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Protograph-Based LDPC Hadamard Codes
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Abstract—In this paper, we propose a new method to design
low-density parity-check Hadamard (LDPC-Hadamard) codes —
a type of ultimate-Shannon-limit approaching channel codes.
The technique is based on applying Hadamard constraints to
the check nodes in a generalized protograph-based LDPC code,
followed by lifting the generalized protograph. We name the codes
formed protograph-based LDPC Hadamard (PLDPC-Hadamard)
codes. We also propose a modified Protograph Extrinsic Informa-
tion Transfer (PEXIT) algorithm for analyzing and optimizing
PLDPC-Hadamard code designs. The proposed algorithm further
allows the analysis of PLDPC-Hadamard codes with degree-1
and/or punctured nodes. We find codes with decoding thresholds
ranging from −1.53 dB to −1.42 dB. At a BER of 10−5, the
gaps of our codes to the ultimate-Shannon-limit range from
0.40 dB (for rate = 0.0494) to 0.16 dB (for rate = 0.003).
Moreover, the error performance of our codes is comparable
to that of the traditional LDPC-Hadamard codes. Finally, the
BER performances of our codes after puncturing are simulated
and compared.

Index Terms—Protograph LDPC code, PLDPC-Hadamard
code, PEXIT algorithm, ultimate Shannon limit.

I. INTRODUCTION

In 1943, Claude Shannon derived the channel capacity
theorem [2], based on which the maximum rate that infor-
mation can be sent through a channel without errors can be
evaluated. In 1993, Berrou et al. invented the turbo codes
and demonstrated that with a code rate of 0.5, the proposed
turbo code and decoder could work within 0.7 dB from the
capacity limit at a bit error rate (BER) of 10−5 [3], [4]. Besides
turbo codes, other well-known capacity-approaching codes
are low-density parity-check codes (proposed by Gallager in
1960s [5] and rediscovered by MacKay and Neal in 1990s
[6]) and polar codes (proposed by Arikan in 2009 [7]).
These capacity-approaching codes have since been used in
many wireless communication systems (e.g., 3G/4G/5G, Wifi,
satellite communications) and optical communication systems.
The progresses of the aforementioned three types of capacity-
approaching codes over the past decades can be found in the
survey papers [8], [9] and the references therein.

In particular, LDPC codes can be represented by a matrix
containing a low density of “1”s and also by its corresponding
Tanner graph [10]. In the Tanner graph, there are two sets
of nodes, namely variables nodes (VNs) and check nodes
(CNs), sparsely connected by links. Messages are updated and
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passed iteratively along the links during the decoding process.
Density evolution (DE) [11] is a kind of analytical method that
tracks the probability density function (PDF) of the messages
after each iteration. It not only can predict the convergence
of the decoder, but also can be used for optimizing LDPC
code designs [12]. The extrinsic information transfer (EXIT)
chart is another common technique employed to analyze and
optimize LDPC codes [13], [14]. An optimal LDPC code
design is found when the EXIT curves of the VNs and CNs
are “matched” with the smallest bit-energy-to-noise-power-
spectral-density ratio (Eb/N0).

For an LDPC code with given degree distributions and
code length, the progressive-edge-growth (PEG) method [15]
is commonly used to connect the VNs and CNs with an aim to
maximizing the girth (shortest cycle) of the code. The method
is simple and the code can achieve good error performance.
However, the code has a quadratic encoding complexity with
its length because it is un-structured. The hardware implemen-
tation of the encoder/decoder also consumes a lot of resources
and has high routing complexity.

Subsequently, structured quasi-cyclic (QC) LDPC codes
are proposed [16]. QC-LDPC codes have a linear encoding
complexity and allow parallel processing in the hardware
implementation. Other structured codes, such as the repeat-
accumulate (RA) codes and their variants, can be formed
by the repeat codes and the accumulators [17], [18]. They
belong to a subclass of LDPC codes that have a fast encoder
structure and good error performance. Structured LDPC codes
can also be constructed by protographs [19]. By expanding
the protomatrix (corresponding protograph) with a small size,
we can obtain a QC matrix (corresponding lifted graph) that
possesses the same properties as the protomatrix. The codes
corresponding to the lifted graphs are called protograph-based
LDPC (PLDPC) codes. The traditional EXIT chart cannot be
used to analyze protographs where degree-1 or punctured vari-
able nodes exist. Subsequently, the protograph EXIT (PEXIT)
chart method is developed [20] for analyzing and designing
PLDPC codes, and well-designed PLDPC codes are found
to achieve performance close to the Shannon limit [9], [21].
When coupled spatially, PLDPC codes can enhance their the-
oretical thresholds and decoding performance [22], [23], [24].
In the case of block-fading channels, root-protograph LDPC
codes are found to achieve near-outage-limit performance [25].

In the Tanner graph of an LDPC code, the VNs are equiv-
alent to repeat codes while CNs correspond to single-parity-
check (SPC) codes. If other block codes, such as Hamming
codes and BCH codes, are used to replace the repeat codes
and/or SPC codes, generalized LDPC (GLDPC) codes are
obtained [26], [27], [28]. In [29], [30] and [31], doped-
Tanner codes are formed by replacing the SPC component
codes in the structured LDPC codes with Hamming codes and
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recursive systematic convolutional codes. Ensemble codeword
weight enumerators are used to find good GLDPC codes while
Hamming codes have been used to design medium-length
GLDPC codes with performances approaching the channel
capacity (> 0 dB). In [32] and [33], EXIT functions of block
codes over binary symmetric channels have been derived and
used for analyzing LDPC codes. The same author further
demonstrates the use of linear programming algorithm to
optimize a rate-8/9 GLDPC code from the perspective of
degree distribution [34]. To achieve good performance (BER =
10−5) at very low Eb/N0, say < −1.15 dB, Hadamard codes
have been proposed to replace the SPC codes, forming the low-
rate (≤ 0.05) LDPC-Hadamard codes [35], [36]. By adjusting
the degree distribution of the VNs and using the EXIT chart
technique, the EXIT curves of the Hadamard “super CNs”
and VNs are matched and excellent error performance at low
Eb/N0 is obtained.

In practice, different channels possess different capacities,
depending on factors such as modulation scheme, signal-to-
noise ratio and code rate. However, the “ultimate Shannon
limit” over an additive-white-Gaussian-noise (AWGN) channel
remains at −1.59 dB, i.e., Eb/N0 = −1.59 dB. Scenarios
where digital communications may need to work close to
the ultimate Shannon limit include space communications,
multiple access (e.g. code-division multiple-access [37] and
interleave-division multiple-access [38]) with severe inter-
user interferences, or embedding low-rate information in a
communication link. The most notable channel codes with
performance close to this limit are turbo-Hadamard codes
[39], [40], [41], [42], concatenated zigzag Hadamard codes
[43], [44], and LDPC-Hadamard codes [35], [36]. Both turbo-
Hadamard codes and concatenated zigzag Hadamard codes
suffer from long decoding latency due to the forward/backward
decoding algorithms [39], [43]. The LDPC-Hadamard codes
allow parallel processing and hence the decoding latency
can be made much shorter [36]. However, in optimizing
the threshold of LDPC-Hadamard codes, only the degree
distribution of the variable nodes has been found for a given
order of the Hadamard code used. Therefore, the method
used in optimizing LDPC-Hadamard codes has the following
drawbacks.

• For the same variable-node degree distribution, many
different code realizations with very diverse bit-error-rate
performances can be obtained.

• The code is unstructured, making both encoding and
decoding very complex to realize in practice. Take the
LDPC-Hadamard code with code rate R = 0.05 and
Hadamard code order r = 4 as an example. For an
information length of 65, 536, the degree distributions op-
timized by [36] indicate that there are 113, 426 Hadamard
check nodes and n = 178, 962 variable nodes. When
these large number of nodes are connected by the PEG
algorithm, the resultant graph has little structure and is
therefore not conducive to parallel encoding/decoding and
reduces encoding/decoding efficiency. In the hardware
implementation, the unstructured conventional LDPC-
Hadamard code further results in high routing complexity

and low throughput.
• The degree distribution analysis requires a minimum

variable-node degree of 2 because an EXIT curve can-
not be produced for degree-1 variable nodes. Moreover,
LDPC-Hadamard codes with punctured variable nodes
cannot be analyzed.

The concept in [36] has been applied to designing other low-
rate generalized LDPC codes [45]. However, the main criterion
of those codes is to provide low latency communications and
hence their performance is relatively far from the ultimate
Shannon limit.

