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Abstract: Acoustic Black Hole (ABH) structures allowing for wave manipulation and 

energy focalization have potential applications in broadband structural vibration suppression. 

In this work, the vibration transmission characteristics of a plate strip embedded with 

multiple two-dimensional (2D) ABH without additional damping material were investigated. 

Both the simulation and experimental results show that the investigated structure exhibits 

attenuation bands with low vibration transmission, and the vibration attenuation phenomenon 

appears in frequency ranges well below the cut-on frequency of the ABHs. The width and 

position of the attenuation bands depend on the number of ABHs. A numerical investigation 

was carried out on the mechanism of the attenuation band generation. The analysis results 

show dual physical effects: low modal transmission in asymmetrical structures and modal 

displacement cancellation on the receiving side in both asymmetrical and symmetrical 

structures. Strong local structural resonances induced by ABHs play an important role in 

modal transmission reduction, modal displacement cancellation and weak excitation of some 

modes. The attenuation phenomenon reveals a new ABH-specific feature which enriches the 

 
& These authors contributed equally to this work and should be considered co-first authors 
∗ Corresponding author. 
E-mail addresses: qiu@nuaa.edu.cn (J. Qiu) 

This is the Pre-Published Version.https://doi.org/10.1016/j.ymssp.2021.108149

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.



 2 / 30 
 

existing knowledge on ABH structures and broadens the design perspective of vibration 

attenuation through band creation. 

Keywords: Vibration attenuation band, Acoustic black hole, Local structural resonance, 

Modal transmission, Modal displacement cancellation 

1. Introduction 

Capitalizing on the Acoustic Black Hole (ABH) phenomenon[1,2], innovative 

structures can be designed for various vibration control applications through manipulating 

the flexural wave propagation.  Research on ABHs has been attracting a growing attention in 

the last decade due to their simple structural features and broadband wave focusing and 

energy dissipation characteristics[3–6]. The thickness of an ideal one-dimensional ABH 

structure is tailored according to a power-law-profile h(x)=εxm, m>2, which results in the 

phase velocity of the flexural wave decreasing to zero as it approaches the tapered edge, and 

consequently leading to a theoretically zero wave reflection. Although an ideal ABH 

structure cannot be achieved because of the manufacturing limitations with unavoidable 

truncation at the wedge tip, flexural waves can still be effectively focalized and dissipated by 

properly tailoring the structural thickness and adopting suitable damping treatments, which 

is conducive to structural vibration suppression[3,7,8]. Analytical, numerical and 

experimental methods have been developed to investigate the damping characteristic of ABH 

structures[9–14]. It has been shown that systematic ABH phenomenon can be observed above 

the so-called characteristic frequency fc (also called cut-on frequency) of the structure, 

defined as:   
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where ABHD  is the length of the ABH taper in one-dimensional case (1D) and the diameter of 

a 2D ABH indentation; h is the thickness of plate in the uniform area; E is the Young’s 

modulus; ρ is the density [15,16]. At this frequency, the wavelength of the free bending wave 

is equal to the size of the ABH, so that fcDABH/c0=1 with c0 being the phase velocity of 

flexural waves in the uniform area. Obviously, the application range of systems based on a 

single ABH cell is hampered below the cut-on frequency.  

Attempts have been made to explore the use of multiple ABH cells in structures. In 

particular, the damping properties of a plate structure with a grid of ABHs have also been 

investigated[16,17]. Acoustic noise radiation of a plate can also be significantly suppressed 

by embedding multiple ABHs to impair its sound radiation efficiency[18,19]. A sandwich 

plate with embedded ABHs in the viscoelastic layer was also proposed to enhance the 

damping effect of ABH system at low frequency[20]. These studies bring focus on the 

vibration suppression caused by the effective energy dissipation of each individual ABH with 

a damping layer, but the possible wave manipulation characteristics caused by the 

interactions between multiple ABHs below the cut-on frequency of ABH cell were ignored. 

