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Abstract

This paper develops a novel household-oriented activity-based mixed-equilibrium model for estimating individual
and household activity—travel choices in multimodal transportation networks with interactions between private car
and public transit modes. In the novel model, household members with heterogeneous errors of perception on the
time-dependent utility of different activity types make daily joint/solo activity—travel choices in a mixed-equilibrium
manner, which maximizes either perceived household utility or perceived individual utility. A logit-based stochastic
choice model is developed to capture the mixed equilibrium with heterogeneous errors of perception and used to pre-
dict the choices of alternative joint activity—travel paths (JATPs) on a supernetwork platform. Based on this stochastic
JATP choice model, the mixed-equilibrium model is formulated as an equivalent variational inequality (VI) problem
and solved using a modified diagonalization method. This converts the time-dependent activity—travel scheduling
problem into an equivalent static traffic assignment problem on JATPs. The conditions required for the existence and
uniqueness of a solution to the equivalent VI problem in terms of a JATP flow pattern are also identified. Numerical
examples are provided to illustrate the model’s merits and its applications for examining the effect of the coronavirus
disease 2019 (COVID-19) pandemic.

Keywords: Activity-based modeling, Intra-household interaction, Network equilibrium, Multimodal transportation
network, COVID-19

1. Introduction

1.1. Background and motivation

In the modern life, it is a common thing that individuals perform daily activities and travel jointly with other
members of the same household due to social factors (e.g., altruism and a desire for companionship) and/or resource
constraints (Gliebe and Koppelman (2005); Bradley and Vovsha (2005); Bhat et al. (2013); Lin and Wang (2014)). Ex-
tensive survey evidence suggests that there are interactions between household members’ joint activity—travel choices.
For example, Srinivasan and Bhat (2008) found that almost one-third of individuals undertake one or more out-of-
home activity and travel episodes with household members on weekdays, according to the American Time Use Survey
data. Similarly, using the Hong Kong Travel Characteristics Survey data, Lai et al. (2019) showed that 18.7% of daily
out-of-home activities by full-time working couples and 64.9% of those by retired couples are jointly conducted.

The process used for making decisions on joint activity—travel choices differs from that used for making decisions
on solo activity—travel choices. Joint activity—travel choices require spatiotemporal coordination of the activity—travel
schedules of the involved individuals (Zhang et al. (2005); Habib et al. (2008)). As a result, any change in the daily
activity—travel schedule of an individual under a transportation policy can change the daily activity—travel schedules of
his/her partners. However, such a secondary effect of the transportation policy cannot be captured if the joint activity
and travel interactions between household members are not explicitly modeled (Srinivasan and Bhat (2008)). In
addition, the analysis of joint activity—travel behavior is crucial for the accurate estimation of the effect of ridesharing
policies, such as those related to high-occupancy vehicle lanes and tolls.
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The pandemic of coronavirus disease 2019 (COVID-19), the first reported case of which was recorded in Novem-
ber 2019 in Wuhan, Hubei province, China, has disrupted daily activities and travel worldwide, as widespread lock-
downs and restrictions on activities and travel have drastically altered the daily routines of millions of people. For
example, commuting to workplaces and in-store shopping have been replaced by telecommuting and online shopping,
respectively, and thus the total travel demand for all modes of transportation has substantially been reduced (Beck and
Hensher (2020); Parady et al. (2020); Shamshiripour et al. (2020); De Vos (2020)). The effects of the COVID-19 pan-
demic on activity—travel behavior and demand may persist over the long term, and at least not return to pre-pandemic
levels in a short time. For example, it is expected that some work-at-home activities will continue after the pandemic
has finished, and that the use of public transport will decrease slightly, because people will prefer to use active modes
of transportation (e.g., a car) for health reasons. Moreover, the fear of infection with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, will be a major long-term concern for people
contemplating out-of-home activities, such as in-store shopping and face-to-face meetings (Public Transport Research
Group (2020); Covidfuture (2020)). Thus, it is essential to investigate these effects of the COVID-19 pandemic when
designing transportation arrangements for the short term (e.g., adjusting transit services according to the mode of
transportation) and the long term (e.g., designing multimodal networks). In addition, although recurrent scenarios can
be learned and solved via a long-term process (Arentze and Timmermans (2005); Zhang et al. (2016)), nonrecurrent
scenarios related to COVID-19 pandemic restrictions or lockdowns cannot be learned and thus can substantially affect
commuters’ perceptions of risk and attitudes toward daily activity—travel choices. Thus, when examining the effects of
the COVID-19 pandemic it is also crucial to account for the errors of perception on transportation network conditions
that commuters may exhibit when making activity—travel choices.

Individuals’ activity—travel schedules are highly interrelated in terms of the time of day, their intra-household
interactions, and their knowledge about transportation network conditions. For example, if the wife in a one-car
household is more familiar with the transit system, she will tend to use public transit for her daily commutes. Then,
such a transit mode choice by the wife for a work trip in the morning will affect her choices of transportation mode
for subsequent trips in her activity—travel schedule throughout the day. In turn, this will also affect her husband’s
activity—travel schedule and mode choices during the day, as he will be able to use the household’s car for daily travel.
Consequently, he may pick up his wife from her work, and they may dine together after work; these actions may
themselves be affected by the couple’s knowledge about characteristics of activity locations. Hence, an appropriate
approach for evaluating the effects of transportation policies is to simultaneously investigate individuals’ activity—
travel scheduling behavior, their possible joint activity—travel behavior, their errors of perception on transportation
network conditions, and the interactions between multiple transportation modes in which travel times of road-based
transit modes (e.g., bus) are affected by road congestion.