In this paper, we propose a method to design LDPC-
Hadamard codes which possesses degree-1 and/or punctured
VNs. The technique is based on applying Hadamard con-
straints to the CNs in a generalized PLDPC code, fol-
lowed by lifting the generalized protograph. We name the
codes formed protograph-based LDPC Hadamard (PLDPC-
Hadamard) codes [1]. We also propose a modified PEXIT
algorithm for analyzing and optimizing PLDPC-Hadamard
code designs. Codes with decoding thresholds ranging from
−1.53 dB to −1.42 dB have been found, and simulation
results show a bit error rate of 10−5 can be achieved at
Eb/N0 = −1.43 dB. Moreover, the BER performances of
these codes after puncturing are simulated and compared. The
main contributions of the paper can be summarized as follows:

1) It is the first attempt to use protographs to design codes
with performance close to the ultimate Shannon limit.
By appending additional degree-1 Hadamard VNs to the
CNs of a protograph, the SPC check nodes are con-
verted into more powerful Hadamard constraints, forming
the generalized protograph of PLDPC-Hadamard codes.
After using the copy-and-permute operations to lift the
protograph, the matrix corresponding to the lifted graph
is a structured QC matrix which is greatly beneficial to
linear encoding, parallel decoding and hardware imple-
mentation.

2) To analyze the decoding threshold of a PLDPC-Hadamard
code, we propose a modified PEXIT method. We re-
place the SPC mutual information (MI) updating with
our proposed Hadamard MI updating based on Monte
Carlo simulations. Different from the EXIT method used
in optimizing the degree distribution of VNs in an
LDPC-Hadamard code [36], our proposed PEXIT method
searches and analyzes protomatrices corresponding to the
generalized protograph of the PLDPC-Hadamard codes.
The proposed method, moreover, is applicable to analyz-
ing PLDPC-Hadamard codes with degree-1 VNs and/or
punctured VNs. Using the analytical technique, we have
found PLDPC-Hadamard codes with very low decoding
thresholds (< −1.40 dB) under different code rates.

3) Extensive simulations are performed under an AWGN
channel. For each case, 100 frame errors are collected
before the simulation is terminated. Results show that
the PLDPC-Hadamard codes can obtain comparable BER
performance to the traditional LDPC-Hadamard codes
[36]. At a BER of 10−5, the gaps to the ultimate Shannon
limit are 0.40 dB for the rate-0.0494 code, 0.35 dB for
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the rate-0.021 code, 0.24 dB for the rate-0.008 code and
0.16 dB for the rate-0.003 code, respectively.

4) Punctured PLDPC-Hadamard codes are studied. Punc-
turing different VNs in the protograph of a PLDPC-
Hadamard code sometimes can produce different
BER/FER performance improvement/degradation com-
pared with the unpunctured code. Moreover, when the
order of the Hadamard code r = 5, puncturing the
extra degree-1 Hadamard VNs provided by the non-
systematic Hadamard encoding is found to degrade the
error performance.

The remainder of the paper is organized as follows. Sect.
II reviews the background knowledge of some related codes.
Sect. III introduces our proposed PLDPC-Hadamard code,
including its structure, encoding and decoding methods, and
code rate. In particular, the cases in which the order of
the Hadamard code used is even or odd are described and
analyzed. A low-complexity PEXIT method for analyzing
PLDPC-Hadamard codes is proposed and an optimization
algorithm is provided. Sect. IV presents the protomatrices of
the PLDPC-Hadamard codes found by the proposed methods,
their decoding thresholds and simulation results. The error per-
formance of these codes after puncturing are further evaluated.
Sect. V provides some final remarks.

II. BACKGROUND

A Hadamard code with an order r is a class of linear block
codes. A q × q positive Hadamard matrix +Hq = {+hj , j =
0, 1, . . . , q − 1} can be constructed recursively using

+Hq =

[
+Hq/2 +Hq/2

+Hq/2 −Hq/2

]
with q = 2r and ±H1 = [±1]. Each column +hj is a
Hadamard codeword and ±Hq contains 2q = 2r+1 codewords
±hj . Considering an information sequence u ∈ {0, 1}r+1,
the Hadamard encoder encodes u into a codeword cH of
length q, i.e., cH ∈ {0, 1}2r = [cH0 cH1 . . . cH2r−1]

T , where
(·)T represents the transpose operation. Assuming that the
+hj or −hj corresponding to c, i.e., by mapping bit “0”
in c to +1 and bit “1” to −1, is uniformly transmitted
through an AWGN channel with mean 0 and variance σ2

ch,
we denote the received signal by y = [y0 y1 . . . y2r−1]

T .
We define LHch = [LHch(0) L

H
ch(1) · · · LHch(2r − 1)]T and

LHapr = [LHapr(0) L
H
apr(1) · · · LHapr(2r − 1)]T ; where

LHch(i) = ln
p(yi | cHi = “0”)

p(yi | cHi = “1”)
=

2yi
σ2
ch

is the channel LLR value of the i-th bit and

LHapr(i) = ln
Pr(cHi = “0”)

Pr(cHi = “1”)

is the a priori LLR of the i-th bit (i = 0, 1, ..., 2r − 1).
Using a symbol-by-symbol maximum a posteriori proba-

bility (symbol-MAP) Hadamard decoder [39], the a posteriori
LLR of the i-th (i = 0, 1, ..., 2r−1) code bit, which is denoted

by LHapp(i), can be computed by

LHapp(i) = ln
Pr(cHi = “0” | y)
Pr(cHi = “1” | y)

= ln

∑
±H[i,j]=+1

Pr(cH = ±hj | y)∑
±H[i,j]=−1

Pr(cH = ±hj | y)

= ln

∑
±H[i,j]=+1

γ (±hj)∑
±H[i,j]=−1

γ (±hj)
(1)

where

γ (±hj) = exp
(〈
±hj ,LHch +LHapr

〉
/2
)

(2)

and 〈·〉 denotes the inner product. We further define LHapp =
[LHapp(0) L

H
app(1) · · · LHapp(2r−1)]T . Based on the butterfly-

like structure of the Hadamard matrix, LHapp can be computed
using the fast Hadamard transform (FHT) and the dual FHT
(DFHT) [39], [41], [42]. In the case of iterative decoding, the
Hadamard decoder subtracts the LHapr(i) from LHapp(i) and
feeds back “new” extrinsic information to other component
decoders.

An LDPC code with code length N , information length
k = N − M and code rate R = k/N can be represented
by a M ×N parity-check matrix HM×N whose entries only
include 0 or 1. The matrix HM×N can also be represented by
a Tanner graph, as shown in Fig. 1. The circles denote VNs
corresponding to the columns of the matrix; the squares denote
the CNs corresponding to the rows of the matrix; and the edges
connecting the VNs and CNs correspond to the “1”s of the
matrix. Moreover, a VN with degree-dj emits dj(dj > 1)
edges connecting to dj different CNs and forms a (dj , 1)
repeat code; whereas a CN with degree-di emits di(di > 1)
edges connecting di different VNs and forms a (di, di − 1)
single-parity-check (SPC) code. A generalized LDPC code is
obtained when the repeat code and/or SPC code is/are replaced
by other block codes. In [36], the SPC codes of an LDPC
code are replaced with Hadamard codes, forming an LDPC-
Hadamard code. When an LDPC code contains degree-1 VNs
or punctured VNs, the traditional EXIT chart cannot evaluate
its decoding performance. However, for LDPC codes con-
structed based on protographs, their theoretical performance
can be estimated by the protograph EXIT (PEXIT) algorithm
even if they contain degree-1 VNs or punctured VNs [20].

Fig. 2 illustrates a protograph, and the corresponding pro-
tomatrix (also called base matrix) is given by

Bm×n=


1 3 · · · 0 1
2 1 · · · 2 0
...

...
. . .

...
...

1 1 · · · 1 2

 .
The entries in Bm×n = {bi,j : i = 0, 1, 2 . . . ,m − 1; j =
0, 1, 2 . . . , n − 1} are allowed to be larger than 1 and they
correspond to the multiple edges connecting the same pair
of VN and CN in the protograph. The Tanner graph of a
protograph-based LDPC (PLDPC) code can be constructed by
duplicating the protograph z times and permuting the edges
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dj

di

Fig. 1. Representation of an LDPC code by a Tanner graph.

which connect the same type of VNs and CNs among these
duplicated protographs. This expansion process is also called
lifting and the parameter z is called the lifting factor. To
analyze the decoding performance of a PLDPC code, the
PEXIT algorithm can be applied to Bm×n. In the PEXIT
method, the mutual information (MI) values on all types of
edges are updated separately and iteratively [20]. To illustrate
the method, different types of MI are first defined as follows:
• Iac(i, j): a priori MI from j-th VN to i-th CN in Bm×n;
• Iav(i, j): a priori MI from i-th CN to j-th VN in Bm×n;
• Iev(i, j): extrinsic MI from j-th VN to i-th CN in Bm×n;
• Iec(i, j): extrinsic MI from i-th CN to j-th VN in Bm×n;
• Iapp(j): a posteriori MI value of the j-th VN;
• Ich: MI from the channel.
Without going into the details, the steps below show how

to determine the threshold (Eb/N0)th.
1) Set all MI values to 0. Select a relatively large Eb/N0.
2) Initialize Ich based on Eb/N0 and the code rate.
3) Compute Iev(i, j) ∀ i, j; set Iac(i, j) = Iev(i, j); com-

pute Iec(i, j) ∀ i, j; set Iav(i, j) = Iec(i, j).
4) Repeat Step 3) Iiter times.
5) Compute Iapp(j). If Iapp(j) = 1 ∀ j, reduce Eb/N0 and

go to Step 2); otherwise set the previous Eb/N0 that
achieves Iapp(j) = 1 ∀ j as the threshold (Eb/N0)th
and stop.

