This is the Pre-Published Version. 1

The following publication P. -W. Zhang, F. C. M. Lau and C. -W. Sham, "Protograph-Based LDPC Hadamard Codes," in IEEE Transactions on
Communications, vol. 69, no. 8, pp. 4998-5013, Aug. 2021 is available at https://doi.org/10.1109/TCOMM.2021.3077939.

Protograph-Based LDPC Hadamard Codes

Peng W. Zhang, Francis C.M. Lau, Fellow, IEEE, and Chiu-W. Sham, Senior Member, IEEE

Abstract—In this paper, we propose a new method to design
low-density parity-check Hadamard (LDPC-Hadamard) codes —
a type of ultimate-Shannon-limit approaching channel codes.
The technique is based on applying Hadamard constraints to
the check nodes in a generalized protograph-based LDPC code,
followed by lifting the generalized protograph. We name the codes
formed protograph-based LDPC Hadamard (PLDPC-Hadamard)
codes. We also propose a modified Protograph Extrinsic Informa-
tion Transfer (PEXIT) algorithm for analyzing and optimizing
PLDPC-Hadamard code designs. The proposed algorithm further
allows the analysis of PLDPC-Hadamard codes with degree-1
and/or punctured nodes. We find codes with decoding thresholds
ranging from —1.53 dB to —1.42 dB. At a BER of 1075, the
gaps of our codes to the ultimate-Shannon-limit range from
0.40 dB (for rate = 0.0494) to 0.16 dB (for rate = 0.003).
Moreover, the error performance of our codes is comparable
to that of the traditional LDPC-Hadamard codes. Finally, the
BER performances of our codes after puncturing are simulated
and compared.

Index Terms—Protograph LDPC code, PLDPC-Hadamard
code, PEXIT algorithm, ultimate Shannon limit.

I. INTRODUCTION

In 1943, Claude Shannon derived the channel capacity
theorem [2], based on which the maximum rate that infor-
mation can be sent through a channel without errors can be
evaluated. In 1993, Berrou et al. invented the turbo codes
and demonstrated that with a code rate of 0.5, the proposed
turbo code and decoder could work within 0.7 dB from the
capacity limit at a bit error rate (BER) of 1075 [3], [4]. Besides
turbo codes, other well-known capacity-approaching codes
are low-density parity-check codes (proposed by Gallager in
1960s [5] and rediscovered by MacKay and Neal in 1990s
[6]) and polar codes (proposed by Arikan in 2009 [7]).
These capacity-approaching codes have since been used in
many wireless communication systems (e.g., 3G/4G/5G, Wifi,
satellite communications) and optical communication systems.
The progresses of the aforementioned three types of capacity-
approaching codes over the past decades can be found in the
survey papers [8], [9] and the references therein.

In particular, LDPC codes can be represented by a matrix
containing a low density of “1”’s and also by its corresponding
Tanner graph [10]. In the Tanner graph, there are two sets
of nodes, namely variables nodes (VNs) and check nodes
(CNs), sparsely connected by links. Messages are updated and

PW. Zhang and FC.M. Lau are with the Future Wireless Networks and
IoT Focusing Area, Department of Electronic and Information Engineer-
ing, The Hong Kong Polytechnic University, Hong Kong (e-mail: peng-
wei.zhang @connect.polyu.hk and francis-cm.lau@polyu.edu.hk).

C.-W. Sham is with the Department of Computer Science, The University
of Auckland, New Zealand (e-mail: b.sham@auckland.ac.nz).

The work described in this paper was supported by a grant from the RGC
of the Hong Kong SAR, China (Project No. PolyU 152170/18E).

This paper was presented in part at WCNC 2020 [1].

passed iteratively along the links during the decoding process.
Density evolution (DE) [11] is a kind of analytical method that
tracks the probability density function (PDF) of the messages
after each iteration. It not only can predict the convergence
of the decoder, but also can be used for optimizing LDPC
code designs [12]. The extrinsic information transfer (EXIT)
chart is another common technique employed to analyze and
optimize LDPC codes [13], [14]. An optimal LDPC code
design is found when the EXIT curves of the VNs and CNs
are “matched” with the smallest bit-energy-to-noise-power-
spectral-density ratio (Ep/Np).

For an LDPC code with given degree distributions and
code length, the progressive-edge-growth (PEG) method [15]
is commonly used to connect the VNs and CNs with an aim to
maximizing the girth (shortest cycle) of the code. The method
is simple and the code can achieve good error performance.
However, the code has a quadratic encoding complexity with
its length because it is un-structured. The hardware implemen-
tation of the encoder/decoder also consumes a lot of resources
and has high routing complexity.

Subsequently, structured quasi-cyclic (QC) LDPC codes
are proposed [16]. QC-LDPC codes have a linear encoding
complexity and allow parallel processing in the hardware
implementation. Other structured codes, such as the repeat-
accumulate (RA) codes and their variants, can be formed
by the repeat codes and the accumulators [17], [18]. They
belong to a subclass of LDPC codes that have a fast encoder
structure and good error performance. Structured LDPC codes
can also be constructed by protographs [19]. By expanding
the protomatrix (corresponding protograph) with a small size,
we can obtain a QC matrix (corresponding lifted graph) that
possesses the same properties as the protomatrix. The codes
corresponding to the lifted graphs are called protograph-based
LDPC (PLDPC) codes. The traditional EXIT chart cannot be
used to analyze protographs where degree-1 or punctured vari-
able nodes exist. Subsequently, the protograph EXIT (PEXIT)
chart method is developed [20] for analyzing and designing
PLDPC codes, and well-designed PLDPC codes are found
to achieve performance close to the Shannon limit [9], [21].
When coupled spatially, PLDPC codes can enhance their the-
oretical thresholds and decoding performance [22], [23], [24].
In the case of block-fading channels, root-protograph LDPC
codes are found to achieve near-outage-limit performance [25].