To integrate activity-based modeling into dynamic traffic assignment for travel demand forecasting, various individual-

oriented activity-based network equilibrium models have been developed to simulate the solo daily activity—travel
schedules of individuals (e.g., Lam and Yin (2001); Lam and Huang (2002); Ramadurai and Ukkusuri (2010); Chow
and Djavadian (2015); Liu et al. (2015, 2016); Li et al. (2018); Ouyang et al. (2011); Fu and Lam (2014); Fu et al.
(2014); Fu and Lam (2018)). However, the effect of intra-household interactions on daily activity—travel scheduling
behavior at a household level has rarely been studied (Fu and Lam (2018); Vo et al. (2020a)). The few studies that
have been performed have mainly focused on public transit or private car modes and have ignored the interactions
between different transportation modes, despite the fact that these can substantially affect households’ activity—travel
schedules. In addition, most of the above models have been developed based on the assumption that travelers have
perfect knowledge about the traffic conditions throughout a transportation network and the congestion level at activity
locations, which is clearly not realistic. Moreover, these models must be extended to investigate the effect of the
COVID-19 pandemic in terms of the demand for working-at-home and the risk of infection with SARS-CoV-2 in
public areas, such as at out-of-home activity locations and in public transit vehicles.

To address these research needs, this paper develops a novel household-oriented activity-based mixed-equilibrium
model for the determination of individual and household activity—travel choices in multimodal transportation networks
with interactions between private car and public transit modes. In the developed model, household members who have
heterogeneous errors in their perception of the time-dependent utilities of different activity types, make joint/solo
activity—travel choices in a mixed-equilibrium manner, which maximizes (or optimizes) their perceived household
utility or individual utility. To consistently account for the intra-household interactions of joint/solo activity—travel
choices, the activity—travel choices of a household’s daily schedule are represented by a unified joint activity—travel
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path (JATP) on a novel joint activity—time—space (JATS) supernetwork platform. Based on this platform, the JATP
choice set can be generated using any conventional path-finding algorithms (e.g., Dijkstra’s algorithm). We then de-
velop a novel logit-based stochastic JATP choice model to capture the mixed equilibrium of individual and household
activity—travel choices with considering the heterogeneous errors of perception. This mixed-equilibrium model is
formulated as an equivalent variational inequality (VI) problem, based on the stochastic JATP choice model, and is
solved using a diagonalization method. This solution method converts the time-dependent household activity—travel
scheduling problem into an equivalent static traffic assignment problem with respect to JATPs on the supernetwork
platform, and solves it within a unified framework.

1.2. Literature review

Many researchers have examined a wide range of aspects of interactions between household members, such as
time allocation (Kato and Matsumoto (2009); Bernardo et al. (2015); Lai et al. (2019)), activity generation (Srinivasan
and Bhat (2008); Bhat et al. (2013)), daily activity pattern types (Bradley and Vovsha (2005)), travel arrangement
(Gliebe and Koppelman (2005); Gupta et al. (2014); Weiss and Habib (2018)), heterogeneous group decision-making
mechanisms (Zhang et al. (2009)), and synchronization of work tour departure and arrival times (Gupta and Vovsha
(2013)). These works have involved the development of models based on random utility maximization (RUM) the-
ory, and the use of scale parameters to account for household members’ heterogeneous or homogeneous errors in
their perception of various dimensions of activity—travel choices. Nevertheless, as these models have typically been
embedded in an external activity-based microsimulation framework (e.g., Bhat et al. (2004); Roorda et al. (2009); Du-
bernet and Axhausen (2015)), they must be extended to enable consideration of the daylong activity—travel schedules
of household members.

Daylong household scheduling problems have been extensively investigated, and various models and methods
have been used to generate households’ daylong activity—travel schedules. Some household activity—travel schedul-
ing models have been devised via a mathematical programming approach, such as that of Recker (1995) and its
extensions (Gan and Recker (2008, 2013); Kang and Recker (2013); Chow and Nurumbetova (2015)), which formu-
late the household activity pattern problem as a pick-up and delivery problem with time windows. Other models have
formulated the activity—travel scheduling problem with joint travel decisions in a multimodal system as a shortest
path-finding problem in a multi-state supernetwork (Liao et al. (2013b); Liao (2019)). These supernetwork-based
models with consideration of joint travel have been built upon the earlier comprehensive works on scheduling individ-
uals’ activity—travel patterns (see e.g., Liao et al. (2011, 2013a, 2014); Liao (2016); Lyu et al. (2021)). However, the
aforementioned studies have mainly focused on generating disaggregated travelers’ daily activity—travel schedules and
have commonly assumed that travel times and/or activities are of fixed duration, without considering the endogenous
effects of transportation network congestion. To extend their works, this paper aims to model explicitly the network
congestion effects on joint travel and activity participation, and vice versa.

Other approaches for modeling intra-household interactions have been based on agent-based microsimulation
frameworks, such as Albatross (Arentze and Timmermans (2004a)), TASHA (Roorda et al. (2009)), ADAPTS (Auld
and Mohammadian (2012)), and MATSim (Dubernet and Axhausen (2015)). In these microsimulation models, the
activity—travel choices of individuals have been generated using various approaches, such as computational processes,
production rules, and/or utility maximization, to manage the complexity of time—space constraints in intra-household
interactions. The activity—travel scheduling processes in these models have typically been based on the concept of
skeleton schedules with given and fixed attributes, such as activity start time, duration, destination, and location (Habib
et al. (2008)). As a result, the linkages in these models between different choice dimensions in households’ activity—
travel schedules are weak. In addition, to integrate activity-based modeling and traffic assignment, these agent-based
microsimulation models have usually been based on external traffic assignment models in which the feedback between
activity—travel scheduling and traffic assignment is iteratively updated in a separate and ad hoc manner.

