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Abstract: Ballistocardiography (BCG) is a vibration signal related to cardiac activity, which
can be obtained in a non-invasive way by optical fiber sensors. In this paper, we propose a
modified generative adversarial network (GAN) to reconstruct BCG signals by solving signal
fading problems in a Mach-Zehnder interferometer (MZI). Based on this algorithm, additional
modulators and demodulators are not needed in the MZI, which reduces the cost and hardware
complexity. The correlation between reconstructed BCG and reference BCG is 0.952 in test
data. To further test the model performance, we collect special BCG signals including sinus
arrhythmia data and post-exercise cardiac activities data, and analyze the reconstructed results.
In conclusion, a BCG reconstruction algorithm is presented to solve the signal fading problem
in the optical fiber interferometer innovatively, which greatly simplifies the BCG monitoring
system.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Long-term records and analysis of cardiac activity are essential in both clinic and home
usage, especially for the aged and patients suffering from cardiovascular diseases. At present,
electrocardiography (ECG) is one of the mainstream technologies used in cardiac monitoring.
ECG reflects the electrical activity of the heart at a given moment, which is measured by attaching
several electrodes to the skin. Each electrode pair is referred to as a lead and the 12-lead ECG is
widely adopted in the clinic [1]. In recent years, the wearable ECG monitor has been developed for
long-term monitoring [2]. Photoplethysmography (PPG) is another common cardiac monitoring
way detected via the optic method [3]. A pulse oximeter attached to the finger can record the
variational light intensity, which refers to the blood flow change derived from cardiac activities.
However, ECG and PPG both belong to contact measurement, which may cause some problems
in long-term monitoring such as skin allergy. Over the past decade, BCG proposed by Gordon [4]
has regained the spotlight, owing to the fast-growing sensing techniques and signal processing
methods. BCG is a vibration signal related to cardiac activity, which can be obtained in a
non-invasive way. The vibration waveform represents body recoils produced by cardiac ejection
during each heartbeat cycle. Similar to Q, R, S waves in ECG, BCG has I, J, K waves owning
corresponding physiological significance. For example, the amplitude of the J wave is related to
the aortic pulse pressure [5]. In addition, there are numerous studies on cardiovascular diseases
detection that are based on BCG [6]. In view of the convenient measurement and medical
application value, BCG is promising to be widely used for daily heartbeat monitoring.
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In recent years, many sensing schemes have been proposed to detect BCG [7]. Among them,
optical fiber sensors with the advantages of being immune to electromagnetic interference,
lightweight and flexible have drawn much attention. For example, fiber Bragg grating strain
sensors [8] and microbend optical fiber sensors [9] are adopted to fabricate the BCG monitors.
However, the wavelength demodulator of the fiber Bragg grating sensor is expensive and complex,
which is of no practical value in-home and clinic usage. For microbend optical fiber sensors,
the sensitivity of it is limited and some details of BCG may lose. To overcome the mentioned
weaknesses, our group concentrates on using the phase-sensitive optical fiber interferometer
schemes to develop the vital signs monitors [10,11]. However, optical fiber interferometers
have the problem of signal fading originated from environmental perturbations, which greatly
degrades the performance of interferometers. It is the major problem encountered in our BCG
monitoring system.

To solve the signal fading problem in optical fiber interferometers and obtain good-quality
BCG recording with I, J, K waves, many modulation and demodulation technologies are adopted
and investigated. For example, traditional schemes, such as 3× 3 coupler-based demodulation
and phase generated carrier technique, are introduced to reconstruct the heartbeat and breath
signals [12–14]. Furthermore, we adopt the phase compensation method based on a close loop
control system to address this problem in the previous work [15]. The mentioned schemes need
additional hardware in the system. Therefore, we intend to reduce the complexity and cost of
the hardware by replacing the modulator and demodulator with a reconstruction algorithm. In
theory, the detected intensity signal is linear with BCG when the operating point is biased at the
quadrature point (Q-point) in the interferometer. In practice, however, the operating point will
deviate from Q-point due to the ambient noise, which results in the nonlinear problem in the
detected signals. Because of the complex mathematical model caused by the dynamic drift of
the operating point, it is difficult to develop a traditional algorithm to reconstruct BCG signals
detected from an interferometer based on the intensity interrogation mode.