The above analytical process can be regarded as the re-
peated computation and exchange between the a priori MI
matrices {Iav(i, j)}/{Iac(i, j)} and extrinsic MI matrices
{Iev(i, j)}/{Iec(i, j)}. Moreover, these matrices have the
same size as Bm×n. Note that the PEXIT algorithm can be
used to analyze protographs with degree-1 VNs, i.e., columns
in the protomatrix with weight 1. Protographs with punctured
VNs will also be analyzed in a similar way, except that the
code rate will be changed accordingly and the corresponding
Ich will be initialized as 0.

III. PROTOGRAPH-BASED LDPC-HADAMARD CODES

A. Code Structure

We propose a variation of LDPC-Hadamard code called
protograph-based LDPC Hadamard (PLDPC-Hadamard)
code. The base structure of a PLDPC-Hadamard code is
shown in Fig. 3, where each blank circle denotes a protograph
variable-node (P-VN); each square with an “H” inside denotes
a Hadamard check-node (H-CN); and each filled circle denotes
a degree-1 Hadamard variable-node (D1H-VN). We assume

Fig. 2. A protograph.

H H H

Lch Lch Lch Lch

Lch Lch Lch Lch Lch Lch Lch LchLch

Fig. 3. The protograph of a PLDPC-Hadamard code.

that there are n P-VNs and m H-CNs. The protomatrix of
the proposed PLDPC-Hadamard codes is then denoted by
Bm×n = {bi,j}, where bi,j represents the number of edges
connecting the i-th H-CN (i = 0, 1, . . . ,m − 1) and the j-th
P-VN (j = 0, 1, . . . , n− 1). Moreover, we denote the weight
of the i-th row by dci =

∑n−1
j=0 bi,j , which represents the total

number of edges connecting the i-th H-CN to all P-VNs. For
example in Fig. 3, the number of edges connecting each of the
three displayed H-CNs to all P-VNs is equal to dci = 6. These
dci edges are considered as (input) information bits to the i-th
Hadamard code while the connected D1H-VNs represent the
corresponding (output) parity bits in the Hadamard code. Re-
call that an order-r Hadamard code contains 2r+1 codewords
with each codeword containing r+1 information bits. Suppose
a Hadamard code of order-(dci − 1) is used to encode these
dci inputs and generate 2(dci−1)−dci Hadamard parity-check
bits. As these dci = r + 1 bits take part in the same parity-
check equation of an LDPC code and need to fulfill the SPC
constraint 1, the number of possible combinations of these
dci bits is only 2(dci−1) and thus 2(dci−1) = 2r Hadamard
codewords will be generated. In other words, only half of
the 2r+1 available Hadamard codewords are used, making the
encoding process very inefficient.

Same as in LDPC-Hadamard codes [36], we utilize
Hadamard codes with order r = dci − 2 (r > 2) in the
proposed PLDPC-Hadamard codes. With such an arrangement,

1If these dci = r+1 input bits are not required to satisfy a SPC constraint,
two other types of LDPC-Hadamard codes can be formed and they are briefly
described in Appendix A.



5

info info info par info par par par info par par par par par par info

c c c c c c

Hc Hc
Hc Hc Hc Hc

Hc Hc Hc Hc
Hc Hc Hc Hc Hc Hc

Fig. 4. Example of encoding a length-6 SPC codeword into a length-16
(r = 4) Hadamard codeword.

all possible Hadamard codewords, i.e., 2(dci−1) = 2r+1 can
be utilized; fewer Hadamard parity bits compared with the
case of r = dci − 1 need to be added (only (2(dci−2) − dci )
and (2(dci−2) − 2) Hadamard parity-check bits are generated
for r is even and odd, respectively); the encoding process
becomes most efficient; the overall code rate is increased; and
the decoding performance is improved. (Note that a Hadamard
code with order r = 2 is equivalent to the (4, 3) SPC code.
No extra parity-check bits (i.e., D1H-VNs) will be generated if
such an Hadamard code is used in the PLDPC-Hadamard code.
Thus Hadamard codes with order r = 2 are not considered.)

In the following, we consider the cases when r is even and
odd separately. It is because systematic Hadamard encoding
is possible when r is even and non-systematic Hadamard
encoding needs to be used when r is odd.

1) r = dci − 2 is an even number: We denote a Hadamard
codeword by cH =

[
cH0 cH1 . . . cH2r−1

]
. For r being an even

number, it has been shown that [36][
cH0 ⊕ cH1 ⊕ cH2 ⊕ · · · ⊕ cH2k−1 ⊕ · · · ⊕ cH2r−1

]
⊕ cH2r−1 = 0.

(3)
Viewing from another perspective, if there is a length-(r+2)
SPC codeword denoted by cµ = [cµ0 cµ1 . . . cµr cµr+1 ], these
bits can be used as inputs to a systematic Hadamard encoder
and form a Hadamard codeword where

cH0 = cµ0
, cH1 = cµ1

, · · · , cH2k−1 = cµk
, · · · , cH2r−1 = cµr

,
cH2r−1 = cµr+1

(4)

correspond to r+2 P-VNs and the remaining Hadamard parity
bits in cH correspond to 2r− (r+2) D1H-VNs. Fig. 4 shows
an example in which a (6, 5) SPC codeword is encoded into
a length-16 (r = 4) Hadamard codeword.

Referring to Fig. 3, the links connecting the P-VNs to the
i-th H-CN always form a SPC. These links can make use of
the above mechanism to derive the parity bits of the Hadamard
code (denoted as D1H-VNs of the Hadamard check node in
Fig. 3) if dci is even. In this case, the Hadamard code length
equals 2dci−2, and the number of D1H-VNs equals 2dci−2 −
dci . Assuming dci is even for all i = 0, 1, . . . ,m − 1, the
total number of D1H-VNs is given by

∑m−1
i=0

(
2dci−2 − dci

)
.

When all VNs are sent to the channel, the code rate of the
protograph given in Fig. 3 equals

Reven =
n−m

m−1∑
i=0

(
2dci−2 − dci

)
+ n

.

If we further assume that all rows in Bm×n have the same

c c c c c

c c c c c

Hc
Hc Hc Hc Hc Hc HcHc

info

Fig. 5. Example of encoding a length-5 SPC codeword into a length-8 (r = 3)
Hadamard codeword.

weight which is equal to d, i.e., dci = d for all i, the code
rate is simplified to

Reven
dci=d

=
n−m

m (2d−2 − d) + n
.

When np(< n) P-VNs are punctured, the code rate becomes

Reven
punctured =

n−m
m (2d−2 − d) + n− np

.

2) r = dci − 2 is an odd number: For r being an odd
number, the 2r Hadamard codewords in +Hq can satisfy
(3) but all the 2r Hadamard codewords in −Hq cannot.
We apply the same non-systematic encoding method in [36]
to encode the SPC codeword 2. Supposing cµ is a SPC
codeword, we preprocess cµ =

[
cµ0

cµ1
. . . cµr+1

]
to obtain

c′µ =
[
c′µ0

c′µ1
. . . c′µr+1

]
, and then we perform Hadamard

encoding for c′µ to obtain cH =
[
cH0 cH1 . . . cH2r−1

]
, where

cH0 = c′µ0
= cµ0

cH1 = c′µ1
= cµ1

⊕ cµ0

...
cH2k−1 = c′µk

= cµk
⊕ cµ0

(5)
...

cH2r−1 = c′µr
= cµr ⊕ cµ0

cH2r−1 = c′µr+1
= cµr+1 .

Fig. 5 shows an example in which a (5,4) SPC codeword is
encoded into a length-8 (r = 3) Hadamard codeword. It can
be seen that after the non-systematic encoding, only the first
and last code bits are the same as the original information bits,
i.e., cH0 = c′µ0

= cµ0
and cH2r−1 = c′µr+1

= cµr+1
. Thus we

send the remaining code bits, i.e., cH1 to cH2r−2, to provide
more channel observations for the decoder and the number
of D1H-VNs equals 2dci−2 − 2. For example, the code bits[
cH1 cH2 cH3 cH4 cH5 cH6

]
shown in Fig. 5 will be sent.