Interactions among ABHs have been investigated in a beam and a plate structure with an 

infinite lattice of one-dimensional (1D) ABHs[15,21–25]. These structures take the concept 

of phononic crystals with ABHs as the unit cells. The bandgap phenomenon was observed in 

the beam structure with one-dimensional ABH lattice and directional bandgaps were found 

in the plate structure with 1D ABH lattice. Indeed, a band structure analysis on infinite 

structures, focusing on the traveling wave propagation, is a useful approach to understand the 

bandgap phenomenon. Such an analysis also helps understand the energy attenuation 

characteristics of corresponding finite-size structures with sufficient periodic cells. 
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For engineering applications, designing proper ABH structures with acceptable 

mechanical properties is a challenge. One typical effort is the double-wall design, proposed 

in Ref.[26], to offer acceptable mechanical properties in terms of strength and stiffness of 

structure, while retaining typical ABH benefits. Along the same line of thinking, 2D ABHs 

can also offer better structural strength in a plate structure, in which 1D ABHs usually cut 

through the entire span-wide direction of the structure. The complications arising from such 

a design, however, are twofold: 1) the wave propagations in 2D ABHs are different from, 

and more complex than that in 1D ABHs[11,27]; and 2) additional energy transmission path 

through the uniform part of a plate is created. Moreover, perfect bandgaps which prohibit 

energy transmission exist in infinite lattice structures. Engineering applications, however, 

require the use of realistic structures, which are always finite in size, to achieve efficient 

energy isolation. It is therefore important to interrogate whether vibration attenuation could 

be achieved in a finite-size plate embedded with a finite number of 2D ABHs, especially 

when the number of ABH is not sufficient. If so, an appropriate analysis method should be 

established to fully understand the formation mechanism of such vibration attenuation 

phenomenon. 

Motivated by this, this paper attempts to extend the application of ABH to vibration 

attenuation by investigating a plate strip embedded with multiple 2D ABHs. In this study, 

we consider a scenario in which only the inherent material damping is considered without 

additional damping materials over the structure to demonstrate the vibration phenomenon 

induced by the intrinsic properties of the ABH structure.  

The outline of the paper is as follows. The finite-size plate strip with multiple ABHs 

without damping material is designed, followed by a description of the simulation model and 

experimental setup in Section 2. To facilitate performance evaluation, a uniform plate strip 



 5 / 30 
 

is selected as a benchmark case. The frequency band with low vibration transmission of the 

proposed structure, which is called the attenuation band, is then demonstrated through 

numerical simulation and experimental implementation in Section 3. The vibration 

attenuation phenomenon in the ABH plate can appear in frequency ranges well below the 

cut-on frequency of the ABH cell and the width and position of the attenuation bands depend 

on the number of ABHs, which is also observed by finite element method (FEM) simulations. 

Different from wave propagation analyses, steady state dynamics of the structure are 

analyzed to examine the final state of attenuation phenomena. The underlying physics is 

explored by scrutinizing structural modes and their contribution to the displacements on both 

the exciting side and receiving side in Section 4, which concludes that strong local structural 

resonance induced by ABH cells enriches vibration modes and induces reduction of modal 

transmission or cancellation of modal displacements. Finally, conclusions are drawn on the 

special vibration attenuation phenomenon and its mechanism of the proposed ABH structure 

in Section 5. 

2. A finite-size plate strip with multiple ABHs and simulation model 

2.1. Description of finite-size plate strip embedded with ABHs 

The investigated structure is a thin plate strip embedded with multiple 2D ABHs, but 

without damping coating as shown in Fig. 1. Considering the limitation of machining 

precision and requirements of engineering applications, a modified 2D ABH profile 

indentation proposed by Huang et al.[27] was used. A uniform plate strip without ABHs was 

also investigated for comparison. Both the plate strip with ABHs and the uniform plate strip 

have the same dimensions of 0.8 m×0.12 m with a thickness of 5.18 mm. As shown in Fig. 