Deep learning algorithms have evolved rapidly recently and been widely employed in various
fields [16]. Many deep learning models are successfully applied to BCG signal processing,
such as heart/breath rate calculation and individual heartbeat detection [17,18]. In addition,
reconstruction algorithms have also been extensively investigated based on the deep learning
model. Among them, various models areapplied in the research of optical fiber devices to replace
the traditional solutions. For example, deep neural networks, U-net, and GAN are adopted in the
image reconstruction through the multi-mode fibers [19–21]. Convolutional neural networks are
used for mode decomposition in the multi-mode fibers and few-mode fibers [22–24]. Inspired
by these studies, we propose to adopt the GAN to build a reconstruction model. GANs are
the common generative models, which can generate the desired distribution and improve the
generative results through an adversarial process between generator and discriminator models
[25]. pix2pix generative adversarial network (pix2pix GAN) is a variant of GAN [26]. Its
generator has a structure of the encoder-decoder network, which can learn the mapping function
and be used to build the reconstruction model. Although pix2pix GAN is a powerful model for
two-dimension image processing, it cannot be directly applied to analyze the time-series signals,
such as BCG.

Therefore, the present study is conducted to reconstruct signals from an optical fiber interfer-
ometer based on the intensity interrogation mode. A BCG reconstruction algorithm inspired
by pix2pix GAN is proposed based on this purpose. To our knowledge, it is the first time to
utilize an algorithm to solve the signal fading problem in the optical fiber interferometer-based
BCG monitoring system. It means that additional phase modulators and demodulators are no
longer needed in the interferometer. In our work, parameters of the neural network architecture
are investigated and optimized, and several metrics are adopted to evaluate the accuracy of
reconstructed BCG signals and I, J, K waves. Moreover, we test the performance of the BCG
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reconstruction algorithm with two special BCG signals, which are of sinus arrhythmia data with
specific heartbeat patterns and post-exercise data owning variational inter-beat intervals (IBIs),
respectively. In conclusion, the proposed BCG reconstruction algorithm can solve the signal
fading problem in optical fiber interferometers innovatively, which could be further applied in
related applications, such as pulse waves reconstruction in the interferometer.

2. Method

2.1. Principle of BCG reconstruction in optical fiber interferometer

Our BCG monitoring system is an optical fiber MZI based on the intensity interrogation mode. As
shown in Fig. 1(a), the optical system contains a distributed feedback (DFB) laser, an MZI-based
BCG monitor, a photodetector (PD), and a data acquisition (DAQ) card. The optical fibers in the
system are single-mode fibers (SMFs). BCG is a vibration signal that comes from body recoils
resulting from cardiac activities. When subjects sit on the sensor, the phase change introduced by
body recoils in the MZI can be detected by the optical intensity, which is referred to as raw BCG
signals. Since the operating point deviates from the Q-point affected by the ambient noise, the
obtained I, J, K waves in the BCG will be distorted. It makes the subsequent signal processing
tasks difficult, such as heart rate (HR) calculation and heart rate variability (HRV) analysis.
Instead of using complex modulation and demodulation devices to solve the problem, we propose
to reconstruct BCG signals based on an algorithm by building a mapping model. The model can
map raw signals to the BCG signal with standard I, J, K waves, which is called the reference BCG
signal. As shown in Fig. 1(b), reference BCG signals can be collected by the reference system
[15] and work as the ground truth. In addition to the MZI-based BCG monitor, the reference
system has a phase compensation system to keep the operating point at Q-point.

The overview of the reconstruction method is shown in Fig. 1(c). We assume that the operating
point of the raw BCG signal drifts to the red point in the change curve of optical intensity with
phase. Meanwhile, the operating point of the reference system is kept at Q-point, which is the
blue point in the curve. The output optical intensity of the MZI can be given as I = A + Bcos(φ),
where constants A and B are related to the light intensities of two arms in the MZI. We use x
and y to represent the optical intensities of the raw BCG signal and the reference BCG signal,
respectively. Therefore, x and y can be simplified to

x = cos[φBCG(t) + φn(t)], (1)

y = cos[φBCG(t) + φn(t) + φcomp(t)], (2)

where φBCG(t) and φn(t) are phases introduced in the MZI by cardiac activities and ambient noise.
φcomp(t) = 3π / 2 + 2nπ − φn(t) is the phase introduced by the real-time phase compensation
system, which keeps the operating point at the Q-point of rising edge by eliminating the φn(t).
Since the change curve of optical intensity with phase is approximately linear in the reference
system, y can be obtained as y ≈ CφBCG(t), where C is a constant. The waveforms of x and y are
shown in the green and blue lines in Fig. 1(c). We want to obtain y based on x but it is hard to be
solved directly. Therefore, we propose to build the mapping model between x and y based on the
deep learning method, which can be briefly described as

ŷ = fθ (x) ≈ y, (3)

where fθ : RN → RN is the mapping function and θ contains the parameters in the mapping
model, such as weights in the neural network. x and y are discretized by the DAQ card, and ŷ is
the reconstructed result based on x. The goal of the deep learning algorithm is to optimize θ that
minimizes the error between ŷ and y.
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Fig. 1. The optical systems of (a) the BCG monitor and (b) the reference BCG monitor
with a phase compensation system. (c) The overview of the reconstruction method.

