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Abstract: We propose and demonstrate an all-fiber Er-doped mode-locked laser with a 3-dB
spectrum of 114 nm by using nonlinear polarization rotation (NPR), which to the best of our
knowledge is the first realization to date of such a broad spectrum without any spatial optical
devices. The repetition rate and pulse width of the laser are 183.6 MHz and 3.7 ps, respectively.
Such an all-fiber NPR mode-locked laser is then applied in time-stretch optical coherence
tomography. The axial resolution is 12.1 µm. The all-fiber high speed broadband swept laser
based on the time stretching technique has compact structure and high stability, which is a
promising source for frequency metrology and high resolution optical coherence tomography.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT), first demonstrated by D. Huang et al. in 1991, is a powerful
technique for in-vivo, non-invasive and high-resolution cross-sectional imaging of biological
tissues [1]. Swept source OCT (SS-OCT) adopts a swept laser and a single photodetector to
acquire a time-resolved interference signal. SS-OCT has higher imaging speed when compared
with time domain OCT which is hampered by the mechanical movement of the reference arm.
SS-OCT also has higher resolution when compared with spectrum domain OCT which is limited
by the resolution of the spectral detectors used such as the charge-coupled devices (CCD) or
complementary metal-oxide-semiconductor (CMOS) [2–5]. A high speed swept laser with a
broadband spectrum is the key to achieve high speed and high resolution imaging in SS-OCT
systems.

A variety of swept lasers have been applied in the SS-OCT system. A conventional swept
laser consists of a resonator which includes a gain medium and a fast tunable optical bandpass
filter dynamically tuned to set the lasing wavelength [6,7]. The sweep rate is limited to kilohertz
because lasing has to be built up from spontaneous emission in each round trip. By integrating
all the components into a compact optical platform and adopting a MEMS filter, the cavity
can be shortened to ∼10 cm. Such a short-cavity swept laser can reach a sweep rate up to 200
kHz [8]. However, short laser cavities suffer from mode hopping, are relatively unstable, and
have short coherence lengths [9]. Mode hopping can be avoided by combining vertical-cavity
surface emitting lasers (VCSEL) with MEMS, which can generate MHz swept rate with long
coherence length but the output power is low [10]. In 2006, a novel Fourier domain mode-locked
fiber laser was proposed by inserting a long fiber delay in the cavity to store all the lasing
signal, thus avoiding laser build-up from spontaneous emission in each round trip. The sweep
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rate was increased to several hundred kilohertz or even megahertz if buffering is used [11–13].
Swept lasers utilizing mechanical tunable filters have long term stability problem, which can be
mitigated by using inertia-free or passive swept mechanism.

Time stretching is a promising method to realize megahertz or even hundreds of megahertz
swept lasers, overcoming the limitation of tunable filters [14–16]. In time stretching, a broadband
mode-locked short pulse is broadened to a long chirped pulse by group velocity dispersion
(GVD). The performances of the swept laser such as the sweep rate, sweep range and coherence
are determined by the repetition rate, spectrum range and coherence, respectively, of the seed
mode-locked fiber laser used. The main difficulty to obtain a high performance seed mode-locked
fiber laser is that the gain bandwidth of rare earth doped fibers is normally limited to about 30 nm.
Nonlinear spectral expansion, either inside or outside the laser cavity, can be used to obtain a
bandwidth of more than 100 nm. Outside the laser cavity, supercontinuum generation in nonlinear
fibers pumped by narrow bandwidth pulses could significantly expand the pulse spectra, but the
coherence of the output signal is limited by modulation instability [17,18]. A flat broadband
spectrum with 10-dB bandwidth of 100 nm is obtained from an polarization-maintaining figure-9
mode-locked fiber laser after nonlinear spectral expansion in an Erbium-doped fiber amplifier
[16,19–20]. External spectral expansion however inevitably increases the complexity of the laser
system. Dispersion and nonlinearity management inside the mode-locked fiber laser is a preferred
and also an effective approach to obtain high power broadband pulses. Both figure-8 and figure-9
mode-locked fiber laser configurations with dispersion management have been demonstrated
to be able to realize stable broadband ultrashort pulses [21–24]. However, ultrashort pulses
with 3-dB spectral width up to 100 nm have not been demonstrated yet. Nonlinear polarization
rotation (NPR) mode-locking, one of the popular passive mode-locked techniques, has been
widely used to obtain broadband ultrashort pulses [15,25–33]. Short pulses with 3-dB spectral
width of more than 100 nm have been demonstrated in dispersion-managed Er-doped fiber lasers
[28–30]. These NPR-based mode-locked fiber lasers all utilized spatial optical devices such as
half wave and quarter wave plates, which render practical applications of these lasers difficult.
Although an all-fiber NPR Er-doped mode-locked fiber laser with a 10-dB bandwidth of 102 nm
has been reported, the spectrum has a large slope and the 3-dB bandwidth directly from the fiber
laser is only ∼30 nm [15].

