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Abstract

Multi-delayed systems, especially the neutral ones, have infinitely many and complex distributed characteristic

roots that are crucial for system dynamics. The definite integral method, which determines the system stability

by using only a definite integral, is extended in this paper for calculating all the characteristic roots in an

arbitrarily given area on the complex plane of both retarded and neutral multi-delayed systems with constant

discrete delays. Two simple algorithms are proposed for implementing the proposed method, by first calculating

the distribution of the real parts of all the characteristic roots, then the imaginary parts by using an iteration

method. The real part distribution can be used for the quick estimation of key characteristic roots such as the

rightmost ones or the corresponding accumulation point(s), thus allowing adjusting the upper limit of the integral

to further simplify the calculation procedure. Examples are given to show the feasibility and the efficiency of

the proposed method through numerical analyses.

Keywords: Definite Integral Method, Multi-Delay, Neutral Time Delay Differential Equation, Characteristic

Roots, Stability.

1. Introduction

Time delays are very common in real world, see for instance several engineering applications: Internet

control [1], metal cutting [2], man-machine interaction [3], thermo-acoustic interaction[4] and so on [5]. The

evolution of a time-delay system depends not only on the present state as in systems described ordinary differen-

tial equations (ODEs), but also the past states over previous time period(s). Thus, irrespective of the number of

time delays, a time-delay system has always infinite-dimensional solution space. As a matter of fact, time delay

often exerts strong impact on system dynamics, such as deteriorating its performance, destabilizing dynamic

responses, and results in complex nonlinear behaviors like double Hopf bifurcation [6], chaos [7], and so on [8].

Time-delay systems are usually modeled by delay differential equations (DDEs). Depending on whether

the highest-order derivative terms have time delay(s) or not, DDEs can be classified into neutral ones (NDDEs)

and retarded ones (RDDEs) [9]. NDDEs have different features compared with RDDEs. For example, in the
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linear stability analysis that requires the knowledge of root location of the characteristic equation, the infinite

number of characteristic roots of an RDDE reside in the left half complex plane of a line parallel to the imaginary

axis, while the infinite number of characteristic roots of a linear NDDE are distributed in a strip between two

lines that are parallel to the imaginary axis with possible accumulation point(s) on the boundary. Thus, the

stability of an RDDE is guaranteed if all the characteristic roots have negative real parts (or equivalently the real

part of the rightmost characteristic roots is negative); on the contrary, the stability of an NDDE is ensured if the

real part of the rightmost characteristic roots is negative and no accumulation point exists on the imaginary axis.

Based on this fact, many stability criteria have been developed for the stability analyses of DDEs, exemplified

by the Pontryagin method [10], the Nyquist Plot method [11, 12], the Stepan/Hassard method [13, 14] and

the definite integral method (DIM) [15, 16, 17], the linear θ-method [18], all by checking whether the number

of characteristic roots with nonnegative real parts is zero. Meanwhile, some algorithms have been proposed

for directly calculating the rightmost characteristic roots of some DDEs which also offer means for stability

assessment, such as calculating the RDDE’s rightmost roots on the basis of the Lambert W function [19], and

the NDDE’s rightmost roots based on the DIM [20] with strong stability condition [21] holds.

For stable NDDE, whose real part of the rightmost characteristic roots is negative, the stability can be strong

or weak, depending on whether the characteristic roots have accumulation point(s) at infinity on the imaginary

axis [21]. Strong stability is the case that is most widely investigated in the literature. By comparison, studies

on weak stability is relatively scarce. In typical weak stability problems, both the rightmost characteristic roots

and the accumulation point(s) are crucial for stability assessment. In addition,as a delay increases from zero

to a certain level, the rightmost characteristic roots of DDEs are generated differently from the root branches

initiated, either from the rightmost ones of the corresponding delay-free system for short delay, or from other

roots of the delay-free system for large delay [4]. This means that other characteristic roots but the rightmost

ones might be crucial to the stability of DDEs from a parametric point of view. On the other hand, due to infinity

and complex distribution of the characteristic roots of NDDEs, it is not possible to calculate all the characteristic

roots whose right part is larger than a given value, if this value is less than the real part of NDDE’s accumulation

point(s). Thus, an effective algorithm for calculating characteristic roots in a given region of the complex plane

is necessary of the stability analysis of NDDEs. There has been a few numerical methods that are able to

achieve this for both RDDEs and NDDEs. As typical examples, the MATLAB package DDE-Biftool [22, 23]

uses the linear multistep method to discretize the system equation for obtaining approximated characteristic

roots in a given region and then uses the Newton-Raphson Method to correct the estimated roots. The QPmR

algorithm [25] computes the intersection points of the real and imaginary parts on the meshed complex plane.

The advanced QPmP algorithm [26, 27] uses the Argument principle to judge the existence of the characteristic

roots in a given strip of the complex plane, which enhances the computation efficiency by omitting grids in this

strip.