In the Tanner graph of an LDPC code, the VNs are equiv-
alent to repeat codes while CNs correspond to single-parity-
check (SPC) codes. If other block codes, such as Hamming
codes and BCH codes, are used to replace the repeat codes
and/or SPC codes, generalized LDPC (GLDPC) codes are
obtained [26], [27], [28]. In [29], [30] and [31], doped-
Tanner codes are formed by replacing the SPC component
codes in the structured LDPC codes with Hamming codes and

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

recursive systematic convolutional codes. Ensemble codeword
weight enumerators are used to find good GLDPC codes while
Hamming codes have been used to design medium-length
GLDPC codes with performances approaching the channel
capacity (> 0 dB). In [32] and [33], EXIT functions of block
codes over binary symmetric channels have been derived and
used for analyzing LDPC codes. The same author further
demonstrates the use of linear programming algorithm to
optimize a rate-8/9 GLDPC code from the perspective of
degree distribution [34]. To achieve good performance (BER =
10~°) at very low Ej,/Ny, say < —1.15 dB, Hadamard codes
have been proposed to replace the SPC codes, forming the low-
rate (< 0.05) LDPC-Hadamard codes [35], [36]. By adjusting
the degree distribution of the VNs and using the EXIT chart
technique, the EXIT curves of the Hadamard “super CNs”
and VNs are matched and excellent error performance at low
Ey /Ny is obtained.

In practice, different channels possess different capacities,
depending on factors such as modulation scheme, signal-to-
noise ratio and code rate. However, the “ultimate Shannon
limit” over an additive-white-Gaussian-noise (AWGN) channel
remains at —1.59 dB, i.e., F;/Ng = —1.59 dB. Scenarios
where digital communications may need to work close to
the ultimate Shannon limit include space communications,
multiple access (e.g. code-division multiple-access [37] and
interleave-division multiple-access [38]) with severe inter-
user interferences, or embedding low-rate information in a
communication link. The most notable channel codes with
performance close to this limit are turbo-Hadamard codes
[39], [40], [41], [42], concatenated zigzag Hadamard codes
[43], [44], and LDPC-Hadamard codes [35], [36]. Both turbo-
Hadamard codes and concatenated zigzag Hadamard codes
suffer from long decoding latency due to the forward/backward
decoding algorithms [39], [43]. The LDPC-Hadamard codes
allow parallel processing and hence the decoding latency
can be made much shorter [36]. However, in optimizing
the threshold of LDPC-Hadamard codes, only the degree
distribution of the variable nodes has been found for a given
order of the Hadamard code used. Therefore, the method
used in optimizing LDPC-Hadamard codes has the following
drawbacks.

o For the same variable-node degree distribution, many
different code realizations with very diverse bit-error-rate
performances can be obtained.

e The code is unstructured, making both encoding and
decoding very complex to realize in practice. Take the
LDPC-Hadamard code with code rate R = 0.05 and
Hadamard code order » = 4 as an example. For an
information length of 65, 536, the degree distributions op-
timized by [36] indicate that there are 113,426 Hadamard
check nodes and n = 178,962 variable nodes. When
these large number of nodes are connected by the PEG
algorithm, the resultant graph has little structure and is
therefore not conducive to parallel encoding/decoding and
reduces encoding/decoding efficiency. In the hardware
implementation, the unstructured conventional LDPC-
Hadamard code further results in high routing complexity

and low throughput.

e The degree distribution analysis requires a minimum
variable-node degree of 2 because an EXIT curve can-
not be produced for degree-1 variable nodes. Moreover,
LDPC-Hadamard codes with punctured variable nodes
cannot be analyzed.

The concept in [36] has been applied to designing other low-
rate generalized LDPC codes [45]. However, the main criterion
of those codes is to provide low latency communications and
hence their performance is relatively far from the ultimate
Shannon limit.

In this paper, we propose a method to design LDPC-
Hadamard codes which possesses degree-1 and/or punctured
VNs. The technique is based on applying Hadamard con-
straints to the CNs in a generalized PLDPC code, fol-
lowed by lifting the generalized protograph. We name the
codes formed protograph-based LDPC Hadamard (PLDPC-
Hadamard) codes [1]. We also propose a modified PEXIT
algorithm for analyzing and optimizing PLDPC-Hadamard
code designs. Codes with decoding thresholds ranging from
—1.53 dB to —1.42 dB have been found, and simulation
results show a bit error rate of 107° can be achieved at
Ey/Ny = —1.43 dB. Moreover, the BER performances of
these codes after puncturing are simulated and compared. The
main contributions of the paper can be summarized as follows:

1) It is the first attempt to use protographs to design codes
with performance close to the ultimate Shannon limit.
By appending additional degree-1 Hadamard VNs to the
CNs of a protograph, the SPC check nodes are con-
verted into more powerful Hadamard constraints, forming
the generalized protograph of PLDPC-Hadamard codes.
After using the copy-and-permute operations to lift the
protograph, the matrix corresponding to the lifted graph
is a structured QC matrix which is greatly beneficial to
linear encoding, parallel decoding and hardware imple-
mentation.

2) To analyze the decoding threshold of a PLDPC-Hadamard
code, we propose a modified PEXIT method. We re-
place the SPC mutual information (MI) updating with
our proposed Hadamard MI updating based on Monte
Carlo simulations. Different from the EXIT method used
in optimizing the degree distribution of VNs in an
LDPC-Hadamard code [36], our proposed PEXIT method
searches and analyzes protomatrices corresponding to the
generalized protograph of the PLDPC-Hadamard codes.
The proposed method, moreover, is applicable to analyz-
ing PLDPC-Hadamard codes with degree-1 VNs and/or
punctured VNs. Using the analytical technique, we have
found PLDPC-Hadamard codes with very low decoding
thresholds (< —1.40 dB) under different code rates.

