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ABSTRACT 

Thermoacoustic oscillation and instability are a common occurrence in many industrial 

problems. Investigations on the interplay among different types of modes, their evolution 

process and coupling with add-on control devices are of vital importance to guide the 

development of proper control strategies. Using a linear heat release n-τ model inside a duct, 

these issues are investigated in this paper based on a fully coupled energy-based model. Studies 

allow the classification and quantification of different types of eigen-modes, as well as their 

stability and controllability features. Using flush-mounted flexible membranes over the duct 

wall, possible suppressions of instable modes and the underlying control mechanisms are 

revealed. Numerical analyses show that thermoacoustic instability of the system can be 

controlled via creating strong vibro-acoustic coupling, but via two different physical 

mechanisms for acoustic and intrinsic modes. For the former, the acoustic modal pressure 

distribution should be positively altered in the vicinity of the heat source to create a favorable 

pressure state scenario. For the latter, control is achieved indirectly through a proper alteration 

of the nearby acoustic modes, thus affecting their coupling with the targeted intrinsic mode. In 

both cases, a successful suppression of the thermoacoustic modal instability can be materialized 

through a proper adjustment of the physical parameters of the membranes and their installation 

locations. 
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1. Introduction 

 

Thermoacoustic oscillation occurs in many engineering systems such as industrial furnaces, 

gas turbines and rocket engines etc. For example, the premixed combustion in a low emission 

combustor system can cause thermoacoustic instability [1-3]. As experimentally illustrated in a 

Rijke tube, a heating wire mesh placed at the lower part of a vertical empty pipe with both ends 

open may arouse strong self-excited oscillations inside the tube [4]. This happens because the 

unsteady heating generates sound waves, and part of upstream-travelling waves in turn perturb 

the input rate of the heat source. As a result, instability is triggered when the phase relationship 

is such that the unsteady rate of the heat input and the pressure perturbations is positively 

enhanced [5]. For a simplified flame model, such as the n-τ flame model [6], the heat release 

rate is usually proportional to the medium volume expansion rate as the viscosity and heat 

conduction are ignored. 

 

The physical mechanism underpinning the thermoacoustic oscillation has been revealed in 

the literatures with the consideration of temperature gradient, mean flow effect or complex 

combustion states [7-9]. It was demonstrated that the standing-waves of acoustic modes may 

become unstable, which depends on the phase relationship of the acoustic pressure and the 

flame [10]. More specifically, instability may be triggered when the heat source is placed at 

those locations where the sound pressure is strengthened [11], which also implies that the 

acoustic modal characteristics have significant influence on the thermoacoustic oscillation.  

 

Due to the frequent occurrence of thermoacoustic oscillation and its practical implication in 

a combustion system, developing effective strategies for instability control has always been an 

important research topic. Existing means include both active or passive techniques. As a typical 

example, Heckl [12] studied the active control of the thermoacoustic oscillation in a Rijke tube. 

The concept of using feedback control to alter the interaction between the acoustic waves and 

the unsteady heat release was introduced by Dowling and Morgans [13]. Towards increasing 

efficiency and the capability, a specific feedback control using a time-delayed integral algorithm 

was proposed by Olgac and Zalluhoglu [14]. Despite the appealing adaptive feature it offers, 
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active control usually involves complex electronics, high cost alongside stability concern. 

Therefore, passive control still remains as an important alternative for the thermoacoustic 

instability control.  

  

Helmholtz resonator (HR) is a simple and effective device to suppress the thermoacoustic 

oscillation [15]. Past efforts include the design of its cavity size, aperture length/width and the 

use of multiple HRs in various combustion systems [16-18] including in complex sound 

environment such as flow medium [19]. In addition to HRs, perforated liners have also attracted 

immense attention [20-22]. Compared with HRs, a perforated liner in a flow duct allows for a 

compact structural design and a significant damping enhancement at the same time. Besides, 

attempts were made through embedding elastic membranes on a duct sidewall, whose 

configuration was determined through sophisticated numerical analyses and optimizations [23]. 

Irrespective of the methods used, passive or active, the essence of a successful control is to 

create positive changes in the acoustic field so as to further alter the interaction of acoustic 

waves and unsteady heat release. A prerequisite to achieve this goal is a good understanding on 

the physical properties of the system instability and their interplay with other system parameters 

characterized by various acoustic/thermal metrics. 

 

One of the important issues in thermoacoustic research is the classification and the 

apprehension of the interplay of different types of oscillation modes existing in a 

thermoacoustic system. The topic has been arousing an increasing research interest in recent 

years. In addition to the conventional acoustic modes, a new type of modes which are tidily 

associated with the heat source are shown to be of particular importance. Hoeijmakers and 

Emmert et al. [24-26] reported that a flame (based on a linear n-τ heat release model) can be an 

intrinsically unstable element, which is shown to become dominant in the extreme case with no 

acoustic reflections at the boundaries. It was suggested that the flame, as a subsystem in a 

combustor, can give rise to a completely new family of modes, referred to as flame intrinsic 

modes. The flame, in return, reacts on the acoustic velocity created by itself and thus forms a 

local feedback loop, possibly unstable. The stabilities of the intrinsic and acoustic modes are 

closely related to the flame interaction index n and the time-lag τ. For a small n, these intrinsic 

modes are strongly damped, while they become unstable only if n exceeds a certain threshold 
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[27-28]. Mukherjee studied the coupling between the acoustic and intrinsic modes. Results 

show that for a small n, the eigenfunctions of adjacent acoustic and flame intrinsic modes 

clearly exhibit distinctive properties [29]. More complex combustion flame model such as 

turbulent spray flame was also studied by Emmert and Ghani et al. [30-31] to discern acoustic 

and intrinsic eigenmodes in a combustor test rig, in particular the corresponding mode shapes. 

Buschmann and Orchini et al. [32-33] proposed a distinction between “intrinsic thermoacoustic 

driven” and “acoustic driven” thermoacoustic modes. The concept of exceptional points (EPs) 

was also proposed to give a qualitative prediction and understanding of the eigenvalue 

trajectories of thermoacoustic systems for different parameters. It was shown that the intrinsic 

modes, distinctly different from the acoustic modes, are important to be considered. However, 

existing literature mainly focuses on the intrinsic/acoustic modal characteristics and their 

instability features. An in-depth understanding of the interplay among these modes, their 

evolution process and the coupling mechanism with add-on control devices need more thorough 

investigations. This is vital to guide the development and the implementation of proper control 

strategies, as well as to understand the underlying thermoacoustic instability suppression 

mechanisms. 