The main objective of this paper is to extend the DIM for calculating the characteristic roots of both

RDDEs and NDDEs with constant discrete delays in a given area in the complex plane. Compared with the

original DIM that calculates only the rightmost roots under strong stability condition, the currently proposed

extended version is applicable to all systems regardless whether the strong stability condition holds or not.
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To the best of our understanding, the proposed algorithm shows some merits over the existing methods. For

example, the definite integral used in the proposed algorithm takes integer jumpings only, and its calculation

allows a round error between -0.5 and 0.5, unlike the calculation of real/imaginary numbers using other methods

that might be sensitive to the parameter uncertainties. Meanwhile, the extended DIM first gives the distribution

of the real parts of the characteristic roots by searching where the calculated number of roots jumps, then finds

the imaginary roots by iteration methods. The pre-calculation of the real part distribution is efficient for system

analysis. For example, by adjusting the upper limit of the integral, the extended DIM offers a fast way of

estimating the rightmost roots and the accumulation point(s), other than estimating them after calculating all the

characteristic roots in the given region.

The rest of the paper is organized as follows. Section 2 gives a brief introduction of the original DIM

for stability test of both linear RDDEs and NDDEs with constant discrete delays, alongside its application

in calculating the rightmost characteristic roots. Section 3 presents the proposed DIM for the calculation the

characteristic roots in an arbitrary but bounded area in the complex plane. Then in Section 4, four numerical

examples of different type of DDEs are illustrated. Finally, in Section 5, concluding remarks are summarized.

2. Calculating rightmost roots of NDDEs

Consider a linear time invariant delay differential equations (DDE), which takes the form of

ẋ(t) +

m∑
i=1

Ni ẋ(t − τi) = Ax(t) +

m∑
i=1

Bix(t − τi) (1)

where x ∈ Rn, τi > 0, A, Bi, Ni ∈ Rn×n. When Nk = 0 for all k = 1, 2, . . . ,m, Eq. (1) is referred to as a retarded

delay differential equation (RDDE), and when at least one Nk , 0 for some k = 1, 2, · · · ,m, it is called a neutral

delay differential equation (NDDE). The characteristic equation of Eq. (1) is in the form of f (λ) = 0, where

f (λ) is called the characteristic function which satisfies

f (λ) = λn +

n∑
i=0

αi(e−λτ1 , ..., e−λτm )λn−i , (2)

where αi(z1, . . . , zm) , (i = 0, 1, . . . , n), are real polynomials with respect to z1 = e−λτ1 , . . . , zm = e−λτm .

From [9], it is proved that the largest real part of the accumulation point(s) of the characteristic roots of

system (1), i.e., the value that separates apart the rightmost and non-rightmost roots, is the largest real part of

the roots of

1 + α0(e−λτ1 , ..., e−λτm ) = 0 .

The DIM, capable of analyzing the stability of system (1), can also be used to calculate all its rightmost

characteristic roots. Next we first introduce the stability criterion by using the DIM.

2.1 Definite integral method for stability test
The trivial solution x = 0 of system (1) is asymptotically stable if and only if all the characteristic roots

have negative real parts and are uniformly bounded away from the imaginary axis [8]. To guarantee that the ac-

cumulation point(s) of the characteristic roots have negative real parts and are bounded away from the imaginary
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axis, the strong stability condition stipulates that the coefficient α0(e−λτ1 , ..., e−λτm ) should satisfy

sup
<(λ) > 0, |λ| → ∞

∣∣∣α0(e−λτ1 , ..., e−λτm )
∣∣∣ < 1 . (3)

Condition (3) actually guarantees that the roots of 1 + α0(e−λτ1 , ..., e−λτm ) = 0 have negative real parts

and are bounded away from the imaginary axis. For single delay cases, if condition (3) does not hold, the

system is unstable because the accumulation point(s) has/have positive real part; however in rare cases where

multiple time delays exist and are rationally dependent with each other, even if condition (3) does not hold, the

accumulation point(s) can still have negative real part(s) and be bounded away from the imaginary axis and the

system response of Eq. (1) can be asymptotically stable . This is called weak stability because it is not robust,

as an arbitrarily small variance of time delay, which breaks the rational dependence between the time delays,

can make the system asymptotically unstable[21].

Lemma 1. Assuming that the characteristic equation (2) has no roots on the imaginary axis, and condition (3)
holds, then there exists a sufficiently large positive real number T0, such that for all T ≥ T0, the integer number
N of the unstable characteristic roots, i.e., the roots whose real parts are positive, is located in the interval

N ∈

(
−

F(0,T )
π

+
n − 1

2
,−

F(0,T )
π

+
n + 1

2

)
, (4)

where

F(0,T ) =

∫ T

0
<

(
f ′(iω)
f (iω)

)
dω (5)

with<(z) denoting the real part of a complex number z.

Lemma 1 suggests that the exact numberN of the unstable characteristic roots of an NDDE satisfying condition

(3) can be easily calculated by rounding off

N = round
(
n
2
−

F(0,T )
π

)
.

If N = 0, the corresponding NDDE must be asymptotically stable.

2.2 Calculating the rightmost characteristic roots
A direct application of the DIM is to calculate the rightmost characteristic roots of system (1):

Lemma 2. Assuming that the strong stability condition holds for f (λ + δ) = 0, and no roots of f (λ + δ) = 0 are
on the imaginary axis, there exists a sufficiently large positive real number T0, such that for all T ≥ T0 one has

N(δ) = round
(
n
2
−

1
π

∫ T

0
<

(
f ′(δ + ω i)
f (δ + ω i)

)
dω

)
.

Remark 1 The roots of f (λ + δ) = 0 are the same as the roots of f (λ) = 0 but shifted δ leftward in the

complex plane. Thus using Lemma 2, when δ keeps decreasing from a large value δ0 which guarantees that all

the real parts of the roots of f (λ) = 0 are less than δ0, it can be proved that N(δ) increases from 0 to infinity.