To account for the effects of transportation network congestion on individuals’ activity—travel scheduling be-
haviors within a unified framework, several individual-oriented activity-based network equilibrium models have been
proposed for congested road networks (Lam and Yin (2001); Lam and Huang (2002); Ramadurai and Ukkusuri (2010);
Ouyang et al. (2011); Nourinejad et al. (2016); Liu et al. (2018)), transit networks (Li et al. (2010); Fu and Lam (2014);
Fu et al. (2014)), multimodal transportation networks (Chow and Djavadian (2015); Liu et al. (2015, 2016); Li et al.
(2018); Najmi et al. (2020); Liu et al. (2020)), and bottlenecks (Li et al. (2014, 2017); Li and Zhang (2020); Cantelmo
and Viti (2019)). These models can capture the interrelation of various choice facets and aspects of the activity—travel
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scheduling behavior of travelers (e.g., their activity/trip chain, activity duration, departure time, path/mode at vari-
ous times of day, day-to-day need-based activity—travel dynamics, and/or network uncertainty), and the endogenous
effects of transportation network congestion. However, they are built upon either a deterministic user equilibrium
(UE), (tolerance-based) dynamic user equilibrium (DUE), or stochastic user equilibrium (SUE) principle with respect
to activity—travel choices at an individual level. Thus, the activity—travel choices and the possible intra-household
interactions of joint activities and travel in these models are determined independently for each individual. In view
of these, this paper proposes a novel model to explicitly account for household members’ errors of heterogeneous
perception on time-dependent activity—travel utility, and the interactions between private car and public transit modes
in which travel times of road-based transit modes (e.g., buses) are in fact affected by road congestion.

Recently, a few attempts have been made to model the joint activity—travel choices of household members. Fu
and Lam (2018) performed this modeling for two household members, using the concept of JATP on a JATS super-
network platform. They modeled each household as a “user” and applied the UE principle at a household level to the
activity—travel choices of all individuals of each household to maximize the household utility. They also simplified
the modeling of joint activities and travel by allowing each individual’s schedule to have a maximum of one joint
activity (e.g., shopping) and one travel episode. In addition, their model only accounted for one user class of full-time
working couples and transit modes. Vo et al. (2020a) later refined the UE principle used by Fu and Lam (2018) at a
household level as a household utility optimum (HO) principle to model the joint activity—travel choices of car users.
Their model could manage more generalized intra-household interactions of the joint activity—travel choices of various
household types using different transportation modes (i.e., a private car or public transit). Nevertheless, the transit path
choices in their model were not explicitly modeled, as the transit travel demand for each origin—destination (OD) pair
was captured using a constant demand-excess function. Thus, Vo et al. (2020a) did not explicitly and endogenously
model the transit congestion effects. Furthermore, neither of these mentioned household-oriented activity-based equi-
librium models (Fu and Lam (2018); Vo et al. (2020a)) accounted for household members’ errors of perception on
time-dependent activity—travel utility, their need to work at home, or the risk of SARS-CoV-2 infection at activity
locations and in transit vehicles.

Table 1 compares different approaches that have been used in previous works for generating households’ daylong
activity—travel schedules. These approaches have commonly assumed that households make decisions regarding their
daily activity—travel schedules based on given exogenous and fixed network travel times. In contrast, we propose a
network equilibrium approach in which households’ decisions regarding their daily activity—travel schedules are based
on the congestion effects of multimodal transportation networks, which are considered endogenously. Our approach
leads to a consistent and stable solution for households’ daily activity—travel schedules and the corresponding network
equilibrium conditions, which is useful for strategic planning purposes. Table 2 contrasts the novel model developed
in this paper with the previously established individual- and household-oriented activity-based network equilibrium
models. These previous models focus on either individual or household activity—travel choices for either private car
or transit modes. However, the novel model accounts for the mixed equilibrium of individual and household activity—
travel choices, with mixed-mode interactions between private car and public transit modes and household members’
heterogeneous errors of perception on activity—travel utility by time of day.

1.3. Contributions

In contrast to Vo et al. (2020a), who investigated intra-household interactions in congested road networks, this
paper focuses on (i) a mixed equilibrium of individual and household activity—travel choices with homogeneous
errors of perception, and (ii) interactions between private car and public transit modes. The contributions of this paper
are as follows.

e Development of a novel household-oriented activity-based mixed-equilibrium model for estimating individual
and household activity—travel choices in multimodal transportation networks, with interactions between private
car and public transit modes.

e Development of a logit-based stochastic choice model with respect to JATPs on a supernetwork platform to
capture a mixed equilibrium of individual and household activity—travel choices with heterogeneous errors of
perception on the time-dependent utility of different activity types.

e A proof of the existence and uniqueness of a solution for the mixed-equilibrium problem in terms of a JATP
flow pattern. As a result, this proof also implies the existence and uniqueness of link and path flows, and of
households’ activity—travel scheduling and time allocations.
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Table 1: Comparison of different activity-based approaches used for generating households’ daylong activity—travel schedules.

Modeling approach References Considering network congestion
Road Transit
Mathematical programming Recker (1995); Gan and Recker (2008, 2013); Kang No No
and Recker (2013); Chow and Nurumbetova (2015)
Shortest path-finding Liao et al. (2013b); Liao (2019) No No
Agent-based microsimulation Arentze and Timmermans (2004a); Roorda et al. No No
(2009); Auld and Mohammadian (2012); Dubernet
and Axhausen (2015)
Network equilibrium Fu and Lam (2018) No Yes
Vo et al. (2020a) Yes No
This paper Yes Yes

Note: “Yes” indicates that the model considers network congestion effects endogenously when households’ activity—travel
are made, and “No” indicates that the network congestion effects are given exogenously when household’s activity—travel

schedules are made.