Assuming all the rows in Bm×n have the same weight d,
the code rate is given by

Rodd
dci=d

=
n−m

m (2d−2 − 2) + n
.

2Note that there are other non-systematic encoding methods, e.g., prepro-
cess cµ =

[
cµ0 cµ1 . . . cµr+1

]
to obtain c′µ =

[
c′µ0

c′µ1
. . . c′µr+1

]
,

where c′µi
= cµi for i = 0, 1, 2, . . . , r; and c′µr+1

= cµr+1 ⊕ cµ0 .
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Fig. 6. Block diagram of a PLDPC-Hadamard decoder. The repeat decoder
is the same as the variable-node processor used in LDPC decoder. For the
symbol-MAP Hadamard decoder, the number of outputs is always r+2; the
number of inputs is 2r when r is even; the number of inputs is 2r + r when
r is odd.

If np (< n) P-VNs are punctured, the code rate becomes

Rodd
punctured =

n−m
m (2d−2 − 2) + n− np

.

Note that for k = 1, 2, . . . , r,

• cH2k−1 = c′µk
= cµk

⊕ c0 and hence cµk
= cH2k−1 ⊕ c0;

• cµk
is transmitted as P-VN; and

• cH2k−1 is transmitted as D1H-VN.

Thus the r information bits cµk
can have both the a priori

information provided by the extrinsic information from P-VNs
and the channel information of cH2k−1 = c′µk

= cµk
⊕ c0 from

D1H-VNs. However, the two information bits cµ0
and cµr+1

only have the a priori information from P-VNs and the 2r −
(r+2) Hadamard parity bits only have the channel information
from D1H-VNs. Supposing for every H-CN, nh (≤ r) D1H-
VNs corresponding to code bits cH2k−1 (k = 1, 2, . . . , r) are
also punctured. The code rate further becomes

Rodd
punctured D1H−VN =

n−m
m (2d−2 − 2− nh) + n− np

. (6)

B. Decoder of the PLDPC-Hadamard Codes

To evaluate the performance of PLDPC-Hadamard codes,
the iterative decoder shown in Fig. 6 is used. It consists of
a repeat decoder and a symbol-MAP Hadamard decoder. The
repeat decoder is the same as the variable-node processor used
in an LDPC decoder and is therefore not described here.

As described in the previous section, each H-CN with an
order-r Hadamard constraint is connected to r + 2 P-VNs
in the protograph of a PLDPC-Hadamard code. The symbol-
MAP Hadamard decoder of order-r has a total of 2r or 2r+r
inputs, among which r+2 come from the repeat decoder and
are updated in each iteration; and the remaining inputs come
from the channel LLR information which do not change during
the iterative process. Moreover, the symbol-MAP Hadamard
decoder will produce r+2 extrinsic LLR outputs which are fed
back to the repeat decoder. The iterative process between the
repeat decoder and symbol-MAP Hadamard decoder continues
until the information bits corresponding to all Hadamard codes
(after hard decision) become valid SPCs or the maximum
number of iterations has been reached. In the following,
we show the details of the operations of the symbol-MAP
Hadamard decoder.

1) r is an even number: A H-CN has r+2 links to P-VNs
and is connected to 2r − (r + 2) D1H-VNs. Specifically, we
denote

• LRex = [LRex(0) L
R
ex(1) · · · LRex(r + 1)]T as the r + 2

extrinsic LLR information values coming from the repeat
decoder (P-VNs),

• LHapr = [LHapr(0) L
H
apr(1) · · · LHapr(2r − 1)]T as the 2r

a priori LLR values of cH ,
• yHch = [yHch(0) y

H
ch(1) · · · yHch(2r − 1)]T as the length-

2r channel observation vector corresponding to cH and
is derived from the D1H-VNs (note that r + 2 channel
observations are zero),

• LHch = [LHch(0) L
H
ch(1) · · · LHch(2r−1)]T as the length-2r

channel LLR observations corresponding to cH .

Based on (4) and the transmission mechanism, a priori LLR
values exist only for the r+2 information bits in cH and they
are equal to the extrinsic LLR values LRex from the repeat
decoder. Correspondingly, channel LLR values only exist for
the 2r−r−2 Hadamard parity bits in cH and they are obtained
from the received channel observations yHch. In other words,
only 2r−r−2 entries in yHch and also LHch are non-zero. Thus
the entries of LHch and LHapr are assigned as{

LHapr(k) = LRex(0)

LHch(k) =
2yHch(0)

σ2
ch

= 0
for k = 0;{

LHapr(k) = LRex(i)

LHch(k) =
2yHch(k)

σ2
ch

= 0
for k = 1, 2, · · · , 2i−1, · · · , 2r−1;{

LHapr(k) = LRex(r + 1)

LHch(k) =
2yHch(k)

σ2
ch

= 0
for k = 2r − 1;{

LHapr(k) = 0

LHch(k) =
2yHch(k)

σ2
ch

for the 2r − r − 2 remaining k.

(7)

The symbol-MAP Hadamard decoder then computes the a
posteriori LLR (LHapp) of the code bits using (1) and (2). By
subtracting the a priori LLR values from the a posteriori LLR
values, the extrinsic LLR values (LHex) can be obtained. Fig. 7
illustrates the flow of the computation of LHapp and hence LHex
for r = 4, which corresponds to r + 2 = 6 information bits
(and 2r − (r + 4) = 10 Hadamard parity bits).

2) r is an odd number: A H-CN is connected to r + 2
P-VNs and 2r − 2 D1H-VNs, and the bits corresponding to
the r + 2 P-VNs form a SPC codeword cµ. We use the same
notations as in the “r is an even number” case. However, for
yHch, only the first and the last channel observations are zero.
Since non-systematic Hadamard code is used, cµ does not
represent the information bits in cH for cµ0

= “1”. Thus, we
cannot directly apply (1) to obtain the a posteriori LLR of cµ.
Here, we present the decoding steps when r is odd.

Referring to Sect. III-A2, the assignment of LHapr depends
on cµ0

. For convenience of explanation, we denote L+H
apr /L

−H
apr

as the assignment of LHapr for cµ0
= “0”/“1”, respectively;
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Fig. 7. Operations in the symbol-MAP Hadamard decoder for r = 4, i.e.,
16 LLR inputs and 6 output LLR values for the information bits.

and we assign L±Hapr using

L±Hapr (k) = LRex(0) for k = 0;{
L+H
apr (k) = LRex(i)

L−Hapr (k) = −LRex(i)
for k = 1, 2, · · · , 2i−1, · · · , 2r−1;

L±Hapr (k) = LRex(r + 1) for k = 2r − 1;

L±Hapr (k) = 0 for the 2r − r − 2 remaining k.

(8)

Moreover, we assign LHch using LHch(k) =
2yHch(k)

σ2
ch

for k = 1, 2, · · · , 2r − 2;

LHch(k) =
2yHch(k)

σ2
ch

= 0 for k = 0, 2r − 1.
(9)

Since the first bit in all +hj/−hj is “0”/“1” (+1 mapped to
“0” and −1 to “1”), we apply L±Hapr and LHch to compute
γ(±hj), i.e., γ (±hj) = exp

(〈
±hj ,LHch +L±Hapr

〉
/2
)
. We

also define the r + 2 a posteriori LLR values (LHapp) of the
original bits cµ by

LHapp = [LHapp(0) L
H
app(1) · · · LHapp(2i−1) · · ·

LHapp(2
r−1) LHapp(2

r − 1)]T .(10)

Then we compute LHapp(0) and LHapp(2
r−1) using (1) and (2);

and compute LHapp(2
i−1), i = 1, 2, · · · , r, using DFHT and

LHapp(2
i−1) =

ln

∑
+H[2i−1,j]=+1

γ (+hj) +
∑

−H[2i−1,j]=+1

γ′ (−hj)∑
+H[2i−1,j]=−1

γ (+hj) +
∑

−H[2i−1,j]=−1
γ′ (−hj)

(11)

where γ′(−hj) = γ(−h2r−1−j), j = 0, 1, . . . , 2r − 1. Then
LHex = LHapp −LRex of length r+ 2 is computed and fed back
to the repeat decoder. The steps to compute LHex for the case
r = 3 is shown in Fig. 8.

Remark: If some more bits in cH2k−1 for k = 1, 2, . . . , r are
punctured, the corresponding channel observation yHch(2

k−1)
and LLR values of LHch(2

k−1) are set to 0 and the overall code
rate will slightly increase.