3) Extensive simulations are performed under an AWGN
channel. For each case, 100 frame errors are collected
before the simulation is terminated. Results show that
the PLDPC-Hadamard codes can obtain comparable BER
performance to the traditional LDPC-Hadamard codes
[36]. At a BER of 107, the gaps to the ultimate Shannon
limit are 0.40 dB for the rate-0.0494 code, 0.35 dB for

the rate-0.021 code, 0.24 dB for the rate-0.008 code and
0.16 dB for the rate-0.003 code, respectively.

4) Punctured PLDPC-Hadamard codes are studied. Punc-
turing different VNs in the protograph of a PLDPC-
Hadamard code sometimes can produce different
BER/FER performance improvement/degradation com-
pared with the unpunctured code. Moreover, when the
order of the Hadamard code r = 5, puncturing the
extra degree-1 Hadamard VNs provided by the non-
systematic Hadamard encoding is found to degrade the
error performance.

The remainder of the paper is organized as follows. Sect.
II reviews the background knowledge of some related codes.
Sect. III introduces our proposed PLDPC-Hadamard code,
including its structure, encoding and decoding methods, and
code rate. In particular, the cases in which the order of
the Hadamard code used is even or odd are described and
analyzed. A low-complexity PEXIT method for analyzing
PLDPC-Hadamard codes is proposed and an optimization
algorithm is provided. Sect. IV presents the protomatrices of
the PLDPC-Hadamard codes found by the proposed methods,
their decoding thresholds and simulation results. The error per-
formance of these codes after puncturing are further evaluated.
Sect. V provides some final remarks.

II. BACKGROUND

A Hadamard code with an order r is a class of linear block
codes. A ¢ x ¢ positive Hadamard matrix +H, = {+h;,j =
0,1,...,q — 1} can be constructed recursively using

+I{q/2 +H‘1/2
+15{!1/2 —41q/2

with ¢ = 2" and £H; = [£1]. Each column +h; is a
Hadamard codeword and +H|, contains 2q = 2"+ codewords
+h;. Considering an information sequence u € {0,1}" 1,
the Hadamard encoder encodes u into a codeword ¢ of
length ¢, ie., ¢ € {0,1}% = [cfl I ... & _|]T, where
()T represents the transpose operation. Assuming that the
+h; or —h; corresponding to ¢, i.e., by mapping bit “0”
in ¢ to +1 and bit “1” to —1, is uniformly transmitted

through an AWGN channel with mean 0 and variance o2,

+Hq -

we denote the received signal by y = [yo y1 ... yor_1]7T.
We define LH = [LgL(O) L) - LE @2 —1)]7 and
LZ}T - [Lclz{pr() LZ}T() L(ﬁ)r(- 1)]T; where
i — “0’7 2 Z
LA (i) = Wi =0 2y
(yl ‘ C =1) Uch
is the channel LLR value of the ¢-th bit and
Pr(cf = “0”)
LH i) =1 i
apr() n PI‘(C{{ — 44177)
is the a priori LLR of the i-th bit : =0, 1,...,2" — 1).

Using a symbol-by-symbol maximum a posteriori proba-
bility (symbol-MAP) Hadamard decoder [39], the a posteriori
LLR of the ¢-th (z = 0, 1, ...,2" — 1) code bit, which is denoted

by L (i), can be computed by

P — “n?
LaH () — 1 I'(O | y)
pp PI“(= “1” | y)
Pr(cf = +h; | y)
o +H[i,j]=+1
a Pr(c” = +h; | y)
+HJi,j]=—1
iH[; 7 (£h;)
— | A= 1)
7 (£h;)
+H[i,j]=—1
where
v (+h;) = exp ((£h;, LY + L) /2))
and (-) denotes the inner product. We further define Lapp
(LI, (0) LE (1) --- LI (2" —1)]". Based on the butterfly-
like structure of the Hadamard matrix, Lg,p can be computed

using the fast Hadamard transform (FHT) and the dual FHT
(DFHT) [39], [41], [42]. In the case of iterative decoding, the
Hadamard decoder subtracts the LZ (i) from L (i) and
feeds back “new” extrinsic information to other component
decoders.

An LDPC code with code length N, information length
k = N — M and code rate R = k/N can be represented
by a M x N parity-check matrix H sy whose entries only
include 0 or 1. The matrix H ;. y can also be represented by
a Tanner graph, as shown in Fig. 1. The circles denote VNs
corresponding to the columns of the matrix; the squares denote
the CNs corresponding to the rows of the matrix; and the edges
connecting the VNs and CNs correspond to the “1”s of the
matrix. Moreover, a VN with degree-d; emits d;(d; > 1)
edges connecting to d; different CNs and forms a (dj, 1)
repeat code; whereas a CN with degree-d; emits d;(d; > 1)
edges connecting d; different VNs and forms a (d;,d; — 1)
single-parity-check (SPC) code. A generalized LDPC code is
obtained when the repeat code and/or SPC code is/are replaced
by other block codes. In [36], the SPC codes of an LDPC
code are replaced with Hadamard codes, forming an LDPC-
Hadamard code. When an LDPC code contains degree-1 VNs
or punctured VNs, the traditional EXIT chart cannot evaluate
its decoding performance. However, for LDPC codes con-
structed based on protographs, their theoretical performance
can be estimated by the protograph EXIT (PEXIT) algorithm
even if they contain degree-1 VNs or punctured VNs [20].

