≤T

|y∗∗l − δy(l)|2 ≤ L
K∑
l=1

E
∫ T

t

|y∗∗l − δy(l)|2 +
L

N2
+ Lε2N .

It then follows from Gronwall inequality that

K∑
l=1

E sup
0≤t≤T

|y∗∗l (t)− δy(l)(t)|2 ≤
L

N2
+ Lε2N .

Similarly, we have (58).

Lemma 7 Let (A1 )-(A4 ) hold. Then there exist constants L independent of
N such that

K∑
k=1

E sup
0≤t≤T

|Eỹk − ỹ(k)(t)|2 ≤
L

N2
+ Lε2N , (59)

K∑
k=1

E sup
0≤t≤T

|Exk −
1

Nk

∑
j∈Ik,j 6=i

xj1(t)|2 ≤ L

N2
+ Lε2N , (60)

where ỹk is a representative agent of type k with the state defined in (46) and
ỹ(k) is defined in (55).

Proof Let y(k) := 1
Nk

∑
j∈Ik yj , p

(k) := 1
Nk

∑
j∈Ik pj

d(Eyk − y(k)) = −
[
Ak(Eyk − y(k))−BR−1k B>(Epk − p(k)) + C

K∑
k=1

πkEαkI{i ∈ Ik}+ fI{i ∈ Ik}
]
dt

− 1

Nk

∑
j∈Ik,j 6=i

zjdWj ,

Eyk(T )− y(k)(T ) = Eηk −
1

Nk

∑
j∈Ik,j 6=i

ξj ,

(61)

d(Epk − p(k)) =
[
Ak(Epk − p(k)) + S(Eyk − y(k)) +

(
− (SG+G>S −G>SG)

K∑
k=1

πkEαk

+

K∑
k=1

πkC
>xk2 +

K∑
k=1

πkC
>x̂k

)
I{i ∈ Ik}

]
dt,

Epk(0)− p(k)(0) = Q>(Eyk(0)− y(k)(0))− (QH +H>Q−H>QH)

K∑
k=1

α(0)I{i ∈ Ik},

(62)
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d(Eỹk − ỹ(k)) = −
[
Ak(Eỹk − ỹ(k))−BR−1k B>(Epk − p(k)) + C(Eỹ(N) − ỹ(N))

]
dt

− 1

Nk

∑
j∈Ik,j 6=i

z̃jdWj −
1

Nk

∑
j∈Ik,j 6=i

N∑
l=1,l 6=i

z̃jldWl,

Eỹk(T )− ỹ(k)(T ) = Eηk −
1

Nk

∑
j∈Ik,j 6=i

ξj ,

(63)

d(Eỹ(k) − ỹ(k)) = −
[
Ak(Eỹ(k) − ỹ(k))−BR−1k B>(Ep(k) − p(k)) + C(Eỹ(N) − ỹ(N))

]
dt

− 1

Nk

∑
j∈Ik,j 6=i

z̃jdWj −
1

Nk

∑
j∈Ik,j 6=i

N∑
l=1,l 6=i

z̃jldWl,

Eỹ(k)(T )− ỹ(k)(T ) = Eηk −
1

Nk

∑
j∈Ik,j 6=i

ξj ,

(64)
Note that

ỹ(N) =
1

N
ỹi +

K∑
k=1

π
(N)
k ỹ(k),

and

E
(
Eηk −

1

Nk

∑
j∈Ik,j 6=i

ξj

)2
= O(

1

Nk
).

By the standard estimations of BSDE and SDE, we have (59). By (59), (12)
and the standard estimations of SDE, we have (60).

5.3 Asymptotic optimality

In order to prove asymptotic optimality, it suffices to consider the perturba-

tions ui ∈ Uci such that J (N)
soc (u1, · · · , uN ) ≤ J (N)

soc (ũ1, · · · , ũN ). It is easy to
check that

J (N)
soc (ũ1, · · · , ũN ) ≤ LN,

where L is a constant independent of N . Therefore, in the following we only
consider the perturbations ui ∈ Uci satisfying

N∑
i=1

E
∫ T

0

|ui|2dt ≤ LN.