Meanwhile N(δ) jumps at δ when δ is the real part of at least one of the roots of f (λ) = 0. Upon getting the

root’s real part, the imaginary part can be easily carried out by using iteration method.
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图 1: Contour C1 and C2

It is worth noting that the exploration of the characteristic roots is an elaborated way to analyze stability

boundaries. For certain complex systems, however, the characteristic functions can be hard to compute and

numerical perturbations of system parameters can affect the robustness of the characteristic root calculation as

well as the stability assessment, especially for NDDEs when time delays are perturbed. For these complex

systems, other stability methods directly based on the system equation may be utilized.

Remark 2 For an RDDE,N(δ) goes to infinity only when δ goes to negative infinity, thus all the roots in a

bounded area can be calculated. However for an NDDE, N(δ) goes to infinity when δ approaches the real part

of the accumulation point(s), and all the roots whose real part are smaller than the real part of the accumulation

points, can not be calculated using Lemma 2.

3. Calculating characteristic roots located in a bounded area

This section aims at improving the DIM, so as to calculate the characteristic roots of system (1) in any

bounded area in the complex plane, without imposing the strong stability condition (3).

A general relationship between the integral (5) and the number of the unstable roots N can be obtained

from the Argument Principle:

Lemma 3. For delay differential system (1), assuming that the characteristic equation f (λ) = 0 has no roots
on the boundary of Curves C1 and C2, as shown in Figure 1, and let N be the number of all the characteristic
roots of Eq.(2) in the area encircled by C1 and C2, one has

N =
n
2
−

F(0,R)
π

+ A(R) (6)

where,

A(R) =
1

2π
arg

1 +

n∑
i=0

αi(e−iRτ1 , · · · , e−iRτm )
(iR)i

 − 1
2π

arg

1 +

n∑
i=0

αi(eiRτ1 , · · · , eiRτm )
(−iR)i


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Proof: Directly from Argument Principle, one has that

N =
1

2π
∆Carg( f (λ))

=
1

2π
(
∆C1 arg( f (λ)) + ∆C2 arg( f (λ))

) (7)

Calculate ∆C1 arg( f (λ)), from {λ = iω| ω ∈ (−R,R)} one has

∆C1 arg( f (λ)) = arg( f (iω))
∣∣∣∣ω=−R

ω=R
= −2arg( f (iω))

∣∣∣∣ω=R

ω=0
.

It is easy to prove that [16]
d

dω
arg( f (iω)) = <

(
f ′(iω)
f (iω)

)
therefore one has

∆C1 arg( f (λ)) = −2
∫ R

0
<

(
f ′(iω)
f (iω)

)
dω = −2F(0,R) . (8)

Calculating ∆C2 arg( f (λ)) yields

∆C2 arg( f (λ)) = ∆C1 arg

λn

1 +

n∑
i=0

αi(e−iRτ1 , · · · , e−iRτm )
λi


= ∆C2 arg(λn) + ∆C1 arg

1 +

n∑
i=0

αi(e−iRτ1 , · · · , e−iRτm )
λi

 ,
substituting λ = Reiθ | θ ∈ (−π/2, π/2)} into the above equation generates

∆C2 arg( f (λ)) = n
π

2
− n

(
−
π

2

)
+ arg

1 +

n∑
i=0

αi(e−τ1Reπi/2
, · · · , e−τmReπi/2

)(
Reπi/2)i


− arg

1 +

n∑
i=0

αi(e−τ1Re−πi/2
, · · · , e−τmRe−πi/2

)(
Re−πi/2)i


= nπ + arg

1 +

n∑
i=0

αi(e−iRτ1 , · · · , e−iRτm )
(iR)i

 − arg

1 +

n∑
i=0

αi(eiRτ1 , · · · , eiRτm )
(−iR)i


= nπ + 2πA(R) .

(9)

Equation (6) can be derived from Eq. (7), (9) and (8). This completes the proof.

Remark 3. Lemma 3 applies to both RDDEs and NDDEs, regardless whether condition (3) holds or not.

For RDDEs and strong stability cases of NDDEs, it can be proved that any |A(R)| is strictly less than 1/2 for a

sufficiently large R. Hence Eq. (4) holds, where the critical upper limit T of Eq. (4) is given in [17]. However,

for weak stability cases, A(R) can be either bounded or unbounded when R gets larger and larger. Even if

bounded, |A(R)| can be either less, equal or even larger than 1/2: for the larger than 1/2 case, there are more

than one integer that satisfy Eq. (4), only one of which is the right N .

Based on Lemma 3, the following theorem is proposed for the unstable roots of f (λ) = 0 when they are

shifted in the complex plane:
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Theorem 1. Assuming that the characteristic equation f (λ + δ0) = 0 and f (λ + δ) = 0, 0 < |δ − δ0| << 1
both have no roots on the boundary of Curves C1 and C2, as shown in Figure 1, and letting Nδ0 and Nδ be
the number of all the characteristic roots of f (λ) = 0 and f (λ + δ) = 0 in the area encircled by C1 and C2,
respectively, for any ε > 0, there exists a γ > 0, such that for |δ − δ0| < γ,

Nδ − Nδ0 − ε <
Fδ0 (0,R)

π
−

Fδ(0,R)
π

< Nδ − Nδ0 + ε , (10)

where

Fδ(0,R) =

∫ R

0
<

(
f ′(iω + δ)
f (iω + δ)

)
dω .