 

The above analyses motivate the present work. In particularly, characteristics of intrinsic and 

acoustic modes in a duct, as well as the thermoacoustic instability control mechanism using 

locally resonant flexible membranes, are systematically investigated. The analyses are based on 

a proposed energy-based semi-analytical model involving a conventional linear n-τ flame model. 

Then, a locally resonant flexible membrane is flush-mounted inside the duct wall as a control 

device. Numerical studies demonstrate the controllability of intrinsic and acoustic modes and 

reveal the underlying control mechanism. Different from HRs or other devices, the membrane 

contains multiple modes within a certain frequency band [34-35], which offers the possibility 

of simultaneously controlling multiple instable modes. 

 

The remaining part of the paper is organized as follows. A theoretical formulation on the 

problem under investigation is first presented in Section 2. In the results and discussion section 

3, the first part presents a thorough analysis on the behaviors of intrinsic and acoustic modes, 

followed by the second part on the coupling characteristics between the control device and 
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acoustic modes in a duct. Numerical analyses show the control effect, its underlying mechanism 

and the corresponding changes on different unstable acoustic modes and intrinsic modes, 

respectively. Finally, conclusions are drawn. 

 

2. THEORETICAL FORMULATION 

 

2.1. Modelling of a flame coupled with the acoustic field inside a duct 

 

 

Fig. 1. Schematic diagram of a flame-duct-membrane thermoacoustic coupling model 

  

Consider the thermoacoustic oscillation inside a duct system illustrated in Fig. 1. The system 

consists of a flame and the sound field inside the duct, a segment of which is symmetrically 

formed by thin membranes (from x1 to x2) as a device to control the system instability. The duct 

(length L, height h) has two ends with reflection coefficients denoted as R0 and RL, respectively. 

A compact flame is located at x=xq, with a heat release rate qʹ(x, t)=Qʹ(t)δ(x-xq), where Qʹ(t)= 

Qe-iωt and δ denotes the Dirac δ-function. The entire system is segmented into five portions, 

namely three duct segments with rigid walls, a flame area, and the embedded membrane, as 

depicted in Fig.1. 

 

 The acoustic filed in the vicinity of the heat source is first modelled by adopting the plane 

wave theory, applicable to frequencies below the cut-on frequency of the duct. In the flame 

region, the sound pressure and velocity waves across the flame can be expressed as  
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where, the subindices r denotes “reflected” and i means “incident”. k=ω/c is the acoustic wave 

number; ω angular frequency; c sound speed; ρ air density. The symbols “-”and “+” represent 

the parameters before and after the heat source, respectively. Assuming an uniform temperature 

at the flame, then one has k
－
=k+=k, c

－
=c+=c and ρ

－
=ρ+=ρ. Aʹ, Bʹ, Cʹ and Dʹ are the unknown 

coefficients to be determined. Using the momentum and mass conservation principle, one has 
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A linear n-τ flame model is adopted [6], with the coefficient of heat release rate written as  

q

i

ui ur( )= e ( )
1

x

c
Q n v v




− −

+
−

                         (5) 

in which, n and τ correspond to the flame interaction index and time-lag, respectively; γ denotes 

the specific heat ratio and the product neiωτ is the flame transfer function (FTF), F(ω).  

  Combining Eqs. (1-5) and ignoring the temperature jump across the heat source yield the 

following two linear equations in terms of the unknown coefficients Aʹ, Bʹ, Cʹ and Dʹ: 

q q q qi i i i
e e e e

k x k x k x k x
A B C D

− − + +− −
   + = +                         (6) 

+ +
q q q q q qi i i i i i

e e ( e e ) ( )( e e )
k x k x k x k x k x k x

C D A B F A B
− − − −− − −

     − − − = −          (7) 

The right-hand-side part of Eq. (7) is the velocity fluctuation generated by the unsteady rate 

of the flame heat release. When the up-travelling part is in phase with the pressure perturbation, 

acoustic wave gains energy and the system will become instable [6]. The sound pressure in the 

downstream near the right end can be written as 

i

di e kxp E −= ,    
i

dr e kxp F =                        (8a, b) 

In light of the boundary conditions, the relationship among pui, pur and pdi, pdr can be written 

as 
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In the absence of the membrane, one will have pdi=pmi, pdr=pmr. Combining Eqs. (6), (7), (9) 

and (10) yields four homogeneous equations in terms of the four amplitude unknowns Aʹ, Bʹ, Cʹ 

and Dʹ. To get nontrivial solutions of the eigen-problem cast into the aforementioned four 

equations, the determinant of the coefficient matrix needs to be zero. Then, the eigenroots ω for 

the thermoacoustic coupling system can be obtained.  

 

2.2. Sound propagation around the locally resonant membrane 

While plane wave propagation can be considered in the rigid segments of the duct below its 

cut-on frequency, higher order duct modes need to be considered for the flexible membrane 

part, thus resulting in a coupling between the duct and the membrane. In this section, an energy-

based approach is followed to capture this vibro-acoustic coupling behavior. The transverse 

displacement of the flexible membrane with fixed boundaries can be expanded as  

1
( ) sin( π ) ( )

S

q mq
w x a q x L x

=
= = Ψ A                         (11) 

in which, S is the truncation number of Fourier series and Lm the membrane length; Ψ denotes 

the mode shape vector. The Lagrangian of the membrane writes 

memb memb memb P FL U T W W= − + +                        (12) 

where the subscript “memb” is the abbreviation of membrane. Umemb and Tmemb denote the total 

potential and kinetic energies, respectively; WP represents the work done by the sound pressure 

inside the duct over the upper surface of the membrane; WF represents the work done by the 

excitation force, namely [35] 

m
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m
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0
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L

W f w x x x=                (14a, b) 

in which T and ρm correspond to the tension applied to the membrane and its mass density, 

respectively. fexc is an excitation force exerted on the membrane at the position xs. prad is the 

sound pressure radiated by the membrane in the duct, which can be estimated [36] 
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where ψm(y) is the acoustic mode shape function of the duct, G (x, x′) and km are Green’s 

function and modal wavenumber, respectively, defined as  

0( ) 2 cosm m

m
y y

h


 

