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Abstract

This paper shows that the self-concordance parameter of the universal barrier on any n-
dimensional proper convex domain is upper bounded by n. This bound is tight and improves
the previous O(n) bound by Nesterov and Nemirovski. The key to our main result is a pair
of new, sharp moment inequalities for s-concave distributions, which could be of independent
interest.
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1 Introduction

In a seminal work [I0], Nesterov and Nemirovski developed a theory of interior point methods for
solving general nonlinear convex constrained optimization problems. A central object of their theory
is the self-concordant barrier for the feasible region. Roughly speaking, a self-concordant barrier
on a proper convex domainE] K is a convex function that satisfies certain differential inequalities
and blows up at the boundary 0K (see Section |2| for the precise definition). Associated with any
self-concordant barrier is the self-concordance parameter v > 0. The importance of self-concordant
barriers lies in the fact that the path-following interior point method developed in [10] approximately
solves a convex constrained optimization problem in O(y/v log (1/€)) iterations if the feasible region
has a v-self-concordant barrier.

It is then natural to ask whether one can construct a self-concordant barrier for arbitrary proper
convex domain and, if yes, what the self-concordance parameter v is. The first result along this
direction was given by Nesterov and Nemirovski [I0]: they constructed a self-concordant barrier
for general proper convex domain K C R", the so-called universal barrier, and proved that it is
O(n)-self-concordant. They also showed that any self-concordant barrier of n-dimensional simplex
or hypercube must have self-concordance parameter at least n, see |10, Proposition 2.3.6]. Hence,
their self-concordance bound is order-optimal.

Another self-concordant barrier, the entropic barrier , was recently studied by Bubeck and El-
dan [3]. Exploiting the geometry of log-concave distributions and duality of exponential families,
Bubeck and Eldan [3] proved that the entropic barrier satisfies the self-concordance parameter guar-
antee v < n + O(y/nlogn) for n > 80, thus improving the result of Nesterov and Nemirovski [10].
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When the proper convex domain K is a cone, the situation is clearer. Indeed, the canonical
barrier, introduced by Hildebrand [7] and independently by Fox [4], is an n-self-concordant barrier
of proper convex cones with non-empty interior. Furthermore, using a result of Giiler [6], Bubeck
and Eldan [3] showed that both the universal barrier and the entropic barrier are also n-self-
concordant on proper convex cones. These results confirmed a conjectureﬂ made by Giiler which
asserted that, for any proper convex cone in R", there always exists a self-concordant barrier whose
self-concordant parameter is at most n.

This paper completes the picture by settling the same question in the more general case of
proper convex domains. We show that the universal barrier is n-self-concordant on any proper
convex domain K C R™ for n > 1. This does not only improve the results of [10] and [3] but is also
tight in view of the above-mentioned lower bound on the self-concordance parameter. The key to
this result is a pair of new, sharp moment inequalities for s-concave distributions (see Section [2| for
the definition of s-concavity), which could be of independent interest. One of these inequalities is
a generalization of [3, Lemma 2].

We should emphasize that all these bounds on the self-concordant parameters of different barri-
ers do not immediately yield polynomial-time complexity result for convex programming problems.
The iteration complexity O(y/v log (1/€)) counts only the number of iterations of the path-following
algorithm, whereas the overall complexity depends also on the costs of computing the gradient and
the Hessian of the barrier for the feasible region. The problem of constructing self-concordant
barriers with (nearly) optimal self-concordance parameter and efficiently computable gradient and
Hessian remains largely open. A recent breakthrough was obtained in the context of polytopes
by Lee and Sidford [§]. However, our result does find applications in some online learning prob-
lems where the quality of solutions produced by certain algorithms depend on the self-concordance
parameter [1l [9].

The rest of the paper is organized as follows. Section [2] collects some necessary background
and preparatory results. The optimal self-concordance bound of the universal barrier, which is the
main result of this paper, will be proved in Section [3] Section (] provides the proofs of the pair of
moment inequalities used for proving the main result.

1.1 Notations

We adopt the following notations throughout the paper. Given a set S, we denote by cl(S), int(.S)
and 95 = cl(S)\int(.5) the closure, interior and boundary of S, respectively. The indicator function
of S is denoted by 1g, i.e., 1g(t) =1if t € S and 1g(t) = 0 otherwise. We denote by Vol,(S) the
k-dimensional Lebesgue measure of S. For any function v, the i-th directional derivative of ¢ at x
along the direction h will be denoted by D% (z)[h, ..., h]. For any distribution on R with density p,
we denote by Supp(p) the support of the distribution, i.e., Supp(p) = cl({t € R : p(t) > 0}). The
Dirac delta distribution at ¢ will be denoted by d;.

2 Preliminaries

2.1 The Universal Barrier

A conver domain is a convex set with non-empty interior. A convex set is said to be proper if it
does not contain any 1-dimensional affine subspace. Throughout the paper, if not specified, K will
always denote a proper convex domain in R™. As usual, a convez body refers to a compact convex
domain. The following definitions are standard [10].

2See the discussions in [3] and [4].



Definition 1. A function ¢ : int(K) — R is said to be a barrier on K if
¢(x) = 400 as x — OK.

Definition 2. A three times continuously differentiable convex function ¢ is said to be self-
concordant on K if for any x € int(K) and h € R",

(D% () . h. )| < 2 (D*(x)[h. ])? M)

If, in addition to , ¢ satisfies that for any z € int(K) and h € R™,

N

|Dg(x)[h]| < (v- D*¢(z)[h, h])*? (2)
then ¢ is said to be v-self-concordant.

The main contribution in this paper concerns the so-called wuniversal barrier introduced by
Nesterov and Nemirovski [10].

Definition 3. The universal barrier of K is defined as the function ¢ : int(K) — R given by
¢(x) = log Vol, (K°(z)),
where K°(z) = {y eR:yT(z—2)<1,Vz € K} is the polar set of K with respect to x.

It is well-known that the universal barrier is O(n)-self-concordant [I0, Theorem 2.5.1]. As we will
see in the Section |3} the bound O(n) can be improved to exactly n.

2.2 Probabilistic Tools

Since all distributions considered in this paper are absolutely continuous with respect to the
Lebesgue measure, we identify a distribution with its density. For any distribution p on R, we
denote its mean by p;(p) and the second and third moments about the mean by p3(p) and u3(p),
respectively, i.e.,

oo

i (p) = / tp(t)dt,

—00

115(p) = / h (t — 1 (p))*p(t)dt and

13(p) = /_ h (t — m1(p))*p(t)dt.

The following type of distributions on R is particularly important in this paper.

Definition 4. Let L C R" be any convex body and h € R™. The marginal distribution of the
convex body L along the direction h, denoted by p (L, h;-), is the distribution on R given by, for
any t € R,

p (L, h;t) = e ({z/(inL(L:)yTh =4

Note that the polar set K°(x) with respect to any x € int(K) is a convex body. Therefore, we
can talk about its marginal distributions. Interestingly, the directional derivatives of the universal
barrier on K at x can be expressed in terms of moments of the marginal distribution of the polar
set K°(x). The following formulas can be found in [I0, p. 52].



Lemma 1. Let x € int(K) and h € R™ be given. Let p=p (K°(x),h;-). Then we have that

Do(z)[h] = —=(n+ 1) (p),
D*p(x)[h, h] = (n +1)(n + 2)p3(p) + (n +1)pf(p) and
D?¢(x)[h, b, h] = —(n + 1) (n +2)(n + 3)p3(p) — 6(n + 1)(n + 2)u3(p)u(p) — 2(n + 1)1} (p).-

Next, we recall the definition of s-concave distributions [2].

Definition 5. A distribution p on R is said to be s-concave if for any A € [0,1] and t1,t2 € R, it
holds that

PO+ (1= N)t2) > (A (p(t2)* + (1= X) (p(t2))")* - 3)
For the case s =0, s = —o0 and s = 400, the right-hand side of becomes (p(t1))™ (p(t2))' 2,
min{p(t1),p(t2)} and max{p(t:), p(t2)}.