Table 2: Comparison of the novel model developed in this paper with relevant individual- and household-oriented activity-based network

equilibrium models.

Reference User class Travel mode Considering mixed- Considering per-
mode interactions®  ception error

Lam and Yin (2001) Individual Private car No Homogeneous
Ramadurai and Ukkusuri (2010) Individual Private car No No

Fu and Lam (2014) Individual Public transit No No

Liu et al. (2015) Individual Multimodal No No

Chow and Djavadian (2015) Individual Multimodal No Homogeneous
Liu et al. (2016) Individual Multimodal No No

Liet al. (2018) Individual Multimodal No No

Najmi et al. (2020) Individual Multimodal No No

Fu and Lam (2018) Household Public transit No No

Vo et al. (2020a) Mixed Private car No No

This paper Mixed Multimodal Yes Heterogeneous

*: “No” indicates that the model either does not consider transit modes or assumes given and fixed transit travel times,
and “Yes” indicates that the model accounts for endogenous effects of road congestion on travel times of road-based

transit modes.

The remainder of this paper is organized as follows. The assumptions used in the development of the novel
model and some useful concepts are discussed in Section 2, and the novel model formulation and solution method
are presented in Sections 3 and 4, respectively. The numerical results, which illustrate the merits of the novel model,
are shown in Section 5. The applicability of the novel model for assessing the effects of the COVID-19 pandemic is
illustrated in Section 6. Finally, conclusions and recommendations for further study are given in Section 7.

Some notation

Sets

A set of road links

B set of transit links B = B; U B, U B3 U By, respectively including access, egress, transfer, and vehicle links
S set of nodes including activity and/or drop-off/pickup locations

1 set of activities

pPY set of feasible paths between OD pair w used by car users
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¢%.0" (3/h)

th’ Ahm ($/h)

uy" (k) ($)

Y ($/h)

Y14 ($/h)
"8 (k) ($)

@b ($)

C;; (persons)

C, (veh/h)

o (pax/veh)

D, (veh/h)

to (h)

Fh

R

Variables

h
Iq

set of feasible paths between OD pair w used by transit passengers
set of feasible JATPs chosen by household type &

a time interval

a household member

a household type

a group of household members

a JATP

an activity

an activity type

a location

a path used by car users or transit passengers
a road link

a transit link, including access, egress, transfer, or vehicle link
an OD pair

number of time intervals in the study period
number of household types

number of groups in household type i
number of members in household type &

household scale parameter associated with the percieved utility of household type A

individual scale parameter associated with the percieved utility of type x activities of member m of household
type h

household preference parameter for joint activity i at location s of group g of household type A
household preference parameter for joint travel on road link a of group g of household type i
household preference parameter for joint travel on transit link b of group g of household type i

household risk-perception parameter for joint out-of-home acitivities and travel by public transit of group g
of household type A

individual risk-perception parameter for solo out-of-home acitivities and travel by public transit of member m
of household type h

marginal utility of member m of household type & performing activity i alone at location s during interval k
value of travel time of car users

coefficients to convert different quantities of the transit time components to a monetary unit

operating travel cost on road link a during interval k of group g of household type A

transit fare on vehicle link b

capacity of activity i at location s

capacity of road link a

capacity of each transit vehicle associated with vehicle link b

transit frequency associated with vehicle link b

length of each time interval

number of households with type &

infection ratio (i.e., expected number of confirmed cases divided by total population in the design year)

number of households with type 4 choosing JATP g

number of persons participating in activity 7 at location s during interval k
number of private cars on road link a during interval k

number of transit passengers on transit link b during interval k

number of persons being member m in group g of household type & participating in activity i at location s
during interval k
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Zap(K)

Egmi(K)
& (k)
Functions
W ($)
ity ($)
i} (R) ($)
Ph(R) ($)
u (k) ($)
g (k) ($)

Cpw

Ahmg( ) ($)

i (k) ($)
s (k) ($)
P8 (k, R) ($)

Ahmg (k R) ($)

number of car users being member m in group g of household type % on road link a during interval k

number of transit passengers being member m in group g of household type / on transit link b during interval
k

equals 1 if member m in group g of household type & choosing JATP g participates in activity i at location s
during interval k, and O otherwise

equals 1 if member m in group g of household type 4 choosing JATP g enters path p by private car between
OD pair w during interval k, and O otherwise

equals 1 if member m in group g of household type 4 choosing JATP g enters path p by public transit between
OD pair w during interval k, and O otherwise

equals 1 if private cars entering path p between OD pair w during interval k arrive at road link a during interval
k', and 0 otherwise

equals 1 if transit passengers entering path p between OD pair w during interval k arrive at transit link b during
interval k¥, and O otherwise

equals 1 if transit passengers entering vehicle link b associated with bus line / during interval k arrive at road
link a during interval k', and 0 otherwise

equals 1 if &7 (k k)ZuX(K') = 1, and 0 otherwise

qpw
equals 1 if f,;’;,"f;’( I8, ”k(k’ ) = 1, and 0 otherwise

utility of household type & choosing JATP g under normal condition

mapping function in the VI problem

utility of household type & choosing JATP ¢ when the infection ratio is R (i.e., i) (R) = u}) — p/i(R))

disutility of risk percived by household type & choosing JATP ¢ when the infection ratio is R

utility of member m in group g of household type & performing activity i at location s during interval &

travel disutility of member m in group g of household type / entering path p by private car between OD pair
w during interval k

travel disutility of member m in group g of household type % entering path p by public transit between OD
pair w during interval k

travel disutility of member m in group g of household type A on road link a during interval k

travel disutility of member m in group g of household type / on transit link b during interval k

disutility of risk perceived by member m in group g of household type & participating in activity i at location
s during interval k when the infection ratio is R

disutility of risk perceived by member m in group g of household type & on vehicle link b during interval k
when the infection ratio is R

travel time of a private car entering path p between OD pair w during interval k
travel time of a transit passenger entering path p between OD pair w during interval k
travel time of a private car on road link a during interval k

travel time of a transit passenger on transit link b during interval k

transit crowding discomfort factor on transit link b during interval k

probability of household type & choosing JATP g

2. Basic considerations

2.1. Model assumptions

In order to facilitate presentation of basic ideas, without loss of generality, the following assumptions are made:

A1l A daily time period [0, T] is discretized into constant time intervals k = 1...