 
= −  

 
,

i ( ')

i ( ')

( ')e

( ' )e

m

m

k x x

k x x

G H x x

H x x

− −

+ −

= −

+ −
, ( )

2

0/ 1
i

mk m k h
c


= −  (16a, b, c) 

where H is the Heaviside function. Zero-order plane wave corresponds to m=0, while higher-

order modes correspond to m>1. Combining Eqs. (11)-(15) and using Lagrange’s equations 

d
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L L

t a t a t
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 and under harmonic regime for the modal amplitude coefficients aq yield a 

set of linear equations, which can be written in a matrix form as 

 
2

i&r( i ) − + = +K M G a P F                         (17) 

  The unknown modal amplitude response vector can then be determined as [38, 39] 

( ) ( ) ( )
1

2

i&r i&ri 
−

= − + + = +a K M G P F Π P F                (18) 

in which K and M are the stiffness and mass matrices of the flexible membrane in vacuo, 

respectively; G is the coupling matrix characterizing the membrane-duct interaction; F is the 

load vector originating from the excitation force. Vector Pi&r denotes the work done by plane 

wave pmi and pdr. The solution of Eq. (18) gives the modal amplitude vector a, thus allowing the 

calculation of all the other vibro-acoustic metrics. 

 

2.3. Interaction between the thermoacoustic system and the resonant membranes 

For the sound field inside the duct in the presence of a flame, the load vector Pi&r in Eq.(18) 

is related to the boundary conditions and the flame heat release, which can be further expressed 

as 

mi 1 1 dr 2 2i&r ( ) ( )p x p x+= P PP                          (19) 

in which, 
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where, the brackets {}q indicates the q-order term in the vectors P and Ψ. The continuity 

condition of the sound pressure at the cross-sections x1 and x2 gives 
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in which, 𝑝rad
+   and 𝑝rad

−   are the pressure waves radiated by membrane in x-positive and 

negative directions. When the excitation frequency is much lower than the cut-on frequency of 

the duct, the radiated sound wave that propagates into the far-field, both upstream or 

downstream along the duct, is largely dominated by the zero-order wave, namely the plane 

sound wave. Then, the radiation waves 𝑝rad
+   and 𝑝rad

−   can be written in the following 

simplified form based on Eq.15, 
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Combining Eqs. (19), (21), (22) and (23) yields 
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Using Eqs. (26) and (27) and combining the flame Eqs. (6) and (7) alongside the boundary 

conditions Eqs. (9) and (10), one can obtain six equations in terms of six unknown coefficients 

Aʹ, Bʹ, Cʹ, Dʹ, Eʹ and Fʹ, cast into a matrix form, namely 
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(28) 

The elements marked as Г are determined by Eqs. (26) and (27), which can be expressed as 
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1i

12 = e kx − , 13 =0 , 
2i i
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2i
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kx−

 − , 
2i

11 2= e kx+ P ΠP      (30) 

The right-hand-side part of the Eq. 28 is the excitation term, which is independent of the 

thermoacoustic system. 

 

Eq.28 is applicable when a membrane is deployed behind the flame. Otherwise, the 

coefficient matrix should be re-arranged. In the above equation, ω is an unknown variable. All 

the roots can be solved via setting the determinant of the coefficient matrix Λ to be zero. Due 

to the existence of the heat source, these frequencies are generally complex, namely ω=ωr+iωi, 

in which the real part ωr is the natural frequency of the thermoacoustic coupling system, and 

the imaginary ωi is the growth rate (GR) of the mode characterizing its stability nature. When 

ωi is negative, the heat disturbance disappears in a short time. However, if ωi is positive, the 

system oscillation will grow exponentially with time and eventually lead to system instability. 

A numerical procedure is used to obtain the eigen-solutions of the above system, and the 

behaviour of the acoustic and intrinsic modes is illustrated by contour plots in the complex 

frequency plane. For any given variation range of ω, e.g. Re{ω}from 0~6000 rad/s and 

Im{ω}from -600~300 rad/s, with a step size △=1 rad/s, the modal frequencies are determined 

when |Λ(ω)|=0. 

  

3. Results and discussions 

 

3.1 Modal characteristics analysis of thermoacoustic system 

Thermoacoustic instability originates from the coupling between the flame heat release and 

certain acoustic modes of the duct, which has been well defined in the literature. Recent study 

shows that this may also happen even if the boundary reflection coefficient of the duct is set to 

be infinitesimal [24]. Such instability is due to the local feedback loop formed by the flame heat 

source itself. The natural modes of the system formed by the local feedback loop of the flame 

are referred to as intrinsic modes hereafter. 

 

In this section, the intrinsic/acoustic modal characteristics of the thermoacoustic coupling 

system are first studied. A numerical solver is used to solve the eigenvalue problem. 
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Considering the following physical parameters: duct length L=0.75m, height h=0.045m, 

reflection coefficients R0=1 (rigid), RL=-1 (soft boundary), flame interaction coefficient n=1, 

delay time τ=2ms, sound speed in the air c=345m/s, constant temperature 297K, and air density 

ρ0=1.2kg/m3. The complex eigenfrequencies (thermoacoustic modes, marked by green blocks) 

are plotted in Fig. 2, which show the variation of the growth rate (GR) with respect to the modal 

frequency of the first few low-order modes. A positive GR signifies an instable state of the 

system under corresponding modal frequency. These modes are, in principle, all coupled modes. 

However, they are tidily related to and most of time dominated by either acoustic modes or the 

flame intrinsic modes. Theoretically, when n reduces and tends to zero, the GR of the intrinsic 

dominated mode tends to negative infinity, which evolves a stable mode. Meanwhile, the GR 

of acoustic dominated modes will tend to zero, and finally retreat to pure acoustic modes. To 

figure out the nature of the mode types, the flame interaction coefficient n is gradually reduced 

from 1 to 0.1, and the corresponding root variation trajectories are marked by arrows in Fig.2. 

The GRs of the 2nd and 5th thermoacoustic modes decrease significantly, and that of modes 1, 

3, 4 and 6 tend to zero. This suggests that the 2nd and 5th modes are flame controlled intrinsic 

modes (called I-C modes), for which a reduced n allows stabilizing the modes, whilst the rest 

are duct controlled acoustic modes (called A-C modes). 