Note that 0-concave distributions are nothing but log-concave distributions.

We pause to provide some intuitions for the O(n) bound on the self-concordance parameter
of Nesterov and Nemirovski [I0] and explain why improvement is possible. First, it is a fact in
convex geometry that the width of a convex body L C R" along any direction h is of the order
O(n-p2(p(L,h;-))). Lemmall] then implies that ¢ satisfies inequality (2) with v = O(n). Second,
the Prékopa—Leindler inequality implies that p(L, h;-) is a log-concave distribution. Combining
this with another convex-geometric fact that the third moment of any log-concave distribution is
bounded by its second moment, we can deduce inequality from Lemmal|ll Our improvement is
made possible by the observation that any marginal distribution p(L, h;-) is actually nil
a stronger property than the log-concavity. This observation follows immediately from the Brunn’s
concavity principle.

-concave,

Theorem 1 (Brunn’s Concavity Principle, [2, Theorem 1.2.2]). Let L be a convex body in R™ and
F be a k-dimensional subspace. Then, the function r : F- — R defined by

r(xz) = Volg(L N (F + z))
18 %—concave on its support.

The crux to the proof of our main result is the following improved moments inequalities whose
proof is postponed to Section [

Proposition 1. Let k > 1 be an integer and p be a ﬁ—cancave distribution on R. It holds that

o) < 2y 2 i) @

Suppose furthermore that 0 € Supp(p). Then, we have that

13 (p) < k(k + 2)p5(p). ()

Remark 1. As we will see in the proof of Proposition |1], inequalities and are both sharp.
By assuming p to be centered (i.e., pu1(p) = 0) and letting k — +o0, inequality recovers [3,
Lemma 2]. Also, the condition that 0 € Supp(p) for inequality s necessary. This can be seen
by substituting, for example, p = §; for any t # 0 into .




3 Self-Concordance of the Universal Barrier

Now we have enough tools at our disposal to prove the main result of this paper.

Theorem 2. For any n > 1 and proper convex domain K C R", the universal barrier ¢ is an
n-self-concordant barrier for K.

Proof. That ¢ is a barrier on K follows from [10, Theorem 2.5.1]. It remains to show that ¢ satisfies
the differential inequalities and with v = n.

Let any x € int(K) and h € R™ be given. Then K°(x) is a convex body containing the origin.
Also, let p be the marginal distribution of K°(z) along h, i.e., p = p(K°(x),h;-). Since K°(z)
contains the origin, we have that Supp(p) is a non-degenerate closed interval and 0 € Supp(p).
Furthermore, Theorem |1{shows that p is a ﬁ—concave distribution on R. Hence, by Proposition

we have that
+2n-—-1
3<2 n 3 6
H3 = \/ n n+3ﬂ2 (6)

i < nln+2)u. (7)

and that

Here we write yu; instead of u;(p) for i = 1,2, 3. Using Lemma and inequality , we have

Do(z)[h] [(n 4+ 1) pa |
VD2p(@)[h,h] T\ (n+ 1) (n+ 2)pd + (n + 1)
< (n+1) ||
\/(n+ 1)(n+2)n(;‘7%+2) + (n+ 1)p?
—

This shows that ¢ satisfies inequality with v = n.
Finally, we prove that ¢ satisfies inequality . Towards that end, we first observe that us > 0,
for otherwise it would contradict to the non-degeneracy of Supp(p). Therefore,

D2¢(x)[h,h] = (n + 1) ((n+2)p3 + pd) > 0.
Using Lemma |1f and inequality @, we have

D3¢(x)[h, h, h
(D2¢(x)[h, h)

—

—(n+2)(n+3)u3 — 6(n +2)usm — 24}
3
n+1((n+2) +u1)2

_ 490+ (2/22 +3u2) 0+ 2)udun — 24
= 3
2

Vn+1((n+2)u3+ ul)

1 (?/%1) — 67 — 273
_ , 8
Vil (14 12)2 ®

W

N

where we set 7 = uz \/;:m Let ¢, = (2 f) and £ : R — R be the function defined by, for any t € R,

4¢,, — 6t — 213

ot) =
€ (1+12)?



Then,

6(t? — 2c,t — 1)

U(t) =
(1+12)2
The stationary points are t = ¢, & \/c2 +1 = —ﬁ or v/n. Hence,

o) < max{ lim £(t), ¢ (—ﬁ) £ (/n), lim e(t)}

t——o0 t—o00

- max{2,2\/n+ Y s 1,—2}
n
=2vn+ 1. 9)

Combining inequalities and @D, we get

D3¢(x)[h, h, ) - 1
(D2g(x)[h )~ VnF1

2vVn+1=2.

This completes the proof. ]

Remark 2. The upper bound n on the self-concordance parameter is tight for any barrier, not just
the universal barrier. It is attained by any proper convexr domain containing a vertex that belongs to
n of the (n — 1)-dimensional facets defined by linearly independent normals [10, Proposition 2.3.6].
Proper convex domains satisfying this property include the n-dimensional simplex and hypercubes.

4 Proof of Proposition

The goal of this section is to prove Proposition [I We first handle the case k = 1, i.e., p is oco-
concave. We claim that S := {t € R: p(t) > 0} is convex. We argue this by contradiction. Suppose
S is non-convex. Then there exist t1,t3 € S and A € (0,1) such that A\t; + (1 — \)ta € S, which
implies the contradiction that 0 = p(At1 + (1 — A)t2) > max{p(t1),p(t2)} > 0. Next, we claim that
p is constant on S. Again we prove this by contradiction. Suppose there exist t1,t9 € S such that
p(t1) > p(t2). Then,

p(tz2) = lim p(Aty + (1 — A)te) > lim p(t1) = p(t1) > p(ta),
A—0 A—0

which is a contradiction. So p is either a uniform distribution on an interval or a Dirac delta
distribution. Inequalities and are evident in both possibilities.

It remains to prove Proposition for k > 2. We will first prove inequality in Section and
then inequality in Section Before doing that, let us provide a brief overview of the proofs.
Each of the proofs start with a sequence of reductions and approximations. This is to modify the
distribution class and turn the inequality into an equivalent variational formulation so that we can
apply the following localization lemmaEl:

Theorem 3 (Localization Lemma [B, Theorem 2]). Let m > 1, H C R™ be a compact convex
set, s € [=1,1] and f : H — R an upper semi-continuous function. Also, let M(H) be the set

3Note that our notation s is the ~ in the paper [5].



of measures with support contained in H and 11 : M(H) — R be a convex upper semi-continuous
function. Consider the problem

sup  I(¢p)
©
subject to @ is s-concave and supported on H,
J fde = 0.

Then, the optimal value of the above problem is achieved at either a Dirac delta distribution &, for
some u € H such that f(u) > 0 or a measure with density q such that

(i) Supp(q) is an interval [a,b] :== {a + A(b—a) : A € [0,1]} C H for some a,b € H,
(ii) q° (orlogq if s = 0) is affine on Supp(q),
(iii) [ f(u)q(u)du =0, and
(i) [ f(u)g(u)du > 0 for all t € (a,b) or [} f(u)g(u)du >0 for all t € (a,b).

For both the proofs of inequalities and , after reductions, we will apply the above localization
lemma to an optimization problem over probability distributions on a 1-dimensional set H (i.e.,
m = 1). Therefore, the quantities a, b, t,u in the localization lemma are actually real-valued in our
case. The localization lemma will allow us to restrict our attention to ﬁ—aﬂine distributions on
R, i.e., distributions of the form

(at + B! 1y (1)
fab(au + B)k—1du
where a < b and at + § > 0 for any ¢ € [a,b]. Substituting an arbitrary kil-afﬁne distribution into

the desired inequality, the task is further reduced to proving an algebraic inequality. Finally, the
proof is completed by proving the algebraic inequality using simple calculus.