Proof: Denoting that

Aδ(R) =
1

2π
arg

1 +

n∑
i=0

αi(e−(iR+δ)τ1 , · · · , e−(iR+δ)τm )
(RiR)i

 − 1
2π

arg

1 +

n∑
i=0

αi(e(iR+δ)τ1 , · · · , e(iR+δ)τm )
(−iR)i

 ,
then from Lemma 3, one has

Nδ =
n
2
−

Fδ(0,R)
π

+ Aδ(R) .

Hence, it yields that

Nδ − Nδ0 =
Fδ0 (0,R)

π
−

Fδ(0,R)
π

+ Aδ(R) − Aδ0 (R), (11)

Notice that αi(z1, · · · , zm) , i = 0, 1, . . . , n are real polynomials with respect to z1 = e−λτ1 , . . . , zm = e−λτm as

stated above. Thus for R > 0, Aδ(R) is continuous with respect to δ = δ0, which means that for any ε > 0, there

exists a γ > 0 such that for |δ − δ0| < γ ∣∣∣Aδ(R) − Aδ0 (R)
∣∣∣ < ε. (12)

From Eqs. (11) and (12) , one has

Nδ − Nδ0 − ε <
Fδ0 (0,R)

π
−

Fδ(0,R)
π

< Nδ − Nδ0 + ε .

This completes the proof of Theorem 1.

Remark 4. The value Nδ − Nδ0 is an integer, thus for a small enough δ varying in the neighborhood of

δ0, the characteristic roots of f (λ + δ0) encircled by C1 and C2 may become different from that of f (λ + δ),

which indicates that Nδ − Nδ0 will jump to a certain integer. Consequently, Theorem 1 stipulates that the value

of Fδ0 (0,R)
π
−

Fδ(0,R)
π

will also jump a value close to this integer. As in the case of Nδ − Nδ0 = 0, the value of
Fδ0 (0,R)

π
−

Fδ(0,R)
π

remains in a small neighborhood of 0.

The exact relationship between the roots of f (λ) = 0 and the jumping of Nδ is as follows:

Theorem 2. As δ is increasing in a small enough neighborhood of δ0, calculating the two values of Nδ when
δ = δ+

0 and δ = δ−0 , if Nδ+
0
− Nδ−0

decreases, then δ0 is the real part of at least one of the roots of f (λ) = 0.
Moreover, defining ∆N = Nδ−0

−Nδ+
0

(positive means decrease case and negative increase case) and denoting the
exact number of roots of f (λ) = 0 whose real part is δ0 by Nδ0 , one has ∆N ≤ Nδ0 .

Proof: When δ is increasing in a small enough neighborhood of δ = δ0, all the roots of f (λ + δ) = 0 are shifted

rightward in the complex plane. Four cases corresponding to the root shifting leftward are illustrated in Figure

2 and discussed below.
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图 2: The root tendency of (a): Case 1; (b): Case 2; (c), Case 3; and (d) Case4.

Case 1. No roots are crossing C1 and C2, as shown in Figure 2(b). Thus Nδ0 = 0. Noticing that Nδ is

the number of characteristic roots of f (λ + δ) encircled by C1 and C2, thus ∆N = Nδ−0
− Nδ+

0
= 0, and hence

∆N = 0 = Nδ0 .

Case 2. There is at least one root that is crossing C1 and no root is crossing C2, as shown in Figure 2(b). In

this case Nδ+
0
− Nδ−0

decreases, and there are ∆N number of roots shifting out of the region encircled by C1 and

C2, where δ0 corresponds to the critical situation that there is/are ∆N number of root(s) located on C1. Hence,

there are ∆N number of roots of f (λ + δ0) = 0 whose real part is 0, i.e., ∆N number of roots of f (λ) = 0 whose

real part is<(λ) = δ0. Hence, 0 < ∆N = Nδ0 .

Case 3. There is at least one root that is crossing C2 and no root is crossing C1, as shown in Figure 2(c),

thus Nδ0 = 0. Similarly to Case 2, it can be proved that Nδ+
0
− Nδ−0

increases. and δ = δ0 corresponds to the

critical situation that for f (λ + δ0) = 0, there are −∆N number of roots located on C2. Hence ∆N < Nδ0 = 0

Case 4. There are roots crossing both C1 and C2 at the same time, as shown in Figure 2(d). In this case,

Nδ+
0
−Nδ−0

may either decrease, stay the same, or increase, depending on whether the number of roots of f (λ) = 0

on C1 is more than, equal to, or less than that of C2. And respectively, one has 0 < ∆N < Nδ0 , ∆N = 0 < Nδ0 , or

∆N < 0 < Nδ0 .

For all above cases, it can be seen that ∆N > 0 always relates to the cases where δ0 is the real part of at

least one of the roots of f (λ) = 0, and for all cases one has ∆N < Nδ0 . This completes the proof.

Remark 5 The condition ∆N > 0 is only a necessary one for the cases where δ0 is the real part of at least

one of the roots of f (λ) = 0. As can be seen from Case 4 that, ∆N ≥ 0 can relates to that δ0 is the real part of

at least one of the roots of f (λ) = 0. However, Case 4 is rare and can be easily avoided by choosing a different

radius R for the contour C1 and C2. This R must exist, since the characteristic roots of f (λ) = 0 in a bounded

contour C1 and C2 is always limited, and one can always find a bounded contour for which Case 4 will not

happen by shifting all these limited roots.