K with duration ¢,, such that

tr x K =T (Lam and Yin (2001); Ouyang et al. (2011); Fu and Lam (2018); Vo et al. (2020a)).
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A2 Different individuals can obtain different utilities for participating in the same activity, depending on the time
of day (Ettema et al. (2007); Zhang et al. (2009); Lai et al. (2019)), regardless of the same value of travel time
(Sheffi (1985)). In addition, individuals exhibit heterogeneous errors of perception on the utilities of different
types of activities (Bhat et al. (2013)).

A3 Individuals make daily joint/solo activity—travel choices in a mixed-equilibrium manner, which maximizes ei-
ther their perceived household utility or individual utility.

A4 Two main modes of transportation (private car and public transit) are considered, with two subtransit modes
(bus and metro). The metro travel time is constant, whereas the bus travel time depends on the road conges-
tion associated with the bus line (Wu and Lam (2003)). Bus routes are fixed without consideration of road
congestion, and the number of buses is preloaded on the road links relating to their routes.

AS The physical capacity constraints of activities are not considered in this paper; instead, positive and negative
congestion effects at activity locations are modeled (Fu and Lam (2018); Liu et al. (2016, 2020)). Activity con-
gestion effects have various physical interpretations, which depend on the activity type. A negative congestion
effect associated with a maintenance activity (e.g., out-of-home shopping or a personal appointment) results in
a penalty (a disutility) due to the uncomfortable physical proximity to others and/or the decline in the quality of
services at the activity location (e.g., shopping malls and restaurants). A negative congestion effect associated
with a subsistence activity (e.g., out-of-home work) results in a reduction in the activity utility due to poor task
performance and a feeling of being crowded in a busy workplace (Paulus et al. (1976); Sinha and Sinha (1991)).
In contrast, positive congestion effects are associated with social activities (Kim et al. (2018)), as an increased
number of participants in these activities leads to a higher activity utility. In addition, the activity congestion
utility/disutility is separable, and strictly increasing with the total number of persons at the activity location.

A6 In-vehicle crowding discomfort is modeled to capture the negative congestion effect in a transit vehicle, such
as a loss of privacy, uncomfortable physical proximity, or the risk of sexual harassment (Sumalee et al. (2009);
Li et al. (2010); Fu and Lam (2018)), whereas the physical capacity constraint of the transit vehicle is ignored.
Moreover, the in-vehicle crowding discomfort is separable and strictly increasing with the total number of
passengers in the transit vehicle.

A7 The road link travel time is separable and strictly increasing with the total number of private cars and transit
vehicles on the link (Lam and Yin (2001); Liu et al. (2015)). Besides, the first-in—first-out condition, which
prohibits private cars from arriving at a destination earlier by leaving later, is adopted (Janson (1991); Chen and
Hsueh (1998); Boyce et al. (2001)).

A8 An individual conducts his/her trip between each OD pair by taking one of the following four roles: a solo
driver (SD), a ridesharing driver (RD), a ridesharing passenger (RP) (when using a private car), or a transit
passenger (TP) (when using public transit). On different trip legs of the trip chain, a driver can alternately adopt
the SD and RD roles, whereas the passengers must choose between the RP and TP roles (Vo et al. (2020a)).

A9 An RD may pick up or drop off RPs from their own household at certain prespecified locations, and the capacity
of the private car is sufficient for all household members. In addition, parking restrictions are excluded (Vo et al.
(2020a)).

2.2. Heterogeneous household types

Consider multiple heterogeneous household types 2 = 1... H in a multimodal transportation network, where each
household type 4 is associated with multiple members m = 1...M", a number of households F > 0, and a set of
JATP choices Q". Household type & represents F"* specific households with the same sociodemographic characteristics
(e.g., household size, income, presence of children, age, education level, and employment status). Let / denote a set
of activities conducted by household members, S be the set of activity and/or drop-oft/pickup locations, and W be a
set of OD pairs each of which connects two locations s € . Let P* and P denote the sets of feasible paths between
OD pair w € W for car users and transit passengers, respectively. Member m of household type 4 can participate in
activity i at location s and travel on path p by private car or public transit (p € P¥ or p € P*) between OD pair w in
multiple groups g = 1...G", where each group g is a subset of members within household type 4 with group size |g|
(i.e., the number of household members in the group).

2.3. JATP concept

The key concept of the novel model is its use of a unified choice to simultaneously capture the multidimensional
choice facets of household members’ daily activity—travel schedules and their intra-household interactons in a multi-
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modal transportation network. We adopt the concept of JATP choice, which was introduced by Fu and Lam (2018) and
extended by Vo et al. (2020a). Fig. 1 illustrates the choice dimensions included within a JATP choice. It can be seen
in Fig. 1 that a household type & chooses a JATP ¢, in which each member m = 1... M" in each group g = 1...G"
of household type / chooses to either participate in an activity i € I at a location s € § or travel between an OD pair
w € W using path p € P¥ U P" (by private car or public transit) during each time interval k = 1...K. Then, there
is a joint activity/travel during a certain interval if the number of household members in group g is greater than one
(i.e., |g| > 1), and otherwise a solo activity/travel. By adopting the concept of JATP choice, the proposed model in
this paper can deal explicitly with intra-household interactions in terms of joint activity—travel choices by mode and
by time of day, car ownership, and car allocation (i.e., the travel role taken by each member within the household in
each private car trip).

