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ABSTRACT: MHC-I peptides are a group of important immunopeptides presented by major histocompatibility complex (MHC) on 

the cell surface for immune recognition. The majority of reported MHC-I peptides are derived from protein coding sequences, and 

non-canonical peptides translated from small open reading frames (sORF) are largely unknown due to the lack of accurate and sen-

sitive detection methods. Herein we report an efficient approach that implements complementary bioinformatic strategies to improve 

the identification of non-canonical MHC-I peptides. In a database search strategy, non-canonical immunopeptides mapping was op-

timized by combining three complementary pipelines to construct predicted sORF databases from Ribo-seq data. In a de novo peptide 

sequencing strategy, MS data search results were filtered against sORF databases to pin down additional non-canonical immunopep-

tides. In total, 308 non-canonical immunopeptides were identified from two tumor cell lines with selected ones vigorously validated. 

Our approach is a handy solution to identify non-canonical MHC peptides with Ribo-seq and MS data. Meanwhile, the novel non-

canonical immunopeptides identified with this method could shed insights on fundamental immunology as well as cancer immuno-

therapies. 

INTRODUCTION 

MHC-I peptides that are presented on the cancer cell surface are 

key factors for recognition by CD8+ T cells to trigger immune 

response in cancer immunotherapy.1-5 MHC-I peptides that are 

unique to cancer, or neoantigens, are considered ideal immuno-

therapy targets and thus are very attractive. Initially, most neo-

antigens were identified through computational prediction of 

mutation-bearing MHC-I peptides encoded by protein coding 

sequences obtained from whole exome sequencing and RNA-

seq.2 As this approach failed to provide neoantigens with high 

efficacy for patients with low tumor mutation burden (TMB),6 

recent efforts have focused on aberrantly expressed MHC-I 

peptides from alternative spliced RNAs,7 introns,8 non-coding 

regions,9, 10 and even epigenetic changes.11, 12 

Protein coding DNA sequences constitute 1.5% of the whole 

genome,13 whereas up to 75% of the genome can be transcribed 

yet are presumably “non-coding”.14 In recent years, it has come 

to light that many of the non-coding RNAs have coding poten-

tial to produce polypeptides.15 Thousands of ncRNAs, repre-

senting 40% of long ncRNAs (lncRNAs) and pseudogene 

RNAs, and 35% of untranslated regions (UTRs) in messenger 

RNAs, are potentially translated.16 Computational, ribosomal 

profiling and mass spectrometry (MS) studies have collectively 

demonstrated the existence of a plethora of peptides encoded by 

unannotated small open reading frames (sORFs) that are about 

100-codon-long. The sORFs-encoded small peptides (SEPs) or

non-canonical peptides have specific subcellular distribution,

similar abundance to their canonical counterparts and even es-

sential biological functions.9, 17-21 The increasing knowledge of

sORFs offers a great opportunity for discovering MHC-I pep-

tides or even potent cancer neoantigens from non-canonical

SEPs.

Systematic identification of sORFs and their translation prod-

ucts remains a promising and yet challenging task. While com-

putational approaches predict the existence of thousands of 

sORFs,22 mass spectrometry is the only and final proof of non-

canonical peptide expression. Like all database-dependent pro-

teomics studies, sensitive and accurate detection of SEPs heav-

ily relies on the presence of high-quality databases. Custom 

sORF database construction has been performed with various 

methods including in-silico six-frame translation of whole-ge-

nome sequences,21, 23 three-frame translation from Refseq,24 ex-

ome-seq,25 RNA-seq22 and Ribo-seq.17, 26 Most prior works 

combined these sequencing methods to build comprehensive 

sORF databases. However, in-silico translation of genome or
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Figure 1. Methods for identifying MHC I peptides from canonical and non-canonical peptides. (a) Schematic overview of the approach. (b) 

Number of canonical and non-canonical immunopeptides. (c) The percentage of predicted canonical and non-canonical MHC-I peptides as 

binders. 

transcriptome would result in a large number of predicted sORF 

sequences. Searching MS data against such inflated databases 

may increase the chance of false discovery. Meanwhile, sub-

stantial amount of sequencing work and strong bioinformatics 

skills are required to identify hundreds of non-canonical im-

munopeptides. 