Fig. 2 illustrates a protograph, and the corresponding pro-
tomatrix (also called base matrix) is given by

1 3 --- 0 1

21 -+ 20
Bmxn:

11 -~ 1 2

The entries in By,xn = {b;; : ¢ =0,1,2...,m —1;j =
0,1,2...,n — 1} are allowed to be larger than 1 and they
correspond to the multiple edges connecting the same pair
of VN and CN in the protograph. The Tanner graph of a
protograph-based LDPC (PLDPC) code can be constructed by
duplicating the protograph z times and permuting the edges

Variable Nodes

Check Nodes

Fig. 1. Representation of an LDPC code by a Tanner graph.

which connect the same type of VNs and CNs among these
duplicated protographs. This expansion process is also called
lifting and the parameter z is called the lifting factor. To
analyze the decoding performance of a PLDPC code, the
PEXIT algorithm can be applied to B,,x,. In the PEXIT
method, the mutual information (MI) values on all types of
edges are updated separately and iteratively [20]. To illustrate
the method, different types of MI are first defined as follows:
e I..(1,7): a priori MI from j-th VN to i-th CN in B, x,;
e I4,(i,7): a priori MI from i-th CN to j-th VN in B, xn;
o I.,(i,7): extrinsic MI from j-th VN to i-th CN in B, x,;
o I..(i,7): extrinsic MI from i-th CN to j-th VN in B, x,;
Iopp(j): a posteriori MI value of the j-th VN;
e I.,: MI from the channel.

Without going into the details, the steps below show how
to determine the threshold (E%/Ny)+h.

1) Set all MI values to 0. Select a relatively large FEj/Ny.

2) Initialize I, based on E} /Ny and the code rate.

3) Compute I.,(i,7) V i,7; set Ioe(i,5) = ey (3, 5); com-
pute I..(i,5) V i,7; set Ioy(i,5) = Lec(4,).

4) Repeat Step 3) [z, times.

5) Compute Ipp,(7). If Iopp(j) =1V j, reduce Ep,/Ny and
go to Step 2); otherwise set the previous Ej,/Ng that
achieves I,p,(j) = 1 V j as the threshold (Ey/No)wn
and stop.

The above analytical process can be regarded as the re-
peated computation and exchange between the a priori MI
matrices {l,,(4,7)}/{lac(?,7)} and extrinsic MI matrices
{Iev(%,7)}/{Icc(i,5)}. Moreover, these matrices have the
same size as B,,x,. Note that the PEXIT algorithm can be
used to analyze protographs with degree-1 VNs, i.e., columns
in the protomatrix with weight 1. Protographs with punctured
VNs will also be analyzed in a similar way, except that the
code rate will be changed accordingly and the corresponding
1.;, will be initialized as 0.

III. PROTOGRAPH-BASED LDPC-HADAMARD CODES
A. Code Structure

We propose a variation of LDPC-Hadamard code called
protograph-based LDPC Hadamard (PLDPC-Hadamard)
code. The base structure of a PLDPC-Hadamard code is
shown in Fig. 3, where each blank circle denotes a protograph
variable-node (P-VN); each square with an “H” inside denotes
a Hadamard check-node (H-CN); and each filled circle denotes
a degree-1 Hadamard variable-node (D1H-VN). We assume

Variable Nodes

Check Nodes

Fig. 2. A protograph.

1 1

Variable Node
Ly Loy Loy Ley Loy Loy

Loy Ly Ly

Fig. 3. The protograph of a PLDPC-Hadamard code.

that there are n P-VNs and m H-CNs. The protomatrix of
the proposed PLDPC-Hadamard codes is then denoted by
By« = {b;;}, where b; ; represents the number of edges
connecting the ¢-th H-CN (: = 0,1,...,m — 1) and the j-th
P-VN (7 =0,1,...,n — 1). Moreover, we denote the weight
of the i-th row by d., = Z;:Ol b; j, which represents the total
number of edges connecting the i-th H-CN to all P-VNs. For
example in Fig. 3, the number of edges connecting each of the
three displayed H-CNs to all P-VNs is equal to d., = 6. These
d., edges are considered as (input) information bits to the i-th
Hadamard code while the connected D1H-VNs represent the
corresponding (output) parity bits in the Hadamard code. Re-
call that an order-r Hadamard code contains 2" ! codewords
with each codeword containing 7+-1 information bits. Suppose
a Hadamard code of order-(d., — 1) is used to encode these
d., inputs and generate o(de;—1) _ d., Hadamard parity-check
bits. As these d., = r + 1 bits take part in the same parity-
check equation of an LDPC code and need to fulfill the SPC
constraint ', the number of possible combinations of these
d,, bits is only 2(%:~1) and thus 2(%:~1) = 2" Hadamard
codewords will be generated. In other words, only half of
the 2"+ available Hadamard codewords are used, making the
encoding process very inefficient.

Same as in LDPC-Hadamard codes [36], we utilize
Hadamard codes with order » = d., — 2 (r > 2) in the
proposed PLDPC-Hadamard codes. With such an arrangement,

UIf these dc, = r+1 input bits are not required to satisfy a SPC constraint,
two other types of LDPC-Hadamard codes can be formed and they are briefly
described in Appendix A.