 

Fig. 2. Eigenfrequency trajectory distributions with varying flame interaction index n from 

1 to 0.1, τ=2ms. 
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(a)                                (b) 

Fig.3. Modal characteristic analysis. (a) Real part of eigenfrequencies for different time-lag τ, 

with n=1. (b) Sound pressure distribution of the A-C and I-C modes with τ =1, 1.4 and 2ms. 

 

Fig.2 also shows that the interaction index has little effect on the vibration frequency of the 

I-C modes, while for an uncoupled intrinsic mode, its growth rate mainly depends on the flame 

interaction index. For the n-τ flame model, the time-lag τ directly affects the intrinsic modal 

frequencies, and further modifies the coupling behavior between the A-C and I-C modes. This 

is shown in Fig.3(a) by varying τ and keeping n=1 for the frequency range below 6000 rad/s. 

The symbols "×" in red denotes the I-C modes and the “□” in blue means the A-C modes. It 

can be seen that the first four coupling modes are all A-C modes for a small τ (τ<0.5). When 

increasing τ, more I-C modes appear in the low frequency range. Whenever a I-C mode 

encounters an A-C mode as marked in circles in Fig.3(a), significant coupling occurs, leading 

an obvious change in the modal frequencies.  

Three groups of eigenfrequencies are selected from Fig. 3(a), i.e., τ = 1, 1.4 and 2ms. The 

corresponding mode shapes are plotted in Fig. 3(b). Among them, b1, b2 and b3 denote the I-C 

modes, and the other are A-C modes. Due to the coupling with the heat source, the A-C mode 

shapes, in terms of sound pressure distribution, show obvious asymmetry along the duct length 

direction. The corresponding pressure distribution of each I-C mode is related to and resembles 

the mode shape of its adjacent acoustic mode. For example, the mode shape b1 is due to the 

mutual effect of a1 and c1, while b2 behaves like the second A-C mode shape, namely a2. This 

is understandable since the I-C mode is caused by the local feedback loop in the vicinity of the 
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flame area, acting as an equivalent excitation source, thus exciting the sound field of the nearby 

A-C mode. The analyses confirm that the mode shape and the natural frequency of an I-C mode 

are significantly influenced by the A-C modes through the formation of standing-waves inside 

the duct. This makes it is possible to control I-C mode instabilities via properly altering the A-

C modes. 

 

3.2. Thermoacoustic instability control 

Locally resonant flexible membranes are induced on the duct wall as a possible means to 

control the thermoacoustic instability of the system. In addition to the aforementioned I-C 

modes and A-C modes, the addition of the control device, i.e. the membranes in the present 

case, introduces the so-called membrane-controlled modes, abbreviated as M-C modes in short, 

whose modal frequencies and the corresponding system response are mainly dominated to the 

membrane vibration. 

 

3.2.1. Characteristics of vibro-acoustic system 

Properties of the vibro-acoustic system, in the absence of the flame, is first analyzed, which 

paves the way forward for subsequent analyses when the full thermo-vibro-acoustic coupling 

is considered.  

 

  (a)                                        (b) 

Fig. 4. Sound pressure response for the duct-membrane coupling system: (a) membrane 

position (0.1m, 0.2m); (b) membrane position (0.2m, 0.3m) 
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Fig. 5. The first four A-C mode shapes of the duct, with (upper row) and without (bottom 

row) membrane. 

 

 

Using the same duct parameters as above, two flexible membranes are flush-mounted over 

the duct sidewall as depicted in Fig.1. Properties related to the stretched membranes are: 

dimensionless tension T*=T/ρ0c
2h=0.1, dimensionless mass density m*=ρm/ρ0h =1, and 

membrane length Lm=0.1m. A unit point force is applied on the membrane at 3/5Lm. Sound 

pressure response in the duct at (0.71m, 0.0223m) is presented in Fig. 4, with the blue solid line 

from the current model and the red dotted line from the FEA simulation. COMSOL 

Multiphysics® is used for FEA simulations. In the modeling, Pressure Acoustics and Truss 

modular are used to simulate the sound field and the 1-D membrane structure, respectively. 

Normal Acceleration and Edge Load are applied to describe the coupling between the 

membrane and the acoustic field in the duct. Subgraphs (a) and (b) show the sound pressure 

responses under two different membrane positions (0.1m, 0.2m) and (0.2m, 0.3m), respectively.  

 

In the figures, vertical dashed lines represent natural frequencies of the duct (D) without 

membrane. Resonant frequencies before and after the deployment of the membrane are marked 

by symbols. The peaks without symbol correspond to the resonant frequencies dominated by 

the membrane. Figure 5 shows the first four acoustic mode shapes of the duct (before and after 

coupling with the membrane). Examining Figs.4 and 5 shows that when the membrane is 

located near the node of a mode, corresponding mode frequency is barely affected, such as the 
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third peak in Fig.4(a).  

 

Compared with the duct natural frequencies (before coupling), the addition of the membrane 

seems to separate the resonance frequencies further apart, namely reducing the low-order 

resonant frequencies (such as the 1st and 2nd ones) and increasing the higher-order frequencies 

(such as 3rd and 4th ones). The introduction of a flexible structure over the rigid wall of the duct 

brings about two effects: stiffness effect and sound reflection. At a frequency lower than the 

membrane resonant frequency, the membrane offers little sound reflection but with dominant 

stiffness effect. In this case, the acoustic resonant frequency will be lowered after the inclusion 

of the membrane. When frequency approaching the sound refection band of the membrane, 

reflection effect is dominant, then the acoustic resonance will be shifted to higher frequency. 

 

3.2.2. Control mechanism of the A-C mode instability 

Introducing the linear n-τ model with unsteady heat release, the thermoacoustic system 

contains both A-C and I-C modes, which can be theoretically instable. In order to explore the 

controllability and the underlying mechanism, the instability of A-C modes is first studied in 

this section. By considering a small time-lag τ=0.5ms, only A-C modes exist below 6000rad/s 

as shown in Fig. 3(a). The distribution of the system eigenfrequencies is shown in Fig.6(a). The 

z-value marked in this figure is the determinant value of the coefficient matrix in Eq. 28. 