Ribo-seq offers superior reliability for sORF prediction be-

cause it is a snapshot of the translational events and can avoid 

generating inflated databases. So far, various bioinformat-

icspipelines with respective strength have been developed for 

predicting ORFs from Ribo-seq data. However, the perfor-

mance of the pipelines used to construct custom database of 

SEPs have not been fully evaluated. Among them, some emerg-

ing pipelines enable sORF prediction based on user-defined 

Ribo-seq data. For example, RiboTISH uses statistical tests to 

assess translational events.27 It enables efficient de novo predic-

tion of sORF with either AUG or near-cognate start codons. 

PRICE, which is based on supervised learning, is capable of 

modeling the noise in Ribo-seq and improving resolution for 

sORF prediction.28 RiboTISH and PRICE have been reported to 

outperform other methods and therefore would be adopted in 

our study. In addition, sORF.org, a readily available sORF 

database that contains a large number of sORF predicted from 

Ribo-seq data,29 would also be evaluated here considering its 

easy accessibility to common users.  

The database search strategy heavily relies on available pro-

tein sequence references, which limits its performance for a less 

defined proteome background as in the case of non-canonical 

peptides. On the contrary, de novo peptide sequencing method 

circumvents the need of a reference database by inferring the 

amino acid sequences directly from experimental MS/MS spec-

tra. Combining these two complementary strategies, database 

search and de novo sequencing, could improve detection of im-

munopeptides. There were several successful endeavors to 

identify canonical immunopeptide with de novo sequencing.30-

34 However, de novo sequencing has not been used to find SEPs 

or non-canonical immunopeptides encoded by sORFs to the 

best of our knowledge. An obvious obstacle is the considerable 

high proportion of false positive prediction in de novo sequenc-

ing. A systematic approach with a posteriori error control is ur-

gently needed to tackle this obstacle, so that de novo sequencing 

can be used in non-canonical peptide identification. Recently, 

several research groups had independently reported identifica-

tion of non-canonical peptides as tumor immunopeptides using 
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Figure 2. Comprehensive and reproducible identification of canonical immunopeptides. (a) Number of MHC-I peptides identified in each 

sample. (b) Pearson correlation of reproducibility among the same cell type. (c) Length distribution of MHC-I peptides. (d) Predicted affinity 

of peptides to MHC molecules (triplicates). (e) Clusters and sequence motifs of immunopeptides. 

vastly different bioinformatics or proteomics approaches.25, 35 

Based on these prior studies, we have streamlined the workflow 

to improve the identification of non-canonical immunopeptide 

with Ribo-seq and MS analysis. We found that combining three 

bioinformatics pipelines to predict sORF from Ribo-seq data 

could improve the database-dependent peptide search. Mean-

while, de novo peptide sequencing followed by custom sORF 

database filtering could further expand the repertoire of non-

canonical immunopeptides. With this approach, 308 non-ca-

nonical MHC-I peptides were identified in a colorectal carci-

noma cell line HCT116 and an acute T cell leukemia cell line 

Jurkat (E6-1). The characteristics of these non-canonical im-

munopeptides highly resembled those of their canonical coun-

terparts. Among the novel non-canonical immunopeptides, rep-

resentative ones were extensively validated with multiple ap-

proaches including MS methods and MHC-I presentation in live 

cells. 