=
T
~
=
—
=
=
=
~
=

H] 7|] H| |] 0| H] 7|0
Cy | G5 |G | € | G |C | Cio|Cii|Cn|C3|Ca|Cis

info| info | info| par | info | par | par | par |info| par | par | par | par | par | par | info

‘lliiliilll

10 Hadamard Parity Bits

Fig. 4. Example of encoding a length-6 SPC codeword into a length-16
(r = 4) Hadamard codeword.

all possible Hadamard codewords, i.e., 2(%i—1) = 27+1 can
be utilized; fewer Hadamard parity bits compared with the
case of r = d., — 1 need to be added (only (2(de; =2) _ de;)
and (2(%:=2) — 2) Hadamard parity-check bits are generated
for r is even and odd, respectively); the encoding process
becomes most efficient; the overall code rate is increased; and
the decoding performance is improved. (Note that a Hadamard
code with order r = 2 is equivalent to the (4,3) SPC code.
No extra parity-check bits (i.e., DIH-VNs) will be generated if
such an Hadamard code is used in the PLDPC-Hadamard code.
Thus Hadamard codes with order » = 2 are not considered.)

In the following, we consider the cases when 7 is even and
odd separately. It is because systematic Hadamard encoding
is possible when r is even and non-systematic Hadamard
encoding needs to be used when r is odd.

1) r =d., — 2 is an even number: We denote a Hadamard
codeword by ¢ = [cfl ¢ff ...cfl_,]. For r being an even
number, it has been shown that [36]

[leododo o diio o d.jad_ =0

3)
Viewing from another perspective, if there is a length-(r + 2)
SPC codeword denoted by ¢, = [cuy Cuy --- Cpu, Cu,yy)s these
bits can be used as inputs to a systematic Hadamard encoder
and form a Hadamard codeword where

H —
627‘*1 - CH“T’
H —
02"'—1 - C#r+1(4)

H __ H __ H _
Co = Cupsy €1 = Cuyy " yCok—1 = Cpyy """

correspond to 742 P-VNs and the remaining Hadamard parity
bits in ¢’ correspond to 2" — (r +2) DIH-VNs. Fig. 4 shows
an example in which a (6,5) SPC codeword is encoded into
a length-16 (r = 4) Hadamard codeword.

Referring to Fig. 3, the links connecting the P-VNs to the
i-th H-CN always form a SPC. These links can make use of
the above mechanism to derive the parity bits of the Hadamard
code (denoted as D1IH-VNs of the Hadamard check node in
Fig. 3) if d., is even. In this case, the Hadamard code length
equals 2%:~2, and the number of D1H-VNs equals 2%: =2 —
de,. Assuming d., is even for all ¢ = 0,1,...,m — 1, the
total number of DIH-VNS is given by Z?:Ol (2%i72 —d,,).
When all VNs are sent to the channel, the code rate of the
protograph given in Fig. 3 equals

n—m

Reven —

m—1 '
> (2472 —d.,) +n
i=0

If we further assume that all rows in B,, «x, have the same

par | info

Fig. 5. Example of encoding a length-5 SPC codeword into a length-8 (r = 3)
Hadamard codeword.

weight which is equal to d, i.e., d., = d for all 4, the code
rate is simplified to

even __ n—m

dey=d ™ m(29-2 —d)+n’

When n,(< n) P-VNs are punctured, the code rate becomes

even _ n—m
punctured m (2d72 o d) +n— n,

2) r =d., — 2 is an odd number: For r being an odd
number, the 2" Hadamard codewords in +H, can satisfy
(3) but all the 2" Hadamard codewords in —H, cannot.
We apply the same non-systematic encoding method in [36]
to encode the SPC codeword 2. Supposing ¢, is a SPC
codeword, we preprocess €, = [Cuy Cuy -+ Cp,y] tO Obtain

/! / / /
¢, = [¢uy -+ < ppy], and then we perform Hadamard

; / s H _ [H H H
encoding for ¢, to obtain ¢ = [co c ..CQT,l], where
H _ / _
Co = CMU = Cuo
H __ /
T = €y = Cuy Dy
H _ / —
Cok—1 = Crp = Cup D Cpo &)
H _ / -
Cor-1 = Cu,,- = Cu, D Cpo
H _ —
Cor1 = Cuii = Cupgs-

Fig. 5 shows an example in which a (5,4) SPC codeword is
encoded into a length-8 (r = 3) Hadamard codeword. It can
be seen that after the non-systematic encoding, only the first
and last code bits are the same as the original information bits,
ie., c¢ff =¢,, =cu and ¢ | = vy = Cppyq- Thus we
send the remaining code bits, i.e., ¢! to ci._,, to provide
more channel observations for the decoder and the number
of DIH-VNs equals 2de;=2 _ 2 For example, the code bits
[c{{ it et el } shown in Fig. 5 will be sent.

Assuming all the rows in B,, «, have the same weight d,
the code rate is given by

Rodd n—m)
dei=d ™) (24-2 —2) +

ZNote that there are other non-systematic encoding methods, e.g., prepro-
H / / / /

C/»“r+l] to obtain ¢;, = |c,, Cpyy --- Clipy |

— R . g / —

=cy,; fori =0,1,2,...,7; and Clippr = Ciirgr D cpg-

cess ¢p = [cug Cpy - -
/

where ¢ ”

R

R L,, H ¢
Ly, Repeat Decoder qrfi <
Decision
L
— LR
Symbol-MAP Hadamard Decoder

LL’ | . L//
" with (7 + 2) Outputs o

Fig. 6. Block diagram of a PLDPC-Hadamard decoder. The repeat decoder
is the same as the variable-node processor used in LDPC decoder. For the
symbol-MAP Hadamard decoder, the number of outputs is always r + 2; the
number of inputs is 2" when 7 is even; the number of inputs is 2" 4 r when
r is odd.

If n, (< n) P-VNs are punctured, the code rate becomes

Rodd _ n—m
punctured m (2d72 _ 2) +n—n,

Note that for K =1,2,...,r,

o cll = e = Cup @ o and hence ¢, = B @ s
e ¢y, is transmitted as P-VN; and
. cgc,l is transmitted as D1H-VN.