C. Code Design Optimization

We propose a low-complexity PEXIT algorithm for ana-
lyzing PLDPC-Hadamard codes. Our low-complexity PEXIT
algorithm uses the same MI updating method as the original
PEXIT algorithm [20] for the P-VNs. However, our algo-
rithm computes extrinsic MI for the symbol-MAP Hadamard
decoder whereas the original PEXIT algorithm computes
extrinsic MI for the SPC decoder. We use Monte Carlo
method in obtaining the extrinsic MI values of the symbol-
MAP Hadamard decoder. The algorithm not only has a low
complexity, but also is generic and applicable to analyzing
both systematic and non-systematic Hadamard codes.

We define the following symbols.
• Iav(i, j): the a priori mutual information (MI) from the
i-th H-CN to the j-th P-VN;

• Iev(i, j): extrinsic MI from the j-th P-VN to the i-th H-
CN;

• Iah(i, k): the a priori MI of the k-th information bit in
the i-th H-CN;

• Ieh(i, k): extrinsic MI of the k-th information bit in the
i-th H-CN;

• Iapp(j) the a posteriori MI of the j-th P-VN.
Referring to Fig. 3, the channel LLR value Lch follows a nor-
mal distribution N (σ2

Lch
/2, σ2

Lch
) where σ2

Lch
= 8R · Eb/N0

and R is the code rate. When the output MI of a decoder is
I , the corresponding LLR values of the extrinsic information
obey a normal distribution N (±σ2/2, σ2). The relationship
between I and σ can be approximately computed by the
functions I = J(σ) and σ = J−1(I) in [9], [13].

1) Modified PEXIT Algorithm: To generate the PEXIT
curves for the repeat decoder and symbol-MAP Hadamard
decoder, we apply the following steps for a given set of
protomatrix Bm×n (e.g., (12)), code rate R and Eb/N0 in
dB (denoted as Eb/N0(dB)).

i) Compute σLch
= (8 ·R · 10(Eb/N0(dB))/10)

1/2
for Lch.

ii) For i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1, set
Iav (i, j) = 0.

iii) For i = 0, 1, . . . ,m−1 and j = 0, 1, . . . , n−1, compute
(13) if bi,j > 0; else set Iev(i, j) = 0. Taking the 3 × 4
protomatrix in (12) as an example, the weight of each
row is d = 6 and hence r + 2 = 6 ⇒ r = 4. After
analyzing the MI of the P-VNs, the corresponding 3× 4
{Iev(i, j)} MI matrix can be represented by (14).

iv) Convert the m× n {Iev(i, j)} MI matrix into an m× d
{Iah(i, k)} MI matrix by eliminating the 0 entries and
repeating {Iev(i, j)} bi,j(≥ 1) times in the same row.
Using the previous example, the 3 × 4 {Iev(i, j)} MI
matrix is converted into the 3× 6 {Iah(i, k)} MI matrix
shown in (15).

v) For i = 0, 1, . . . ,m − 1, using the d entries in the i-th
row of Iah and σ2

Lch
, generate a large number of sets

of LLR values as inputs to the symbol-MAP Hadamard
decoder and record the output extrinsic LLR values of
the k-th information bit (k = 0, 1, . . . , d − 1). Compute
the extrinsic MI of the information bit using (16), where
pe(ξ|X = x) denotes the PDF of the LLR values given
the bit x being “0” or “1”. Form the extrinsic MI matrix
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Fig. 8. Operations in the symbol-MAP Hadamard decoder for r = 3, i.e., 11 LLR inputs and 5 output LLR values for the information bits.

B3×4 =

 2 0 2 2
0 2 2 2
3 2 0 1

 (12)

Iev(i, j) = J

√∑
s6=i

bs,j(J−1 (Iav (s, j)))
2 + (bi,j − 1) · (J−1 (Iav (i, j)))

2 + σ2
Lch

 (13)

Iev =

 Iev (0, 0) 0 Iev (0, 2) Iev (0, 3)
0 Iev (1, 1) Iev (1, 2) Iev (1, 3)

Iev (2, 0) Iev (2, 1) 0 Iev (2, 3)

 (14)

Iah =

 Iah (0, 0) Iah (0, 1) Iah (0, 2) Iah (0, 3) Iah (0, 4) Iah (0, 5)
Iah (1, 0) Iah (1, 1) Iah (1, 2) Iah (1, 3) Iah (1, 4) Iah (1, 5)
Iah (2, 0) Iah (2, 1) Iah (2, 2) Iah (2, 3) Iah (2, 4) Iah (2, 5)


=

 Iev (0, 0) Iev (0, 0) Iev (0, 2) Iev (0, 2) Iev (0, 3) Iev (0, 3)
Iev (1, 1) Iev (1, 1) Iev (1, 2) Iev (1, 2) Iev (1, 3) Iev (1, 3)
Iev (2, 0) Iev (2, 0) Iev (2, 0) Iev (2, 1) Iev (2, 1) Iev (2, 3)

 (15)

IE =
1

2

∑
x∈{0,1}

∫ ∞
−∞

pe (ξ|X = x)log2
2 · pe (ξ|X = x)

pe (ξ|X = “0”) + pe (ξ|X = “1”)
dξ (16)

Ieh =

 Ieh (0, 0) Ieh (0, 1) Ieh (0, 2) Ieh (0, 3) Ieh (0, 4) Ieh (0, 5)
Ieh (1, 0) Ieh (1, 1) Ieh (1, 2) Ieh (1, 3) Ieh (1, 4) Ieh (1, 5)
Ieh (2, 0) Ieh (2, 1) Ieh (2, 2) Ieh (2, 3) Ieh (2, 4) Ieh (2, 5)

 (17)

Iav =

 Iav (0, 0) 0 Iav (0, 2) Iav (0, 3)
0 Iav (1, 1) Iav (1, 2) Iav (1, 3)

Iav (2, 0) Iav (2, 1) 0 Iav (2, 3)



=


1
2

1∑
k=0

Ieh(0, k) 0 1
2

3∑
k=2

Ieh(0, k)
1
2

5∑
k=4

Ieh(0, k)

0 1
2

1∑
k=0

Ieh(1, k)
1
2

3∑
k=2

Ieh(1, k)
1
2

5∑
k=4

Ieh(1, k)

1
3

2∑
k=0

Ieh(2, k)
1
2

4∑
k=3

Ieh(2, k) 0 Ieh(2, 5)

 (18)

{Ieh(i, k)} of size m×d. (Details of the method is shown
in Appendix B.) Using the previous example, the matrix
is represented by (17).
Remark: Our technique makes use of multiple a priori MI
values ({Iah(i, k)}) as well as channel information σLch

and produces multiple extrinsic MI values ({Ieh(i, k)}).
In [46], an EXIT function of symbol-MAP Hadamard
decoder under the AWGN channel is obtained. However,
the function involves very high computational complexity,
which increases rapidly with an increase of the Hadamard
order r. The function also cannot be used for analyzing

non-systematic Hadamard codes. In [36], simulation is
used to characterize the symbol-MAP Hadamard decoder
but the method is based on a single a priori MI value
as well as channel information and produces only one
output extrinsic MI.

vi) Convert the m× d {Ieh(i, k)} MI matrix into an m× n
{Iav(i, j)} MI matrix. For i = 0, 1, . . . ,m − 1 and j =
0, 1, . . . , n−1; if bi,j > 0, set the value of Iav(i, j) as the
average of the corresponding bi,j MI values in the i-th
row of {Ieh(i, k)}; else set Iav(i, j) = 0. In the above
example, {Iav(i, j)} becomes (18).
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Algorithm 1: Searching Bm×n with a low threshold
1 Generate a random protomatrix Bm×n according to the

corresponding constraints;
2 Eb/N0(dB) = −1.40 dB;
3 while Eb/N0(dB) > −1.59 dB do
4 σLch =

√
8 ·R · 10(Eb/N0(dB))/10;

5 Ich(j) = J(σLch) for ∀ j;
6 Iav(i, j) = 0 for ∀ i, j;
7 It = 0;
8 while It < 300 do
9 Use the proposed PEXIT algorithm to analyze

Bm×n and obtain Iapp(j) for j = 0, 1, . . . , n− 1;
10 if Iapp(j) = 1 for ∀ j then
11 Eb/N0(dB) = Eb/N0(dB) − 0.01 dB; Goto line

3;

12 It = It+ 1;

13 Break;

14 Threshold equals Eb/N0(dB) + 0.01 dB.

vii) Repeat Steps iii) to vi) until the maximum num-
ber of iterations is reached; or when Iapp(j) =
1 for all j = 0, 1, . . . , n − 1 where Iapp (j) =

J

(√
m−1∑
i=0

bi,j(J−1 (Iav (i, j)))
2
+ σ2

Lch

)
.