MATERIALS AND METHODS 

Chemicals and Materials. Jurkat (E6-1) cells were main-

tained in RPMI 1640 medium supplemented with 10% fetal bo-

vine serum (FBS) and 1% antibiotics. HCT116 cells were in 

DMEM medium supplemented with 10% FBS and 1% antibi-

otics. T2-A02:01 monoallelic cells were maintained in IMDM 

medium supplemented with 10% fetal bovine serum (FBS) and 

1% antibiotics. W6/32 monoclonal antibody was purchased 

from AtaGenix Laboratories Co., Ltd. (Wuhan). HLA-I alleles 

were examined using high-resolution genotyping (BGI). Pep-

tide standards were purchased from GenScript Biotech. FcXTM 

(422301) was purchased from Biolegend, and anti-HLA-A, B, 

C (W6/32) antibody conjugated with PE (12-9983-42) was pur-

chased from eBioscience. 

MHC-I Immunopeptidome Sample Preparation. MHC-I 

peptidomes were obtained from established cell lines as de-

scribed previously.36 In each group, 1  108 cells were used for 

immunopeptides isolation. In brief, cell pellets were dissociated 

with lysis buffer with 0.25% sodium deoxycholate, 1% n-octyl 

glucoside, 100 mM PMSF, 0.2 mM iodoacetamide and protease 

inhibitors cocktail in Gibco's Dulbecco's phosphate-buffered 

saline (DPBS). Lysate were further cleared by centrifugation 

for 50 min at 17,000 g at 4 °C. The supernatant was purified 

with W6/32 antibody covalently bound to Protein-A Sepharose 

CL-4B beads. Beads were then washed with buffer A (150 mM 

NaCl, 20 mM Tris HCl) and 400 mM NaCl, 20 mM Tris HCl. 

The MHC-I complex was eluted with 1% TFA. Eluate was then 

loaded on Sep-Pak tC18 cartridges (Waters, 100 mg) and wash 

with 0.1% TFA and 2% ACN in 0.1% TFA, sequentially. The 

peptides were separated from MHC-I complexes on the tC18 

cartridges by eluting with 28% ACN in 0.1% TFA and dried 

using vacuum centrifugation. 

Immunopeptides Sequencing with Data-Dependent Ac-

quisition. The fractionation was performed with a Shimadzu 

HPLC system based on a previous research.37 The enriched im-

munopeptides were injected into a self-packed capillary column 

and separated by 70 min gradient of buffer A (5% ACN in am-

monia) and buffer B (95% ACN in ammonia, pH 9.8). Each 

sample was fractionated into 6 fractions and dried on vacuum 

centrifuge. The fractionated immunopeptides were sequenced 

using Orbitrap Fusion Lumos Tribrid mass spectrometer 

(Thermo Fisher Scientific) coupled to an UltiMate 3000 HPLC 

(Thermo Fisher Scientific) based on our previous study.38 

Briefly, each sample was separated on a self-packed capillary 

column at a flowrate of 500 nL/min by 65 min gradient of buffer 

A (2% ACN and 0.1% formic acid) and buffer B (98% ACN 

and 0.1% formic acid). The peptides were ionized by 2K spray 

voltage in Orbitrap Fusion Lumos Tribrid mass spectrometer. 

The full scan spectra were measured with a resolution of 60,000 

and auto gain control (AGC) of 1E5 within 50 ms max injection 

time, followed by top 30 MS2 scans with a resolution of 15,000 

and AGC of 2E4 within the same 50 ms max injection time. The 

isolation window of MS2 scan was set to 1.6 m/z and only ions 

with 2-6 charges were triggered for the MS2 event. The normal-

ized collision energy (NCE) was set as 30. The dynamic exclu-

sion was set as 30s. 