Thus the r information bits ¢,, can have both the a priori
information provided by the extrinsic information from P-VNs
and the channel information of cﬁi,l = cilk = ¢y, @ cg from
DI1H-VNs. However, the two information bits ¢, and ¢, ,
only have the a priori information from P-VNs and the 2" —
(r+2) Hadamard parity bits only have the channel information
from D1H-VNs. Supposing for every H-CN, n;, (< r) D1H-
VNs corresponding to code bits c:ﬁ,,l (k =1,2,...,r) are
also punctured. The code rate further becomes
Redd _ n—m

punctured DIH-VN m (20{_2 —9_ nh)

(6)

+n—ny,

B. Decoder of the PLDPC-Hadamard Codes

To evaluate the performance of PLDPC-Hadamard codes,
the iterative decoder shown in Fig. 6 is used. It consists of
a repeat decoder and a symbol-MAP Hadamard decoder. The
repeat decoder is the same as the variable-node processor used
in an LDPC decoder and is therefore not described here.

As described in the previous section, each H-CN with an
order-r Hadamard constraint is connected to r 4+ 2 P-VNs
in the protograph of a PLDPC-Hadamard code. The symbol-
MAP Hadamard decoder of order-r has a total of 2" or 2" 4 r
inputs, among which r 4+ 2 come from the repeat decoder and
are updated in each iteration; and the remaining inputs come
from the channel LLR information which do not change during
the iterative process. Moreover, the symbol-MAP Hadamard
decoder will produce r+2 extrinsic LLR outputs which are fed
back to the repeat decoder. The iterative process between the
repeat decoder and symbol-MAP Hadamard decoder continues
until the information bits corresponding to all Hadamard codes
(after hard decision) become valid SPCs or the maximum
number of iterations has been reached. In the following,
we show the details of the operations of the symbol-MAP
Hadamard decoder.

1) r is an even number: A H-CN has r 4 2 links to P-VNs
and is connected to 2" — (r + 2) DI1H-VNs. Specifically, we
denote

o« LE = [LE(0) LE(1) --- LE(r + 1)]T as the r + 2
extrinsic LLR information values coming from the repeat
decoder (P-VNs),

. L1, = (L1 (0) LE (1)
a priori LLR values of cH,

e 9 = [y7(0) g (1) - (2~ DIT as the length-
2" channel observation vector corresponding to ¢ and
is derived from the D1H-VNs (note that » + 2 channel
observations are zero),

o L =[LH (0) LA (1) --- L (27—1)]" as the length-2"
channel LLR observations corresponding to c’.

... LH

apr

(2" — 1)]T as the 2"

Based on (4) and the transmission mechanism, a priori LLR
values exist only for the r -+ 2 information bits in ¢ and they
are equal to the extrinsic LLR values LE from the repeat
decoder. Correspondingly, channel LLR values only exist for
the 2" —r —2 Hadamard parity bits in ¢/ and they are obtained
from the received channel observations ygl In other words,
only 2" —r —2 entries in y’/ and also L’} are non-zero. Thus
the entries of L and LY~ are assigned as

apr
H _ TR
Lapr(k) - Leaz(o) for k 0
H =0
Ll (k) = 252 =0
ch

fork=1,2,-..,27t ... or— L

L (k) = 2258 — g

ch

{ Ly (k) = L&, (i)

Lg,r(k) =LE(r+1)
fork=2"—1;

L (k) = 258 —

9ch
{ LaHpT(k) =0

H
L (k) = 228

for the 2" — r — 2 remaining k.

ch

)

The symbol-MAP Hadamard decoder then computes the a
posteriori LLR (L(Ij;p) of the code bits using (1) and (2). By
subtracting the a priori LLR values from the a posteriori LLR
values, the extrinsic LLR values (L) can be obtained. Fig. 7
illustrates the flow of the computation of L’! = and hence L7},
for » = 4, which corresponds to r + 2 = 6 information bits

(and 2" — (r + 4) = 10 Hadamard parity bits).

2) r is an odd number: A H-CN is connected to r + 2
P-VNs and 2" — 2 D1H-VNs, and the bits corresponding to
the 7 + 2 P-VNs form a SPC codeword c,,. We use the same
notations as in the “r is an even number” case. However, for
ygl, only the first and the last channel observations are zero.
Since non-systematic Hadamard code is used, ¢, does not
represent the information bits in cH for Cuo = “17. Thus, we
cannot directly apply (1) to obtain the a posteriori LLR of c,,.
Here, we present the decoding steps when r is odd.

Referring to Sect. III-A2, the assignment of prT depends
on ¢, . For convenience of explanation, we denote L2 /L

apr apr
as the assignment of LaHpT for ¢, = “0”/“1”, respectively;

¥

2y1(3
}mz()fo@\

T

2y5(5:7)
o

LI[+ LH

apr

2y (9:14)

Oeh

L8(0:2) I (4)

L;.(5)

FHT using +H

[olmoldelne] el
[0 [ho e [he 2@ o)
[0 [o [o] e [de [26]

Fig. 7. Operations in the symbol-MAP Hadamard decoder for r = 4, i.e.,
16 LLR inputs and 6 output LLR values for the information bits.

and we assign Lam using
+H —0:
Loy (k) = LE (0) for k = 0;
k)= LE .
Ly (1) R> fork=1,2,---,271 ... 2r— 1
apr (k) _L ()
+H _ TR —_ 9T .
Lapr(k)—L w(r+1) fork=2" —1;
prlf (k) = for the 2" — r — 2 remaining k.
®)
Moreover, we assign L using
L (k) = 230 for k=1,2,---,2" —2;
ch (9)
LH (k) = 28 — 0 for k= 0,2 — 1.