(10)

4.1 Proof of Inequality

Let P be the set of ﬁ—concave distributions and P C P be the subset of distributions p € P with

0 € Supp(p). Also, the set of ﬁ—aﬂine distributions on R (i.e., ) will be denoted by Q. We
note that inequality is equivalent to

</_Z tp(t)dt>2 < lm /_Z tp(t)dt. (11)

So we will prove inequality instead.

4.1.1 To Distributions with Bounded Support
We first show that it suffices to prove inequality for p € P with bounded support. This can

be done by limiting arguments: Let any p € P and € > 0 be given. By continuity, there exists a
real number M > 0 such that

(/Z tp(t)dt)2 _ <m>z )

; (12)

N



and
k(k + 2)

(k+1)2 =

t2p(t)dt

13
—o0 f_MMp(u)du (13)

/oo R Pet)dt

N

Note that the distribution
P(t) L= ar,a) cp

S p(u)du

has a bounded support. Therefore, if inequality holds for any distribution in P with bounded
support, then from inequalities and , we have

([ o) <5552 1™ e

Since the above inequality holds for any small € > 0, inequality follows by taking limiting
€\, 0.

4.1.2 To Distributions with Non-negative Support
Inequality is equivalent to

B <f_oooo tp(t)dt>2 _ k(k+2)
Pl epydt — (k+ )2

Since @ is unchanged if we flip the distribution p horizontally about ¢ = 0, we can assume without
loss that the mean p;(p) is non-negative. By the above reduction, we could also assume that
Supp(p) = [My, M| for some M, My € R with M; < M. Let p,(t) = p(t — u) be the distribution
obtained by shifting p to the right by u units. Then, for any v > 0,

Mo+u 2
d® (p,) d (Srapa(tyat)

du N % J\]\Z?:; t2pu(t)dt
May+u d (M 2 May+u 24 (M
B ( et t2pu(t)dt) 4 ( 2t + u)p(t)dt) ( et tpu(t)dt> 4 ( (¢t u)zp(t)dt>
= 2 - 2
( [ t2pu(t)dt) ( Y t2pu(t)dt>
Matu 49 M. Matu 2/ M
2 < ety pu(t)dt) ( et u)p(t)dt> 2 < et tpu(t)dt> ( (- u)p(t)dt>
2 2
( e t2pu(t)dt> ( [y t2pu(t)dt>
) u Ma+u Ma+u 2
-— 1.(Pu) . (/ 2p, (£)dt — </ tpu(t)dt> > 0,
+u u u
( M12+u t2pu(t)dt> Mt Mt

where the last inequality follows from that ui(p,) = p1(p) +w > 0. This shows that shifting
p rightwards can only (monotonically) increase the value of ®. Therefore, we can assume that
Supp(p) = [0, M3] for some M3 > 0.



4.1.3 To Distributions with p(0) > 0

Here we show that it suffices to focus on distributions p € P with p(0) > 0. From the above
reductions, we can focus on p € P such that Supp(p) = [0, M3] for some M3 > 0. Let € € (0, M3).
By definition, we have p(e) > 0. Consider the distribution p_ obtained by shifting p to the left by
€ units. We can bound the changes in the integrals in as follows:

/OMS tp(t)dt — /MBG tp-e(t)dt' = /OMS tp(t)dt — /OMS(u — )p(u)du

—€

=€, (14)

and

M3 Ms—e
/ t2p(t)dt — / t2p_6(t)dt‘
0

Ms3 7;/[3
/0 t2p(t)dt — /0 (u — €)*p(u)du

Although p_(0) = p(e) > 0, the support Supp(p.¢) of p. is not non-negative. To remedy this, we
consider the truncated distribution

(15)

M3
— &2 = O(e).
26/0 up(u)du O(e)

p(t + 6)]1 [0,M3—¢]

r= fOMrEp(U)du .

The distribution p¢ € P retains all the desirable properties: p‘(0) > 0 and has a non-negative
bounded support. Furthermore, combining inequalities and with arguments similar to
those in Section we can easily show that ®(p°) — ®(p) as € N\, 0. Hence, we could assume
without loss of generality that p(0) > 0.

4.1.4 To Distributions Supported in [0, 1]

Let p € P. Due to above reductions, we may assume that Supp(p) = [0, M3] for some M3 > 0 and
that p(0) > 0. Consider the transformation p(z) = Ms - p(Msz). One can easily check that p is a
probability distribution in P with p(0) > 0 and Supp(p) = [0, 1]. Furthermore, we have that

® (p) = (S tﬁ(t)dt)2 My (s tp(Mst)dt)2 _ (fozz“ 'p(“)d“)2 _ ().

J2o t2p(t)dt fol t2p(Mst)dt Jo P u? - p(u)du

Therefore, it suffices henceforth to focus on the subset of distributions p € P with p(0) > 0 and
Supp(p) = [0, 1].

4.1.5 To ﬁ—Afﬁne Distributions
Let ¥ : P — R be the function defined as

1 2 1
U(g) = (k+1)> (/ tq(t)dt> — k(k + 2)/ t2q(t)dt.
0 0
To prove inequality , it suffices to prove that
U(p) <0. (16)



We recall that, by the above reductions, p € P is a ﬁ—concave distribution with 0 € Supp(p) C
[0, 1]. Consider the following problem parametrized by € > 0:

Ue:=sup Y(q)
q

subject to L [“q(t)dt > e, (Fe)

where P’ is the subset of distributions ¢ € P with Supp(q) C [0,1]. Inequality can then be
proven by showing that
U <o (1), ase\,0. (17)

Indeed, since p(0) > 0, there exists an € > 0 such that for any € € (0,€), we have % [ p(t)dt > .
Hence, p must be a feasible solution to problem and hence ¥(p) < ¥€ < o (1 ) Takmg limit
e \ 0 yields ¥(p) < 0, which is equivalent to inequality by the above reductions. Note that
the optimal value W€ is always finite.

Towards proving , we need the following corollary.

Corollary 1. The supremum V¢ of problem (P.) is achieved by either
1. a Dirac distribution 67 for some t € [0,¢€|; or

2. a ﬁ-aﬂine distribution ¢¢ € Q with Supp(q¢¢) C [0, 1] and

1 [ . .
/0 (D)t = e (18)

€

Proof. The result follows immediately by applying T heoremto problem and taking H = [0, 1],
M=V, s=5and f(t) =1 Lpq(t) —e O

Using Corollary we can prove by separately checking the two cases. We first consider Case

2
(o) = (k+1)2 (/l té;(t)dt) —k(k+2) /1 t25;(t)dt
0 0
=(k+1)*2 —k(k+2)t?=12<e

which implies inequality . So it remains to prove inequality for Case the ﬁ—aﬂine
distribution ¢¢ € Q.
4.1.6 To an Algebraic Inequality

Since ¢¢ € Q and Supp(g¢°) C [0, 1], there exist constants a,b € [0,1] and «, 5 € R such that a < b,
at+ >0 on [a,b] and

(at 4+ B)F 1 Ly (1)
fab(au + Bk ldu

We claim that without loss of generality, we can assume that a = 0 and 8 > 0. To prove the claim,
from the equality , we get

g (t) =

b
/ (at + B)F1dt = 62/ (au+ B)du,
[0,e]N[a,b]

a

10



which shows that € € (a,b). Consider the shifted distribution ¢¢,. Following the same arguments
for deriving and , we can show that

(W (q) = ¥(gSa)| = Ofe).

Therefore, we can assume without loss that a = 0 when proving for ¢¢, which in turn implies
B> 0.

Next, we claim that without loss of generality, we can also assume that a > 0. Suppose o = 0.
In such a case, ¢¢ is a uniform distribution, i.e., ¢¢(¢) = % for all t € [0,b]. We therefore have

U(g) = (k;l)Q </Obtdt) - k(k;_Q)/Obt?dt

(k+1)%*  k(k+2)b?
4 3
b2

:E(—k2—2k+3)§0.