Validation of Immunopeptides by Parallel Reaction Mon-

itoring Mode. To confirm the existence of immunopeptides de-

tected from DDA data, both selected native immunopeptides 

and synthetic peptides were analyzed using Orbitrap Fusion  
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Table 1. HLA Typing of HCT116 and Jurkat Cells 

 HLA-A* HLA-A* HLA-B* HLA-B* 

HCT116 01:01 02:01 18:02 45:01 

Jurkat (E6-1) 03:01 - 07:02 35:01 

Lumos Tribrid mass spectrometer coupled to an UltiMate 3000 

UPLC. The samples were separated on a column (75 μm × 25 

cm, 2 μm particle size) at a flowrate of 300 nL/min by 90 min 

gradient of the same buffer A and B. The full scan spectra were 

measured with a resolution of 60,000 and auto gain control 

(AGC) of 4E5 within 30 ms max injection time, followed by 

targeted peptides MS2 scans with a resolution of 15,000 and 

AGC of 1E5 within 50 ms max injection time under the 1.4 m/z 

isolation window. The normalized collision energy (NCE) was 

set as 30. The PRM data were processed with Skyline 

(20.2.0.343) software. 

Identification of Canonical and Non-canonical Immuno-

peptides with De Novo Peptide Sequencing. PEAKS (Studio 

10.5) was used to conduct de novo sequencing and peptide an-

notations. 10 ppm and 0.2 Da were set as error tolerances for 

the precursor ions and the fragment ions, respectively. No en-

zyme was selected. Carbamidomethylation of cysteines was set 

as a fixed modification and oxidation of methionine was set as 

a variable modification. The maximum number of modifica-

tions was two. For each spectrum, only the highest-ranking can-

didate peptide reported by PEAKS was further used. To ensure 

the non-canonical immunopeptides are unique, peptides that 

had 100% similarity against a database composed of RiboTISH, 

PRICE and sORF, and ≤ 80% similarity against annotated pro-

teome (UniProtKB/SwissProt, Jan-2020) were considered as 

non-canonical immunopeptides using Blastp (2.9.0+). The pep-

tides with  80% similarity against SwissProt were considered 

as canonical immunopeptides. 

Identification of Canonical and Non-canonical Immuno-

peptides with Database Search. The DDA data were sepa-

rately searched against the library generated by the PRICE, 

sORF, RiboTISH, and SwissProt database (UniProtKB/Swis-

sProt, Jan-2020) using MaxQuant (1.6.17.0). The common pa-

rameters were set as below: no contaminant database was in-

cluded; the MS/MS match tolerance was set as 20 ppm; the di-

gestion mode was set as unspecific; oxidation (M), acetyl (pro-

tein N-term) and carbamidomethyl (C) were included as varia-

ble modifications; the FDR was set as 1%. The identified pep-

tides from MaxQuant were mapped against SwissProt using 

Blastp (2.9.0+) and only peptides with less than 80% overlap-

ping rate were considered as non-canonical immunopeptides. 

Ribo-seq Analysis and Database Construction. Four pub-

licly available Ribo-seq datasets downloaded from the NCBI 

SRA database were used.39 Preprocessing of Ribo-seq raw data 

consisted of adaptor removal using Cutadapt (v1.8.1),40 low-

quality trimming using Sickle (v1.33),41 and removal of rRNA 

and tRNA contaminants using Bowtie2 (v2.3.5.1).42 All remain-

ing reads were mapped to the human reference genome 

(GENCODE, Release 28: GRCh38.p12) using STAR (v2.5.2)43 

with default parameters and further uniquely mapped reads 

were extracted. Non-canonical sORF detection was subse-

quently performed using RiboTISH (v0.2.1)27 and PRICE 

(v1.0.3b)44 with default parameters. To increase the statistical 

power of the sORF calling, the aligned BAM files for replicates 

of each cell line were merged with ‘samtools merge’ (v1.6). 

Finally, nucleic acid sequences of all actively translated sORFs 

were converted into amino acid sequences in the FASTA format 

for construction of MS/MS protein searching databases. 