Household h—1.H
type h
JATP ¢ - qe Q"
Joint activity/travel if the number A/V N
of members in group g >1, and Member - g=1.G"
solo activity/travel otherwise. group g g h
Memberm | ~ m=1.M"
. Time L1 K
interval k&

Activity i| ", o1 ODpairw| 3, cw

Locations | = S€S Path p (by
either car or

transit mode)

...pepw OrpE_lSw

Figure 1: Choice dimensions included within a JATP choice.

2.4. Multimodal transportation network

Let (S, A, L) denote a multimodal transportation network, in which S, A, and L are the sets of nodes, links,
and transit lines, respectively. The multimodal network can be partitioned into two subnetworks, namely subnetwork
(S, A) for private cars and subnetwork (S, B, L) for public transit where S = § US and A = A U B. In the subnetwork
(S,A), alocation node s € S can be a road intersection, an activity, or a drop-oft/pickup location, whereas a link a € A
represents a road link. In the subnetwork (S’ ,B, L), a transit line / € L is a fixed route on which transit vehicles run
periodically on fixed schedules, and a transit node s € S represents a line visiting a stop. In a case where several lines
visit the same stop, each line forms a distinct transit node.

Let B = By u By U B3 U By be the sets of transit links, including access, egress, transfer, and vehicle links,
respectively. Let b and b denote the tail and head nodes, respectively, of transit link » € B. Then, the flow on transit
link b is from b to b. Let N(s) and L(s) denote the transit stop and line, respectively, associated with transit node
s € §. Each pair of consecutive transit nodes along a transit line creates a vehicle link b € By, which represents the
passage of a transit vehicle from stop 7 to stop (n+ 1) on line /, where n = N(b),n+1 = N(b), and [ = L(b) = L(b).
A location node s € S is connected to a transit node s” € § through an access link b € By, which involves a walk from

the origin to stop n on line /, and then a period of waiting before boarding a vehicle on line /, where n = N(b) and
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[ = L(l_)). In contrast, a transit node s € S is connected to a location node s’ € S through an egress link b € B,, which
involves a walk from stop 7 on line  to the destination, with n = N(b) and [ = L(b). Two transit nodes of different
lines form a transfer link b € B3, which involves a walk from stop 7 on line [ to stop n’ on line I’ (if [ # '), and then
a period of waiting before boarding the first vehicle arriving on line /, where n = N(b),n’ = N(b),l = L(b), and
I' = L(b).

In view of the above, a sequence of links in the multimodal transportation network connecting two location nodes
s € §, which form an OD pair w € W, represents a feasible path p between OD pair w for car users (p € P") or transit
passengers (p € P"). The path sets P* and P" between each OD pair w can then be generated using conventional

path-finding algorithms, via the above representation of the multimodal transportation network.

Travel by transit Husband (m1) Q Location node - Transfer link
: |
> ] [] Transit node == Vehicle link (Bus line 1)
Travel by car Wife (m2)
. — — Road link - =% Vehicle link (Bus line 2)
Joint(mtandm2) | accesslink = = Vehicle link (Metro line)
: |
18:00 > Egress link
3
8, Public transit layer
RGN
Bus\\ne\““\( @A) -7 ] “:?890,297
A group of only \f{f’?d ———— : K
m1 working [t} -~
r at location 3 -

A group of only m2 (solo activity)

working at location 4
(solo activity)

8:50

1 9:00

A group of only m1
on a car path between
OD pair 2-3 (solo travel)

8:30

A group of only m2
on a transit path between
OD pair 2-4 (solo travel)

Home :

A group of m1 and m2 Workplace 1

A group of on a car path between

D pair 1-2 (joi |
m1 and m2 O pair 1-2 (joint travel)
staying at home Busline 1 :
St acti 720 _.-c7g —"E‘k :V\ififkpla(‘?e ? 9 Restaurant Private car layer
(joint activity) P \\Qe':, AEY

(b)

Home Workplace 1
9 Restaurant

(a)

Figure 2: Illustration of (a) a joint activity—travel path (JATP) of a working couple, and (b) a representation of a simple multimodal transportation
network.

Fig. 2a illustrates a JATP of a working couple (or a dual-earner couple), where for traveling between activity
locations during the day, the husband switches between taking the RD and SD roles, and the wife takes the RP and
TP roles (according to A8). In this example, the couple jointly travel by car (during which the husband takes the RD
role and the wife takes the RP role) for a joint breakfast at the restaurant. Then, the wife switches to the metro line for
commuting to her workplace (i.e., takes the TP role), and the husband drives to work alone (i.e., takes the SD role).
After work, the wife takes bus line 1 for her travel home (takes the TP role), and the husband drives home alone (takes
the SD role). Fig. 2b shows a representation of a simple multimodal transportation network used by the couple. In the
network representation, path 1 — 2 is used for the joint car trip taken by the couple from their home to the restaurant,
path 2 — 2" — 4’ — 4 is used for the solo trip taken via the metro line by the wife from the restaurant to workplace
2, and path 2 — 4 is used for the solo trip taken by car by the husband from the restaurant to workplace 1. For
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simplification, the multimodal transportation network is limited to the path choices of car users and transit passengers
for their morning commutes.