Rendering it to zero yields the eigenfrequencies of the first four A-C modes. The x-coordinate 

denotes the real part of ω, i.e., the modal frequency, and the imaginary part is the modal stability 

GR. Fig.6(b) shows the sound pressure distribution. Comparing the modal stability and sound 

pressure distribution, it can be seen that the system is stable when the flame is located at the 

pressure drop (PD) region, but instable at the pressure rise (PR) part. 
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(a)                            (b) 

Fig. 6. Modal characteristics of the thermoacoustic system (a) Eigenfrequency distribution, 

(b) Mode shapes of the first four A-C modes 

 

Correlations between the observed phenomenon and Rayleigh criterion is discussed as 

follows. According to the Rayleigh criterion, the system is unstable when the thermoacoustic 

power generation ΔE is positive [37]. Related formulation is presented in Appendix A. For the 

present system, the values of ΔE are calculated for different flame positions, by defining 

ΔEʹ=sign(ΔE) ×log(10/|ΔE|), where ΔEʹ has the same sign with ΔE, thus indicating the stability 

property with the value indicating the level. The growth rates, ΔEʹ and the acoustic mode shapes 

(before the coupling with the heat source) are shown in Fig.7 below for the first four acoustic 

modes. Shadow areas denote the instable regions predicted using the proposed stability criteria 

in terms of PD and PR. It can be seen that the results are in agreement with the Rayleigh 

criterion. More details about the link of current PD-PR criterion and Rayleigh criterion are 

depicted in Appendix A. The proposed stability criterion (PD-PR) can be regarded as an 

alternative interpretation of the Rayleigh Criterion. One of the advantages is that the instability 

can be determined in a more intuitive manner based on variations of basic acoustic quantities, 

which is also conducive to conceiving and understanding different control strategies, such as 

demonstrated in the paper using flexible membranes.  
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(a) mode 1                  (b) mode 2 

     
(c) mode 3                 (d) mode 4 

Fig.7. Modal characteristics and instability analysis for different flame positions. 

 

 

Fig. 8. Modal instabilities control using a membrane with position (0.4m, 0.5m) 
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process of the pressure drop (PD) or pressure rise (PR) near the flame position, which is 

equivalent to stretch or compress the mode shape distribution within the flame area. In light of 

this, a flexible membrane is introduced into the thermoacoustic system at (0.4m, 0.5m), the 

effect of which on the different modes is shown in Fig. 8. In the figure, the red squares and 

green circles denote the eigenfrequencies before and after the membrane is deployed. A 

membrane-controlled mode (M-C mode) is also marked in the figure, whose stability is affected 

by its nearby A-C modes. Since the 3rd A-C mode is highly stable, then the newly introduced 

M-C mode is also stable as shown in this figure.  

 

The frequency shift phenomenon of A-C modes when coupled with a membrane has been 

discussed in Fig.5. On the top of that, the GRs of the 2nd and 4th modes are significantly reduced 

by the membrane, demonstrating its control potential. Observing the trend of the frequency 

variation, it can be found that the 2nd A-C mode wavelength increase which is equivalent to a 

stretching of its mode shape. While for the 4th A-C mode, the mode shape is compressed.  

 

Based on the above observation, we can further vary the tension applied to the membrane to 

further alter the mode shapes, which would allow adjusting its pressure state (PD or PR) near 

the flame position. As shown in Fig.8, reducing the membrane tension to 0.05, the 2nd A-C mode 

finally reaches a stable state as marked by a triangular. Similar phenomenon takes place for the 

4th mode (increasing membrane tension to 0.15). Therefore, a proper choice of the membrane 

parameters allows tactically targeting different modes in views of instability suppression. 

Simultaneous control of multiple modes requires the use of a set of suitably designed membrane 

parameters.  
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(a) 

 
(b) 

Fig. 9. Thermoacoustic instability control for the A-C modes with various membrane 

positions (a) 2nd, T*=0.05, (b) 4th, T*=0.15; 

 

The influence of the membrane position on modal instability control is studied in Fig.9. 

Subgraphs (a) and (b) apply to the second and the fourth A-C modes, respectively, with a 

respective dimensionless membrane tension of 0.05 and 0.15. The bar-plot at the bottom 

denotes the modal stability GR with varying membrane position, in which the x-axis 

corresponds to center coordinate of the membrane xm. Note the case of heat source right above 

the membrane is not considered, so GR in xm=0.325m-0.425m are not given in this figure. The 
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curves in the upper figure correspond to mode shapes with different membrane positions, 

namely xm=0.15m, 0.3m and 0.45m, respectively. The vertical red dashed line indicates the 

flame position.  

 

For the second A-C mode, the optimal placement position is about 0.4m-0.65m after the heat 

source, close to the maximum pressure amplitude region. This can be understandable from that 

the coupling strength between the membrane and the acoustic field determines the control effect 

of modal instability, which is directly reflected in the pressure wave work term Wp as shown in 

Eq.12. The pressure amplitude determines the level of Wp as shown in Eq.14, suggesting that 

an effective control can be achieved when the membrane is near the maximum pressure region. 

When the membrane is placed before the heat source, especially around the mode shape node, 

the vibro-acoustic coupling between the membrane and the acoustic field inside the duct is not 

strong enough to alter the pressure distribution of the mode so that the flame is still in the PR 

area. Similar analysis and observation also apply to the fourth A-C mode, shown in Fig.9(b), 

giving a different optimal placement position around the flame, i.e., 0.25m-0.45m. Again, the 

proper location of the membrane effectively adjusts the pressure state from PR to PD so that 

the mode is tuned to be stable. 

 

As a short summary, the essence of the A-C mode stability control is through the direct 

alteration of the acoustic modal pressure distribution inside the system. An effective control of 

the A-C modes relies on two-fold factors: an effective coupling between the membrane 

vibration and the acoustic field inside the duct, and a proper deployment of the membrane so 

that the acoustic pressure distribution of the A-C modes can be positively altered in the vicinity 

of the heat source to generate the favorable PD scenario. The above can be readily achieved 

through a proper design of the membrane parameters as well as its deployment location. 

 

3.2.3. Control mechanism of the I-C modal instability  

 

Control effect on the I-C modal instability using membranes is studied hereafter. Increasing 

the flame time-lag τ to 2ms, I-C modes appear below 6000rad/s as shown in Fig.3(a). All other 

parameters in the system still remain the same as used before. The eigenfrequencies of the 
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thermoacoustic system are given in Fig. 10(a), in which the 2nd and 5th modes are identified as 

I-C modes. Corresponding mode shapes are plotted in Fig.10(b), with the flame position marked 

by a vertical line. Obviously, the presence of the I-C modes makes the analysis more complex,  

 

 

   (a)                                    (b) 

Fig. 10. Study on system characteristics under the case of flame delay time τ=2ms (a) 

eigenfrequencies distribution; (b) mode shape.  