Let δui = ui−ũi, and consider a perturbation u = ũ+(δu1, · · · , δuN ) := ũ+δu.
Therefore, recalling Lemma 5, there exists a constant L independent of N such
that

sup
1≤j≤N,j 6=i

[
E sup

0≤t≤T
|δyj(t)|2 + E

∫ T

0

∣∣δzj(t)∣∣2dt+ E
∫ T

0

N∑
l=1,l 6=j

∣∣δzjl(t)∣∣2dt] ≤ L

N
.
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Furthermore, by Section 5.1, we have

2J (N)
soc (ũ+ δu)

=〈M2(ũ+ δu), ũ+ δu〉+ 2〈M1, ũ+ δu〉+M0

=〈M2ũ, ũ〉+ 〈M2δu, δu〉+ 2〈M2ũ, δu〉+ 2〈M1, ũ〉+ 2〈M1, δu〉+M0

=2J (N)
soc (ũ) + 〈M2δu, δu〉+ 2〈M2ũ, δu〉+ 2〈M1, δu〉

=2J (N)
soc (ũ) + 2〈M2ũ+M1, δu〉+ 〈M2δu, δu〉

=2J (N)
soc (ũ) + 2

N∑
i=1

〈M2ũ+M1, δui〉+ 〈M2δu, δu〉,

(65)

where 〈M2ũ+M1, ·〉 is the Fréchet differential of J (N)
soc with ũ.

Theorem 2 Let (A1 )-(A4 ) hold. Then ũ = (ũ1, · · · , ũN ) is a
(

1√
N

+ εN

)
-

optimal strategy for the agents.

Proof It follows from Cauchy-Schwarz inequality that

J (N)
soc (ũ+ δu)− J (N)

soc (ũ)

≥−

√√√√ N∑
i=1

|M2ũ+M1|2
N∑
i=1

|δui|2 +
1

2
〈M2δu, δu〉 ≥ −|M2ũ+M1|O(N).

Therefore, in order to prove asymptotic optimality, we only need to show that

|M2ũ+M1| = o(1).

From Section 5.2, we have

〈M2ũ+M1, δui〉

=E
{∫ T

0

[
〈Sỹi, δyi〉 − 〈(SG+G>S −G>SG)

K∑
l=1

πlEαl, δyi〉 −
K∑
k=1

〈πkC>xk2 , δyi〉

−
K∑
k=1

〈πkC>Exk, δyi〉+ 〈Rθi ũi, δui〉
]
dt+ 〈Qỹi(0), δyi(0)〉

− 〈(QH +H>Q−H>QH)

K∑
l=1

πlEαl(0), δyi(0)〉
}

+

8∑
l=1

εl,

It follows from the optimality of ũ that

E
{∫ T

0

[
〈Sỹi, δyi〉 − 〈(SG+G>S −G>SG)

K∑
l=1

πlEαl, δyi〉 −
K∑
k=1

〈πkC>xk2 , δyi〉

−
K∑
k=1

〈πkC>Exk, δyi〉+ 〈Rθi ũi, δui〉
]
dt+ 〈Qỹi(0), δyi(0)〉

− 〈(QH +H>Q−H>QH)

K∑
l=1

πlEαl(0), δyi(0)〉
}

= 0.
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Moreover, by Lemma 4-7, we have

8∑
l=1

εl = O
( 1√

N
+ εN

)
.

Therefore,

|M2ũ+M1| = O
( 1√

N
+ εN

)
.

6 Conclusion

In this paper, we mainly study a class of stochastic LQG dynamic optimization
problems involving a large number of weakly-coupled heterogeneous agents.
Different to the well-studied mean-field-game, these agents formalize a team
with cooperation to minimize a social cost functional, while the state is driven
by BSDE. With the help of a backward version of person-by-person optimal-
ity, we formulate an auxiliary control problem and derive the decentralized
social strategy based on the consistency condition (CC) system. Applying the
Riccati decoupling equation method, we develop two Riccati equations and a
(backward) Sylvester equation to decouple this mean-field-type FBSDE. The
explicit solutions and numerical solutions of Riccati equations are also inves-
tigated. Finally, we verify the related asymptotic social optimality.
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