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Abstract—We propose and experimentally demonstrate 
a scheme for accelerated fast BOTDA. The effect of signal-
to-noise ratio (SNR) on recovery performance of 
compressed sensing is simulated and analyzed, it is 
found that a reduction in SNR requires much larger 
frequency data to recover the original Brillouin gain 
spectrum (BGS). To enable a high recovery probability, 
Block-Matching and 3D filtering (BM3D) algorithm is 
employed to enhance the SNR of Brillouin time trace and 
reduce the number of averages. Combining with a principal component analysis (PCA) based compressed sensing 
technique, the Brillouin gain spectrum (BGS) can be successfully reconstructed from only 37.5% frequency data. In 
the experiment, 75 randomly selected frequency data is acquired to reconstruct the BGS. Distributed strain sensing is 
achieved over 15 km single-mode fiber with 3 m spatial resolution and 0.52 MHz Brillouin frequency shift (BFS) 
uncertainty. Due to the accelerated process, the measurement time with 40 averages is less than 0.5 s. 

Index Terms—Brillouin optical time-domain analysis (BOTDA), compressed sensing, ultra-fast measurement 

I. Introduction

rillouin scattering based distributed optical fiber sensors 
(DOFS) have attracted intensive research interests in the 

past several decades due to their potential applications in 
structural health monitoring (SHM) of large structures such as 
gas/oil pipelines, dams, and bridges [1]–[3]. As one of the 
typical Brillouin scattering based DOFS, Brillouin optical time-
domain analysis (BOTDA) has the advantages of high signal-
to-noise ratio (SNR) and long measuring range [4]–[6]. 
However, the acquisition process of BOTDA is quite time-
consuming since it requires the mapping of Brillouin gain 
spectrum (BGS) step-by-step over a wide frequency range. To 
solve this problem, numerous dynamic sensing techniques have 
been presented. Among them, slope-assisted BOTDA [7]–[10], 
sweep free BOTDA [11]–[13], and optical chirp chain BOTDA 
[14]–[16] omit the frequency sweeping process and thus can 
substantially boost the sensing speed. Image denoising methods 
which utilizes redundancies and correlations contained in the 
two-dimensional (2D) data have also been proposed in recent 
years. Several conventional algorithms as well as deep-learning 
based algorithms have been successfully implemented for 
DOFS signal denoising such as nonlocal mean [17], wavelet 
denoising (WD) [18], Block-Matching and 3D filtering (BM3D) 
[19], and CNN [20]. Alternatively, fast BOTDA still involves 
frequency sweeping to reconstruct the BGS while employing a 
frequency-agile technique to reduce the frequency switching 
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time [21]–[25]. Acquisition rates from several hundred to 
several thousand hertz have been demonstrated. However, the 
sensing range is limited to a few hundred meters. For long-
range sensing, the number of scanning frequencies and trace 
averaging limit the further improvement of the sampling rate.  

More recently, compressed sensing (CS) based BOTDA is 
proposed. Since the BGS, which has a Lorentzian lineshape, is 
sparse in the discrete cosine transform (DCT) domain, it can be 
recovered from few measurement data through an orthogonal 
matching-pursuit (OMP) algorithm. It was demonstrated that 
only 30% of the frequency data was required to reconstruct the 
entire BGS, which greatly reduced the acquisition time as well 
as the amount of data to store [26]. Principal component 
analysis (PCA) based CS has also been proposed to improve the 
performance of fast BOTDA since BGS shows better sparsity 
level in PCA sparse base. BGS with 4 MHz frequency step and 
500 MHz span was successfully recovered from 30% randomly 
sampled frequency data [27]. Besides, a signal is always 
affected by the noise in practical measurements, which 
deteriorates the recovery performance of CS, especially in the 
low SNR scenario (i.e., long-range BOTDA). 