 

To explore the underlying relationship between the I-C modal instability and the 

corresponding mode shape, the phase change in the flame transfer function (FTF), F(ω), is 

plotted in Fig.11 for two cases with τ=0.5ms and 2ms, respectively. F(ω) is defined as a ratio of 

the heat release rate fluctuation over acoustic velocity of the heat excitation, expressed as neiωτ. 

For τ=2ms, the phase of the F(ω) exhibits a positive and negative variation with respect to 

frequency, as shown in Fig. 11. When the F(ω) phase is positive, the mode is stable and the 

flame is located at the PD area. Moreover, a negative F(ω) phase drives the mode into stability 

in the PR region as marked in the figure. This supplements the conclusions performed based on 

PD and PR before, and more details is presented in Appendix A. Taking the 3rd A-C mode as an 

example (τ=2ms), F(ω) phase is negative at its modal frequency, and the flame is located in the 

PR process, then the mode is stable as shown in Fig.10(a). 
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Fig.11. Phase variation of flame transfer function (FTF). The blue and red circles correspond 

to the natural frequencies.  

 

 

Using the same flexible membrane with a dimensionless tension set to 0.1, while all other 

parameters remaining unchanged. Two membrane positions, one before and one after the heat 

source, namely (0.2m, 0.3m) and (0.4m, 0.5m), are examined. Fig. 12 compares the 

eigenfrequencies before and after the deployment of the membrane, for the two membrane 

positions in Figs. 12 (a) and (b), respectively. All three types of modes, i.e. M-C modes, I-C 

modes and A-C modes, and the corresponding distribution after control with the use of 

membrane are also shown in the figurers. Two instable I-C modes are marked and of particular 

interest for analyses. The second I-C mode seems to be easier to control in this particular case 

than the first I-C mode. For τ=2ms, the 2nd I-C mode is close to the 4th A-C modes, which creates 

strong coupling with the A-C mode as shown in Fig.3(a). The membrane can significantly 

change the A-C mode characteristic, then indirectly influence the coupling of A-C and I-C 

modes. While for the 1st I-C mode, it has weak coupling with the A-C modes, then its instability 

is more difficult to be altered. To understand the control mechanism behind, the influence of 

membrane position on the GR of the second I-C mode is shown in Fig.13 (the lower picture), 

and the 6th acoustic mode shape without coupling with the membrane is also given in this figure. 

The I-C mode remains instable at three particular positions, xm=0.15m, 0.3m and 0.5m. It can 

be observed that these positions are close to the nodes of the A-C mode, evidencing a weak 

coupling of the membrane with the acoustic field dominated by the mode. Thus, this indirectly 
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confirms the acoustic field should act as a communicating agent between the membrane and 

the heat source which apparently determines the ultimate control effects of the I-C modes.  

 

 

(a)                                 (b) 

Fig.12. Instability control through the using of flexible membrane with different position. (a) 

(0.2m, 0.3m) (b) (0.4m, 0.5m). Keeping membrane tension as T*=0.1. 

  

Fig. 13. Instability control mechanism of the second I-C mode with varied membrane 

position.  

 

0 1000 2000 3000 4000 5000 6000

-500

-400

-300

-200

-100

0

100

Re ω (s-1)

G
ro

w
th

 r
a
te

 

 

w/o memb with memb

M-C 

mode

1st I-C 

modes

2nd I-C 

modes

(0.2m, 0.3m)

Instable

0 1000 2000 3000 4000 5000 6000

-500

-400

-300

-200

-100

0

100

Re ω (s-1)

G
ro

w
th

 r
a
te

 

 

w/o memb with memb

M-C 

mode

1st I-C 

modes
2nd I-C 

modes

(0.4m, 0.5m)

Instable

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

x (m)

 

 

A
-C

 M
o

d
e
 s

h
ap

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

+

0

-

Membrane central coordinates x
m

(m)

I-
C

 m
o

d
a
l 

G
R x (m)

Stable

Instable



24 

 

  

(a)                                         (b) 

Fig. 14. Influence of the membrane tension on the first I-C mode and the second A-C mode 

(a) eigenfrequencies distribution, (b) mode shapes 

 

To further demonstrate this, the membrane tension is tactically adjusted in such a way that 

one of the duct-membrane modes approaches the first I-C mode. The analyses on Fig.4 suggests 

that this can definitely be achieved through effectively coupling a A-C mode with the membrane, 

thus also creating a strong coupling with the targeted I-C mode simultaneously. As shown in 

Fig. 14 (a), decreasing the membrane stiffness, the A-C mode can be shifted to lower frequency, 

thus stabilizing the I-C mode by the same token. Corresponding changes in the mode shape are 

given in Fig. 14 (b). It follows that the introduced membrane with varying tension affects more 

the A-C mode than I-C mode. 

For the current configuration, all other modes remain stable in the frequency range of 0-

6000Hz when a low tension is applied to the membrane, as presented in Fig. 15. Actually, this 

paper aims at revealing the control mechanism of acoustic and intrinsic modes, by focusing on 

some typical modes within a given low frequency band. If one wishes to achieve the best overall 

control effects, parametric optimizations using multiple membranes would be necessary. 
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Fig.15. Instability control using a flexible membrane with a tension T*=0.04 

 

Successful instability control of I-C modes using membranes is achieved through a proper 

alteration of the acoustic field inside the duct. In this sense, the direct effects of the membrane 

vibration on I-C modes are rather weak. Instead, different from the control of the A-C modes, 

the control path is indirect and via the acoustic path through the creation of effective coupling 

between the acoustic field with the I-C modes. An effective coupling can be obtained through 

either changing the membrane tension or the applied position. This way effective temporal 

(frequency) and spatial (location) coupling between the acoustic field and membrane vibration 

can be created. The introduced membrane can change the acoustic mode shapes and the resonant 

frequencies, which offer a rather easy way to control thermoacoustic instability. As to the 

intrinsic modes, the membrane will influence the A-C modes and indirectly affect the I-C modes. 