1, each ABH indentation consists of a tapered region and a plateau at its center. For the global 
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coordinate system, the z-axis is in the thickness direction of the plate while the x-axis is along 

the length direction. Taking the center of ABH indentation as the origin of the local 

coordinate, the taper profile of the ABH indentation along the radial direction follows: 

 2
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where r is the radial distance from the center of each ABH indentation. The schematic of 

spatial distribution of five ABH indentations is also illustrated in Fig. 2. The dash-dot lines 

denote the central position of each ABH indentation. In order to discuss the influence of ABH 

number and the distribution of ABH in the structure hereinafter, the number of ABHs is 

denoted by N, the distance between the position of the left excitation point and the center of 

the first ABH is defined as lc1, and the distance between two adjacent ABHs is defined as ld. 

In this study, all adjacent ABHs are equally spaced. The different placement of ABHs may 

destroy the symmetry of plate strip. The symmetric structure defined in this paper means that 

it has a symmetry axis perpendicular to the length direction of the plate strip. For example, 

five ABHs are uniformly distributed in a plate strip, which is a symmetric structure, as shown 

in Figure 2. 

Note the above 2D ABH strip offers higher stiffness than the corresponding 1D ABH 

counterpart [15], in which 1D ABH cuts through the entire width of the strip, but at the 

expense of creating additional energy transmission path through the uniform part of the strip. 

This direct energy transmission path, albeit narrow, makes the vibration isolation more 

challenging.  
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Fig. 1. Schematic of the finite-size plate strip and ABH thickness profile.
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Fig. 2. Schematic plot showing the spatial distribution of ABHs in plate strip. 

2.2. Experimental setup and FEM model 

First, an experimental investigation is performed to reveal the phenomenon of vibration 

transmission in ABH-plates. For comparison, two types of elastic plates strip, one with five 

2D ABH indentations (called ABH-plate) and the other without ABHs (called the uniform 

plate) were investigated. Both of them, made of aluminum and of the same size, were 

manufactured by computer numerical control (CNC) milling. The experimental setup is 

shown in Fig. 3. In order to achieve the free boundary conditions, the tested ABH-plate was 

suspended by four elastic strings. An electromagnetic shaker (B&K 4809), driven by a power 

amplifier (B&K 2718), was utilized to generate a periodic chirp signal from 10 Hz-5000 Hz 

at a free end of the ABH-plate. A flexible slim rod was used to connect the shaker and the 

plate through a force transducer (PCB 208C02) to measure the excitation force. A Polytec 

Laser Scanning Vibrometer (PSV 500) was employed to scan the whole plate for response 

measurement. 
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Fig. 3. Experimental set-up. 

FEM simulations were conducted to reveal the physical phenomenon on one hand, and to 

analyze the underlying physics of the attenuation band generation on the other hand. The 

solid mechanics interface in software COMSOL Multiphysis[28] is employed to develop 3D 

model and investigate the dynamics of plate strip by solving Navier’s equations. The material 

properties used in the simulations are listed in Table 1. The loss factor η, which was used for 

consideration of inherent material damping, combines with the Young’s modulus E to get a 

complex stiffness E*[29]: 

 ( )* 1E j Eη= +   (3) 

where j is the imaginary unit. Based on the three-dimensional equation of motion, all the 

models considered in this research were discretized by a quadratic Lagrange element. The 

considered frequency range is up to 5000 Hz. At least ten elements per local wavelength were 

ensured at the highest frequency in the simulation, so that the mesh in the tapered area is fine 

enough to guarantee the precision of analysis. Two layers of brick elements were arranged in 

the direction of the thickness to guarantee the calculation accuracy. All boundaries were set 

to be free. As shown in Fig. 1, a harmonic excitation force with a constant amplitude in the 

out-of-plane z direction was imposed at the midpoint on one free side of the panel. 
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Table 1. Material parameters for FE model 

Plate strips 

Mass density 

ρ(kg·m-3) 

Young’s modulus 

E(Pa) 

Poisson’s ratio 

ν 

Loss factor 

η 

2820 7.1×1010 0.33 1×10-3 

 

3. ABH-induced Vibration Attenuation 

The vibration attenuation property of the ABH-plate is quantified by the vibration 

transmission ratio defined as: 
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where inw  is the line-averaged flexural displacement amplitude on the excitation side of the 

plate strip (called driving side) and outw  is its counterpart on the receiving side; M represents 

the total number of points on the driving or receiving side used for averaging. Experiments 

were firstly conducted for an ABH-plate with ld = 0.14 m and lc1 = 0.12 m to verify the 

vibration attenuation phenomenon. The vibration transmission ratio T of the ABH-plate with 