2.2. Deep learning-based BCG reconstruction algorithm

The proposed deep learning-based BCG reconstruction algorithm is modified from pix2pix GAN.
The pix2pix GAN is a kind of conditional generative adversarial network (conditional GAN)
whose generator and discriminator are conditioned on the given information [27]. Compared to
the typical conditional GAN which generates data based on some simple features, the generator
structure in the pix2pix GAN is an encoder-decoder network and it can predict from pixels to
pixels. Therefore, it can be used to build the mapping model between raw and reference BCG
signals. However, pix2pix GAN is optimized in the image processing and it cannot be directly
applied in the time domain signals. To cope with this, we modify the pix2pix GAN into a
one-dimension (1D) model to fit the BCG reconstruction.

The modified model consists of a generator (G) and a discriminator (D). In our case, G learns
the mapping between raw and reference BCG signals, and its input is raw BCG data and output is
the reconstructed BCG result. D helps improve G’s performance through the adversarial process.
The training process of GAN is shown in Fig. 2(a) and there are three steps involved at each
iteration. In step 1, D is trained to distinguish the true data with the input of reference data y.
The label of y is 1, which means D is told that the input data are true. In step 2, D is trained to
distinguish the fake data by feeding the generative data G(x). G(x) is generated by G based on
raw data x. The label of G(x) is 0 representing the fake input data. In step 3, we combinate D
and G, and the parameters in D are frozen. G(x) is fed into D with label 1, and thus G tries to
generate data that is close to true data to fool D in this process. G will update its parameters
in this step. In three steps, raw data x is paired with the input data fed into D to improve the
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performance. The loss function in the network refers to [26], which can be shown as

LcGAN(G, D) = Ex,y[log D(x, y)] + Ex[log(1 − D((x, G(x))))], (4)

LL1(G) = Ex,y[| |y − G(x)| |1], (5)

G ∗ = arg min
G

max
D

LcGAN(G, D) + λLL1(G), (6)

where x, y and G(x) are raw, reference and generated signals as mentioned. LcGAN is the
conditional GAN loss. LL1 is the Manhattan distance between reference and generated samples,
which ensures that G is also trained to be close to the ground truth instead of only fooling D.
Total loss G* mixes the conditional GAN loss LcGAN and the traditional Manhattan distance loss
LL1 with weight λ.

The architecture of the BCG reconstruction algorithm is shown in Fig. 2(b). The network
structure of G is similar to that of 1D U-net [28]. During the encoding step, the size of feature
maps is compressed to half at each encoder block. The number of filter channels is double
that of the previous encoder block, and the initial number is nf . The encoder block consists of
a 1D strided convolutional layer with LeakyReLU [29] activation function followed by batch
normalization. In the decoding stage, inversely, the size of the feature map doubles, and the
channel halves at each symmetric decoder block. The skip connections are added between the
symmetric layers in the encoding and decoding stages. Thus, the input size is equal to the output
size, which is N× 1. LG represents the number of encoder blocks in G, which is related to the
performance of G. The network of D is a convolutional PatchGAN classifier, which penalizes the
input at the scale of patches and averages all results as output. The LD is the number of encoder
blocks in D and the strided convolutional layer can adjust the size of the patch. In the experiment,
we investigated various combinations of different values of LG and LD to optimize the model.

2.3. Experiment setup and data collection

To build the mapping model between raw and reference BCG signals, we packaged the mentioned
two sensors together in a cushion, ensuring that raw and reference BCG signals can be detected
simultaneously. In the data collection stage, the sensors are placed on a stable chair, and the
subjects are asked to sit on it and keep still. The raw and reference signals from two sensors will
be collected simultaneously by the DAQ card (National Instrument, USB6001) with a sampling
rate of 1000 Hz, and then transferred to the computer for further processing, as shown in Fig. 3.
We collected data from multiple healthy participants for a two-week period to make the mapping
model more resistant to small variations like distinct sitting postures.