Based on this concept, one can use the control device to manipulate A-C modes and further 

alter the targeted I-C modes.  

 

To verify the control effect of the proposed strategy, a strongly coupled mode is considered, 

for which the intrinsic modes and acoustic modes might have close frequencies and thus, might 

strongly interact with each other. Taking the same parameters as shown in Fig. 6 in Ref. [29], 

τ=4.85ms, n=0.9, xq=0.3m, contour plot |Λ(ω)| is presented in the Fig. 16(a). Using the 

membrane, the contour plot |Λ(ω)| is plotted in Fig. 16(b). The I-C mode stability shows obvious 

improvement due to the inclusion of the membrane. 
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(a)                                (b) 

Fig.16. Contour plot |Λ(ω)| without (a) and with (b) the membrane.  

 

A few remarks need to be made before concluding. For a practical combustion system 

involving more complex shaped combustion chambers and flame type, the intrinsic and acoustic 

modes may strongly interact with each other so that they may become hardly distinguishable. 

Meanwhile, intrinsic modes may be affected as the flame burning state changes, or even a 

volume region should be considered for the flame rather than a slice. Then more adaptable 

control strategies or multiple control devices are needed instead of a membrane as presented in 

this paper. Besides, a proper choice of suitable membrane material is also an unavoidable 

challenge when considering possible high temperature. For aluminum which is commonly used 

in indoor ambient temperature environment, its dynamic properties might deteriorate in a high 

temperature environment such as a combustor. Alternative high temperature resistant materials, 

probably with high-temperature resistant coating should be considered. As to the flame 

description, this paper uses a traditional linear n-τ flame model, under which the effectiveness 

of the proposed control strategy is demonstrated. Further studies will be needed to examine the 

efficacy of the proposed approach under different operating environments and different flame 

models. 

 

4. Conclusions 

In this paper, thermoacoustic oscillation in a duct with a linear heat release n-τ model is 
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and flexible membranes on the duct wall, is established based on an energy-based formulation. 

This allows the computation of the system eigen-frequencies and stability metrics. Different 

types of eigen-modes are classified and analyzed. Intrinsic modes and acoustic modes can be 

distinguished through adjusting the flame interaction coefficient in the n-τ model. Modal 

characteristic of both A-C modes and I-C modes, their relationship with system instabilities and 

membrane-based controllability are thoroughly investigated.  

 

Results show that the features of the I-C modes are directly related to n-τ flame parameters. 

The time-lag τ affects the intrinsic modal frequency and further governs the coupling with the 

acoustic modes inside the duct. An intrinsic mode shape is always tied to its adjacent A-C modes, 

in terms of acoustic pressure distribution. The instabilities of both the I-C and A-C modes are 

determined by the relationship between the flame and the acoustic mode shape. Considering 

different delay times, the proposed instability criterion in terms of PR and PD is shown to be in 

agreement with Rayleigh criterion. 

The thermoacoustic instability of the system can be controlled using locally resonant 

membranes, flush-mounted on the duct wall with proper tension at proper locations. The 

underlying control mechanisms, however, are different for A-C and I-C modes. A-C mode 

stability control relies on the direct alteration of the acoustic modal pressure distribution inside 

the system. This involves a twofold process: an effective coupling between the membrane 

vibration and the acoustic field inside the duct, and a proper deployment of the membrane so 

that the acoustic pressure distribution of the A-C modes can be positively altered in the vicinity 

of the heat source to generate the favorable pressure state scenario (PD for a small τ ). As to the 

control of I-C modes, since the direct effects of the membrane vibration on I-C modes are rather 

weak, a successful control is indirectly materialized via the acoustic path through the creation 

of effective coupling between the I-C modes with the nearby A-C modes. For both type of 

modes, the expected effects can be achieved through properly adjusting the physical parameters 

of the membranes and their installation locations. 
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Appendix A. Rayleigh criterion and phase analyses 

A.1. Rayleigh criterion 

The energy power generated by the heat source can be obtained by integrating the time 

average of the acoustic intensity over the surface surrounding a control volume, as follows [37]: 

( )
0

1
Re

2 s
E pq dS

p





−
 =  n                         (A.1) 

in which n is a unit vector pointing radially away from the heater surface S; p is the fluctuating 

pressure, qʹ is the heat release rate. According to Rayleigh criterion, the system is unstable when 

ΔE is positive. Therefore, instability is determined by the product of p and qʹ.  

Knowing the system is very complex with the addition of membrane, it is impossible to 

derive a full set of analytical solutions. Nevertheless, we also tried to qualitatively address the 

link of PD-PR criterion and Rayleigh criterion through analytical derivations as much as 

possible. The acoustic pressure and the particle velocity upstream of the flame can be expressed, 

respectively as  

i ie ekx kxp A B− = + ,   i ie ekx kxA B
v

c c 

− 
= −              (A.2a, 2b) 

in which, the acoustic wave number k=kr+kii=ωr/c+iωi/c. Using acoustically hard-wall 

boundary conditions (adopted in our case), one has Aʹ=Bʹ. The above equations become 

( ) ( )  1 2e e cos( ) i e e sin( )i i i ik x k x k x k x

r rp A k x k x A S S
− −  = + + − + = +

 
   (A.3) 

( ) ( )  1 2/ e e cos( )+i e e cos( ) = /
2

i i i ik x k x k x k x

r rv A c k x k x A c Q Q


 − − 
 = − + + + 

 
 (A.4) 

The heat release rate is expressed as   

i= e ( )
1

q

c
q n v x x




− −

 −
−

                            (A.5) 

In the current model, some simplifications on the pressure and velocity are adopted to 

estimate the power ΔE by ignoring the small terms, such as S2 and Q1. Indeed, the values of S1, 

S2, and Q1, Q2 are plotted in Fig. A.1 for the second and third acoustic modes, chosen as 

illustrative examples. It can be seen that Q1 and S2 are indeed very small terms. Verifications 

on other modes discussed in this paper also show the same conclusion, the results of which are 



29 

 

not presented here. 

           

(a) S1 and S2 distribution for mode 2    (b) Q1 and Q2 distribution for mode 2 

          

(c) S1 and S2 distribution for mode 3    (d) Q1 and Q2 distribution for mode 3 

Fig. A.1. The distributions of S1, S2, and Q1, Q2 in the expressions of pressure and velocity. 