N=5 as well as the uniform counterpart is presented in Fig. 4(a), in which the T=0 means the 

equality of the averaged responses at both sides of the plate strip. The lateral displacement 

distribution of the ABH-plate along the centerline at the chosen frequency of 3550 Hz is also 

given in Fig. 4(b) to show the vibration attenuation pattern in the plate strip. As shown in the 

results, the vibration transmission of the ABH-plate is significantly reduced in three 

frequency bands around 1700 Hz, 3600 Hz as well as 4200 Hz, compared with the uniform 

plate. The frequency intervals corresponding to a transmission ratio lower than −10dB are 

therefore defined as the attenuation bands, marked as shaded regions in Fig. 4(a). Obviously, 
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there exist attenuation bands in the ABH-plate, but not in the uniform plate. It should also be 

noted that the attenuation bands are well below the cut-on frequency of the ABH indentations, 

which, according to Eq. (1) and the parameters of Section 2.1, is 4990 Hz. 

 
(a) Comparison of the transmission ratios T of ABH-plate and uniform plate 

 
(b) Lateral displacement of ABH-plate along the centerline at 3550 Hz 

Fig. 4. Experimental results of transmission ration and displacement of the ABH-plate. 

In order to further investigate the mechanism of the attenuation bands in the ABH-plate 

and the influence of different parameters on their formation, a numerical method based on 

FEM was used because it has the flexibility to change parameters systematically and to 

illustrate vibration modes. The experimental and numerical results of transmission ratio of 

both the ABH-plate and uniform plate are compared in Fig. 5 to verify the accuracy of the 

numerical model. Experimental results of the transmission ratio are in good agreement with 
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numerical results except for the high frequencies, which indicates the existence of vibration 

attenuation bands. The noticeable deviation at high frequencies may be caused by a few 

factors: First, machining errors within the ABH cells, in terms of the thickness profile and 

even surface irregularities, are inevitable. This would create discrepancies with the numerical 

model, especially for high-order modes, for which structural details play an increasingly 

important role. Second, even with small inconsistency in terms of damping parameters 

between the numerical model and experiment, the ABH-plate is more more sensitive to 

structural damping as compared with the uniform plate due to the large local strain and energy 

concentration in the former. Last, due to the weak vibration response of the structure, the 

influence of the measurement noise will become more obvious. Neverthless, experiments 

confirm typical phenomena predicted by the numerical simulations. 

   
(a) ABH-plate with N=5 
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(b) uniform plate 

Fig. 5. Comparison between the experimental and simulation results of transmission ratio T. 

First, the influence of the number of ABH indentations on the attenuation bands is 

investigated numerically. The results of the vibration transmission ratio of three ABH-plates 

containing one, three and five ABHs (N=1, 3, 5), respectively, are shown in Fig. 6 with 

vibration transmission ratio of the uniform plate as the reference. Two parameters ld and lc1 

in all three plate strips are the same as those used in the experiment. It can be seen that there 

are two narrow attenuation bands around 1700 Hz and 3600 Hz for the case N=1. With the 

increasing number of ABHs in the plate strip, not only attenuation bands around 1700 Hz 

and 3600 Hz are broadened, but also a new attenuation band around 4300 Hz appears. 

Meanwhile, the attenuation effect is enhanced around 3600 Hz as the number of ABHs 

increases, but the effect is weakened around 1700 Hz.  

 
(a) 
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(b) 

 

 
(c) 

Fig. 6. Vibration transmission ratio calculated by the averaged response at driving and receiving sides 

for referenced plate strip and ABH-plates with (a) N=1, (b) N=3, and (c) N=5. 