Since BCG signals cannot be detected when the subject is moving, the useless segments
of signals caused by body movement are removed simultaneously in both raw and reference
signals. The sampling rate of signals is reduced to 500 Hz in order to limit the peak of memory
usage during training. A high-pass filter is applied to raw signals to eliminate the baseline drift.
Since there is a slight time delay between the raw and reference signals due to the different
working mechanisms of sensors, manual time calibration is needed. In addition, the raw and
reference signals are divided into segments of consistent length N= 2048 (4.096s duration)
without overlapping and normalized to a range of -1 to 1. These data are used as a basic dataset
to train and optimize the model.

2.4. Parameters selection and model evaluation

In the model, the reconstructed performance is affected by several parameters. Three metrics
are adopted to estimate the model and optimize these parameters, including Pearson correlation
coefficient (PCC), percent root mean square difference (PRD), and regression coefficient (bx)
[30]. PCC refers to the correlative degree between reconstructed and reference BCG signals, and
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Fig. 2. (a) Training process of GAN. (b) Architecture of the BCG reconstruction algorithm.

Fig. 3. The experiment setup.
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a value of 1 indicates a strong positive correlation between the two signals. PRD represents the
error between reconstructed and reference BCG signals and a smaller PRD means the higher
performance of the reconstruction algorithm. Furthermore, bx estimates the amplitude difference
between the two BCG signals with a value closer to 1 being better. These metrics are shown in
Eq. (7)-(9), where N is the number of samples, and Gx, y are reconstructed and reference BCG
signals.

PCC =
∑︁N

n=1 (Gx(n) − Gx)(y(n) − y)√︂∑︁N
n=1 (Gx(n) − Gx)

2
√︂∑︁N

n=1 (y(n) − y)2
, (7)

PRD (%) =

⌜⎷∑︁N
n=1 (Gx(n) − y(n))2∑︁N

n=1 (y(n))
2 × 100, (8)

bx =
∑︁N

n=1 Gx(n)y(n)∑︁N
n=1 (y(n))

2 . (9)

Furthermore, another measure adopted to assess the model is based on the reconstructed IJK
complex in BCG signals. IJK complex, consisting of I, J, and K waves, is the most visually
obvious part of BCG. The I, J, and K waves can be used to estimate important cardiovascular
parameters. As shown in Fig. 4, we use I, J, K waves and I’, J’, K’ waves to distinguish the
IJK complex in the reference and reconstructed BCG signals. The mean absolute error (MAE)
between J-J intervals and J’-J’ intervals is adopted as one metric to evaluate the time error of the
IBI. Meanwhile, we use the error between I, J, K waves and I’, J’, K’ waves as the additional
metrics to evaluate the time delay of the reconstructed BCG signals.

Fig. 4. I, J, K waves in the BCG signal.

2.5. Special cases

In the basic dataset, the heartbeat patterns are regular and HRs mainly range from 60 to 100 bpm.
However, the BCG signals may become complex in some special cases. For example, the HR
may exceed 100 bpm in the post-exercise condition. To evaluate the performance of the model
in different scenarios, we collected special BCG signals including sinus arrhythmia data and
post-exercise data, which own irregular heartbeat patterns and variational IBI, respectively. The
details of reconstruction results are shown as follows.
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3. Results and discussions

3.1. Basic dataset: training and analyzing

In the training process, since D usually converges faster than G, it is hard for the GAN model
to balance G and D. If so, the model may fail to learn. Therefore, a series of parameters are
investigated to balance the performance between G and D networks during the adversarial process
and get a high-quality BCG reconstruction result. According to the preliminary experiment, some
parameters are determined first. The kernel sizes of G and D networks are both 15× 1, and the
number of initial filter channel nf in the first encoder block is 16. Adaptive moment estimation
(Adam) [31] with a learning rate of 0.0002 is chosen as the optimizer in both G and D networks.
Mini-batch gradient descent is adopted, and the batch size is 32. Weight λ in Eq. (6) is set as 100.