In this paper, we propose and experimentally demonstrate a 
scheme of accelerated fast BOTDA assisted by CS and image 
denoising. The effect of SNR on the recovery performance of 
CS is analyzed. It is found that a reduction in SNR requires 
much larger frequency data to recover the BGS. Therefore, 
Block-matching and 3D filtering (BM3D) is employed to 
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enhance the SNR of the time trace. In the experiments, 37.5% 
randomly selected frequency data is acquired and pre-denoised 
by using BM3D to reconstruct the BGS along the sensing fiber. 
Distributed strain sensing is achieved over 15 km single-mode 
fiber with 3 m spatial resolution and the measurement time with 
40 averages is less than 0.5 s.  

II. PRINCIPLE 

CS is a sampling paradigm that allows to simultaneously 
measure and compress signals that are sparse or compressible 
in some domains. Consider a one-dimensional signal x, which 
can be viewed as an N×1 column vector with element x[n], n=1, 
2, …, N. x can be expressed as [28]–[30]: 

1

N

i i
i

x s s


                                  (1) 

Where Ψ={ψ1, ψ2, …, ψN}is an N×N matrix constructed by 
a series of basis {ψi}, s is the coefficient sequence of x. The 
signal x is known as K sparse signal over the dictionary Ψ only 
if s is a vector with all except K of its elements as zero. The CS 
theory exploits that most signals of interest are sparse or 
compressible in the sense that they can be encoded with just a 
few coefficients without much numerical or perceptual loss. In 
order to reconstruct the signal x, a set of M measurements that 
are linear functionals of x is acquired. More precisely 

y x s As                               (2) 

Φ is a M×N matrix with M<N, which refer as the 
measurement matrix. The CS theory proves that when the 
matrix A=ΦΨ has the Restricted Isometry Property (RIP), the s 
or the signal x can be recovered from measurements y with high 
probability. In practical measurement, a signal is inevitably 
corrupted by ambient and system noise. In light of that, Eq. (2) 
can be rewritten as [31]: 

( )s my Ax n A x n n                          (3) 

In which n=Ans+nm, while ns and nm denote the signal and 
the measurement noise, respectively. Assume that ns and nm are 
independent zero-mean Gaussian noise with variance σ௦ଶ  and 
σ௠ଶ , respectively. The covariance matrix   of the total noise 
vector n becomes 

2 2T
s m MAA I                           (4) 

Where IM represents an M×M identity matrix. In a special 
case, when the rows of A are orthogonal with an equal norm of 

ඥ𝑁/𝑀, the noise n is white with covariance 

2 2 2 21 1
( )s M m M s m MI I I   

 
                  (5) 

In which ρ=M/N. From (5), it can be seen that the variance 
of the signal noise after compression increases by the factor of 
N/M, which is known as the noise folding effect [32], [33]. Thus, 
the performance of the CS recovery algorithms depends 
seriously on the number of measurements and the input SNR. 
When the SNR of the input signal is low, the recovery 
probability will decrease rapidly. 

For a BOTDA system, the ideal BGS has a Lorentzian 
lineshape which is shown in Fig. 1(a) (blue circle). The BGS is 
comprised of 200 frequency points, which corresponds to a total 
measurement range of 398 MHz with 2 MHz frequency step. 

The full width at half maximum (FWHM) of BGS is set to 40 
MHz. It can be translated to a sparse signal s by using PCA 
transform. Fig. 1(b) shows the property of s, it can be observed 
that the amplitude of s converges to zero rapidly, only a few 
elements of s are not zero. 

To test the performance of CS technique, OMP algorithm is 
employed to reconstruct the BGS. Fig. 2(a) shows the ideal 
BGS with N=200 data points, and the red circles in Fig. 2(a) are 
75 randomly selected data points and the reconstructed result is 
shown in Fig. 2(b). The reconstructed BGS is in perfect 
agreement with the original BGS, which means that the BGS 
can be reliably reconstructed despite using a few data points. 

 
 
Fig. 1.  (a) Original BGS with 200 data points and a linewidth of 40 MHz. 
(b) The sparse representation of BGS obtained through PCA transform. 
 