Note that our PEXIT algorithm can be used to analyze
PLDPC-Hadamard designs with degree-1 and/or punctured
VNs. In case of puncturing, the corresponding channel LLR
values in the analysis will be set to zero.

2) Optimization Criterion: For a given code rate, our
objective is to find a protograph of the PLDPC-Hadamard
code such that it achieves Iapp(j) = 1 ∀ j within a fixed
number of iterations and with the lowest threshold Eb/N0. To
reduce the search space, we impose the following constraints:
the weights of all rows in the protomatrix are fixed at d; the
maximum column weight, the minimum column weight, and
the maximum value of each entry in protomatrix are preset
according to the code rate and order of the Hadamard code; the
maximum number of iterations used in the PEXIT algorithm
is set to 300; and a target threshold is set to below −1.40 dB.

Algorithm 1 shows the steps to find a protomatrix with a low
threshold. A protomatrix is first randomly generated according
to the constraints above. Then it is iteratively analyzed by the
PEXIT algorithm to see if the corresponding PEXIT curves
converge under the current Eb/N0 (dB). If the protomatrix is
found satisfying Iapp(j) = 1 for all j, Eb/N0 (dB) is reduced
by 0.01 dB and the protomatrix is analyzed again. If the num-
ber of iterations reaches 300 and the condition Iapp(j) = 1
for all j is not satisfied, the analysis is terminated and the
Eb/N0 threshold is determined. The process is repeated until
a protomatrix with a satisfactory Eb/N0 threshold is found.
(On average, the PEXIT algorithm takes 35s (for r = 4) to
120s (for r = 10) to determine the threshold of a protomatrix.
Using annealing approaches or genetic algorithms to generate
the protomatrices would speed up the search and is part of our
on-going research effort.)

IV. SIMULATION RESULTS

When a protomatrix Bm×n = {b(i, j)} with low threshold
is found, we use a two-step lifting mechanism together with
the progressive edge-growth (PEG) method [15] to construct
an LDPC code. In the first step, we “lift” a base matrix
{b(i, j)} by replacing each non-zero entry b(i, j) with a
summation of b(i, j) different z1 × z1 permutation matrices
and replacing each zero entry with the z1 × z1 zero matrix.
After the first lifting process, all entries in the lifted matrix are
either “0” or “1”. In the second step, we lift the resultant matrix
again by replacing each entry “1” with a z2 × z2 circulant
permutation matrix (CPM), and replacing each entry “0” with
the z2 × z2 zero matrix. As can be seen, the final connection
matrix can be easily represented by a series of CPMs. Note
that in each lifting step, the permutation matrices and CPMs
are selected using the PEG algorithm [15] such that the girth
(shortest cycle) in the resultant matrix can be maximized.
Subsequently, each CN will be replaced by a Hadamard CN
connected to an appropriate number of D1H-VNs. Without
loss of generality, we transmit all-zero codewords. Moreover,
the code bits are modulated using binary phase-shift-keying
and sent through an AWGN channel. The maximum number
of iterations performed by the decoder is 300. At a particular
Eb/N0, we run the simulation until 100 frame errors are
collected.

A. Unpunctured PLDPC-Hadamard Codes

1) r = 4 and d = r+2 = 6: We attempt to find a PLDPC-
Hadamard code with a target code rate of approximately 0.05.
We select a protomatrix B7×11 of size 7 × 11, i.e., m = 7
and n = 11, and hence the code rate equals R = 0.0494.
Moreover, we set the minimum column weight to 1, maximum
column weight to 9, and maximum entry value to 3. Using
the proposed analytical method under the constraints above,
we find the following protomatrix which has a theoretical
threshold of −1.42 dB.

B7×11 =


1 0 0 0 0 0 1 0 3 0 1
0 1 2 0 0 0 0 0 0 2 1
2 1 0 0 1 1 0 0 0 0 1
0 1 0 3 0 0 0 0 0 2 0
2 0 0 0 0 0 0 1 0 3 0
3 0 0 2 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 2 0

 (19)

Fig. 9 plots the PEXIT curves of the repeat decoder and the
symbol-MAP Hadamard decoder under Eb/N0 = −1.42 dB. It
can be observed that the two curves are matched. By lifting the
protomatrix with factors z1 = 32 and z2 = 512, we obtain a
PLDPC-Hadamard code with information length k = z1z2(n−
m) = 65, 536 and code length Ntotal = z1z2[m(2d−2 − d) +
n] = 1, 327, 104. (See Appendix C in [47] for details of the
code structure after the lifting process.)

The BER and FER results of the PLDPC-Hadamard code
are plotted in Fig. 10. Our code achieves a BER of 10−5 at
Eb/N0 = −1.19 dB, which is 0.23 dB from the threshold. At
a BER of 10−5, the gaps of our rate-0.0494 PLDPC-Hadamard
code to the Shannon capacity for R = 0.05 and to the
ultimate Shannon limit are 0.25 dB and 0.40 dB, respectively.
Compared with the LDPC-Hadamard code in [36] which uses
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Fig. 9. The PEXIT chart of the PLDPC-Hadamard code given in (19) with
R = 0.0494 and r = 4.
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Fig. 10. BER (red curve) and FER (pink curve) performance of the proposed
PLDPC-Hadamard code compared with the BER of the LDPC-Hadamard code
(blue curve) in [36]. r = 4 and k = 65, 536.

R = 0.05 and r = 4, our proposed PLDPC-Hadamard code
has a slight performance improvement.

In Fig. 11, we further compare the BER results of the rate-
0.05 LDPC-Hadamard code in [36] at Eb/N0 = −1.18 dB
and our rate-0.0494 PLDPC-Hadamard code at Eb/N0 =
−1.18 dB and −1.19 dB under different number of iterations.
Note that the result of the LDPC-Hadamard code is the average
from 20 simulations [36], whereas our result is the average
from 10, 000 simulations. In other words, our simulation
results are statistically very accurate due to the large number
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Fig. 11. BER performance versus number of iterations for the LDPC-
Hadamard code in [36] (Eb/N0 = −1.18 dB) and PLDPC-Hadamard code
(Eb/N0 = −1.18 and −1.19 dB). r = 4 and k = 65, 536.

of simulations involved. For the same number of iterations and
at Eb/N0 = −1.18 dB, our PLDPC-Hadamard code produces
a lower BER compared with the LDPC-Hadamard code in
[36]. When our proposed PLDPC-Hadamard code operates
at a slightly lower Eb/N0, i.e., −1.19 dB, the BER of the
proposed code still outperforms the conventional code except
for iteration numbers beyond 200. Thus, we conclude that the
proposed code achieves a faster convergence rate compared
with the conventional code. In particular, our results are more
precise because 10, 000 simulations are used for our code
compared with only 20 simulations used for the conventional
code in [36].

2) r = 5 and d = 7: We attempt to search a PLDPC-
Hadamard code with a target code rate of approximately
R ≈ 0.02. We select m = 6 and n = 10, and obtain a code
rate of R = 0.021. Other constraints of the protomatrix are
the same as in the “r = 4” case. The following protomatrix
with a threshold of −1.51 dB is found.

B6×10=


3 2 0 0 1 0 0 0 1 0
0 0 2 0 0 2 1 2 0 0
0 0 0 3 1 0 0 1 0 2
0 1 0 1 0 0 0 2 0 3
0 0 0 2 0 0 1 2 0 2
2 0 1 1 0 0 0 2 0 1

 . (20)

The same lifting factors z1 = 32 and z2 = 512 are used to
expand B6×10. The rate-0.021 PLDPC-Hadamard code has an
information length of k = z1z2(n−m) = 65, 536 and a code
length of Ntotal = z1z2[m(2d−2 − 2) + n] = 3, 112, 960. Fig.
12 shows the PEXIT chart of the code at Eb/N0 = −1.51 dB.
We can observe that the two curves do not crossed and are
matched.

Fig. 13 show that the code achieves a BER of 1.4 × 10−5

and a FER of 1.3 × 10−4 at Eb/N0 = −1.24 dB (red
curve), which is 0.27 dB away from the designed threshold.
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Fig. 12. The PEXIT chart of the PLDPC-Hadamard code given in (20) with
R = 0.021 and r = 5.
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Fig. 13. BER (red curve) and FER (pink curve) performance of the proposed
PLDPC-Hadamard code compared with the BER of the LDPC-Hadamard code
(blue curve) in [36]. r = 5 and k = 65, 536.

Compared with the BER curve (blue curve) of the rate-0.022
LDPC-Hadamard code in [36], our PLDPC-Hadamard code
can achieve comparable results. At a BER of 10−5, the gaps
to the Shannon capacity of R = 0.020 and to the ultimate
Shannon limit are 0.29 dB and 0.35 dB, respectively.