In the following experiment, the collected 7256 BCG segments are randomly divided into the
training set and the test set, the ratio of which is 8 to 2. The test set has not been used in the
preliminary experiment. Since the training loss cannot directly reflect the training phase of the
GAN model, we display a batch of generative signals at a certain iteration cycle and calculate
mentioned metrics based on the test set to evaluate the training progress. We set different
combinations of block numbers in the G and D and monitor the model performance. Mean PCC,
PRD, bx, and MAE between reconstructed and reference signals in the test set with different
values of LG and LD are shown in Table 1. We find that increasing the LG value enhances the
performance of the model greatly, while the LD value affects less on the performance. The
performance improves marginally when the LG value is set to 8 and the size of the model grows
dramatically. Therefore, we set the number of encoder and decoder block LG as 7 in the G
network, and LD in the D network is set as 4.

Table 1. Mean PCC, PRD, bx, and MAE in the test set with the combination of different numbers of
blocks in G and D networks

LG LD PCC PRD (%) bx MAE

4
3 0.915 38.879 0.888 0.117

4 0.920 38.004 0.897 0.115

5
3 0.926 36.459 0.899 0.113

4 0.930 35.658 0.908 0.110

6
3 0.945 31.490 0.910 0.098

4 0.943 32.007 0.912 0.100

7
3 0.952 29.683 0.918 0.093

4 0.952 29.875 0.920 0.094

8
3 0.953 29.936 0.918 0.095

4 0.953 29.838 0.922 0.094

As mentioned, two metrics are developed to verify the correctness of the reconstructed IJK
complex in BCG signals. In the test set, the MAE between J-J intervals of reference BCG signals
and J’-J’ intervals of reconstructed BCG signals is 3.24 ms. The scatterplot of reconstructed
J’-J’ intervals versus reference J-J intervals is shown in Fig. 5(a). In addition, Fig. 5(b) is the
box plot about absolute errors of time delay between I, J, K waves and I’, J’, K’ waves, the
median of which are all 2 ms. A small minority of the IJK complex, which are not detected in
the reconstructed and reference segments, are excluded from the statistics. The results show the
reconstructed IJK complex is closed to the reference IJK complex.

Then, the heartbeat patterns in the raw BCG signals with varying degrees of distortion are
demonstrated. Figure. 6 is four common types of heartbeat patterns in the raw BCG signals. The
inset picture is the change curve of optical intensity with phase in the MZI, and space α, β, χ, δ
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Fig. 5. (a) Scatterplot of reconstructed J’-J’ intervals versus reference J-J intervals. (b) Box
plot of absolute errors of time delay between I, J, K waves and I’, J’, K’ waves.

are corresponding to positions where operating points are biased in Fig. 6(a) to (d), respectively.
Among them, the green line in the first row represents raw BCG. Red and blue lines in the second
row are the reconstructed BCG and reference BCG. In Fig. 6(a), the operating point is very close
to the Q-point on the curve with a positive slope, and thus the raw signal is linearly positive with
the reference BCG signal. As the operating point moves from space α to β, the raw signal has a
nonlinearly positive correlation with the reference BCG signal, which results in signal distortion
in Fig. 6(b). For Fig. 6(c), although the raw signal is linear with the reference BCG signal, it
records reversal phase information, which is derived from the operating point being near the
Q-point on the curve with a negative slope. Finally, the raw signal is nonlinearly negative with
the reference BCG signal as the operating point drift to space δ, as shown in Fig. 6(d). It can be
found that in either case, the reconstructed BCG is very close to the reference signal, and PCCs
between the reconstructed and reference BCG signals in Fig. 6 are 0.974, 0.979, 0.980, and 0.976.

For the worst case, the pattern of the IJK complex in BCG signals is difficult to distinguish
when the operating point drifts to the critical point (C-point in Fig. 6 inset picture), the waveforms
of which are shown in Fig. 7. Based on the features of I, J, and K waves found in the raw signal,
the mapping model can reconstruct the BCG signal. The PCCs of reconstructed BCG in Fig. 7
are 0.969 and 0.976, respectively. Furthermore, the BCG segments of subjects with different
HRs are shown in Fig. 8(a) and (b). The model maintains high performance for both faster HR
(97 bpm) and slower HR (66 bpm), in which the PCCs are 0.990 and 0.979, respectively.

The heartbeat patterns in the BCG change randomly with the drifting operating point. In
addition, the number of heartbeat patterns in each segment depends on the HR of different subjects.
Under such a complicated condition, the results show that the model has good adaptability to
reconstruct BCG signals and the performance is satisfying, which means the BCG reconstruction
algorithm can be used in further cardiac health analysis. Compared to the traditional modulation
and demodulation methods, our method can reduce the hardware complexity in the system,
which makes the sensor more portable. In further studies, we will try to reduce the complexity
of the reconstruction algorithm. Moreover, to further validate the model, we also present the
reconstructed BCG of two special cases collected in different scenarios in the following two parts.