 
Fig. 2. (a) Original BGS (blue line) and the randomly selected data points 
(red dots). (b) Reconstructed BGS by using OMP algorithm (red dots). 
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Fig. 3. (a) Noise-affected BGS with an SNR of 10 dB (blue line) and the 
randomly selected data points (red dots). (b) Reconstructed noisy BGS 
(red dots). 
 

 
Fig. 4. (a) Successful recovery percentage of ideal BGS as a function of 
the measurement numbers. (b) The successful recovery percentage of 
BGS with different SNRs as a function of the measurement numbers. 
 

However, in BOTDA measurement, the acquired frequency 
data is always noisy, especially for the long-range scenario. Fig. 
3(a) shows a noisy BGS with an SNR of 10 dB, and Fig. 3(b) is 
the reconstructed result. It can be seen that when the SNR is 
relatively low, large errors will arise in the recovered BGS. The 
correlation coefficient between the original BGS and the 
reconstructed one is only 0.58.  

To investigate the effect of SNR on CS, simulations are 
performed to analyze the successful recovery rate (100 trials 
spectra) of BGS as a function of the measurement numbers and 
the results are shown in Fig. 4. As expected, when the SNR 
decreases, a higher percentage of the measurement number is 
necessary to guarantee the spectrum recovery. For the BGS 
with SNR of 21 dB, 94% successful recovery rate can be 
achieved with the number of frequency acquisitions only 33% 
of that needed by a conventional BOTDA. On the other hand, 
for BGS with 12 dB SNR, the required number of random 
measurements increases to 88% of the full frequency 
acquisitions to recover the spectrum with high probability. 

III. EXPERIMENTAL SETUP 

 

 
 

Fig. 5. Experimental setup. PC: polarization controller, EOM: electro-
optic modulator, RF: radio frequency source, AWG: arbitrary waveform 
generator, PS: polarization scrambler, EDFA: Erbium-doped fiber 
amplifier, ISO: isolator, FUT: fiber under test, DWDM: dense wavelength 
division multiplexer, VOA: variable optical attenuator, DSO: digital 
storage oscilloscope. 
 

The experimental setup is shown in Fig. 5. A narrow 
linewidth distributed feedback (DFB) laser operating at 1549.1 
nm is used as the light source. The output of the laser is divided 
into two propagation paths by using a 3dB optical coupler. The 
upper branch signal is used as the probe and the lower branch 
signal is used as the pump. In the lower branch, microwave 
pulse trains generated by an AWG with 12 GSa/s sampling rate 
are modulated onto the pump light through a high extinction 
ratio (i.e., > 40 dB) electro-optic modulator (EOM) biased at 
the null-transmission point. In order to fast scan the Brillouin 
spectral response, the frequency of pump is modulated from 
250 MHz to 648 MHz with a step of 2 MHz by using frequency-
agile technique. The pulse width and repetition frequency are 
30 ns and 9 kHz, respectively. Then the pump pulses are 
amplified by using an erbium-doped fiber amplifier (EDFA) 
before launching them into the fiber under test (FUT).   

In the upper branch, the probe is modulated by a radio 
frequency signal with frequency fixed at 11.29 GHz. After 
propagating through the FUT, the upper and lower sidebands of 
the probe wave are separated by using a dense wavelength 
division multiplexer (DWDM) with a bandwidth of 100 GHz 
and then detected by a balanced photodetector (BPD) with 200-
MHz bandwidth. Since both pump and probe waves are 
performed double-side-band (DSB) modulation, the upper 
sideband of probe will interact with the upper sideband of pump 
via loss process, while the lower sideband of probe will interact 
with the lower sideband of pump via gain process. After 
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balanced detection, the SNR can be improved and the larger 
undesirable DC component will also be removed [34]. The 
electrical signals output from the PD are collected by a digital 
storage oscilloscope (DSO) with 200 MHz sampling rate 
(limited by the storage depth of DSO) and the acquired data are 
sent to a computer for further processing. 