ch

Since the first bit in all +h;/—h; is “0” /“1” (41 mapped to
“0” and —1 to “1”), we apply L;tpif and L to compute

v(xh;), ie., v(£h;) = exp (<th,L§+Lap,)/2). W

also define the r 4+ 2 a posteriori LLR values (Lapp) of the
original bits ¢, by
H H H H (9i—1
Lapp [Lapp(o) Lapp() Lapp(2) T
ij;p(w Y LE 2 —1))".(10)
Then we compute L »p(0) and Lapr(2" —1) using (1) and (2);
and compute L} (2 1), t=1,2,--- ,r, using DFHT and
H i—1\
Lapp(2) -
> v(thy)+ > 7 (=hy)
| THE T al=+1 —H[2i-1 j]=+1 (11
P> y(th)+ X (—h;)
+H[2i71 j]=—1 —H[2i-1 j]l=—1
where 7/ (—h;) = v(=har_1_;), j=0,1,...,2" — 1. Then

LI =L — LE of length r + 2 is computed and fed back
to the repeat decoder. The steps to compute LZ for the case
r = 3 is shown in Fig. 8.

Remark: If some more bits in cZ_, for k = 1,2,...,r are
punctured, the corresponding channel observation y (28=1)
and LLR values of L (2%=1) are set to 0 and the overall code
rate will slightly increase.

C. Code Design Optimization

We propose a low-complexity PEXIT algorithm for ana-
lyzing PLDPC-Hadamard codes. Our low-complexity PEXIT
algorithm uses the same MI updating method as the original
PEXIT algorithm [20] for the P-VNs. However, our algo-
rithm computes extrinsic MI for the symbol-MAP Hadamard
decoder whereas the original PEXIT algorithm computes
extrinsic MI for the SPC decoder. We use Monte Carlo
method in obtaining the extrinsic MI values of the symbol-
MAP Hadamard decoder. The algorithm not only has a low
complexity, but also is generic and applicable to analyzing
both systematic and non-systematic Hadamard codes.

We define the following symbols.

o I4y(i,7): the a priori mutual information (MI) from the

i-th H-CN to the j-th P-VN;

e I.,(i,7): extrinsic MI from the j-th P-VN to the i-th H-

CN;
e I, (i, k): the a priori MI of the k-th information bit in
the ¢-th H-CN;

o I.p(i,k): extrinsic MI of the k-th information bit in the

i-th H-CN;

o Iupp(j) the a posteriori MI of the j-th P-VN.

Referring to Fig. 3, the channel LLR value L.} follows a nor-
mal distribution V(07 , /2,07) where 07 =S8R - Ey/Ny
and R is the code rate. When the output MI of a decoder is
I, the corresponding LLR values of the extrinsic information
obey a normal distribution N (£0?2/2,0?%). The relationship
between I and o can be approximately computed by the
functions I = J(o) and o = J~1(I) in [9], [13].

1) Modified PEXIT Algorithm: To generate the PEXIT
curves for the repeat decoder and symbol-MAP Hadamard
decoder, we apply the following steps for a given set of
protomatrix B, x, (e.g., (12)), code rate R and E,/Ny in
dB (denoted as Ej/Ny(dB)).

i) Compute oy, = (8- R- lO(E”/N"(dB))/lo)1/2 for Lep,.

ii) For ¢+ = 0,1,...,m —1 and 5 = 0,1,...,n — 1, set
Iav(ivj):()'
iii) Fori=0,1,...,m—1and j =0,1,...,n— 1, compute

(13) if b; ; > 0; else set I.,(i,7) = 0. Taking the 3 x 4
protomatrix in (12) as an example, the weight of each
row is d = 6 and hence 7 + 2 = 6 = r = 4. After
analyzing the MI of the P-VNs, the corresponding 3 x 4
{Iy(%,7)} MI matrix can be represented by (14).
Convert the m x n {I.,(i,7)} MI matrix into an m x d
{Ian(i,k)} MI matrix by eliminating the O entries and
repeating {I.,(4,5)} b; j(> 1) times in the same row.
Using the previous example, the 3 x 4 {I.,(¢,5)} MI
matrix is converted into the 3 x 6 {I4; (i, k)} MI matrix
shown in (15).

For i = 0,1,...,m — 1, using the d entries in the i-th
row of I, and a%ch, generate a large number of sets
of LLR values as inputs to the symbol-MAP Hadamard
decoder and record the output extrinsic LLR values of
the k-th information bit (k = 0,1,...,d — 1). Compute
the extrinsic MI of the information bit using (16), where
pe(§]X = z) denotes the PDF of the LLR values given
the bit = being “0” or “1”. Form the extrinsic MI matrix

iv)

A 20 EXHEN XA ENAC EXSHE RG] IS 0 |260]205@) 200200 2059255 (6) 0
o | oh | on | o | o | e |y o | o | on | o | o | o
Tl |+ 1+ £+ |+ T+ + |+ [+ [+]|+ |+
LO LM [E2)] 0 |3 0 | 0 |@]| [LOFL M- 2)] o |FLE3)] 0 | 0 @
L +L, L+ L,
FHT using +Hjy FHT using -Hy
7(-hy)

] [
<7 \

[Zoloo oo ol o]
o leo o Fio o
[Zo]fo o] fe] ki |

Fig. 8. Operations in the symbol-MAP Hadamard decoder for » = 3, i.e., 11 LLR inputs and 5 output LLR values for the information bits.