The displacement distribution of the four plate strips (N=0, 1, 3, 5) along the centerline at 

3550 Hz is shown in Fig. 7 to evaluate the effect of ABH indentations on vibration attenuation. 

According the displacement distribution, it can be concluded that the vibration energy is 

almost uniformly distributed in the entire uniform plate, but it is concentrated in the ABH 

indentations in three ABH-plates so that there is less energy in the uniform area. It can be 

clearly seen that less energy is transmitted to the receiving end as the number of ABH 

indentation increases. The attenuation of vibration transmission is obviously due to the effect 

of local structural resonance induced by ABHs. The so-called local structural resonance 

refers to cases where vibration is much stronger in some local areas of the structure than 



 14 / 30 
 

others. This is different from the locally resonant behavior widely used in phononic crystals, 

induced by local oscillators coupled with host structure. 

 
Fig. 7. Displacement along the centerline for the referenced plate strip and ABH-plate at 3550 Hz. 

4. Attenuation Mechanism and Discussions 

Considering the standing wave form, a finite-size plate strip embedded with multiple 2D 

ABHs exhibits attenuation bands with low vibration transmission in the length direction of 

the strip. It is important to investigate the mechanism of the attenuation band phenomenon 

from the modal analysis perspective. First of all, it is necessary to consider the influence of 

the cut-off frequencies of some high-order modes in the plate strip due to its relatively narrow 

width compared with its length. The dispersion curves of the uniform plate strip (a plate strip 

with a width of 0.12 m, thickness of 5.18 mm and infinite length) is shown in Fig. 8 to 

illustrate the types of wave modes. As shown in the figure, there are four types of elastic 

waves: longitudinal (labeled by L), torsional (label by T) and bending with respect to y (label 

by BZ because the displacement is in z-direction) and bending with respect to z axis (label 

by BY because the displacement is in y-direction) in the infinite plate strip. Only the BZ 

waves (BZ0 and BZ1) need to be considered since ABH impose its effects only on flexural 

wave, which is the focal point of concern here. The fundamental wave mode, BZ0, can 
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propagate at any frequency. The cut-off frequency of the first-order mode, BZ1, is about 2 

kHz. Therefore, the vibration modes of the strip are formed by only one wave mode, BZ0, 

below 2 kHz, and by two wave modes, BZ0 and BZ1, between 2 kHz and 5 kHz, which is 

the maximum frequency considered in this study.  

Although the first-order bending mode has a cut-off frequency within the considered 

frequency range, there are no attenuation bands in the uniform plate strip. Hence, we would 

argue that the attenuation bands are not related to the cut-off phenomenon of the high-order 

modes, but they are ABH-specific characteristics.  

 
Fig. 8. Dispersion curves for uniform plate strip: phase velocity VS frequency. 

In this section, modal analysis for the whole plate strip is therefore used to understand the 

mechanism of attenuation band formation in ABH-plate. It should be pointed that only the 

flexural displacement w  of the ABH-plates is considered due to the fact that the ABH 

structure is only effective for flexural waves. The vibration of a plate can be expressed as the 

superposition of modal vibrations using modal coordinates. Under harmonic excitation 

0
j tF F e ω= (j is the imaginary unit) at position (0, 0), the complex amplitude of flexural 

displacement response w  at any point on structure can be expressed as: 
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where izφ  is the ith modal function corresponding to the lateral displacement of the plates, 

iw  is the complex amplitude of the i th modal response, 0iq  is the complex amplitude of 

modal coordinates and  wiθ  is the phase. In a structure with the proportional damping defined 

by the complex modulus in Eq. (3), the complex amplitude 0iq  can be expressed as: 

 
( )

( )
0

0 2 2

0,0
1 2

iz
i

i i i i

F
q

j
φ

ω λ ζ λ
=

− +
 (6) 

where /i iλ ω ω= , iω is the natural frequency andζ i  denotes the modal damping ratio. There 

exists the relationship 2η ζ= i  between the damping ratio ζ i  and the loss factor η defined in 

Eq. (3) for small values of damping[30]. Because no additional damping material is bonded 

to the structures, the modal loss factor of the structure is the same as the loss factor of the 

material, η. 