3.2. Sinus arrhythmia

Sinus arrhythmia refers to an irregular heartbeat pattern that happened in healthy people, especially
the young [32]. The cause of sinus arrhythmia is that the sinoatrial node does not pace the heart
at a regular rate. Respiration is a common cause of sinus arrhythmia, which is called respiratory
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Fig. 6. Reconstructed BCG waveforms with different operating points in (a) to (d).

Fig. 7. Reconstructed BCG waveforms with poor quality of raw signals.

Fig. 8. Reconstructed BCG waveforms with different HRs: (a) HR is 97 bpm and (b) HR is
66 bpm.
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sinus arrhythmia. The HR usually fluctuates in the process of breathing derived from the change
in vagal tone during different respiratory phases. Therefore, respiratory sinus arrhythmia is a
significant indicator related to cardiac vagal function.

In the experiment, we found that a few irregular heartbeat patterns are collected from one
subject. Therefore, we made the subject wear an ECG monitor (SparkFun, AD8232) and sit on
the sensor to collect ECG, raw BCG, and reference BCG simultaneously. Finally, we detected
some heartbeat segments with sinus arrhythmia and fed them into the model. Part of the results
is shown in Fig. 9, in which the red, blue and purple lines represent the reconstructed BCG,
reference BCG, and ECG separately. The grey dotted boxes show the irregular heartbeat patterns
in collected signals. According to the ECG patterns, the presented segments are identified as sinus
arrhythmia. The PCC between the reconstructed and reference segments are 0.915 and 0.932 in
Fig. 9. Although the PCC decreases a bit compared to that of the normal BCG reconstructed
segment, the reconstruction algorithm still works well.

Fig. 9. Reconstructed BCG, reference BCG, and ECG segments with sinus arrhythmia.

3.3. Post-exercise physiological activities characterization

HRV refers to the temporal variation between the time intervals of consecutive heartbeats, which
originates from the autonomic nervous system of humans [33]. These temporal variations are in
connection with a variety of physiological disorders, and thus HRV is a significant indicator to
access the physical condition, especially cardiac health. IBI, which is the time interval between
individual heartbeats, is used to measure the HRV. Officially, the R-R interval time series in ECG
is recommended as the reference IBI. Furthermore, the J-J interval time series in BCG has also
been successfully validated as IBI for HRV analysis during post-exercise conditions [34].

Exercise is a noninvasive method to alter the time interval of heartbeats and is widely used
in HRV analysis experiments [35]. In our work, we conducted the experiment of post-exercise
BCG signals collection to test the performance of the model in variational IBI reconstruction.
During data collection, one subject whose BCG data were not included in the basic dataset,
was asked to run for 3 minutes. After that, the post-exercise BCG and ECG signals were
collected simultaneously for 5 minutes by the sensors. Totally, we collected 554 heartbeats, and
among them, 551 heartbeats were successfully reconstructed. Three segments of reconstructed
post-exercise BCG segments are shown in Fig. 10(a). It can be found that the HR drops gradually
from 153 bpm to 107 bpm after 3 minutes. Figure. 10(b) shows the post-exercise IBI variation of
BCG and ECG in 5 minutes, of which the R-R time interval in the ECG is used as the reference
IBI. The PCC between the BCG IBI variation and ECG IBI variation is 0.985, which shows the
reconstructed IBI variations are close to the reference values.



Research Article Vol. 30, No. 8 / 11 Apr 2022 / Optics Express 13132

Fig. 10. (a) The reconstructed post-exercise BCG segments during 3 minutes. (b) The
post-exercise IBI variation of BCG and ECG during 5 minutes.

4. Conclusion

In this paper, we have presented a BCG reconstruction algorithm based on the modified pix2pix
GAN, which can retrieve BCG signals by solving signal fading problems in the MZI without
using any additional hardware. This model greatly reduces the cost and complexity of the BCG
monitoring system. The reconstructed BCG signals in the test data achieve satisfying results, of
which the mean PCC, PRD, bx, and MAE are 0.952, 29.875, 0.920, and 0.094, respectively. In
addition, we collected special BCG data including sinus arrhythmia data and post-exercise data,
and the model can reconstruct these BCG data in high performance. The BCG reconstruction
algorithm creatively solves the signal fading problem in the interferometer, and it could be further
applied in related applications, such as pulse waves reconstructed from the interferometer.
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