2.5. Dynamic path travel times of car users and transit passengers

In a dynamic setting, the path choice of a car user includes the departure interval at the origin and the arrival time
at each node along the path. The path travel time of a private car is the sum of travel times of its road links, with
consideration of the interval during which the private car enters each link along the path (Janson (1991); Chen and
Hsueh (1998); Boyce et al. (2001)). The travel time of a car user entering path p between OD pair w during interval k
can be expressed as

2 Z ta(K)y(K') Vpe P, (1)

acA k’'=

where 7,(k’) is the travel time on road link a during interval k', and £ Wk(k/ ) is a 0—1 integer variable that equals 1
if private cars entering path p between OD pair w during interval k arrive at road link a during interval k', and 0
otherwise. In addition, £, "k (k') must satisfy

(k + [ty (k)] = K)o (K') < 0, (2)
(k + [, (k)] — K + Dk (K') = 0 3)

where [ .] is a function used to convert the travel time to an integer time interval, in which [¢] = kif k < t/t, < k+ 1.
The above two constraints force a path to use a link during the time interval that is compatible with the travel time
from the origin to the tail node of the link, and 7, (k) is the travel time of a private car entering path p between OD
pair w during interval k and the tail node of road link a (Janson (1991)) which is expressed as
(k) = talk 4 2, (O]) + 2%, (K), )

where a’ is the link preceding link @ on path p. When a is the last link on path p, 1)) (k) = t.(k + [1,(k)]) + £, (k).

In a dynamic context, the path choice of a transit passenger consists of the departure interval at the origin, an
access link, a sequence of vehicle links (associated with different lines), an egress link, and the arrival time at each
link. We consider the following components of the transit travel time: access, egress, transfer, and in-vehicle time
(Tong and Wong (1999); Sumalee et al. (2009); Li et al. (2010)). The travel time of a transit passenger on path p
between OD pair w with departure interval k is then formulated as

Z Z K (W" k) Vpe P, (5)

beBk'=

where £} [k (k’ ) is a O—1 integer variable that equals 1 if transit passengers entering path p between OD pair w during
interval k use transit link b during interval k’, and 0 otherwise. The transit time components are given as follows.

e For an access link » € By on whichn = N(b) and [ = L(b),

~ wal 1
p(k) = 1 (k) + s, TheB 6)

where the first term indicates the constant walking time from origin node b to stop n on line / during interval k,
the second term indicates the average waiting time prior to boarding the next vehicle arriving on line /, and D,

is the frequency of transit line /.
e For an egress link b € B, on which n = N(b) and I = L(b),

By(k) = 1" (k) Wb e By, 7)
where tl()walk) (k) is the constant walking time from stop 7 on line / during interval k to destination node b.
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e For a transfer link b € B3 on whichn = N(b), and [ = L(b),

R 1
l‘b(k) = 2_Db Vb e B3, (8)

which is the average waiting time prior to boarding the next vehicle arriving on line /.
e For a vehicle link b € B4 on which n = N(b) and [ = L(b), we have

fl(jmetro) (k) if / is a metro line
fp(k) = K - Vb € By, 9
(k) S Y t(K)Z, (K) if Lis a bus line * 2
acA k'=k
where A[(?metro) (k) is the constant travel time of metro line / from stop n to (n + 1) during interval k, and the bus

travel time depends on the road travel time, and /' f;b(k’ ) is a 0—1 integer variable that equals 1 if transit passengers
entering vehicle link b associated with bus line [ during interval k arrive at road link a during interval &/, and 0
otherwise. Note that a vehicle link may comprise multiple road links.

2.6. JATP utility

Let uZ be the daily activity—travel net utility of household type /# choosing JATP g, which is calculated as the
difference between the total utility of activities and the total disutility of travel by different modes for all household
members:

M" G"
=D ZZ (EZ MO (k) = DT D At g (k) = D D e (k)& )>, (10)

m=1g=1k=1 iEI seS , weW pePv WweW pepw

~~ A Y

activity utility travel disutility by private car travel disutility by public transit

where uhmg (k) is the utility of member m in group g of household type A participating in activity i at location s during
interval &, chmg (k) is the travel disutility of member m (taking the SD, RD, or TP role) in group g of household type

h entering path p by private car between OD pair w during interval k, and ¢ p?;g (k) is the travel disutility of member
m (taking the TP role) in group g of household type & entering path p by public transit between OD pair w during
interval k.

In the JATP utility function (10), 6]".”g (k) is a 0-1 integer variable that equals 1 if member m in group g of

household type % choosing JATP ¢ performs activity i at location s during interval k, and O otherwise; 53215( )isa0-1
integer variable that equals 1 if member m in group g of household type & choosing JATP g enters path p by private car
between OD pair w during interval k, and 0 otherwise, and 52% (k) is a 0-1 integer variable that equals 1 if member
m in group g of household type & choosing JATP g enters path p by public transit between OD pair w during interval
k, and O otherwise.

In what follows, we present how the utility/disutility components of the JATP utility function (10) are calculated.

2.6.1. Activity utility
The utility of an activity depends on its location and time of day (Ettema and Timmermans (2003); Ettema et al.
(2007)), on the individuals participating in the activity (Zhang et al. (2005, 2009); Lai et al. (2019)), and on the
congestion level at the activity location (Fu and Lam (2018); Liu et al. (2016, 2020)). A few studies have considered
an extra utility to present the cases in which household members conduct joint activities (Bradley and Vovsha (2005);
Lai et al. (2019); Vo et al. (2020a)). The utility of member m in group g of household type 4 participating in activity i
at location s during interval k can be formulated as
W8 (k) = W™ (k) + " (k) + @ig(k) — @ig(k), (11)

A LS

where uhm(k) is the marginal utility obtained when member m of household type h participates in activity i alone
during interval &, %?Ymg(k) is the extra utility gained when member m of household type % participates in activity i
together with other household members in group g at location s during interval k, and @;s(k) and w;s(k) are the

12



410

415

420

activity congestion utility and disutility, respectively, that result from the positive and negative congestion effects
experienced by persons participating in activity i at location s during interval k.