Corollary 1. Assuming that the radius R for contour C1 and C2 is properly chosen such that Case 4 does not
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happen, hence for small enough δ varying in the neighborhood of δ0, one has that, f (λ) = 0 has root(s) whose
real part is<(λ) = δ0 if and only if

round
(Fδ−0

(0,R)

π
−

Fδ+
0
(0,R)

π

)
< 0 .

Moreover, the number of these roots Nδ0 satisfies

Nδ0 = round
(Fδ+

0
(0,R)

π
−

Fδ−0
(0,R)

π

)
. (13)

Proof: From Theorem 1, by choosing ε = 1/2, one has

round
(Fδ−0

(0,R)

π
−

Fδ+
0
(0,R)

π

)
= Nδ+

0
− Nδ−0

.

The conditionNδ+
0
−Nδ−0

= −∆N < 0 with properly chosen contour radius R, satisfies Case 2, then from Theorem

2 one has that Nδ0 = ∆N , which completes the proof.

Algorithm 1 Based on Corollary 1, the following algorithm can be compiled to calculate the roots in a bounded

square region {(a, b) × (−Ri,Ri) | a, b,R ∈ R}:
Step 1. Calculate the characteristic function f (λ) in Eq. (2).

Step 2. Choose a sufficiently small number δ > 0, vary δ0 in a meshed (a, b), and calculate

round
(Fδ−0

(0,R)

π
−

Fδ+
0
(0,R)

π

)
= round

∫ R

0

[
<

(
f ′(iω + δ0 − δ)
f (iω + δ0 − δ)

)
−<

(
f ′(iω + δ0 + δ)
f (iω + δ0 + δ)

)]
dω .

Step 3. If the calculated value in Step 2 decreases at δ0 = σ0, then the characteristic root(s) of f (λ) = 0 can be

obtained numerically with the estimation λ0 = σ0 + iω0, ω0 < R, by using the Newton-Raphson iteration method

within a few iterations steps[16]:

λi+1 = λi −
f (λi)
f ′(λi)

, i = 0, 1, 2, . . . (14)

In practice, Step 2 will most likely yield value of 0 in most cases, whilst only in limited cases it yields none

zero values. Also, if δ is too small while the meshed δ0 is not small enough, the values following Step 2 would

be all 0 for the meshed δ0, which deteriorates the applicability of Algorithm 1.

The following theorem is the main result of the paper.

Theorem 3. With the condition of corollary 1, and assuming that
Fδ+0

(0,R)

π
, k+1/2, k ∈ Z, then for small enough

δ varying in the neighborhood of δ0, f (λ) = 0 has root(s) whose real part is<(λ) = δ0 if and only if

round
(Fδ−0

(0,R)

π

)
− round

(Fδ+
0
(0,R)

π

)
< 0 .

Moreover, the number of these roots Nδ0 satisfies

Nδ0 = round
(Fδ−0

(0,R)

π

)
− round

(Fδ+
0
(0,R)

π

)
. (15)
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Proof: Let
Fδ+0

(0,R)

π
= k + γ,−1/2 < γ < 1/2, which suggests

round
(Fδ+

0
(0,R)

π

)
= k. (16)

Then from Theorem 1, one has

Fδ+
0
(0,R)

π
+Nδ+

0
− Nδ−0

− ε <
Fδ−0

(0,R)

π
<

Fδ+
0
(0,R)

π
+Nδ+

0
− Nδ−0

+ ε .

For the case of 0 ≤ γ < 1/2, by choosing 0 < ε < 1/2 − γ, it yields

k +Nδ+
0
− Nδ−0

+ 2γ − 1/2 <
Fδ−0

(0,R)

π
< k +Nδ+

0
− Nδ−0

+ 1/2 ,

which is equivalent to

k +Nδ+
0
− Nδ−0

− 1/2 <
Fδ−0

(0,R)

π
< k +Nδ+

0
− Nδ−0

+ 1/2 .

Same result can be obtained for the case of −1/2 < γ < 0 by choosing 0 < ε < γ+1/2. Thus for −1/2 < γ < 1/2,

one has

round
(Fδ−0

(0,R)

π

)
= k +Nδ+

0
− Nδ−0

. (17)

Equations (16) and (17) give

Nδ+
0
− Nδ−0

= round
(Fδ−0

(0,R)

π

)
− round

(Fδ+
0
(0,R)

π

)
Same as Corollary 1, the condition Nδ+

0
− Nδ−0

< 0 satisfies Case 2, and the conclusion can be proved similarly.

Different from Eq. (13) in Corollary 1, the right hand side of Eq. (15) indicates that in practice, the real-

part-distribution of the roots of f (λ) = 0 in {(a, b) × (−Ri,Ri) | a, b,R ∈ R} can be identified by just calculating

round
(

Fδ(0,R)
π

)
= round

(
1
π

∫ R

0
<

(
f ′(iω + δ)
f (iω + δ)

)
dω

)
(18)

with δ varies in the meshed (a, b). More precisely, as δ increases in the neighborhood of δ = σ0, if the calculated

value of Eq. (18) jumps from one integer k1 to a larger integer k2, one can conclude that the number of roots of

f (λ) = 0 with the real part<(λ) ≈ σ0 is equal to k2 − k1 . Thus, we call the jumps of value of Eq. (18) as root

jump in the following.