3) r = 8 and d = 10: A rate-0.008 PLDPC-Hadamard
code is constructed using m = 5 and n = 15. Compared
with the previous cases, the maximum column weight is now
increased to 11. The aim is to allow the PEXIT curves to
be matched at a lower Eb/N0. The following protomatrix is

−1.6 −1.57 −1.54 −1.51 −1.48 −1.45 −1.42 −1.39 −1.36 −1.33
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Eb/N0 (dB)

B
E
R
/
F
E
R

 

 

BER: LDPCH with R = 0.008 and k = 238,000
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FER: PLDPCH with R = 0.008 and k = 204,800
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R = 0.008, threshold = −1.53dB

ultimate Shannon limit

LDPC−Hadamard code
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R = 0.008, capacity = −1.57dB

Fig. 14. BER (red curve) and FER (pink curve) performance of the proposed
PLDPC-Hadamard code compared with the BER of the LDPC-Hadamard code
(blue curve) in [36]. r = 8.

found with a threshold of −1.53 dB, which is the same as the
rate-0.008 LDPC-Hadamard code in [36].

B5×15 =
2 0 1 0 0 0 0 3 2 0 0 1 0 0 1
0 2 0 1 1 0 0 0 0 0 0 3 0 3 0
0 0 1 0 0 2 2 0 0 1 1 2 1 0 0
0 0 0 2 2 0 0 0 0 1 0 3 0 0 2
0 0 0 0 0 1 1 0 1 1 1 2 3 0 0


(21)

We use the lifting factors z1 = 16 and z2 = 1280. Fig. 14
shows that at Eb/N0 = −1.35 dB, the PLDPC-Hadamard code
achieves a FER of 2.1×10−4 and a BER of 3.8×10−6, which
is 0.18 dB away from the designed threshold. Compared with
the BER curve in [36], there is a performance gap of about
0.03 dB at a BER of 10−5. At the same BER, the gaps of
our code to the rate-0.008 Shannon limit and to the ultimate
Shannon limit are 0.22 dB and 0.24 dB, respectively.

4) r = 10 and d = 12: A rate-0.00295 PLDPC-Hadamard
code shown in (22) is constructed using m = 6 and n = 24.
(The target rate is approximately 0.003.) Compared with the
case “r = 8”, the maximum entry value in the protomatrix is
increased to 4. The PLDPC-Hadamard code has a theoretical
threshold of −1.53 dB, which is slightly higher (0.02 dB)
than that of the LDPC-Hadamard code in [36]. We use the
lifting factors z1 = 20 and z2 = 1280. Fig. 15 shows that
our PLDPC-Hadamard code achieves a BER of 2.8 × 10−6

at Eb/N0 = −1.43 dB, which is 0.01 dB higher compared
with the LDPC-Hadamard code in [36]. However, our code
is 29.11% shorter compared with the code in [36]. This
performance has a 0.10 dB gap from the designed threshold.
The gaps of our code to the rate-0.003 Shannon limit and to the
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B6×24 =


1 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 1 4 0 1 0
0 0 0 3 2 0 0 0 1 1 0 0 1 0 0 0 3 1 0 0 0 0 0 0
0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 3 0 4 0 0 0
0 0 0 0 0 0 0 1 0 0 3 3 0 0 0 0 0 0 0 0 2 2 0 1
2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 0 0 1 1
0 0 0 0 0 1 0 3 3 2 0 0 1 1 0 0 0 0 0 0 1 0 0 0

 (22)
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Fig. 15. BER (red curve) and FER (pink curve) performance of the proposed
PLDPC-Hadamard code compared with the BER of the LDPC-Hadamard code
(blue curve) in [36]. r = 10.

ultimate Shannon limit are 0.15 dB and 0.16 dB, respectively.
Remark: For cases with r = 5, 8 and 10 (Figs. 13, 14

and 15), the BER results may appear that our proposed
PLDPC-Hadamard codes are slightly outperformed by the
LDPC-Hadamard codes in [36] at the high Eb/N0 region.
For our codes, we keep running the simulations until 100
block errors are recorded. Thus our reported results have a
high degree of accuracy. However, the stopping criterion of
the LDPC-Hadamard code simulation in [36] is not known.
If an inadequate number of simulations are performed, there
could be some statistical difference between the actual error
performance and the reported results.

B. Punctured PLDPC-Hadamard Codes

When a code is punctured, the code rate increases. The
signals corresponding to the punctured variable nodes are not
sent to the receiver and hence their channel LLR values are
initialized to zero. In this section, we evaluate the performance
of the PLDPC-Hadamard codes designed in the previous
section when the codes are punctured. We use α to denote
a column number in a protomatrix and β to denote the weight
of a column. For example in the protomatrix shown in (19),
[4, 6] refers to the 4-th column [0 0 0 3 0 2 1]T which has a
column weight of 6. Thus we use “punctured [α, β]” to denote
a PLDPC-Hadamard code in which the P-VN corresponding
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Punctured [6,1]&[8,1] with R = 0.0506

Fig. 16. BER performance of unpunctured/punctured PLDPC-Hadamard
codes. One or two P-VNs is/are punctured. r = 4 and k = 65, 536.

to the α-th column in the protomatrix is punctured. Also, the
punctured P-VN has a degree of β.

1) r = 4: We puncture one P-VN with the largest degree
(i.e., 9) or lowest degree (i.e., 1) in (19). Four cases are
considered, i.e., [1, 9], [10, 9], [6, 1] and [8, 1]. After punctur-
ing, all codes have a rate of 0.0500. Fig. 16 shows that at a
BER of 10−4, punctured [10, 9], [1, 9], [6, 1] and [8, 1] have
performance losses of about 0.075 dB, 0.065 dB, 0.012 dB
and 0.004 dB, respectively, compared with the unpunctured
code. Fig. 17 plots the FER of the unpunctured/punctured
codes and it shows a similar relative error performance. We
also simulate the code when both [6, 1] and [8, 1] P-VNs are
punctured. The error performance of the code, as shown in
Figs. 16 and Fig. 17, is found to be between punctured [6, 1]
and [8, 1]. The aforementioned results conclude that punctured
[8, 1] outperforms other punctured codes being considered and
has a very similar performance as the unpunctured code.

2) r = 5: We puncture [8, 9] (largest degree) and [9, 1]
(lowest degree) in (20), respectively. After puncturing, both
codes have a rate of 0.02116. Fig. 18 shows that punctured
[9, 1] achieves the lowest BER while punctured [8, 9] achieves
the lowest FER.

We further consider puncturing D1H-VNs corresponding
to code bits cH2k−1 (k = 1, 2, . . . , r) for every H-CN. The
rate of such punctured codes is computed using (6). We use
[cH1 cH2 · · · cH2k−1 ] (1 ≤ k ≤ r) to denote the set of bits being
punctured. Three sets of punctured bits are being considered.
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Fig. 17. FER performance of unpunctured/punctured PLDPC-Hadamard
codes. One or two P-VNs is/are punctured. r = 4 and k = 65, 536.
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Fig. 18. BER/FER performance of unpunctured/punctured PLDPC-Hadamard
codes. One P-VN is punctured. r = 5 and k = 65, 536.

They are [cH8 cH16], [c
H
2 cH4 cH8 cH16] and [cH1 cH2 cH4 cH8 cH16];

and their corresponding rates are 0.022, 0.024 and 0.025,
respectively. Fig. 19 shows that in terms of BER and FER,
all the punctured codes are degraded compared with the
unpunctured rate-0.021 PLDPC Hadamard code. Particularly,
punctured [cH8 cH16] has a 0.02 dB performance loss at a BER
of 3.6 × 10−5; punctured [cH2 cH4 cH8 cH16] has a 0.03 dB
performance loss at a BER of 4.7 × 10−5; and punctured
[cH1 cH2 cH4 cH8 cH16] has a 0.04 dB performance loss at a BER
of 1.4×10−5. The BER/FER results indicate that the channel
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Fig. 19. BER/FER performance of unpunctured/punctured PLDPC-Hadamard
codes. Two, four and five D1H-VNs are punctured. r = 5 and k = 65, 536.

observations corresponding to these D1H-VNs provide very
useful information for the decoder to decode successfully.

3) r = 8 and r = 10 : For each of the PLDPC-Hadamard
codes shown in (21) and (22), we puncture the VN with the
largest degree and lowest degree, respectively. Compared with
the unpunctured codes, the punctured ones are degraded only
very slightly in terms of BER/FER.