In this paper, we demonstrate an all-fiber mode-locked laser with a simple compact configuration,
114 nm broadband spectrum, 183.6 MHz repetition rate and high stability. The self-starting
evolution dynamics of the mode locking is measured by using the dispersive Fourier transform
technique. The high repetition rate broadband mode-locked fiber laser is then incorporated in an
SS-OCT system utilizing time stretching which achieves both high resolution and high imaging
speed. The rest of the paper is organized as follows. Section II describes the experimental setup
and performances of the all-fiber mode-locked fiber laser and its applications in the SS-OCT
system. Section III concludes the paper.

2. Experimental setup and results

2.1. Broadband all-fiber nonlinear polarization rotation mode-locked laser

Figure 1 shows the experimental setup of the proposed Er-doped fiber ring laser based on NPR
mode-locking technique and the measurement system. Compared with other NPR mode-locked
fiber laser with spatial optical devices, this laser cavity consists of only fiber components. The
configuration is simple and compact. The total length of the laser cavity is ∼1.12 m only, thus the
laser is not sensitive to the ambient temperature variation when operating at room temperature.
An optical integrated module consisting of a 20:80 optical coupler, a 980/1550 nm wavelength
division multiplexer and a polarization dependent isolator is used to realize the pump coupling
and 20% laser output. About 0.42 m of Er-doped fiber (nLIGHT Liekki Er80-8/125) with a
dispersion of ∼16.14 ps/nm/km at 1550 nm is used as the gain medium and pumped by a 980 nm
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single mode laser diode. Dispersion management in the laser cavity is paramount in obtaining a
broadband output spectrum. We use a section of about 0.11 m dispersion compensation fiber
(DCF) with a dispersion of −166.1 ps/nm/km at 1545 nm to compensate the cavity dispersion
to close to zero. Besides dispersion compensation, the polarization and nonlinearity in the
laser cavity are also carefully controlled by optimizing the polarization state of the light by the
two polarization controllers (PCs). The output spectrum is measured by an optical spectrum
analyzer (ANDO, AQ-6315B, OPTICAL SPECTRUM ANALYZER). The repetition rate is
determined by a photodetector, an oscilloscope (OSC, KEYSIGHT, DPO759SA-X 96204Q) and
an electrical spectrum analyzer (ESA, KEYSIGHT, N9020B). The pulse width is measured by
an autocorrelator (Femtochrome, FR-103HS). The dispersive Fourier transform (DFT) method
is used to capture the dynamics of the mode-locking process to understand the mechanism of
broadband spectrum generation. A section of 1.49 km single mode fiber, which is carefully
calculated and measured by optical time domain reflectometry (ANDO, AQ7250) is used as the
dispersion element in the DFT-based spectroscope. 20% of the output laser signal is used as
self-clocking for the real-time oscilloscope and a high-speed photo-detector (PD, HP, 83440C
LIGHTWAVE DETECTOR, DC-20 GHz) is used to acquire the time-stretched laser pulses.

Fig. 1. Schematic diagram of the all-fiber mode-locked laser and the measurement system.

Pump power is a key parameter for mode-locking and nonlinearity management to realize flat
broadband spectrum. When the pump power is 516 mW, a stable mode-locked pulse is obtained
with a 3-dB spectral width of 40 nm at the center wavelength of 1560 nm. By further increasing
the pump power to 1.1 W and carefully adjusting the polarization state of the light in the laser
cavity, a flat ultra-broadband spectrum with a 3-dB and 10-dB spectral bandwidth of 114 and
160 nm respectively are obtained as shown in Fig. 2(a), which to the best of our knowledge is
the broadest pulse bandwidth reported to date by an NPR-based all-fiber mode-locked laser.
The generation of such a flat broadband spectrum is mainly the result of the precise dispersion
and nonlinearity management of the fiber cavity. We manage the cavity dispersion by carefully
adjusting the SMF length, enabling the fiber laser to operate from the anomalous dispersion
regime where classical Kelly sidebands can be observed on the mode-locked spectrum to the
normal dispersion regime with rectangular spectrum [28,34–35]. The total dispersion of the
mode-locked fiber laser is ∼0.00116 ps2. Figure 2(b) shows that the adjacent pulse separation is
5.45 ns, which is consistent to the cavity length. Figure 2(c) shows the autocorrelation trace of
the mode-locked pulse. The pulse width is determined to be ∼3.7 ps by Gaussian fitting. The
large chirped pulse can be compressed to femtosecond level with higher peak power outside the
laser cavity. Figure 2(d) shows the RF spectrum of the mode-locked pulses. The signal-to-noise
ratio (SNR) is ∼80 dB at a resolution bandwidth of 10 kHz and the fundamental repetition rate is
183.6 MHz, indicating stable mode-locking operation [15,31–33].