Thus, a simpler and more practical Algorithm 2 can be proposed, by revising Step 2 and Step 3 in Algo-

rithm 1 as:

Step 2. Vary δ in a meshed (a, b), and calculate the value as expressed in Eq. (18).

Step 3. If root jump happens, i.e., the calculated value of Eq. (18) jumps to larger integer as δ increases in the

neighborhood of δ = σ0, then the characteristic root(s) of f (λ) = 0 can be obtained similarly as that of Step 3 in

Algorithm 1.

Remark 6 Both Algorithm 1 and 2 need a properly chosen radius R of contour C1 and C2 to avoid Case

4. In practice, Algorithm 2 is recommended for use, and a randomly chosen R usually can satisfy the needed

10



condition, since the number of roots of f (λ) = 0 is limited for bounded R. Also, repeating the procedures of

Algorithm 2 by choosing two different R, and if the jumping remains the same, this would further increase the

reliability of the results.

Remark 7 If condition
Fδ+0

(0,R)

π
, k + 1/2, k ∈ Z does not hold, Eq. (18) may increase even when the

number of roots does not change. This false increment is exactly 1 while usually the corresponding increment is

2 when the number of roots does change, as shown in Case 2. Similarly as Remark 6, repeating the procedures

of Algorithm 2 by choosing two different R would help to identify the false increment.

Remark 8 Condition
Fδ+0

(0,R)

π
= k + 1/2, k ∈ Z introduces discontinuity to the rounding off value of

Fδ(0,R)/π in the neighborhood of δ = δ0. However, it does not affect the continuity of the value of Fδ(0,R)/π

in the neighborhood of δ = δ0. Hence, the false increment caused by
Fδ+0

(0,R)

π
= k + 1/2, k ∈ Z can be avoided by

using just Fδ(0,R)/π instead of rounding it off. In this case, a root jump only happens when Fδ(0,R)/π jumps.

It is worth noting that popular tools like DDE-Biftool and QPmR (including the advanced QPmR) carry out

the stability analysis of time-delay systems also through calculating the characteristic roots. The extended DIM

provides an alternative way of doing this, and it shows some merits over the existing methods. For example,

the definite integral used in the extended DIM takes integer values or integer jumps only, and its calculation

allows a round error between -0.5 and 0.5, thus the proposed algorithm may be less sensitive to the parameter

uncertainties. Meanwhile, the advanced QPmR method calculates the characteristic roots in a similar way as

the extended DIM following Algorithm 2: it first judges the existence of the characteristic roots in a given strip

of the complex plane by directly employing Argument Principle, and then calculates the characteristic roots in

grids by using the original QPmR method while omitting the strips that have no characteristic roots. The first

step of the argument calculation of the advanced QPmR method is converted into a closed curve integral over a

square strip with four different sides, while the extended DIM, based also on Argument Principle, calculates a

closed curve integral with the same integrand over a half circle and further simplifies this closed curve integral

into a simple definite integral. Thus the definite integral method could be more computational efficient and

easily programmed compared to the advanced QPmR method for argument calculation.

4. Numerical illustrations

Example 1. As the first example, we calculate the roots of an RDDE which takes the form of

ẋ(t) + ax(t) + bx(x − 1) = 0 (19)

As stated in Example (3.25) in [13], system (19) is unstable for a = −0.5, b = 1. From Eq. (2), the characteristic

function when a = −0.5, b = 1 takes the form of

f (λ) = λ − 0.5 + e−λ

Since the system is unstable, it must have root(s) whose real part is positive. However, in this example, we

are interested in calculating the roots with negative real parts that locate in the square (−10, 0) × (−200i, 200i)

in the complex plane.
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图 3: Root jump with respect to δ in (-100,0) when R = 100 for system (19).

Directly applying Algorithm 2 for R = 100, the real-part-distribution can be clearly identified from Fig.

(3). Following Step 2, root jump happens 16 times, i.e., the calculated value round
(

Fδ(0,R)
π

)
increases 16 times,

and each time the increment is 2, which means there are totally 16 pairs of conjugate roots of f (λ) = 0 located

in the square region (−10, 0)× (−200i, 200i), and the real parts of these roots are the coordinates where jumping

takes place.

Then following Step 3, further calculating by using the Newton-Raphson iteration method can give the

approximated value of all these roots, among which the left most 3 pairs are −4.563± 95.768i,−4.496± 89.480i

and −4.260 ± 70.619i, and the rightmost 3 pairs are −2.658 ± 13.914i,−2.073 ± 7.524i, −0.163 ± 0.972i.

Example 2. In this example, we calculate the roots of a multi-delay NDDE for which the strong stability con-

dition (3) holds [28]:

z̈(t) + 2ζ1ż(t) + z(t) + pz̈(t − τ1) + 2ζ2ż(t − τ2) = 0 , (20)

where p = 0.4, ξ1 = 0.25, ξ2 = 0.24 and the two delay values are τ1 = 4, τ2 = 3. The characteristic function

reads as

f (λ) = (1 + 0.4 e−4 λ)λ2 + (0.5 + 0.48e−3 λ)λ + 1. (21)

The rightmost and non-rightmost roots are divided by the infinitely many roots of

1 + 0.4e−4λ = 0 , (22)

which is an NDDE with one single delay. The roots of Eq. (22) can be theoretically calculated as

λ0 = −
1
4

ln
(
5
2

)
−

1
4

(1 + 2k)πi, k = 1, 2, ...