2

For a < 0, we consider the distribution ¢¢(¢) = ¢(b — t), the distribution obtained by flipping

q¢ horizontally about ¢ = g. In other words,

(—at + ab+ B)F1 Ly (t)
fob(au—i—ﬁ)k_ldu

q(t) =

which is again supported on [0, b] and ﬁ—afﬁne. In addition, ab+ 8 > 0 and —a > 0. Therefore,
the claim would follow if we can prove that

(%) > ¥(q),

which can be easily shown to be equivalent to

b k—1
t(at + dt b
fob ( b) <. (19)
Jo(at + B)F—1dt — 2
Inequality follows immediately from the next lemma.

Lemma 2. Let q be a non-increasing distribution supported on [0,1]. Then the mean of q is at
most 5.
2

Proof. For any t € [0, 1], we ¢(t) > ¢(1 —t) and hence
tq(t) + (1 —t)g(1 —t) < (1 —t)q(t) +tq(1 —1).

Integrating both sides, we get

—
N[

/2 tq(t) + (1 — t)q(1 — t)dt <

0

(1 —1t)q(t) + tq(1 — t)dt,

1(1 — t)q(t)dt,

1
tq(t)dt

tq(t)dt

IN
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Therefore, we can safely ignore the case of o < 0.
It is obvious that inequality is implied by

(k+1)? (/Ob tq€(t)dt>

Let k = % > 0. We compute the integrals

/bt c(t)dt = Jotat + BYF—tdt b f) et + b‘;)’f—ldt
q =
0 J(at + B)k—Ldt Syt + L)ke-1at

2 b
< h(k+2) / 2o (t)dt. (20)
0

(21)
b fol(t + H)kdt b <(1 4 H)k+1 _ Hk+1 k >
= —_— — Kk = — Kk s
(¢ + m)k—1dt (L+w)k =k k41
and
/b £ ()t = Jo t*at + By tde B [y 82+ g5 ) e
0 Jo(at + B)k-1dt Jot+ 2ye-1at
1 1
— 2 Jot+ k)M 2k Jot+ k)Mdt 12 (22)
Jit+r)k=tdt [ (t+ r)k—Ldt
B b2 (1 + K,)}H—Q _ Iﬁ}k+2 k B K(l 4 R)k—i—l _ K,]H_l k N HZ
B 1+ k) — Kk k42 (1+r)k — Kk k+1
Substituting and into yields
2
(k N 1)2 (1 + H)kJrl _ K./]C+1 k .
(1+r)F—rF k+1
_ k(k N 2) (1 + H)k+2 _ /@k+2 k B 2,%(1 + Fc)k+1 _ Hk+1 k N )
- (1+kr)kF—rF k42 (1+r)r—rF k+1
Setting v = H'T“ > 1, it suffices to prove the following algebraic inequality
k+1 2
12 (L Ry
v -1 k+1 (23)
k+2 k+1
e -1k Tt =1 k
<k(k+2 -2
_(+)(7k—1 k+2 vk —1 k+1+

4.1.7 Proving the Algebraic Inequality (23))

We now conclude the proof of inequality by proving . First, multiplying both sides by
(k +1)(* — 1)2, we see that inequality becomes

0 < k(" = 1) (k(k + 1)(/2 = 1) = 2k(k +2) (/" = 1) + (B + Dk +2) (2" - 1))

2
= (k1) (K = 1) = (b + D(F = 1)) 5= fo().
The function fy can be simplified into

fo(y) = 2k — (b + D72 — K2k + D2 4 2k (B2 + b — DA — B3+ K2 — 2% + (k- 1).

12



Observing that fy(1) = 0, it suffices to show that fj(v) > 0 for any v > 1. By simple calculation,
F5(7) =2k(2k + 1)y — 2k(k + 1)y* 1 — K2 (k + 1) (k + 2)7" !
+ 2k(k 4+ 1)(K* + k — 1)7* — k(k® + k2 — 2)7F !
= k" 1 (7),
where
fi(y) =22k + D)y — 2k + Dy —k(k + 1)(k +2)7% + 2k + 1) (E* + k — 1)y — (K> + k? — 2).
Since f1(1) = 0, it suffices to show that f{(y) > 0 for any v > 1. Again by simple calculation,

1) =2k + 1)(2k + D)y" = 2k(k + DY = 2k(k + 1)(k +2)y + 2(k+ 1)(K2 + &k — 1)

2(k + 1) f2(7),

where
fo() = @k + )Y — k¥ —k(k+2)y + (K2 + k—1).
Since f2(1) = 0, it suffices to show that f5(y) > 0 for any v > 1. Finally,
F3(7) = k(2k + DY = Rk = 1)y = k(k +2)
= k"2 2k + 1)y — (k—1)] — k(k +2)
>k[2k+1)—(k—1)— (k+2)]
= 07

where the inequality follows from the fact that v > 1. This shows that fy() > 0 for any v > 1 and
hence completes the proof of inequality .

4.2 Proof of Inequality (4)

Inequality (4)) is trivial for distributions p € P with ua(p) = 0. Therefore, we assume that ps(p) > 0.
We will need the following notations. For any distribution p € P, we let

13(p)
115(p)

ktr2k—1
S <2/
k= kE k+3

The following observation will be useful:

_mlp) -
n@)_MAM’ )

Then, inequality is equivalent to

’ and =i =supZ(p).
peEP

3
—_ H3 (»)
sup E(p) = sup . (24)
peP peP H3 (D)
To prove it, for any p € P such that
) _

13(p)
we define p(x) = p(—x). Then we have that p € P and that
p3B) _  pip)

B0 - e
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4.2.1 To ﬁ-Afﬁne Distributions

Using the formulas .

| ot = ) + i)
and

/ T Bp(t)dt = k() + 31 (D)3P) + 1),

we get

3
[ a9+ 3n(p) + ()
—
2

) )
o0 2
(S5, e2p(tyar) TP
Since pa(p) and ps(p) are invariant to horizontal shift of the distribution p,
3
[ Bp(t)dt LAY 4 3+
0 = sup 5 = supsup Qﬁ
rer (ff‘;o t?p(t)dt) 2 neRpeP (141%)2 6)
13(p) 3
_ (SUPPGP u%(zﬂ) 30+ o Ex 347
= sup ¥ =sup ————
neRr (1+n?)2 neR (1 +n?)2

where the last equality follows from . This shows that we can bound = by bounding the
supremum o. Towards that end, we approximate the supremum o by truncating the distribution.
In particular, using similar arguments as in Section one can prove that for any ¢ > 0, there
is a real number M > 0 such that ¢ < ops + €, where

oy i=sup [T t3p(t)dt
p

subject to [ #*p(t)dt < 1, (27)
p € P
and Pys C P is the set of distributions p € P with Supp(p) C [-M, M]. Similar to Section m
we apply Theorem (3| to problem and obtain the following corollary.
Corollary 2. The supremum oy of problem is achieved by either

1. a Dirac distribution; or
2. a ﬁ—aﬂine distribution q € Q.
Proof. The result follows immediately by applying Theorem [3| to problem and taking H =

(M, M), T(p) = [, Bp(t)dt, s = iy and f(£) = L_pan(t) — 2 O

We can ignore Case [1| of Corollary since we assumed that po(p) > 0. Using Case 2 of Corollary
we arrive at the following relation:

© Bp(t)dt o0
sup s tr) 3 < on +2€e < / t3q(t)dt + 2¢
pEP (ffooo t2p(t)dt) 2 —00
* Bq(t)dt © Bp(t)dt
< f_oo at) 5 1 2¢ < sup f_oo 40 = + 2e.