Although the average displacements on the excitation side and receiving side have been 

used in the definition of the transmission ratio in Eq. (4), to reduce the influence of 

measurement noise in the experiments, the displacments at (0, 0) and (L, 0) are used in the 

analysis of the tranasmission band formation for convenience, instead of the average 

displacements on the excitation side and receiving side. According to Eqs. (5) and (6), the 

input and output displacements are approximately expressed as: 
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For convenience of analysis, the following three parameters are defined: 
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Obviously, iT  is the transmission ratio of the ith mode, Tiθ  is a parameter to show that the 

phase of vibration at the two points when the plate vibrates in this mode ( 1Tiθ =  for the same 

phase and 1Tiθ = −  for the opposite phase) and ( )0,0iRw  is the value of ( )0,0iw  at its 

resonance frequency. Using ( )0,0iRw  the input and output displacements can further be 

expressed as: 
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According to Eqs. (4), (8) and (9), the transmision ratio depends ( )iK λ , ( )0,0iRw , iT  and 

Tiθ  of all modes. However, the absolute value of the first frequency-dependent term, ( )iK λ , 

becomes very small and its phase is approximately 0 or π when iλ  is slightly different from 

one because the damping ratio is very small ( 0.0005ζ = ). For example, ( )0.95 0.0103K = , 

( )1.05 0.0098K = , ( )0.95 0.0031wiθ π=  and ( )1.05 0.9967θ π=wi . When iλ  is far away 

from 1, the structural response can hardly be excited. Hence, at a considered ω, only a few 

modes satisfying / 1i iλ ω ω= ≈  will dominante inw  and outw  and need to be taken into 

consideration. The value of ( )0,0iRw , iT  and Tiθ  of all the modes below 5000 Hz of the four 

plate strips with N=0, 1, 3 and 5 are shown in Fig. 9, in which the areas marked with grey 

stripes are bands with over -10dB attenuation. Obviously, formation of an attenuation band 
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is induced by the change of ( )0,0iRw , iT  and Tiθ  of some modes, which in turn is induced by 

change of vibration characteristics due to existance of ABH indentations. Hence, further 

examination of the relationship among the attenuation bands, the value of ( )0,0iRw , iT  and 

Tiθ , and the vibration characteristics is necessary. 

Due to the symmetry of the uniform plate, 0iT =  for all modes as shown in Fig. 9(a).  

Because 
( )
( )

,0
1

0,0
iz

iz

Lφ
φ

= , the only difference between  inw  and outw  in Eq. (9) is the influence 

of  Tiθ  in outw . Opposite signs of Tiθ  for the neigboring modes may induce cancellation of 

modal displacements in outw  at some frequencies, but no attenuation bands are formed in the 

uniform plate. Fig. 9(b) shows that two narrow attenuations bands, from 1685 Hz to 1729 Hz 

and from 3454 Hz to 3602 Hz respectively, are formed in the plate strip with one ABH 

indentation. Significant changes in ( )0,0iRw  and iT can also be observed. The small 

transmission ratio of 10th mode at 1727 Hz ( 10T = −10.62 dB) is certainly an important factor 

for the formation of the attenuation band, but there may exist other factors because 10T  is 

only slightly smaller than the −10 dB threshold and the resonance frequency of 9th (1643 Hz) 

is very close to the 10th mode. The distribution of displacement of the four modes near the 

band at 1703 Hz is shown in Fig. 10(a). Obviously, the 10th mode has small transmission 

ratio due to strong local structural resonance induced by the only one ABH. ( )9 ,0w L  and 

( )10 ,0w L  have comparable magnitudes but opposite phases, and the small value of outw  is 

due to effective cancellation between ( )9 ,0w L  and ( )10 ,0w L . The displacement inw  is 
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relatively large because ( )9 0,0w  and ( )10 0,0w  cannot cancel each other sufficiently. 