Notice that the number of the roots of Eq. (22) is infinitely many, and all the roots share the identical real part

<(λ0) ≈ −0.229 with the imaginary part goes to infinity. Thus it can be proved that for system (20), there are

infinitely many roots of Eq. (21) whose the real parts approaches to <(λ0) while the imaginary part goes to

infinity, and<(λ0) distinguishes the rightmost roots and the non-rightmost roots of Eq. (21) [9].
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图 4: Root jump with respect to δ ∈ (−1, 0) for R = 200 for Eq. (22).

(a) (b) (c)

图 5: Root jump with respect to (a): δ ∈ (−1, 0),R = 100; (b): δ ∈ (−1,−0.25),R = 10 and (c): δ ∈ (−1,−0.3),R = 10 for Eq. (21).

Since Eq. (22) is an NDDE, the proposed extended version of DIM can also be applied. By applying

δ ∈ (−1, 0) and R = 100, the results from Step 2 are plotted for the roots of Eq. (22) in (−1, 1) × (−200i, 200i)

as shown in Fig. 4, from which we can see that the value jumps over 250 at δ ≈ −0.229. This indicates that

at least more than 250 roots of Eq. (22) are located in (−1, 1) × (−200i, 200i), with their real parts being close

to −0.229. Hence, a good guess can be made that there are infinitely many roots of Eq. (22) whose real part is

close to −0.229, and the rightmost roots should be those whose real parts are larger than −0.229.

Next, we calculate all the roots of Eq. (22) located in the square (−1, 1)×(−200i, 200i) of the complex plane,

as well as the non-rightmost roots in the square (−1,−0.25) × (−10i, 10i) and the square (−1,−0.3) × (−2i, 2i).

Applying Algorithm 2 for δ ∈ (−1, 0),R = 100; δ ∈ (−1,−0.3),R = 10 and δ ∈ (−1,−0.3),R = 10, respectively.

The calculated results from Step 2 are plotted in Fig. 5(a), Fig. 5(b) and Fig. 5(c).

From Fig. 5(a), it can be seen that root jump happens many times, and the increment around δ ≈ −0.229

is the highest, which suggests that the accumulation point of Eq. (20) is around δ ≈ −0.23. Together with Fig.

4, both figures increase rapidly at δ ≈ −0.23, which testifies that both Eq. (21) and Eq. (22) have the same

accumulation points.

From Fig. 5(b), it can be seen that root jump value increases 2 by three times, one at δ ≈ −0.55 and the

other two at δ ≈ −0.25. Then from Fig. 5(c) the root jump value increases 2 by only once, at δ ≈ −0.55.
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(a) (b)

图 6: Root jump with respect to δ ∈ (−0.002, 0.001) with (a): R = 2000 and (b): R = 100, for system (23).

Comparing these two figures, one can conclude that the imaginary part of the conjugate roots corresponding to

δ ≈ −0.55 must be −3 < ω < 3, and the other two pairs of conjugate roots corresponding to −15 < ω < −3,

or 3 < ω < 15. From Step 3, the approximated values of all these roots are calculated as −0.550 ± 0.255i,

−0.250 ± 4.006i and −0.252 ± 5.488i, which agrees with the analysis from both Figures 5(b) and 5(c).

Example 3. This example considers a special NDDE, which has only non-rightmost roots and does not satisfy

the strong stability condition. The system equation takes the form of [20]

ẋ(t) + pẋ(t − τ) + ax(t) = 0 , (23)

where p = 1, a = 0.5, τ = 0.3. The characteristic function reads as(
1 + e−0.3 λ

)
λ + 0.5 = 0. (24)

It has been proved in [20] that all the roots of Eq. (23) are non-rightmost ones, whose accumulation point’s

real part is 0. With the proposed method, we evaluate the roots in the square (−0.002, 0.001) × (−Ri,Ri) for

R = 2000 or R = 100, and give the real part distribution based on Step 2 of Algorithm 2. It can be seen

from Fig. 6(a) that, more than 90 roots are located in (−0.002, 0.001) × (−2000i, 2000i), and all of them have

negative real parts which are very close to zero. Thus it could be concluded that the accumulation point’s

real part is approximately zero. In addition, the values in Fig. 6(a) jump rapidly for δ < 0 while keeping

invariant for δ > 0, this suggests that there are no roots whose real parts are positive, i.e., no rightmost roots,

exist in (−0.002, 0.001) × (−2000i, 2000i). In Fig. 6(b), the values undergo 4 obvious jumps within the given

range, which suggests that 4 pairs of the non-rightmost roots are located in (−0.002, 0.001)× (−100i, 100i), and

their approximated values can be calculated from Step 3 of Algorithm 2 as −0.000420 ± 31.469i,−0.000152 ±

52.392i,−0.0000775 ± 73.327i,−0.0000469 ± 94.265i.

Example 4. Consider again a multi delay NDDE, for which the strong stability condition does not hold:

ẍ(t) − ẍ(t − τ1) + ẍ(t − τ2) + ẋ(t) + x(t − τ3) + 50x(t) = 0 . (25)
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(a) (b)

图 7: Root jump with respect to δ ∈ (−1,−1) with R = 100 for (a): Eq. (27) and (b): Eq. (26).