The long-term spectral stability of the broadband mode-locked fiber laser is then investigated.
The duration of the test is 9 hours and measurements are at 30-minute interval. The stability
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Fig. 2. Output characterization of the NPR-based broadband mode-locked fiber laser. The
(a) optical spectra, (b) pulse train, (c) autocorrelation trace, and (d) RF spectrum.

test is conducted at room temperature and the pump power is fixed at 1.1 W. The PCs are not
adjusted during the test. From Fig. 3(a), there are no obvious spectral fluctuations, and the
central wavelength does not drift and remains around 1579 nm during the 9-hour test. Figure 3(b)
presents the corresponding output power and the full-width-at-half-maximum (FWHM) pulse
width. The output power is ∼31 mW with a fluctuation of ∼0.071 dB, indicating a good stability of
the output power. The output spectrum has a 3-dB bandwidth of more than 110 nm throughout the
9-hour test period. We note that the spectral bandwidth can be affected slightly by environmental
perturbations because the NPR-based mode-locked oscillator is polarization sensitive. After
the 9-hour test, the decrease in the spectral width can be restored by carefully adjusting the
polarization controllers without changing the pump power. The laser can also self-start, simply
by turning off and on the pump laser without adjusting the PCs.

Fig. 3. The spectral stability test. The test duration is 9 hours and the corresponding output
power as well as the 3-dB spectral width. Measurements were recorded every 30 minutes.
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The transient dynamics of the mode-locking process is studied to demonstrate the generation of
the broadband spectrum. The single-shot measurements of the buildup process of the broadband
pulses, in both the temporal and spectral domains, are conducted by using the DFT technique
as shown in Fig. 1. Figure 4(a) shows the temporal evolution dynamics including the growth
of the pulse from the noise, relaxation oscillation and stable mode locking. The resolution is
limited by the bandwidth and acquisition rate of the OSC. The oscillation stage lasts for ∼32.7
µs, which is close to the relaxation time of the EDF. The oscillations then become stronger and
the soliton starts to buildup. Figure 4(b) shows the spectral evolution which is similar to that
of a previous study on soliton buildup dynamics in a dispersion management fiber laser [36],
where the beating dynamics is first observed accompanied by the multipulse spectrum evolution
induced spectral broadening. The complex pulse and energy evolution dynamics are related to
the population inversion of the gain medium [37]. Figure 4(c) shows the zoom-in view from the
76,000-th to 76,300-th roundtrip. The effect of self-phase modulation (SPM) is clearly shown.
The intensity at the central wavelength is the highest and gradually decreases from the central
wavelength to both sides accompanied by spectral broadening. Finally, one pulse will absorb
almost all the cavity energy and generate a stable time-domain profile and the weak pulse cluster
will disappear as shown in Figs. 4(c) and 4(d). From the dynamics, strong amplification with
1.1 W pump power for the EDF can lead to strong SPM which in turn leads to the broadband
spectrum, resulting in the observed 114 nm spectral bandwidth [38].

Fig. 4. Real-time measurements of the self-starting process of the broadband fiber laser.
The (a) spatio-temporal dynamics and (b) the corresponding spatio-spectral evolution over
120,000 consecutive roundtrips. (c) The spatio-spectral evolution of 300 roundtrips from the
76,000-th to 76,300-th roundtrips showing the beating dynamics. (d) The spatio-spectral
evolution of 20,000 roundtrips from the 100,000-th to 120,000-th round trips demonstrating
stable mode-locking.