Because the influence of the 11th mode at 1946 and 12th mode at 2002 Hz is relatively small, 

a small transmission ratio is induced inside the attenuation band. Howerver, since 10T  is only 

slightly smaller than the −10 dB, the influence of the 11th and 12th modes becomes 

significant as the frequency increases slightly and the influence of the 9th mode becomes 

significant as the frequency decreases slightly. As a result, the attenuation band is very 

narrow.  From Fig. 9(b) it is obvious that the attenuation band from 3454 Hz to 3602 Hz is 

due to small transmission ratio of 24th mode at 3520 Hz ( 24 28.52T = −  dB). This band is 

relatively wide because 24T  is much smaller than the −10 dB threshold. The displacement 

distribution of the four modes at 3550 Hz in and near the band is shown in Fig. 10(b). The 

24th mode has very strong local structural resonance and it is dominant in the formation of 

attenuation band. 

 
(a) Uniform plate 
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(b) Plate strip with one ABH indentation (N=1) 

 
(c) Plate strip with three ABH indentations (N=3) 
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(d) Plate strip with five ABH indentations (N=5) 

Fig. 9. The displacement amplitude at the excitation point, modal transmission ratio and phase difference 

between displacements on the excitation and receiving sides for all modes below 5000 Hz. 

 
(a) Modal displacement of the 9th, 10th, 11th and 12th modes at 1703 Hz 
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(b) Modal displacement of the 23th, 24th, 25th and 26th modes at 3550 Hz 

Fig. 10. The displacement distribution of the selected mode along the centerline for N=1. 

As shown in Fig. 9(c), there are three wide attenuation bands and three narrow ones in the 

ABH-plate with three ABH indentations. Obviously, the wide attenuation band from 1591 

Hz to 1777 Hz is due to the synthetic effect of small transmission ratio of the 11th mode 

( 11 13.85T = −  dB) at 1777 Hz and weak excitation of the 10th mode at 1590 Hz (-84.94 dB). 

The band is not extended to a higher frequency due to the strong influence of the 12th mode 

at 1869 Hz. The distribution of four modal displacements at 1750 Hz shown in Fig. 11(a) 

also support this. It is also clear that the small transmission ratio of the 11th mode can be 

attributed to the strong local vibration in two of the three ABH areas. The wide attenuation 

band from 3303 Hz to 3706 Hz is due to the small transmission ratio of the 26th mode 

( 26 42.39T = −  dB). The band is wider than that in the ABH-plate with only one indentation 

because 26T  in this ABH plate is smaller than 24T  in the previous plate. Although the 27th 

mode is weakly excited, it has large transmission ratio ( 27 28.38=T  dB) so that it splits a 

larger attenuation band generated by the 26th mode into two. The distribution of four modal 

displacements at 3550 Hz is shown in Fig.11 (b). It is also obvious that strong local structural 

resonance plays an important role in the formation of attenuation bands. A new wide 

attenuation band appears from 4056 Hz to 4427 Hz. The displacement of the 31th mode is 

not shown in the figure because its vibration amplitude is too weak. Because there is no mode 

inside the band, the transmission ratio is determined by the displacements of the modes 

neighboring the band. The small transmission ratio is due to the effective cancellation of the 

displacements of these modes on the receiving side, as shown in Fig. 11(c).  
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(a) Modal displacement of the 9th, 10th, 11th and 12th modes at 1750 Hz 

 
(b) Modal displacement of the 23th, 24th, 25th and 26th modes at 3550 Hz 

 
(c) Modal displacement of the 28th, 29th, 30th, 32th and 33th modes at 4244 Hz 

Fig. 11. The displacement distribution of the selected mode along the centerline for N=3. 

In the ABH-plate with five indentations, there are three wide attenuation bands and two 
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are 0, similar to the uniform plate. Hence, the only mechanism for formation of attenuation 

bands is the effective cancellation of displacement of neighboring modes on the receiving 

side. The displacement distribution of the four neighboring modes at 1703 Hz for the band 

from 1613 Hz to 1735 Hz is shown in Fig. 12(a). The displacements of the 10th and 11th 

modes are not illustrated because they weakly excited, as shown in Fig. 9(d). Obviously, the 

small transmission ratio is due to the fact that the displacements of the four modes accumulate 

on the exciting side, but cancel one another on the receiving side. Inside the attenuation band 

from 3189 Hz to 3827 Hz, there are two modes with very close natural frequencies of 3519.25 