The three-time delays are given as τ1 = 2, τ2 = 3, τ3 = 1.5, and the corresponding characteristic function reads

as

f (λ) =
(
1 − e−2 λ − e−3 λ

)
λ2 + λ + e−1.5 λ + 50 . (26)

It can be seen that

sup
<(λ) > 0, |λ| → ∞

∣∣∣−e−2 λ − e−3 λ
∣∣∣ = 2 > 1 ,

which suggests that the strong stability condition (3) does not hold. For such systems, though they might be

stable when time delays are rationally dependent with each other, arbitrarily small perturbation could break this

rationally dependence, and hence make the system unstable.

Similar to Example 2, the accumulation roots of Eq. (26) can be calculated by setting first coefficient to be

zero, that is a two-delayed NDDE of the form

1 − e−2λ − e−3λ = 0. (27)

Let λ = σ + ωi, Equation (27) can be solved from 1 − e−2σ cos (2ω) − e−3σ cos (3ω) = 0

e−2σ sin (2ω) + e−3σ sin (3ω) = 0
,

which gives δ1 ≈ −0.141 and δ2 ≈ 0.281, and δ2 determines the boundary between the rightmost roots and the

non-rightmost roots.

The accumulation points can also be approximated by using the DIM. From Step 2 of Algorithm 2, the real

part distribution of the roots in the square (−1, 1)×(−100i, 100i) in the complex plane is obtained in Fig. 7(a) and

7(b) for both Eq. (27) and Eq. (26). As can be seen from both figures, the plotted value increases very rapidly at

δ ≈ −0.14 and δ ≈ 0.28, which means that there are two accumulation points with real parts being close to these

two values. Further calculation following Step 3 of Algorithm 2 gives the roots of Eq. (26) with similar real

parts of the accumulation points, and a few of them are listed as follows: −0.113 ± 21.319i, −0.108 ± 22.695i,

−0.127±27.591i,−0.132±33.869i, −0.125±35.264i, −0.135±40.149i, and that 0.341±18.877i, 0.292±43.992i,

0.290 ± 50.274i, 0.287 ± 56.556i, 0.286 + 62.839i, 0.285 ± 69.121i.
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(a) (b) (c)

图 8: Root jump of system (25) with respect to δ ∈ (−1, 1) for (a): R = 10; (b): R = 8; and (c) R = 10 without rounding off following Remark 8.

In typical engineering problems, low frequency roots, i.e., the roots of small imaginary parts, are usually

required. Thus Fig. 8(a) shows the plot for R = 10. Compared to R = 100 in Fig. 7(b), the result in Fig. 8(a)

needs less computational time because the integral interval is smaller. In Fig. 8(a), the plotted value increases

2 by 5 times, and increases 1 by one time (at δ ≈ 0.06). Based on these jumping value, further iteration

using Step 3 of Algorithm 2 calculates the corresponding 5 pairs of conjugates roots, giving −0.860 ± 1.546i,

−0.668 + 3.232i, 0.128 ± 4.904i, 0.699 ± 6.942i, 0.065 ± 8.969i. However, the jumping at δ ≈ 0.06 should

relate to a real root since the increment is only 1, which can easily be proved to be non-existent. Actually, from

Remark 7, δ ≈ 0.06 corresponds to the situation when
Fδ+0

(0,R)

π
= k + 1/2, and by choosing a different R = 8,

this false jumping can be avoided, as shown in Fig. 8(b). Furthermore, from Remark 8, since
Fδ+0

(0,R)

π
= k + 1/2

introduces false jumping, we calculate only Fδ(0,R)/π with R = 10 for δ ∈ [−1, 1] as shown in Fig. 8(c). The

results show that the false jumping at δ ≈ 0.06 in Fig. 8(a) is avoided, and all other jumpings in Fig. 8(c) are

related to the corresponding real parts of the characteristic roots of system (25) in (−1, 1) × (−10i, 10i) of the

complex plane.

5. Conclusion

This paper extends the DIM to calculate the characteristic roots of both retarded and neutral multi-delay

systems with constant discrete delays. Based on the root shifting technique, the extended DIM first identifies

the closely approximate real parts of the characteristic roots, and then calculates the imaginary parts by using

the iteration method. Two algorithms are proposed to implement the extended DIM, both through capturing

the changes in the number of the critical characteristic roots by shifting them on the complex plane. Among

the two proposed algorithms, Algorithm 2 uses simpler criterion and is more recommended for use. Numerical

examples show that the proposed method works efficiently and accurately.

The original DIM for stability test is derived and simplified from the Argument Principle. It holds the

advantages of easy coding, high efficiency, as well as the ability of dealing with multiple time delays, and an

increase in the number of delays does not pose particular difficulty in its implementation. Inheriting the merits of

the original DIM, the extended DIM has simpler integrand and smaller integral interval, and hence improves the

computational efficiency more. In addition, the extended DIM calculates all characteristic roots in an arbitrary
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and bounded area in the complex plane, regardless whether the strong stability condition holds or not. And a

side benefit is that, since the real part distribution of the characteristic roots is calculated first, the extended DIM

provides a fast way of estimating the rightmost roots and the accumulation point(s) by adjusting the upper limit

of the integral, other than estimating them after calculating all the characteristic roots in the given region.
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