(% 2att)ar) P (22, () )
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Taking limiting € N\ 0 yields

[, Bp(t)dt I, Bpe)t
sup = = sup T (28)
2

peP (ffooo tzp(t)dt>7 peQ (ffooo t2p(t)dt)2
Combining and gives that

=, 43 3 > 3p(t)dt
e/ = su S ) =0 (29)
5

sup 3~ — Sup
v () e (1 sy

To bound Zj, we consider two cases. Case 1: ¢/ < /2. Putting = 1 in (29) gives

= 4
L)

3

22

which implies Z, < 0. Case 2: ¢’ > /2. Let § € Q be an e-approximate maximizer of ¢’ with
€ < 0.01. Then,

E 4 30@ + 2@ SR 3ntn’ _ Jos tp(t)dt
(L+72@)2  neR (L4922 peP (s t2p(t)dt>3
22 t3q(t)dt =2(G 7) 4+ n3(q (30)
< o'l 3+6§:(Q)+377(Q)+;7(Q)+67
(1= Patyar) 1)}

where the equality follows from , the second inequality from and the last inequality
from . On the other hand, we have

14<vV2-001<0o —e<

o tadt _ =(q) +3n(@) +7°(@)

S < R (31)
(fi’o t%j(t)dt) 2 (1 +n (Q))

oo

where the second inequality follows from the fact that ¢’ > v/2 and € < 0.01, the third inequality
from the fact that g is an e-approximate maximizer and the last inequality from . Using AM-GM
inequality and then inequality , we have

Njw

14-7%(q) < 1.4 (n%(Q))

2(= 2
<14- (W) < Z(9) + 31(q) + n*(q).

Using this inequality and the Young’s inequality, we obtain
g q Y.

N
@) < 5y (B@)+31@) < o (E(a)ﬂ@ + 22 ) < 22(@)+ 2@ +

which implies that r
73(q) < 15-2(q) + 10 - 32. (32)

We shall use the following elementary inequality: for any r > 1 and w > 0, there exists a constant
Cy > 0 such that
(yl + y2)r < (1 + W)yI + Cr,wy;- (33)
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By inequalities , and , for any w > 0, there exists some C, > 0 such that

S <E@ e (1+72@)? <E@ 4 e (L+ )@ + e Co < (1+0(e) (@) + O(€) + ¢ - C.

Since € and w are arbitrarily small and we can decrease ¢ and w at rates such that ¢ - C, — 0 as

€,w \, 0, it suffices to show that
k+2k—1
q) < 24/ ————. 4
@< \/7k+3 (34)

Now we prove inequality (34)). The case of & = 0 or a = b is trivial. So we assume that « # 0 and
a < b. We state without proof the simple observation that = is invariant under translation and
scaling.

[1]

4.2.2 To an Algebraic Inequality

Lemma 3. Letp € Q and p(t) = || -p(dt—i—B), where &, B € R are real numbers with & # 0. Then
p € Q and E(p) = E(p).

By Lemma [3] instead of ¢, it suffices to consider the distribution

- th=1. ]l[ozaJr,B,abJrﬁ] (t)
q(t) = B k14,
faa+ﬁ u u
Case 1: aa+ 8 =0. Since ab+ 8 > aa + 8 = 0, Lemma [3| allows us to simplify ¢ further to
g (1)

(j(t) - fl uk—ldu =k- tk_l . ]1[071] (t)
0

We compute

and
1
13(q) = /O B4(t)dt — 311 (@)13(d) — 15(0)
ko k k ALY
 k+3 E+1 (k+1)2(k+2) E+1
B —2k(k —1)
(R 1)3(k+2)(k+3)
Therefore,

I 2%(k — 1) k+13k+2)72  _ [k+2k—1
20 =20 = GripnrGTs) e =N T e

Case 2: aa + 8 > 0. Again using Lemma [3] instead of ¢, it suffices to consider

tk_l -1 [1,7] (t)

M) ="ty
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where v = gZig > 1. Then it suffices to show that

12
4(1‘:&:)&)2 V"> =)y

2
(fl Bq(t)dt — 3 ([} ta(t)adt) (] t2q( clt)+2(f1 tG(t)dt) )
(7 attydt — (J7 ta)r)*)”
(7 =) (fy 52de) = 3 (7 65 (J7 ) ([ o+ +2 (f7 )
(7 +=1dr) (f7 t61de) — (f7 tar)?)’
k_1\2 [ k+3_ k_ k+1_ k+2_ k+1_71\3 2
() () -s(5) () () o2 () )
2\ 3 '
((52) (#5) - (2))
Upon rearranging terms, the above inequality is equivalent to

0<4(k —1)? <(k +1)2 (’yk - 1) (71”2 - 1) — k(k +2) (”ykﬂ - 1)2>3

- <2k2(k +2)(k+3) (7’““ - 1)3 +(k+2)(k +1)3 (% - 1)2 (7“3 - 1) (35)

= 3k(k+3)(k + 1) (¢ = 1) (71 = 1) (42 - 1) ) = g(y, k).

The proof of inequality is thus completed by the following lemma.
Lemma 4. For any v > 1 and integer k > 2, g(v,k) > 0.

The proof of Lemma [4 which is provided in Appendix [A] is straightforward and uses on only
elementary calculus, despite its tediousness.

5 Conclusion

This paper showed that the universal barrier of Nesterov and Nemirovski [10] is n-self-concordant
on any proper convex domain in R". The key to the proof of this result is a pair of new, sharp
moment inequalities for s-concave distributions, which could be of independent interest. Currently,
these inequalities concern only the first three moments. An interesting research question would be
to generalize them to higher moments.
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A Proof of Lemma

The purpose of this section is to provide an elementary proof of Lemma [4| i.e., g(y,k) > 0 for
any v > 1 and integer k > 2. For simplicity, in this section, we omit the second input k from the
function g.

The idea of the proof is straightforward and uses only elementary calculus. Specifically, since
g(1) = 0, the goal of establishing the non-negativity of g on [1,00) reduces to proving that ¢’ > 0
on [1,00). We then compute ¢’ and extract its non-negative factors. As it turns out, ¢’(1) = 0.
Therefore, it suffices to show that g > 0 on [1,00). We find that, once again, the second derivative
g" vanishes at v = 1, i.e., ¢"(1) = 0. Our goal thus reduces to proving g(®(y) > 0 on [1,00).
We keep applying such arguments to reduce our goal to proving the non-negativity of the next
derivative until the 17th times, where we can show by simple algebra that ¢(*” > 0 on [1,00).

All the derivatives of g are polynomials with exponents and coefficients depending on the integer
k. In the course of the above reductions for proving the desired inequality , some of the terms
of the derivatives of g have exponents k — 3, k — 4, or k — 5, which could possibly be negative and
hence break our arguments. Therefore, we separately handle the boundary cases k = 2, 3, 4.
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A.1 The boundary cases k = 2,3,4

We first prove the inequality for the case of 2 < k < 4.
For k=2 and v > 1,

9(7) = 108(y — 1)*4*(1 + 6y +4%) > 0.
For k=3 and v > 1,
g(7) = 512(y — 1)243(2 4+ 157 + 6092 4 967> 4 60~ + 1595 + 2+¢°) > 0.
For k =4 and v > 1,
g(7) = 4500(y — 1) 1244 (148743572 + 11073+ 2129 +268~° +21275 4+ 11077 + 3575+ 8v° +~10) > 0.

Therefore, g(y) > 0 for any v > 1 and integer k = 2, 3,4.

A.2 The case of £ > 5

Now we prove the inequality for the case of k > 5. Although the proof for this case is tedious, the
strategy is straightforward and uses only simple calculus.
We first factorize g as g(7) = (k4 1)3(v — 1)>v*go(7), where

g0(7)
= (4k* — 8k + 4) v + (—dk? — 4k + 8) Y3 4 (—k® — Tk + 5k® + 15k — 12) 4*F 1

+ (4K° + 28k* + 16k™ — 36k> + 12k — 24) 43" +2 + (—6k° — 42k* — 66k> — 6k> + 48k) 3+ +2

+ (4K5 + 28Kk* + 64K3 + 52k% + 4k — 8) 43! 4 (=K — Th* — 19K3 — 25k% — 16k — 4) 4**
(—6k> — 18k" — 18K® + 6k> + 24k + 12) v*" 4 + (24K° + 72k" + 48k° — 12k* — 12k + 24) 4°F*3
(—36k> — 108k* — 60Kk® + 12k — 96k) v*F*2 + (24K° + 72k* + 48k* — 12k% — 12k + 24) 4+
(—6k> — 18k* — 18k + 6k? + 24k + 12) v** + (—k° — Tk* — 19k% — 25k% — 16k — 4) "
(4K° + 28Kk* + 64k> + 52k + 4k — 8) 4F 13 + (—6k° — 42k* — 66K> — 6k + 48k) 2
(4K° + 28Kk* + 16k> — 36k + 12k — 24) v + (=K — 7k* + 5k3 + 15k% — 12) 4"
(—4k® — 4k + 8) v + 4k* — 8k + 4.