2 0 2 2
Bsxs = 0 2 2 2 (12)
3 2 0 1
leo(i,j) = J (\/ bsi (J71 (Taw (5,5)))% + (biy — 1) - (J71 (Jaw (1,4)))° +oicﬂ> 4
s#i
[I.. (0,0) 0 I, (0,2) I.,(0,3)
I, = 0 Io (1,1) Iy (1,2) I, (1,3) (14)
| Lew (2,0) Iy (2,1) 0 I (2,3)
[Ian (0,0) Ian (0,1) Ien (0,2) Ian (0,3) Ien (0,4) Ian (0,5)
L, = Ion (1,0) Ian (1,1) Ian(1,2) Ian(1,3) Ian(1,4) Ian (1,5)
Lo (2,0) Ion (2,1) Ian (2,2) Ian (2,3) Ian (2,4) Ian (2,5)
Iy (0,0) Iy (0,0) Iy (0,2) Iy (0,2) Iew(0,3) Iey (0,3)
= Lo (1,1) Iy (1,1) Iy (1,2) Iy (1,2) I, (1,3) I, (1,3) (15)
| 10 (2,0) 1o (2,0) 1ev (2,0) Lo (2,1) Iew(2,1) Iew(2,3)
1 * 2-pe (£ X = =)
I = = / e (€| X = x)lo — —~d. (16)
E 2x€{01} _Oop (£|) g2pe(§|X: 0)+pe €X: 1) 5
[Ien (0,0) Ien (0,1) Ien (0,2) Ien (0,3) Ien (0,4) Ien (0,5)
I, = Ln (1,0) Iop(1,1) ILn(1,2) I (1,3) Ien(1,4) I (1,5) 17
| Len (2,0) Len(2,1) Len(2,2) ILen(2,3) ILen(2,4) ILen(2,5)
[I..(0,0) 0 Iy (0,2) I, (0,3)
I, = 0 Tow (1,1) Iap(1,2) Iay (1,3)
Iy (2,0) I, (2,1) 0 I, (2,3)
r 1 3 5
% Z Ieh(07k) 0 % Z Ieh(07 k) % Z Ieh(ovk)
k=0 k§2 k§4
= 0 LY Len(Lk) 33 Len(Lk) 3 X Len(1,k) (18)
) kjo k=2 k=4
% Z Iﬁh(z’k) % Z Iﬁh(ka) 0 -Ieh(275)
L k=0 k=3

{Ie1,(4, k) } of size m x d. (Details of the method is shown
in Appendix B.) Using the previous example, the matrix
is represented by (17).

Remark: Our technique makes use of multiple a priori MI
values ({1, (%, k)}) as well as channel information o, ,
and produces multiple extrinsic MI values ({Z.7 (i, k)}).
In [46], an EXIT function of symbol-MAP Hadamard
decoder under the AWGN channel is obtained. However,
the function involves very high computational complexity,
which increases rapidly with an increase of the Hadamard
order r. The function also cannot be used for analyzing

Vi)

non-systematic Hadamard codes. In [36], simulation is
used to characterize the symbol-MAP Hadamard decoder
but the method is based on a single a priori MI value
as well as channel information and produces only one
output extrinsic MI.

Convert the m x d {I. (i, k)} MI matrix into an m x n
{I.v(i,7)} MI matrix. For ¢ = 0,1,...,m —1 and j =
0,1,...,n—1;if b; ; > 0, set the value of I,,(%,j) as the
average of the corresponding b; ; MI values in the i-th
row of {I.n(i,k)}; else set I, (i,5) = 0. In the above
example, {I,,(i,7)} becomes (18).

Algorithm 1: Searching B, «, with a low threshold

1 Generate a random protomatrix B, x» according to the
corresponding constraints;
Ey/No(dB) = —1.40 dB;
while £, /No(dB) > —1.59 dB do
=+/8- R-10(Es/No(dB))/10;

2
3

4 OLcp,

5 Icw(j) = J(oL,,) for V j;
6 Iav(i,7) =0 for V 4, j;
7 It =0;

8 while It < 300 do

9 Use the proposed PEXIT algorithm to analyze

B xn and obtain Iapp(j) for j =0,1,...,n—1;
10 if Iopp(j) =1 for V j then
1 L E,/No(dB) = E,/No(dB) — 0.01 dB; Goto line
3;
12 It=1t+1,
B3| Break;

14 Threshold equals Ej/No(dB) + 0.01 dB.

vii) Repeat Steps iii) to vi) until the maximum num-
ber of iterations is reached; or when I,,,(j) =
1 for all j = 0,1,...,n — 1 where I, (j)

J < ”’g b3 (T (L (i,)))* + o)

Note that our PEXIT algorithm can be used to analyze
PLDPC-Hadamard designs with degree-1 and/or punctured
VNs. In case of puncturing, the corresponding channel LLR
values in the analysis will be set to zero.

2) Optimization Criterion: For a given code rate, our
objective is to find a protograph of the PLDPC-Hadamard
code such that it achieves I,p,(j) = 1 V j within a fixed
number of iterations and with the lowest threshold Ej,/Ny. To
reduce the search space, we impose the following constraints:
the weights of all rows in the protomatrix are fixed at d; the
maximum column weight, the minimum column weight, and
the maximum value of each entry in protomatrix are preset
according to the code rate and order of the Hadamard code; the
maximum number of iterations used in the PEXIT algorithm
is set to 300; and a target threshold is set to below —1.40 dB.

Algorithm 1 shows the steps to find a protomatrix with a low
threshold. A protomatrix is first randomly generated according
to the constraints above. Then it is iteratively analyzed by the
PEXIT algorithm to see if the corresponding PEXIT curves
converge under the current Ej, /Ny (dB). If the protomatrix is
found satisfying I,,,(j) = 1 for all j, E,/Ny (dB) is reduced
by 0.01 dB and the protom