Hz and 3519.77 Hz, respectively. They have the same value of ( )0,0iRw , but opposite values 

of Tiθ , so that their displacements at the receiving side can always cancel each other. The 

displacement distribution of the 28th, 29th, 30th and 31th modes is shown in Fig. 12(b). The 

formation of the band from 4114 Hz to 4622 Hz is the same as that in the ABH-plate with 

three indentations because there is no resonance mode inside the band. The displacement 

distribution of the mode 30th, 31th, 32th, 33th and 34th modes at 4230 Hz is shown in 

Fig.12(c). Compared with Figs. 12(b) and 12(c), the cancellation of displacement in Fig. 12(a) 

is not perfect due to the weakly local structural resonance induced by ABH cells. It explains 

why the attenuation for ABH-plate with five indentations is weakened around 1700 Hz, when 

compared with the case N=1 dominated by the strong local vibration with only one ABH. 
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(a) Modal displacement of the 12th, 13th, 14th and 15th modes at 1703 Hz 

 
(b) Modal displacement of the 28th, 29th, 30th and 31th modes at 3550 Hz 

 
(c) Modal displacement of the 30th, 31th, 32th, 33th and 34th modes at 4230 Hz 

Fig. 12. The displacement distribution of the selected mode along the centerline for N=5. 
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structures and modal displacement cancellation on the receiving side in both assymmetrical 

and symmetrical structures. Weak excitation of some modes may enhance the formation of 

attenuation bands. Most importantly, local structural resonance induced by ABH cells plays 

an important role in modal transmission reduction, modal displacement cancellation and 

weak excitation of some modes. Hence, attenuation bands are the special features of ABH 

structures. Since local structural resonance begins to appear at the frequency of about 1700 

Hz, the first attenuation band is generated around this frequency. The fact that the local 

structural resonance induced by ABH cells plays an important role in the formation of 

attenuation bands also explains why they appear in the frequencies much lower than the cut-

on frequency. It is also obvious that the attenuation bands are not the result of damping effects. 

The above analysis indicates that lightly damped structure is benificial for the formation of 

attenuation bands. It cannot be excluded that the boundary conditions would influence the 

locations of the attenuation bands. However, the general phenomena reported, as well as 

underlying physical process revealed, are not limited by the type of boundary conditions of 

the structure. 

5. Conclusions 

In this paper, a finite plate strip embedded with multiple 2D ABHs without additional 

damping material is proposed for vibration transmission attenuation. As compared with 

existing 1D ABH beams, 2D ABHs offers better mechanical properties in term of structural 

stiffness and strength, more conducive to practical engineering applications.  Both the 

experimental and numerical results show a finite-size plate strip with multiple ABHs exhibits 

attenuation bands with low vibration transmission below the cut-on frequency, while the 

width of the attenuation band widens and new attenuation band appears as the number of 
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ABHs increases. The underlying mechanism of attenuation band formation in finite-size 

ABH plates, which is different from that of the band gap behavior in an infinite lattice of 

ABHs, is explored based on modal theory. Modal transmission, modal excitation and modal 

displacement cancellation are used to explain the cause of the attenuation band formation. 

The local structural resonance induced by ABH cells, which is beneficial for modal 

transmission reduction, modal displacement cancellation and weak excitation of some modes, 

is the main factor for the formation of attenuation bands. Two types of mechanisms are 

clarified for the formation of attenuation bands: low modal transmission in asymmetrical 

structures and modal displacement cancellation on the receiving side in both asymmetrical 

and symmetrical structures. The first attenuation band is generated around the first local 

structural resonance frequency, which provides useful guidance for the future design of low 

frequency attenuation band. The vibration attenuation phenomenon reveals a new ABH-

specific feature enriching the existing knowledge on ABH structures with complex wave 

paths. 

The rich dynamics within ABH areas and the mutual-interactions between ABH cells 

greatly impact on the attenuation band formation, thus pointing at the possibility of changing 

the local structural resonance induced by ABHs to tune the attenuation bands. As a possible 

future work, through extending the present investigation to a full 2D configuration, issues 

like the variable spatial placements and characteristic parameters of 2D ABHs could be 

addressed.   
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