It can be checked that go(1) = 0. Therefore, it suffices to show that gj(y) > 0 for v > 1. The
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derivative of gg is given by g () = g1(7y), where

91(7)
= (16k* — 16k% — 16k + 16) v*¥ 13 + (—16%> — 28k + 20k + 24) 12
+ (=3k5 — 25k° — 13k* + 65k + 60k* — 36k — 48) 3+ 13
+ (12k% + 96K° + 132k* — 60k® — 72k — 36k — 72) M2
(—18K° — 138K5 — 282k* — 150k° + 132k2 + 96k) 7*F T
(12k5 + 88K° + 220k* + 220%% + 64k* — 20k — 8) 43 + (—3k5 — 21k° — 57k* — 75k® — 48k* — 12k) 4*F~!
(—12k5 — 60K° — 108k* — 60k + T2k + 120k + 48) 4+ 3
(48K5 + 216k + 312k + 120k% — 60k + 12k + 72) 42+ T2
(—72k% — 288K° — 336k* — 96k® — 168k* — 192k) 42!
(48K5 + 168Kk + 168K + 24k> — 36K? + 36k + 24) 2"
(—12k° — 36Kk° — 36k + 12k° + 48k + 24k) *F !
(—kS — 11K° — 47k* — 101k® — 116k* — 68k — 16) 7+
(4% + 40K® + 148K* + 244K® + 160k + 4k — 24) 4"+2
(—6k® — 54k° — 150k — 138k> + 36k> + 96k ) v + (4k® + 32k + 44k" — 20k> — 24k% — 12k — 24) 4
(—kS — 7kP + 5k* + 15k — 12k) 4F ! — 4k? — 4k + 8.

+ 4+ + o+ o+ o+

It can be checked that gi(1) = 0. Therefore, it suffices to show that gj(y) > 0 for v > 1. The
derivative of g1 is given by g} () = 7 2g2(y), where

92(7)
= (64k" — 16k* — 112k + 16k + 48) v** + (—64k" — 144k® + 24k + 136k + 48) 413
+ (—9k" — 84K — 114K° + 156k" + 375k> + T2k — 252k — 144) 4+
+ (36k" + 312k° + 588K° + 84k* — 336k° — 252k — 288k — 144) 42+ 3
(—54k" — 432K5 — 984K — 732" + 246k> + 420k> + 96k) 22
(36k" + 264Kk° + 660k° + 660k* + 192k* — 60k* — 24k) v*F*!
(—9K7 — 60k° — 150k° — 168k — 69k + 12k2 + 12k) 4
(—24K" — 156K° — 396k> — 444k* — 36k> + 456k? + 456k + 144) o*+*
(96k" + 528Kk + 1056k° + 864k™ + 120k* — 96k + 168k + 144) "3
(—144K" — 648K — 960k° — 528k* — 432k> — 552k* — 192k) 2
(96k" + 336k° + 336K" + 48k* — 72Kk + T2k% + 48k) A"
(—24k7 — 60k° — 36K° + 60k* + 84k* — 24k) »*
(—k7 — 14k° — 80K° — 242k* — 419Kk — 416k* — 220k — 48) +*
(4k7 + 48K° + 228k° + 540k + 648k> + 324k* — 16k — 48) 7°
(—6k7 — 60k° — 204k — 288k" — 102k> + 132k” + 96k)
(4k" + 32K° + 44K° — 20k* — 24k3 — 12k* — 24k) v — k" — 6k5 + 12k° + 10k* — 15k® — 12k* + 12k.

It can be checked that g2(1) = 0. Therefore, it suffices to show that g(y) > 0 for v > 1. The
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derivative of gy is given by ¢5(v) = 2(k + 1)g3(7y), where

93(7)
= (96k* + 8k* — 208k? + 8k + 96) v** 3 + (—96k* — 216k® + 36k> + 204k + 72) v+ +2

+ (9K — 93k° — 189K° + 117k* + 570k> + 252k* — 360k — 288) 423
+ (36k" + 330k° + 726K° + 240k* — 450k® — 306k — 360k — 216) 4>+
(—54k" — 432K° — 984Kk — 732" + 246k> + 420k* + 96k) ~>* 1!
(36k" + 246k° + 546K° + 444k" + 78k® — 42k? — 12k) 4%

(—9K7 — 51k° — 99K° — 69k* + 12k?) 42!

(—12k7 — 114K5 — 396k° — 618k* — 288K3 + 444k* + 696k + 288) 413
(48k" + 360k° + 960k° + 1056k* + 300k> — 168k> + 108k + 216) 2
(—72k7 — 396KS — 732k° — 492k* — 252k3 — 456k% — 192k) A"

(

(=

(

(=

2kS — 26k° — 134k* — 350k° — 488k — 344k — 96) *
6k° + 66k + 276k" + 534k> + 438k” + 48k — 72) »*
6kS — 54k® — 150k* — 138%™ + 36k + 96k) v + 2k°® + 14k° + 8k* — 18%™ + 6k* — 12k.

+ 4+ + o+ o+

It can be checked that g3(1) = 0. Therefore, it suffices to show that g5(y) > 0 for v > 1. The
derivative of g3 is given by ¢5(7) = 394(7), where

94(7)
= (96k° + 104k* — 200> — 2002 + 104k + 96) >+

+ (—96k° — 280k* — 108%™ + 228k + 208k + 48) ¥ !

+ (—6k% — 715" — 219k5 — 111%° + 497k* + 738k> + 12k? — 552k — 288) M2
(24k% + 244K" + 704kS + 644K — 140k* — 504k> — 444k* — 384k — 144) 4> +!
(—36k® — 306" — 800k® — 816K — 80k* + 362k" + 204k? + 32k) 4>

(24K® + 1647 + 364K° + 296k° + 52k* — 28k% — 8k?) 42!

(—6k® — 31k — 495 — 13Kk° + 23k* + 8k® — 4k?%) 4?2

(—4Kk® — 50k7 — 246k° — 602&° — 7T14k* — 140k + 676k? + 792k + 288) ~* 12
(16K® + 152" + 560k° + 992k° + 804k* + 144k® — 76> + 144k + 144) !
(—24k® — 156k" — 376k° — 408k" — 248k* — 236k° — 216k — 64k) A

(16K® + 5657 + 56K5 + 8k® — 12k* + 12k + 8k2) 4+

(—4k® — 2" + 6K° + 10k — 6k* — 8Kk® + 4k?) A+ 2

(—2k° — 26k° — 134k* — 350k" — 488k* — 344k — 96) 7

(4 + 44K° + 184k* + 356K® + 292k + 32k — 48) v — 2k5 — 18K° — 50k — 46K® + 12k + 32k.