Assessment of Peptide-HLA binding. T2-A*02:01 cells 

were maintained in RPMI 1640 medium without any supple-

ments. Peptides (10 μg/mL) were added into the culture me-

dium and DMSO was used as a control. Antigen peptide 

MART-1 (ELAGIGILTV) was used as the positive control. A 

peptide binding to HLA-A*11:01 (SVSTVLTSK) was used as 

the negative control. Peptides were incubated with T2-A*02:01 

cells at 37 °C for 2 h. Cells were collected for Fc receptor block-

ade, and stained by anti-HLA-A, B and C antibody. DAPI was 

used for counter-staining of live cells, and fluorescent signal 

were obtained and analyzed by flow cytometry. Data were nor-

malized to DMSO group for quantification of peptide-HLA 

binding.  

Prediction of Peptide-HLA Affinity. To evaluate the bind-

ing affinity of immunopeptides, netMHCpan 4.0 prediction 

software was run on all immunopeptides with length ranging 

from 8 to 15 amino acids.45 Peptides with a rank ≤ 2% were 

considered as binders, and peptides with a rank ≤ 0.5% were 

considered as strong binders.  

Hydrophobicity Index Calculation. Sequence-specific HI 

was calculated with the SSRCalc vQ.0 tool, which was availa-

ble online at http://hs2.proteome.ca/SSRCalc/SSRCalcQ.html. 

Only unmodified peptides were included. Parameters were set 

as 100 Å C18 column, 0.1% formic acid separation system and 

without cysteine protection. Observed RTs were obtained from 

MaxQuant. If a peptide was detected multiple times in the same 

sample, the mean RT was used. Peptides and their mean RTs 

were plotted against the predicted HIs. 

RESULTS AND DISCUSSION 

An Efficient Approach to Identify Non-canonical MHC-I 

Immunopeptides. To achieve sensitive detection of non-ca-

nonical immunopeptides, we developed an integrative approach 

based on Ribo-seq, database search and de novo sequencing 

proteomics (Figure 1a). For this purpose, a colorectal carcinoma 

cell line HCT116, which was defined as mutation burden high 

(TMB-H) and microsatellite instability high (MSI-H) and 

thereby had been used previously to study cancer neoantigens, 

was chosen in our study as a reference.46, 47 Another acute T cell 

leukemia cell line Jurkat, which was also TMB-H/MSI-H but 

displayed distinct HLA allotypes, was chosen as another repre-

sentative cell type in our study.48 Considering that these two cell 

types displayed distinct HLA allotypes, we expected to identify 

non-canonical peptides from different repertoires. 

First, immunopeptides were enriched by co-immunoprecipi-

tation with MHC antibody and analyzed with tandem mass 

spectrometry. Canonical immunopeptides were detected by 

searching MS data against UniProt human protein database. Ca-

nonical immunopeptide served as a benchmark to indicate suc-

cessful enrichment of MHC-I peptides. Next, two complemen-

tary strategies, namely database search strategy and de novo 

sequencing, were applied to identify non-canonical immuno-  

http://hs2.proteome.ca/SSRCalc/SSRCalcQ.html
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Figure 3. Non-canonical immunopeptides are encoded by sORFs in cancer cells. (a) Non-canonical immunopeptides are identified by data-

base searching with the three different library construction pipelines (b) Non-canonical immunopeptides are translated from sORF at various 

genome regions, and (c) predicted MHC-I binder percentage. Comparison of canonical and non-canonical immunopeptides in terms of (d) 

MaxQuant score, (e) spectrum charge state, (f) retention time and (g) peptide length distribution.

peptides. As reference databases are critical in SEPs identifica-

tion, they were constructed by using different algorithms to pre-

dict sORFs based on Ribo-seq results. Meanwhile, de novo pep-

tide sequencing was used to provide additional non-canonical 

immunopeptides. The returned peptide sequences were further 

filtered against the custom sORF database and only those that 

were the most confident non-canonical immunopeptides were 

kept. Such a highly integrative approach enabled us to identify 

308 non-canonical immunopeptides along with 7902 canonical 

and 3 mutation-bearing immunopeptides (Figure 1b). A consid-

erable portion of these peptides were theoretical MHC binders 

(Figure 1c). Notably, two of the non-canonical immunopeptides 

had been reported previously.9 The detailed workflow of the ap-

proach was elaborated as follows. 