  

Combining Eqs. A.1-A.5 and ignoring S2 and Q1 in Eqs. A.3 and A.4, approximated ΔE, 

denoted as ΔEs, can be obtained as  

( )
2

2

0

( )
sin( ) e e cos( )cos(

22
)i ik x k x

r r

A
n k xEs k x

p






−
 =

  
+ + 

 
            (A.6) 

To further verify the correctness of using ΔEs to predict the thermoacoustic power, ΔEs and 

ΔE obtained from Eqs. A.1 and A.6, respectively, are compared. Taking the second and third 

modes again as an example, the absolute value and the sign of ΔEs and ΔE are shown in Fig.A.2 

for different flame positions. It can be seen that they carry the same signs and have close values, 

thus proving the above simplification is indeed acceptable.  
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(a) mode 2                     (b) mode 3 

Fig. A.2. Comparisons of the absolute value and the sign of ΔEs and ΔE 

 

In Eq.A.6, as ωτ∈(0, π), sin(ωτ)>0, for ΔE<0 (stable), the last two terms cos(krx) and 

cos(krx+π/2) should carry opposite signs. The term cos(krx) can be regarded as the spatial 

distribution of pressure wave, and cos(krx+π/2) corresponds to the velocity, whose values are 

plotted in the Fig. A.3 for the 2nd acoustic modes as an example. When considering |cos(krx)|, 

the unstable region plotted in Fig.A.3 is PR (pressure rise) region and the stable region 

corresponds to PD (pressure drop) region.  

 

Fig. A.3. The distributions of cos(krx) and cos(krx+π/2) 

 

For a larger delay τ, sin(ωτ) in Eq. A.6 can be negative. Then the specific range of ωτ should 

be studied as presented in Fig.11. For τ=0.5ms and ω varying from 0-6000 rad/s, ωτ∈(0, π). In 

this case, when the flame placed in the PD region, the system will be sable. As τ increases to 

2ms, different regions for ωτ∈(0, π) or (-π, 0) are shown in Fig.11. It indicates that when ωτ∈
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(-π, 0), for ΔE<0 (stable) in Eq.A.6, the last two terms cos(krx) and cos(krx+π/2) should carry 

the same signs, then PR will be the stable region. Therefore, the proposed stability criterion 

(PD-PR) is again consistent with and closely related to the Rayleigh criterion.  

 

A.2. Phase analysis 

Under the plane wave assumption, the fluctuating pressure, velocity and heat release rate in 

a duct can be expressed:  

- -
1i ie e = ik x k xp A B p e − = +                           (A.7) 

- -
2i ie e = eik x k xA B

v v
c c



 

−

− − − −

 
= −                         (A.8) 

2ii i= e ( )= e e
1

q

c
q n v x x q  




− −

 −
−

                      (A.9) 

The above expressions show the amplitude and phase of these physical quantities. Then the 

Rayleigh criterion can be described as  

( )1 2

0

1
Re e e e

2

i iiE p q
p

 



−
 =                    (A.10) 

The above equation can be further simplified as 

( )1 2

2 1

0 0

1 1
Re e e e = cos( )

2 2
ii ii

rE p q p q e
p p

  
   

 

−− −
  = + +     (A.11) 

It can be seen that the sign of ΔE is determined by cos(ωτ+θ2+θ1), in which the term ωτ+θ2 

belongs to the phase of the heat release rate. θ1 represents the phase of the pressure fluctuation. 

Considering the flame as being equivalent to a volume velocity source and according to the 

mass conservation principle around the flame, one has [6] 

2

( 1)

( )q q
downx x x x

v v q Q
c


 + − −= =

−
− = =                   (A.12) 

The right-hand side term can be seen as the downstream-traveling mass flow or velocity 

generated by the flame. Then the upstream-traveling mass flow can be described as −𝑄𝑑𝑜𝑤𝑛, 

with a phase −(𝜔𝜏 + 𝜃2). When the pressure fluctuation has the same phase as the upstream-

traveling mass flow, i.e. −(𝜔𝜏 + 𝜃2) = 𝜃1, ΔE>0 and instability occurs.  
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Appendix B. Temperature jump across the heat source 

When considering a temperature jump across the flame (from T1 to T2), its effects on air 

density and the sound speed should be considered in Eqs. 6 and 7. They become 

q q q qi i i i
e e e e

k x k x k x k x
A B C D

− − + +− −
   + = +                       (B.1) 

( )
+ +

q q q q q qi i i i i i1 1 1
e e ( e e ) ( )( e e )

( )

k x k x k x k x k x k x
A B C D F A B

c c c


− − − −− − −

− + −
     − − − = −     (B.2) 

in which, c=(γRgT)1/2, k=ω/c, γ is the ratio of specific heat and Rg is the universal gas constant. 

Positive and negative sign correspond to the two temperature regions respectively. Meanwhile, 

if the control membrane is applied to the downstream of the flame, the air density and sound 

speed in Eq. 15 should be revised as 

 
m

srad s 0
0

0

( , ) ( ) ( ) i ( , )d
2

L

m m y

m m

p x y y y u G x x x
h k

 
  

− 

=−
=

 =              (B.3) 

in which ρ= p/RgT, p is the static pressure. 

Taking the same parameters as Fig. 8, a temperature jump (T1 and T2 across the heat source) 

is considered before and after the flame, with T1=297K, T2=488K and T1=297K, T2=788K, 

T*=0.05, respectively. In Fig. B.1, the red squares and green circles denote the eigenfrequencies 

before and after deploying the membrane, respectively. The effectiveness of the instability 

control can be observed. In the subsequent study, a more complex case (including the coupled 

intrinsic modes) is considered, using τ=3ms, xq=0.2L, T1=297K, T2=488K, membrane tension 

T*=0.15, at position (0.05m,0.15m). Keeping other parameters unchanged, a comparison of 

modal instabilities with and without the membrane are presented in Fig. B.2. Obvious control 

effect can be seen, which proves the effectiveness of the proposed method and model even 

when a temperature jump exists.  
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(a) T1=297K, T2=488K          (b) T1=297K, T2=788K   

Fig. B.1. Modal instabilities control using a membrane with the consideration of temperature 

jump. 

  

Fig. B.2. Modal instabilities control using a membrane with n=1, τ=3ms, xq=0.2 L, T1=297K, 

T2= 488K, membrane position (0.05m, 0.15m), tension T*=0.15 
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