It can be checked that g4(1) = 0. Therefore, it suffices to show that g)(y) > 0 for v > 1. The
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derivative of g4 is given by ¢} (7v) = 2¢5(7), where

95(7)
= (144k° + 252Kk° — 196k* — 500k> — 44k? + 248k + 96) >+

+ (—144K5 — 468K° — 302k + 288Kk + 426k* + 176k + 24) "

+ (—6k° — T7E® — 29057 — 330k° + 386k° + 1235k* + 750k — 540k? — 840k — 288) H2F 1
(24K7 + 256k° + 826K7 + 996k5 + 182k° — 574k* — 696k> — 606k* — 336k — 72) 4>
(—36k" — 306%™ — 800k” — 816k° — 80K® + 362k + 204K° + 32k7) 42+

(24K7 + 152k% + 282K + 114k5 — 96k — 54k* + 6k + 4k?) 2+ 2

(—6k” — 25k% — 18K" + 36k° + 36k° — 15k* — 12k° + 4k?) 42F3

(—2k? — 29k® — 173%™ — 547k° — 959k° — 784k" + 198k® + 1072k + 936k + 288) AR
(8k” + 84K® + 356k" + 776k° + 898K® + 4T4k" + 34k + 34k* + 144k + 72)

(—12k7 — 78k® — 188k" — 204k° — 124k° — 118k* — 108K" — 32k%) "~

(8%7 + 20k% — 24k5 — 10K° + 12k* — 2k® — 4k?) A+ 2

(—2K° + 3k% + 5K7 — kO — 13K° + 2k* + 10k% — 4k?) 4+3

(—2k° — 26K° — 134k* — 350k° — 488k> — 344k — 96) v + 2k° + 22k° + 92k* + 178Kk + 146k> + 16k — 24.

+ o+ o+ + o+ o+ o+t

It can be checked that g5(1) = 0. Therefore, it suffices to show that g5(y) > 0 for v > 1. The
derivative of g5 is given by gL () = gs(7y), where

96(7)
= (432k" + 900K® — 336k° — 1696k* — 632k + T00k? + 536k + 96) "
+ (—432K" — 1404k — 906k° + 864k* + 1278k> + 528k? + 72k) 43+ ~!
+ (—12k" — 160k° — 657k® — 950k + 442K° + 2856k° + 2735k* — 330k® — 2220k — 1416k — 288) 4
+ (48K™ + 512k + 1652K® + 19927 + 364%° — 1148%° — 1392k* — 1212k® — 672k% — 144k) 4!
+ (=T72kY — 576k — 1294k% — 832k" + 656k° + 804k° + 46k — 140k® — 32k2) 22
+ (48K + 256k + 260k® — 336k — 420K° + 84K° + 120k — 4k3 — 8k?) %+ 3
+ (1251 — 32K + 39k® + 126k7 — 36k° — 138K° + 21k* + 44K® — 12k?) 4
+ (—2k — 31k — 202k® — 720k7 — 1506k° — 1743k> — 586k* + 1270k> + 2008k + 1224k + 288) A
+ (8K + 84Kk + 356k% + 776k" + 898KO + 474K + 34k" + 34k + 144k> + 72k) !
+ (—12k" — 66k° — 110k® — 16k7 + 80k® + 6k° + 10k" + 76k> + 32k*) "2
+ (8K'0 + 4K — 40k® — 24k7 + 38K0 + 32k° — 26k" + 8k%) F
+ (—2K1 4+ 9K — 4K® — 16k7 — 10k° + 415> + 4k* — 34k> + 12k2) 71
— 2k° — 26k° — 134k — 350k® — 488k> — 344k — 96.

It can be checked that gg(1) = 0. Therefore, it suffices to show that gg(y) > 0 for v > 1. The
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k-5

derivative of gg is given by gg(v) = k(k — 1)y °g7(7), where

g7(7)
= (1296kS + 3996k° + 2088k" — 2100k> — 3996k — 1896k — 288) 4>+

+ (—1296k° — 5076k° — 6390k* — 2892K" + T8K? + 384k + 72) 42+

+ (—24k° — 344K® — 1658k" — 3558k° — 2674k + 3038k™ + 8508%” + 7848k> + 3408k + 576) o
(96K + 1072k® + 3864k" + 6196k° + 4932k° + 2272k* + 636k™ — 396k — 528k — 144) A+ 3
(—144k° — 1152k® — 2588k" — 1664k° + 1312k° + 1608k* + 92k — 280k% — 64k) ~* 12
(96K + 464Kk° + 2167 — 1236k5 — 1068%> + 360k* + 348k> — 20k% — 24k) !

(—24k° — 40k® + 16657 + 262k — 314k° — 446k* + 148K> + 152k* — 48k) A"

(—2k? — 33k® — 235k" — 955k° — 2461k° — 4204k* — 4790k> — 3520k* — 1512k — 288) ~*
(8K” + 84Kk® + 356k" + T76KS + 898K® + 474k* + 34Kk + 34k> + 144k + 72)

(—12k% — 54k® — 32k™ + 172k5 + 284K + 130k* + 128%™ + 184k + 64k) ~*

(8%% — 12Kk® — 64k" + 32k° + 142K5 + 60k* — 62K° + 16k* + 24K)

— 2k 4+ 15k® — 25k" — 25k° + 29k° 4+ 110k" — 50k — 100k* + 48k.

+ o+ o+ o+

It can be checked that g7(1) = 0. Therefore, it suffices to show that g¢,(y) > 0 for v > 1. The
derivative of g7 is given by ¢5(v) = 2(k + 2)gs(7), where

98(7)
= (1296k° + 3996k + 2988k* — 2100k” — 3996k? — 1896k — 288) 2+ 3

+ (—1296k° — 4428k° — 5148k — 2181k + 102k + 297k + 54) *+*2

+ (—12k° — 196K® — 1125k" — 2845k° — 2763k + 1697k + 6936k> + 7068%> + 3264k + 576) ~* 13
(48K + 584K® + 2372k" + 4150k° + 3460k° + 1614k + 498%™ — 240k* — 378k — 108) ~**2
(—72k° — 576k — 1294k" — 832k° + 656k° + 804k* + 46> — 140k* — 32k) "

(48K° + 184K® — 28K — 454k° — 244K° + 134k* + 86k> — 8k* — 6k) +*

(—12k° + 4k% + 75K7 — 19k° — 119K + 15k* + 44k — 12k%) 471

(—4k® — 58k" — 354k0 — 1202k° — 2518k" — 3372k> — 2836k — 1368k — 288) 4*

(12k% + 102k" + 330kS + 504k° + 339k* + 33k> — 15k* + 81k + 54) 7

+ (—12k® — 30k" + 28K° + 116k° + 52k* + 26k° + T6k> + 32k)

+ 4% — 147 — 4kS + 24K° 4 23k* — 16k> + k* + 6k.

It can be checked that gg(1) = 0. Therefore, it suffices to show that gg(y) > 0 for v > 1. The
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derivative of gg is given by g5(v) = (k + 1)go(7), where

99(7)
= (2592k5 + 9288K° + 8676k — 3912k — 10380k? — 5400k — 864) 7>+

+ (—2592k° — 8856k° — 10296k* — 4362k” + 204k* + 594k + 108) v 1!

+ (—12k° — 220k® — 1493k" — 4727k® — 6571k — 21k* + 12048k> + 15828%% + 8640k + 1728) ~* 12
(48K + 632K® + 2908%" + 5986k° + 5774k + 2760k + 966k — 210k* — 648k — 216) v
(—72k" — 576k — 1294k™ — 832k° + 656k° + 804k" + 46k — 140k* — 32k) +*

(48K + 136Kk® — 164k" — 290k° + 46k° + 88k* — 2k* — 6k%) 4+

(—12k" + 28K® + 43k™ — 137k + 37k® + 97k" — 68k> + 12k*) 472

(—12k" — 162k° — 900k° — 2706k" — 4848k> — 5268k* — 3240k — 864) +°

(24k" + 180K° + 480k° + 528k + 150k® — 84k> + 54k + 108) v

— 12k" — 18k° + 46k° + 70k — 18K® + 44k” + 32k.

.
N
+
N
+
.