Canonical MHC-I Peptides as a Benchmark. MHC-I pep-

tides were specifically enriched through immunoprecipitation 

with monoclonal MHC-I antibody.36 With a peptide 

fractionation method, we identified 3,067 and 1,571 peptides in 

HCT116 and Jurkat, respectively (Figure 2a). The detection 

sensitivity and quantitative reproducibility of the canonical im-

munopeptides were demonstrated by high correlation between 

biological replicates (Figure 2b). The 8-11mers, which contrib-

uted to above 90% of the total canonical immunopeptides, fell 

in the typical length range of MHC-I peptides36 (Figure 2c). Ac-

cording to the calculation with netMHCpan 4.0,49 over 77% of 

these peptides were precited as MHC-I binders (Figure 2d) 

while 62% were as strong binders, indicating robust enrichment 

and detection of MHC-I peptides. Clustering50, 51 based on pep-

tide sequence similarity revealed 3 motifs from HCT116 and 4 

motifs from Jurkat. Genotyping was carried out to ensure the 

HLA alleles of these two cells lines were identical to what had 

been recorded in previous database. Selected motifs with char-

acteristics for 9-mer peptides were highly consistent with the 

expected amino acid distribution at anchor positions of HLA- 
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Figure 4. Identification of canonical and non-canonical MHC-I peptides with de novo sequencing. Number of peptides identified with de 

novo sequencing and their predicted affinity to MHC molecules from (a) HCT116 cells and (b) Jurkat cells. (c) Overlap between peptide 

sequences identified by de novo sequencing (de novo score85) and database search with SwissProt. Comparison between canonical and 

non-canonical immunopeptides in terms of (d) de novo score, (e) retention time, and (f) length identified by using de novo sequencing. 

allele genotyping of these two cell lines46, 52 (Figure 2e, Table 

1).  

Mutation-bearing neoantigen is also a very important class of 

immunopeptides. Therefore, we searched MS data against a 

library of computational predicted mutant immunopeptides.53 

Three mutation-bearing immunopeptides (QTDQMVFNTY, 

DEYTKFIPP, and EEEKFYLEP) were identified from 

HCT116, the TMB-H/MSI-H cell line, with 1% FDR and strin-

gent manual spectra inspection (Figure S2). All three peptides 

were calculated as strong MHC binders with Kd values less 

than 260 nM. Two of the three (QTDQMVFNTY) and 

(EEEKFYLEP) had been reported previously as mutated
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Figure 5. Validation of novel non-canonical peptides with MS and biochemical approaches. (a) Evidence of identification with synthetic 

peptides. (b) Representative peptide validation with targeted MS method. (c) Peptide-MHC affinity assay (NC, negative control; PC, positive 

control). *Possible I/L substitutions. 

HLA-I peptides.46 Altogether, successful identification of ca-

nonical and mutated immunopeptides demonstrated our sample 

preparation and data acquisition were robust enough for further 

discovery of non-canonical immunopeptides.  

Detection of sORF-encoded Non-canonical Immunopep-

tides by Database Search. As good custom databases are 

critical for successful identification of sORF-encoded peptides, 

we first evaluated the performance of one established sORF 

database and two pipelines for predicting sORF from Ribo-seq 

data (Figure 3a). 157 non-canonical peptides were identified by 

searching MS data against the human database from sORF.org. 