V. CONCLUSION

In this paper, we have proposed an alternate method of de-
signing ultimate-Shannon-limit-approaching LDPC-Hadamard
codes —- protograph-based LDPC-Hadamard (PLDPC-
Hadamard) codes. By appending degree-1 Hadamard variable
nodes (D1H-VNs) to the protograph of LDPC codes, a gener-
alized protograph can be formed to characterize the structure
of PLDPC-Hadamard codes. We have also proposed a low-
complexity PEXIT algorithm to analyze the threshold of the
codes, which is valid for PLDPC-Hadamard protographs with
degree-1 variable nodes and/or punctured variable nodes/D1H-
VNs. Based on the proposed analysis method, we have found
good PLDPC-Hadamard codes with different code rates and
have provided the corresponding protomatrices with very low
thresholds (< −1.40 dB).

Reliable BER, FER and average number of decoding it-
erations are derived by running simulations until 100 frame
errors are obtained. At a BER of 10−5, the gaps of our
codes to the ultimate-Shannon-limit range from 0.40 dB (for
rate = 0.0494) to 0.16 dB (for rate = 0.003). Moreover, the
error performance of our codes is comparable to that of the
traditional LDPC-Hadamard codes. We have also investigated
punctured PLDPC-Hadamard codes. When the order of the
Hadamard code r = 4, puncturing different variable nodes in
the protograph produces quite different BER/FER performance
degradations compared with the unpunctured code. When
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r = 5, puncturing one VN can actually improve the BER/FER
performance slightly. When r = 8 or 10, puncturing one VN
does not seem to have any effect. Moreover, we conclude
that when r = 5, puncturing the extra D1H-VNs provided
by the non-systematic Hadamard code degrades the error
performance quite significantly.

Finally, we have made use of our proposed analytical
technique to find optimal PLDPC-Hadamard code designs. By
puncturing these PLDPC-Hadamard codes, punctured codes
are obtained and simulated. However, these punctured codes,
strictly speaking, are not optimized. In the future, we plan
to apply the proposed analytical technique to find optimal
PLDPC-Hadamard codes with punctured VNs. We will also in-
vestigate annealing approaches or genetic algorithms to speed
up the search for optimal protomatrices under some given
constraints, and consider spatially-coupled PLDPC-Hadamard
codes.

APPENDIX A
TWO OTHER TYPES OF LDPC-HADAMARD CODES

As mentioned in III-A, dci = r+1 bits from P-VNs need to
fulfill the SPC constraint. However, if the inputs to the H-CNs
are not required to satisfy the SPC constraint, two other types
of codes can be formed.

Fig. 20 shows the first type, in which the information bits
(information VNs) are first encoded into an LDPC codeword
(with the generation of the parity-check VNs) based on the
SPC constraints (SPC-CNs). Subsequently, these VNs (includ-
ing both information VNs and parity-check VNs) are repeated
and interleaved. Then they are used as inputs to the Hadamard
check nodes (H-CNs) and to generate the Hadamard parity-
check bits (D1H-VNs). Suppose the order of the Hadamard
codes used is r and hence there are 2r+1 possible Hadamard
codewords. As the inputs to the Hadamard check nodes may
not satisfy the SPC constraint, the number of inputs would be
r+1 (instead of r+2 in our PLDPC-Hadamard code) and the
number of Hadamard parity-check bits (D1H-VNs) generated
in each H-CN equals 2r − (r+ 1) (instead of 2r − (r+ 2) in
our PLDPC-Hadamard code when r is even). Compared with
our PLDPC-Hadamard code, the code in Fig. 20 will have a
lower code rate when r is even. The decoder structure of the
code in Fig. 20 will also be different from ours. The decoder
structure of the code in Fig. 20 will consist of a traditional
LDPC decoder and a Hadamard decoder, which will iteratively
exchange the extrinsic information of the variable nodes (i.e.,
the VNs shown in the middle layer of Fig. 20). There will
be also two interleavers in the code in Fig. 20, as opposed to
only one interleaver in our PLDPC-Hadamard code. Thus the
decoder is more complicated compared with ours.

Fig. 21 depicts the second type of code in which the SPC
constraints are not required. In this case, the information bits
(shown as VNs at the top) are repeated and interleaved. Then
they are used as inputs to the Hadamard check nodes (H-CNs)
and to generate the Hadamard parity-check bits (D1H-VNs).
The code can be viewed as a concatenation of repeat codes
and Hadamard codes, and the code structure is very different
from our PLDPC-Hadamard code.

Fig. 20. First type of code in which the inputs to the H-CNs do not need to
satisfy the SPC constraint.

Fig. 21. Second type of code in which the inputs to the H-CNs do not need
to satisfy the SPC constraint.

APPENDIX B
MONTE CARLO METHOD FOR FORMING THE m× d MI

MATRIX {Ieh(i, k)}

We define the following symbols:
• σµ = [σµ0

σµ1
. . . σµd−1

]: d (= r + 2) noise standard
deviations;

• cµ = [cµ0
cµ1

. . . cµd−1
]: a length-d SPC codeword;

• cp = [cp0 cp1 . . . cpg−1 ]: g Hadamard parity bits
generated based on the SPC cµ; g = 2r−d and g = 2r−2,
respectively, for systematic (r =even) and non-systematic
coding (r =odd);

• nµ = [nµ0
nµ1

. . . nµd−1
]: d samples following a normal

distribution;
• np = [np0 np1 . . . npg−1 ]: g amples following a normal

distribution;
• Lµ = [Lµ0

Lµ1
. . . Lµd−1

]: d LLR values corresponding
to the SPC codeword cµ;

• Lp = [Lp0 Lp1 . . . Lpg−1
]: g channel LLR values

corresponding to the Hadamard parity bits cp;
• Le = [Le0 Le1 . . . Led−1

]: d extrinsic LLR values
generated by the Hadamard decoder;

• U : a w×d matrix in which each row represents a length-d
SPC codeword; and the k-th column (k = 0, 1, . . . , d−1)
corresponds to the k-th bit (cµk

) of the SPC codeword;
• V : a w × d matrix in which each row represents a set

of (d) extrinsic LLR values generated by the Hadamard
decoder; and the k-th column (k = 0, 1, . . . , d − 1)
corresponds to the extrinsic LLR value for the k-th bit
(cµk

) of the SPC codeword;



15

• pe0 = [pe(ξ|cµ0
= “0”) pe(ξ|cµ1

= “0”) · · ·
pe(ξ|cµd−1

= “0”)]: PDFs for cµk
= “0” (k =

0, 1, . . . , d− 1);
• pe1 = [pe(ξ|cµ0

= “1”) pe(ξ|cµ1
= “1”) · · ·

pe(ξ|cµd−1
= “1”)]: PDFs for cµk

= “1” (k =
0, 1, . . . , d− 1).

The m× d MI matrix {Ieh(i, k)} is updated with following
steps.

i) Given the standard deviation σLch
.

ii) Set i = 0.
iii) For the i-th row in the MI matrix {Iah(i, k)}, use the J-

function in [13] to compute the standard deviation σµk
=

J−1(Iah(i, k)) for k = 0, 1, . . . , d− 1.
iv) Set j = 0.
v) Randomly generate a length-d SPC codeword cµ; further

encode cµ into a Hadamard codeword using systematic
(when r = d − 2 is even) or non-systematic (when r is
odd) coding and generate the g Hadamard parity bits cp.

vi) Randomly generate a sample vector nµ where each
nµk

(k = 0, 1, . . . , d − 1) follows a different normal
distribution N (σ2

µk
/2, σ2

µk
).

vii) Randomly generate a sample vector np where all npk′ ’s
(k′ = 0, 1, . . . , g−1) follow the same normal distribution
N (σ2

Lch
/2, σ2

Lch
).

viii) For k = 0, 1, . . . , d − 1, set Lµk
= +nµk

if cµk
= “0”;

otherwise set Lµk
= −nµk

if cµk
= “1”.

ix) For k′ = 0, 1, . . . , g−1, set Lpk′ = +npk′ if cpk′ = “0”;
otherwise set Lpk′ = −npk′ if cpk′ = “1”.

x) Input Lµ and Lp, respectively, as the a priori and
channel LLRs to the Hadamard decoder. Use the decoding
algorithm described in Sect. III-B to compute the d output
extrinsic LLR values Le.

xi) Assign cµ to the j-th row of U and assign Le to the j-th
row of V .

xii) Set j = j + 1. If j < w, go to Step v). (We set w =
10, 000.)

xiii) The k-th columns (k = 0, 1, . . . , d−1) of both U and V
correspond to bit cµk

. Obtain the PDFs pe(ξ|cµk
= “0”)

and pe(ξ|cµk
= “1”) (k = 0, 1, . . . , d − 1) based on U

and V .
xiv) Use pe(ξ|cµk

= “0”) and pe(ξ|cµk
= “1”) to compute

(16) and hence Ieh(i, k) (k = 0, 1, . . . , d− 1).
xv) Set i = i+ 1. If i < m, go to step iii).
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