It can be checked that gg(1) = 0. Therefore, it suffices to show that gg(y) > 0 for v > 1. The
derivative of g9 is given by g4(v) = g10(7), where

g10(7)
= (5184K" + 23760k° + 35928K" + 9528k* — 28584%° — 31560k% — 12528k — 1728) 42+
+ (—5184k" — 20304k° — 29448k> — 19020k — 3954k° + 1392k> + 810k + 108) v**
+ (= 12k"0 — 244k — 1933k% — 7713k" — 16025k° — 13163k° + 12006k + 39924k” + 40296k
+ 19008k + 3456)7* T
+ (48k™ + 680k" + 3540k® + 8894k™ + 11760k° + 8534k° + 3726k + 756> — 858k> — 864k — 216) 7
+ (—72k" — 576k — 1294k® — 832k" + 656k° + 804k° + 46k — 140k> — 32k%) !
+ (48k™ + 88k" — 300k® — 126k" + 336k° + 42k° — 90k* — 4k> + 6k%) o2
+ (=125 + 52k — 13%% — 223K + 311k5 + 23k° — 262k* + 148%% — 24K?) 7* 3
+ (—24k" — 324k° — 1800k — 5412k* — 9696k — 10536k> — 6480k — 1728)
+ 24k" + 180k° + 480k° 4 528k* + 150k” — 84k* + 54k + 108.

It can be checked that gi9(1) = 350(k — 1)k?(k +1)(k 4+ 2)? > 0. Therefore, it suffices to show that
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Gio(7) > 0 for v > 1. The derivative of gi¢ is given by gi,(v) = g11(7), where

g1 (7)
= (10368k" + 52704k" + 95616k° + 54984k — 47640k* — 91704k" — 56616k> — 15984k — 1728) 4+

+ (—10368k® — 40608%" — 58896k° — 38040k° — T908k™ + 2784k> + 1620k? + 216k) 2+
+ (= 12k" — 256K — 2177k — 9646k° — 23738k" — 29188Kk°® — 1157k°
+ 51930k + 80220k + 59304k? + 22464k + 3456)~"
+ (48K + 680k + 3540k” + 8894k + 11760k™ + 8534k° + 3726k° + 756k" — 858k" — 864k
— 216k)y* !
+ (—72kM — 504K — 718K + 462k® + 1488K" + 148k° — 758Kk — 186k* + 108%™ + 32k?) 472
+ (48K — 8K — 476k + 474k® + 588k" — 630k° — 174K° + 176k* + 14K® — 12k7) o3
+ (—12kM + 88K'0 — 169k7 — 184k% + 980k" — 910kS — 331K° + 934k* — 468k> + T2k?) +*~*
— 24k" — 324k° — 1800k — 5412k — 9696k> — 10536k> — 6480k — 1728.

It can be checked that g11(1) = 350(k — 1)k?*(k + 1)(k + 2)2(9k + 5) > 0. Therefore, it suffices to
show that g},(vy) > 0 for v > 1. The derivative of g1y is given by ¢}, (7) = kv*5g12(y), where

912(7)
= (20736k® + 105408k" + 191232k5 + 109968%° — 95280k* — 183408%™ — 113232k* — 31968k — 3456) v***

+ (—20736k% — 70848k" — 77184k5 — 17184k + 22224Kk* + 13476k + 456k — 1188k — 216) "3
+ (= 12" — 256K — 2177k — 9646k% — 23738k" — 29188k° — 1157k + 51930k + 80220%”
+ 59304k% + 22464k + 3456)7*
+ (48K + 632k + 2860k” + 5354k° + 2866k" — 3226k — 4808k° — 2970k" — 1614k> — 6k
+ 648k + 216)~°
+ (—=72k" — 360k'0 + 290k” + 1898k® + 564k" — 2828k — 1054k° + 1330k* + 480k> — 184k? — 64k) 4
+ (48K — 152K — 452%% + 1902k® — 834K7 — 2394K5 + 1716%° + 698k* — 514k® — 54k* + 36K)
— 12" + 136k — 521%" + 492k° + 1716k — 4830k° + 3309k° + 2258k" — 4204k” + 1944k* — 288k

It can be checked that gi2(1) = 14(k — 1)k(k + 1)(k + 2)(1081k3 + 2951k? + 1664* + 370) > 0.
Therefore, it suffices to show that gj,(y) > 0 for v > 1. The derivative of g2 is given by ¢i5(7) =
2(2k + 1)g13(v), where

913(7)
= (51845 + 44496k" + 130968k° + 153240k° + 9528k* — 145896k> — 138768k* — 51840k — 6912) 12

+ (—5184k® — 30672k™ — 57096k° — 33636k° + 9486k" + 15294k + 2574k — 1242k — 324) A"*2
+ (= 12k — 250k” — 2052k® — 8620k" — 19428k° — 19474k° + 8580k" + 47640k> + 56400k°
+ 31104k + 6912)*
+ (365" + 456K + 1917k® + 3057k" + 621k5 — 2730%° — 2241k* — 1107k® — 657k> + 324k + 324) +*
+ (—36k™ — 162k + 226k + 836k" — 136k° — 1346k° + 146k + 592k — 56k — 64k)
+ 12k" — 44K — 91K® + 521k7 — 469k° — 364k° + 611k* — 131k> — 63k + 18k.
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It can be checked that g13(1) = 14(k— ) (k+1)(k+2)(687k3+2516k>+2490k+775) > 0. Therefore,
it suffices to show that ¢{5(7) > 0 for v > 1. The derivative of gi3 is given by gi5(v) = 2914(7),
where

g14(7)
=(2592k" + 30024k® + 132228k" + 273072k° + 234624k° — 58656k — 288228k — 234072k — 81216k
— 10368)~* 12
+ (— 2592k — 20520k® — 59220k" — 73914k° — 28893k° + 17133k" + 16581k> + 1953k* — 1404k
— 324)yM 1

+ (— 18k" — 375k — 3078k® — 12930k" — 29142Kk° — 29211k + 12870k* + 71460k" + 84600k”

+ 46656k + 10368)*
+ (365" + 456k + 1917Kk® + 3057k" + 621%° — 2730k° — 2241k* — 1107k* — 657k* + 324k + 324)
— 18k — 81%" + 113" + 418k" — 68k°® — 673k° + 73k* + 296k — 28k* — 32k.

It can be checked that g14(1) = 7(k—1)k(k+1)(k+2)(1208k*+6663k>+12249k%+9312k+2548) > 0.
Therefore, it suffices to show that gj,(y) > 0 for v > 1. The derivative of g14 is given by ¢},(7) =
3(k+1)(k+2)(k+3)(2k + 3)g15(7y), where

915(7)
= (432k° + 2628K° + 3696k* — 412k — 3720k% — 2240k — 384) !
+ (—432K° — 612Kk — 60K + 221k + 66k> — 17k — 6) 7~
+ (—6k°® — 80k® — 306k* — 280k® + 360k> + 768k + 384)
+ 6k° + 31k° — 33k 4 2k — 3k* — 9k + 6.

It can be checked that g15(1) = 7(k — 1)k(k + 1)(281k? + 471k + 214) > 0. Therefore, it suffices to
show that ¢j5(y) > 0 for v > 1. The derivative of g15 is given by gis(7) = g16(7), where

916(7)
= (432k" + 3060k° + 6324K° + 3284k* — 4132k% — 5960k% — 2624k — 384) /¥

+ (—432k" — 612k° — 60k° + 221k* + 66k — 17k* — 6k)
— 6Kk5 — 80k® — 306k* — 280k° + 360k> + 768k + 384.

It can be checked that gi6(1) = (k— 1)k(2442k* + 8626k3 +11825k? + 7479k +1862) > 0. Therefore,
it suffices to show that 916(7) > 0 for v > 1. The derivative of gy is given by gi4(7v) = (k—1)k(3k+
1)(3k + 2)(4k + 3)v*2g17(y), where

gi7(y) = (12k* + 76Kk* + 128k + 64) v — 12k® + 4k + 3k —

>12 k:3+761<:2~|—128k+64—12k3+4k2+3k—1>0

Deducing backward, we have that g(y) = (k + 1)3(y — 1)24%go(y) > 0 for any v > 1 and integer
k > 5. This completes the proof of Lemma [4]
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