2.2. Time stretched swept laser and OCT imaging system

Time stretching an ultrashort broadband spectrum to a long chirped pulse by dispersive components
such as single mode fiber, dispersion compensation fiber and chirped fiber Bragg grating (CFBG)
is a promising method to realize high speed swept lasers. Figure 5 shows the schematic of an
SS-OCT system in which a length of 1.49 km single mode fiber is used as the dispersive medium
to stretch the output of a mode-locked fiber laser at a repetition rate of 183.6 MHz and spectral
width of 114 nm. The swept signal after the SMF is then split by an optical coupler (OC, 10:90)
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and transmitted to a Michelson interferometer. 10% of the light propagates through a circulator
and is reflected by a homemade motorized reflective variable optical delay lines (VODLs) as
the reference arm. 90% of the light propagates through the circulator and is then collimated
by a collimator (Thorlabs, LA1509-C) and scanning mirrors (Thorlabs, GVS102) before finally
focused on the sample. The galvo scanning system is driven by an arbitrary waveform generator
(160 MHz Dual Channel Function, BK PRECISION) with a scanning speed of 500 Hz. The
reflected light from the sample and the reference is then combined by a 50:50 optical coupler and
detected by a 43-GHz bandwidth balanced photodetector (Finisar, BPDV2150R) and acquired by
a real-time oscilloscope (OSC, KEYSIGHT, DPO759SA-X 96204Q) with a bandwidth of 62 GHz
and a sampling rate of 160 GSa/s. To obtain the point spread function of the SS-OCT system, the
10:90 optical coupler is replaced by a 50:50 optical coupler and the sample arm is replaced by
the reflective variable optical delay line (VODL). A portion of light from the mode-locked fiber
laser is detected by a photodetector and used as the trigger signal for the OSC.

Fig. 5. A schematic diagram of the SS-OCT system.

Figure 6(a) shows the stretched pulse with about 4.5 ns pulse width which is consistent with the
dispersion of the 1.49 km SMF. The temporal waveform has a similar profile with the spectrum
shown by the blue curve in Fig. 2(a), which indicates that there is no nonlinear effect after the
SMF. Figure 6(b) shows the interference fringes with modulations captured by the OSC. The
modulations in the interference signal is caused by the optical path difference between the two
arms of the Michelson interferometer, which will help to precisely obtain the depth information
of the sample. By using the swept trace ω(t), the resampled interference signal in the frequency
domain is obtained and then used in fast Fourier transform (FFT) with zero paddings to calculate
the point spread function (PSF) as shown in Fig. 6(c). The starting point of each sampling period
has been properly set to ensure the time to wavelength mapping is correctly resolved. The stable
sweep trace, because of the stable seed mode locked laser used, will significantly reduce the need
for recalibration in OCT systems. From Fig. 6(c), the axial resolution of the SS-OCT system
is measured to be 12.1 µm in air by Gaussian fitting. The measured axial resolution is higher
than those reported in the literature to date because of the use of the ultrabroadband swept laser
which has a 3-dB bandwidth of 114 nm and 10-dB bandwidth of 160 nm. The high resolution
SS-OCT system is then used to image two pieces of glass. As shown in Fig. 6(d), two layers
of glass are clearly identified which correspond to the two reflecting surfaces of the glasses
with 0.2 mm thickness. The different reflectivity of the glasses are also clearly identified with
different demodulated intensities. In addition, microstructures of the cover glass are also clearly
visible. SS-OCT imaging systems with such a high resolution will have significant applications
in biomedical imaging and other industrial inspections such as jewelry and chips.
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Fig. 6. (a) The pulse train stretched by the 1.49 km SMF. (b) A real-time single-shot
interferogram generated by the SS-OCT system. (c) An axial resolution of 12.1 µm in air.
(d) The OCT image of two pieces of cover glass overlapping together.

3. Summary

In summary, an all-fiber NPR mode-locked laser with repetition rate of 183 MHz and 3-dB spectral
bandwidth of 114 nm and 10-dB of 160 nm is proposed and demonstrated by carefully managing
the intra-cavity dispersion and nonlinearity. Because of the compact all-fiber configuration,
the proposed fiber laser is stable with an 80-dB SNR and has only small power and spectral
fluctuations in a 9-hour stability test. The dynamics of the mode-locked fiber laser is studied
by using the DFT technique showing the mechanism of broadband spectrum generation, where
strong amplification will lead to strong SPM and contribute to the broadband spectrum. The
all-fiber mode-locked laser is then used as the seed laser to generate swept signal by time
stretching technique and applied in a swept source OCT system. An axial resolution of 12.1 µm
is obtained and two pieces of cover glass with microstructures are imaged. This novel all-fiber
mode-locked swept laser with ultrabroadband spectrum and high stability provides a promising
source for SS-OCT systems to obtain high speed and high resolution imaging in real time.
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