15 km single-mode fiber whose BFS is around 10.84 GHz 
at room temperature is served as FUT. Near the end of the fiber, 
a section of 6 m is stretched by two translation stages. 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 
 
Fig. 6. (a) Acquired Brillouin signal of the 75 randomly selected 
frequencies (40 averages). (b) Measured (blue line, 2560 averages) and 
reconstructed BGS (red dots) at 15 km.  

To verify the reconstruction performance of OMP algorithm, 
the Brillouin time-domain traces of the 75 randomly selected 
frequencies are acquired as shown in Fig.6 (a), the SNR at the 
end of fiber is estimated to about 11.6 dB (40 averages). Fig. 6 
(b) shows the measured BGS by using the conventional 
frequency sweeping method (blue line, 2560 averages) and 
reconstructed BGS (red dots) from raw data in Fig. 6(a) at 15 
km, respectively. As expected in theoretical analysis, the 
reconstructed BGS is seriously distorted due to the low SNR, 
the correlation coefficient between the measured BGS and 
reconstructed BGS is only 0.78. After Lorentzian curve fitting, 
the BFS difference of the two BGSs is 5.9 MHz (10.8409 GHz 
for measured BGS and 10.8468 GHz for reconstructed BGS), 
which means that the reconstructed BGS from low SNR signal 
will generate a large error. 
 

 
Fig. 7. (a) Acquired Brillouin time trace around BFS before (blue line) 
and after (red line) denoising by using BM3D. (b) The SNR of Brillouin 
time trace before (blue line) and after (red line) denoising. The black 
dashed lines show linear fitting (in dB scale) of the SNR curves versus 
distance. 

 

Here, BM3D is used to further enhance the SNR of Brillouin 
trace [19]. BM3D includes three main operations: block 
matching, collaborative filtering and reconstruction. In block 
matching, BM3D utilizes non-local principle to group similar 
blocks together to reveal self-similarity of original blocks (or 
patches) in the image. Then the matching blocks of the image 
are stacked into a 3-Dimensional array, which will be processed 
by the following collaborative filtering in the transform domain. 
Collaborative filtering could remove the noise efficiently but 
still preserves most of the significant details in the original 
image. After collaborative filtering, noise-reduced blocks in the 
3D array are mapped back to their original location with an 
appropriate weighting of the overlapping blocks. Since the 75 
frequencies are discretely distributed, BM3D cannot be used 
directly in case of blurring the information between adjacent 
frequencies. The time serves as a second dimension and a two-
dimensional (2D) image is formed by stacking 80 successive 
measurements of each frequency. The size of a block in BM3D 
is set to 8 × 8 pixels while the search window is restricted to the 
size of 39×39 pixels in order to reduce the computational 
complexity. In collaborative filtering process, 3D discrete 
cosine transform (DCT) is applied to obtain the coefficients of 
the 3D blocks. A hard threshold of 3.5 σ (i.e., the standard 
deviation of the noise) is used to remove the noise, Wiener 
filtering is used after the hard thresholding. The denoising result 
is shown in Fig.7 (a) (red line), it can be seen from the figure 
that the noise in the recovered signals is greatly suppressed. Fig. 
7(b) compares the SNRs of the raw noisy traces (blue lines) and 
the ones obtained after denoising (red lines) with the BM3D. 
The black dashed lines correspond to the respective linear 
fitting (in dB scale) of the SNR versus distance curves. The 
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results indicate that an SNR at 15 km on the raw data can be 
substantially boosted to 22 dB. Although the denoising is 
performed in time dimension, the SNR in BGS domain can be 
equally improved [35]. 
 

 

 
Fig. 8. (a) BGS distribution along FUT obtained by using frequency 
sweeping method with 2 MHz frequency step and 200 frequency 
acquisitions. Each time-trace is averaged 2560 times. (b) BGS 
distribution along FUT reconstructed by using 75 randomly selected 
frequencies. (c) Measured (blue line) and reconstructed (red line) BGS 
at 0.2 km. (d) Measured (blue line) and reconstructed (red line) BGS at 
15 km. 