To achieve cell-type specific detection, we also analyzed the
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Ribo-seq data of HCT116 and Jurkat with both RiboTISH and 

PRICE pipelines (Figure S3). To our surprise, different sORF 

perdition algorithms of RiboTISH and PRICE led to distinct 

groups of sORFs, although their data pre-processing procedures 

were largely the same (Figure 3a). Subsequently, 58 and 136 

peptides were identified by using these two sORF databases re-

spectively, with 21 peptides in common. Besides, 10 non-ca-

nonical peptides were identified in common by using three da-

tabases, suggesting the complementary roles of different algo-

rithms. With a smaller database size, PRICE offered highest 

identification number of non-canonical immunopeptide in the 

present study (Figure 3a). Consistent with a previous report,16 

lncRNAs and uORFs took the large majority of translated 

sORFs. iORFs from frame shift also contributed to 15% of 

novel peptide translation (Figure 3b). Affinity prediction by us-

ing netMHCpan indicated that 41% to 68% of non-canonical 

peptides were binders of MHC-I molecules. We observed that 

the percentage of binders in total immunopeptides was lower 

for non-canonical peptides compared to canonical peptides 

(Figure 3c). This could be explained by the fact that the original 

training dataset in netMHCpan was canonical peptides and thus 

led to a plausible bias. The non-canonical peptides highly re-

sembled their canonical counterparts in terms of identification 

confidence, hydrophobicity, motif characters and length distri-

bution (Figure 3d, f-g). These observations collectively implied 

that SEPs could have undergone the same antigen presentation 

pathway and been displayed on cell surface. It is noteworthy 

that the charge distribution varied between canonical and non-

canonical immunopeptides, possibly because the non-canonical 

peptides had lower abundance in general and thus were more 

likely to be detected at doubly or triply charged state (Figure 

3e).  

De novo Peptide Sequencing Expanded the Repository of 

Non-canonical MHC-I Peptides. So far, there is no such uni-

versal sORF database for non-canonical peptides and therefore 

many of them could not be identified through the database 

search strategy. As an alternative approach, de novo sequencing 

was used to analyze our MS data, resulting in the identification 

of 15,993 and 9,794 peptides with a score above 80 from 

HCT116 and Jurkat cells, respectively (Table S2). Non-canon-

ical immunopeptides were identified by filtering them against 

our custom sORF databases. Only sequences that were 100% 

identical in sORF databases and had less than 80% similarity 

with annotated proteome (UniProtKB/SwissProt) were kept. 

Possibly due to smaller databases and lower conservation of 

sORFs, 20 and 28 non-canonical peptides were identified. For 

comparison, the whole peptide list was also aligned to Uni-

ProtKB/SwissProt protein database to find canonical immuno-

peptides. Additional 2,807 and 1,819 canonical peptides were 

identified from HCT116 and Jurkat cells, respectively (Figure 

4a). Next, the affinity of all identified peptides to MHC mole-

cules was calculated. We observed (i) the binder percentage in-

creased along with de novo score cutoff, regardless of the im-

munopeptide type; (ii) sequences that could be matched with 

either UniProtKB /SwissProt or sORF databases had a higher 

binder percentage than those that were exclusively identified 

via de novo sequencing; (iii) over 90% of the non-canonical 

peptides identified via de novo sequencing were theoretical 

MHC binders when we set a stringent cut-off (de novo score  

95) (Figures 4a and 4b).  

Next, immunopeptides identified with de novo sequencing 

were compared with those identified via the conventional data-

base search strategy. To our surprise, they were largely 

complementary with each other, with a small fraction in com-

mon. The number of canonical immunopeptides commonly 

identified with the two methods decreased from 702 to 121 

when a more stringent cut-off was applied (Figure S4, de novo 

scores from 80 to 95). A score over 85 that resulted in reasona-

ble identification number and MHC binding affinity was a rel-

atively balanced criterion, and therefore was applied in all fol-

low-up analyses (Figure 4c). Next, we compared the canonical 

and non-canonical immunopeptides in terms of their identifica-

tion confidence, hydrophobicity and length distribution (Figure 

4d-f). In contrast to the MaxQuant scores in database search 

strategy, scores of non-canonical peptides were generally 

higher than those of canonical peptides in de novo sequencing. 

The use of more stringent criteria in de novo sequencing to ex-

clude false detection guaranteed the confident discovery of non-

canonical peptides. Our observations above indicated that de 

novo sequencing had great potential in non-canonical peptide 

identification. 

Validation of Non-canonical Immunopeptides with Mul-

tiple Approaches. We selected 8 peptides that were commonly 

identified with PRICE, sORF and RiboTISH for extensive val-

idations. First, 6 out of the 8 peptide sequences were verified by 

matching their spectra with those of synthetic standard peptides 

side by side (Figure 5a and S6). Using MS method in data-de-

pendent mode (DDA), these peptides were detected with the 

same retention time and m/z as their synthetic peptide standards. 

MS/MS spectra of these peptides were manually checked to as-

sign the fragment ions. Next, the selected peptides were further 

validated by using an alternative MS method in targeted mode 

named parallel reaction monitoring (PRM) (Figure 5b and S7). 

As we expected, novel non-canonical immunopeptides pro-

vided us with identical precursor ions and transitions compared 

with their synthetic standards. Among the 8 chosen non-canon-

ical immunopeptides picked, 7 were strong MHC-I binders as 

calculated by netMHCpan 4.0. The novel non-canonical im-

munopeptide ETDIEMETRY from HCT116 cells was assessed 

on its affinity to MHC-I molecule in live cells. T2-A*02:01 

mono-allelic cells, which lacked endogenous antigen presenta-

tion pathway, were used to demonstrate the interaction between 

peptides and MHC molecules. Peptides were incubated with T2 

cells and subsequently stained with MHC-I antibody for analy-

sis by flow cytometry. The peptide ETDIEMETRY generated a 

considerable fluorescent signal change, suggesting that it was a 

strong binder of MHC-I molecule (Figure 5c). 

CONCLUSION AND DISCUSSION 

This work provides an efficient approach combining Ribo-

seq and mass spectrometry to detect novel MHC-I peptides di-

rectly. In the present approach, database search and de novo se-

quencing were combined to identify hundreds of non-canonical 

immunopeptides. As there is a lack of universal sORF databases 

at the moment, we demonstrated that Ribo-seq data were effec-

tive for generating custom sORF databases by using comple-

mentary bioinformatics pipelines, without having to perform 

genomic sequencing, RNA-seq or exome-seq. In the de novo 

sequencing strategy, a workflow was designed to filter de novo 

results against the custom sORF databases, which improved the 

confidence of discovery.  

This study is, to our best knowledge, the first one that uses de 

novo sequencing for identification of sORF-encoded peptides. 

We identified 308 non-canonical immunopeptides that were 

translated from sORFs. Many of them such as 5’-UTR or 
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lncRNA, were previously presumably non-coding regions. 

Considering that the total number of sORFs was estimated to be 

several folds higher than annotated ORFs, the non-canonical 

immunopeptides that were identified so far could be just a tip 

of the iceberg. We noticed that non-canonical peptides were not 

proportional to their canonical counterparts in the two cell lines. 

More canonical immunopeptides were identified in HCT116 

while more non-canonical immunopeptides were identified in 

Jurkat cells. There were at least two possibilities. (i) The two 

cells have distinct HLA allotypes, which may have certain pref-

erence on non-canonical immunopeptides. (ii) There is a HLA 

haplotype loss in Jurkat.48 The downregulated level of MHC 

molecules may resulted in a lower canonical immunopeptide 

number with the same cell input. Novel methods for non-canon-

ical peptides identification are emerging, and they will expand 

the databases and the peptide list. With expanded knowledge, 

the selectivity of HLA alleles towards non-canonical immuno-

peptides will be investigated in due course. 

This study evaluated the experimental settings for non-ca-

nonical immunopeptide identification and provided better op-

tions for following studies. We need to point out that there is 

still room for improvement. For example, a large portion of pep-

tides from de novo sequencing could not be assigned. With the 

identification of more and more non-canonical peptide se-

quences, the machine learning methods may get better trained 

for de novo sequencing in future. The novel sequences of ca-

nonical and non-canonical immunopeptide identified here may 

also be useful for such training purpose. 
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