 
Fig. 8(a) shows the measured BGS by entirely acquiring 200 

frequencies (2560 averages), Fig. 8(b) depicts the reconstructed 
BGS distribution along FUT by using the denoised 75 
frequencies in Fig. 7. The correlation coefficient between the 
two figures is 0.9909 which validates that the OMP algorithm 
can successfully reconstruct the BGS by using only 37.5% of 

the total frequency data. Fig. 8(c) and (d) show the BGSs at 0.2 
km and 15 km, respectively. The reconstructed BGS agree well 
with the measured spectra and no relevant distortion is observed. 
Thus, the entire acquisition time can be greatly reduced to about 
0.5 s. 

 

 
Fig. 9. The measured and reconstructed BFS distribution along the last 
220 m fiber section (inset: the distribution of BFS along the FUT). 
 

Fig. 9. shows the acquired BFS from the measured BGS 
(blue line) and the reconstructed BGS (red dash line). We can 
observe that the fitting results agree well with each other, thus 
verifying the reliability of the CS reconstruction. The stretched 
section can be clearly identified and the BFS difference 
between the stretched and unstretched fiber is found to be 64 
MHz. The ~3 m transition section also implies a spatial 
resolution of 3 m. Fig. 9 inset gives the BFS distribution along 
the FUT. The BFS uncertainty (i.e., the standard deviation of 
the BFS values around the last 30 m fiber section) of measured 
and reconstructed results are calculated to be 0.5 MHz and 0.52 
MHz, respectively. 
 

 
 

Fig. 10. (a) Estimated BFS along the stretched fiber with different strains 
(all reconstructed by using 75 selected frequency data). (b) BFS of the 
stretched fiber as a function of strain. Blue line is the linear curve fitting. 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

Distributed strain sensing experiments are also carried out 
to test the performance of F-BOTDA. Near the end of the FUT, 
a section of 6 m is stretched, where the strain is increased in 
steps of 500 με. The results are depicted in Fig. 10(a) which 
shows that when the strain grows larger, the BFS shifts upwards. 
Fig. 10(b) shows the linear fitting result of BFS as a function of 
strain via linear fitting. The strain coefficient for the FUT is 
0.0468 MHz/με. The coefficient of determination R2 is 99.91%, 
indicating that a good linear relationship is achieved for the 
strain sensing. 

We also summarize the overall performance of fast BOTDA 
reported to data as shown in table I. Compared with previous 
works, the sensing range of fast BOTDA is significantly 
improved by exploiting BM3D and CS methods in this scheme. 

 
TABLE I 

KEY PARAMETERS OF FAST BOTDA REPORTED TO DATA 

 
Spatial 

resolution 
Sensing 
range 

BFS 
uncertainty 

Dynamic 
range 

Sensing 
speed 

Ref.21 1.3 m 100 m 0.25 MHz 200 MHz 0.1 ms 

Ref.22 0.2 m 50 m 0.7 MHz 200 MHz 0.07 ms 

Ref. 23 1.5 m 145 m 0.5 MHz 210 MHz 0.6 ms 

Ref.24 1.5 m 2 km 0.74 MHz 147 MHz 2.3 ms 

This work 3 m 15 km 0.52 MHz 398 MHz 0.45 s 

 
 

V. CONCLUSION 

In this paper, we proposed and experimentally demonstrated 
a scheme of accelerated fast BOTDA. The effect of signal-to-
noise ratio (SNR) on recovery performance of compressed 
sensing is verified both in simulation and experiment. It is 
found that a reduction in SNR requires much larger frequency 
data to recover the original Brillouin gain spectrum (BGS). To 
enable a high recovery probability, Block-Matching and 3D 
filtering (BM3D) algorithm is employed to enhance the SNR of 
Brillouin time trace. In this way, both the number of trace 
averaging and scanning frequencies are dramatically reduced. 
BGS over 15 km single-mode fiber can be measured with only 
40 averages and 37.5% frequency data (75 points) within 0.5 s. 
The spatial resolution, BFS uncertainty, and dynamic range are 
3 m, 0.52 MHz, and 398 MHz respectively. The proposed 
method can significantly enhance the performance of BOTDA 
without any hardware modifications. 
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