The marginal activity utility of member m of household type % participating in activity i alone is modeled by time
of day as a bell-shaped function (Ettema and Timmermans (2003); Ashiru et al. (2004)):

(k+1)t5 Khm hm yhm

um(k) = U f T
o exp (k" (1 = 7)) [+ exp (™ (1 = 7)) |

lS s
and U fm indicate the baseline and total utilities, respectively, for member m of household type h per-
’h’” is the time at which the marginal utility reaches its maximum value, and K and

dr, (12)

where Uhm(o)
forming activity i at locatlon s,
h’" are the calibrated pararneters

According to A5, 0@;s(k)/0vis(k) > 0 and dwjs(k)/0vis(k) > 0, where v;s(k) is the number of persons participat-
ing in activity 7 at location s during interval k. The positive effect dominates the negative effect when 05 (k) /dvis(k) >
Owis(k)/0vis(k), and there is no congestion effect when 0@;s(k)/0vis(k) = Owis(k)/0vis(k); otherwise, the negative
effect dominates the positive effect. For simplicity, we ignore the positive effects at the activity locations, and model
the activity congestion disutility as

(13)

is k) = istor
@ ( ) v ( Cis

where Cj, is the capacity of activity i at location s, #, is the length of each time interval, and w;; and n;, are the
calibrated parameters associated with activity 7 at location s.
The extra utility of activity participation can be given by

"8 (k) = {0 iffe| =1 (14)

is oSulm (k) if g > 1,

where a ¢ is the household preference parameter for joint activity i at location s by group g of household type h.

2.6.2. Travel disutilities of car users and transit passengers

The travel disutility of member m in group g of household type % entering path p by private car between OD pair
w during interval k is calculated as the sum of link disutilities in the interval during at which the private car enters
each link along the path (Janson (1991); Chen and Hsueh (1998); Boyce et al. (2001)), as follows:

i (k =) 2 WEKVGE(K) Yp e P, (15)

acA k' =

where ca §(k') is the travel disutility of member m in group g of household type / on road link a during interval k’.

The link travel disutility of car users comprises three components: the travel time disutility; the extra utility of
joint travel; and the operating cost (e.g., fuel cost and toll), which can be averagely allocated among the group’s
members. Then, the travel disutility of member m in group g of household type A on road link a during interval k is
given by

hmg hmg 1 hg
cg (k) =yty(k) —9,° (k) + @ o (k) YaeA, (16)

where vy indicates the value of the travel time of car users, 7,(k) is the travel time of private cars on road link a during
interval &, ﬂzmg (k) is the extra utility gained when member m of household type & travel together with other household
members in group g on road link @ during interval &, and ¢Zg (k) is the shared operating cost that each car user in group
g of household type /4 has to pay for traveling on road link a during interval k.

Based on A7, we have 0t,(k)/0v,(k) > 0 where ¥, (k) is the number of private cars on road link a during interval
k. We adopt the Bureau of Public Roads (BPR) function to model the link travel time of a private car:

ta(k) = £V (1 W (%)) Va e A, (17)
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where W and 7 are the calibrated parameters, sz’) is the free-flow travel time on road link a, C, is the capacity of road

link a, ¥,(k) is the preloaded number of transit vehicles on road link a during interval k (which can be calculated from
transit service frequency), and 1/7, is used to convert the unit of C, from veh/h to veh/interval.

Similar to the time components considered in the transit path travel time (5), the travel disutility of member m in
group g of household type & entering path p by public transit between OD pair w during interval k is calculated as

Ahmg 2 2 Ahmg k/ {;)vk k’) Vpe [",w’ (18)
beB k' =
in which
Y1y (k) — D18 (k) Vbe B
e_hmg(k) _ i’ fb(k) - ﬂng(k) Vb e B (19)
b 3y (k) — I (k) Vb e Bs
ufy (k) (k) — D)™ (k) + @p Vb € Ba,

where 91—y are the coeflicients that are required to convert different quantities of the transit time components to a
monetary unit; (k) is the scale factor of in-vehicle travel time, which accounts for the in-vehicle crowding discom-
fort disutility incurred by transit passengers using vehicle link b during interval k; ﬁlmg (k) is the extra utility gained
when member m of household type & travels together with other household members in group g on transit link b
during interval k, and ¢, is the transit fare for using vehicle link .

By reference to A6, we have oy, (k)/0v,(k) > 0, where 9,,(k) represents the number of transit passengers on
vehicle link b during interval k. The transit crowding discomfort factor can be expressed as the following form of the
BPR function (Fu and Lam (2014, 2018))

lpb(k)=1+w<( (k) > Vb € By, (20)

l/l‘a-)ébDb

where W and 7 are the calibrated parameters, Cj, is the transit vehicle capacity, D, is the transit frequency associated
with vehicle link b, and 1/7,- is used to convert the unit of Cj, from pax/h to pax/interval.
The extra utilities of joint travel by private car and by public transit can be formulated as

0 if |g| = 1
98 (k) = o gl Vae A, @1)
p yt if [g] > 1
0 if |g| = 1
ﬁthlfb(k) 1f|g\ > l,bGBl
9" (k) = ,Bb $ab,(k) if|g| > 1,b€ By (22)

'Bb )/gtb(k) if|g‘ >1,be B;
(8941 if |g| > 1,b € By,

where ,BZg and ﬁ’Zg are the household preference parameters for joint travel on road link a and on transit link b,

respectively, by group g of household type /, and t‘(lo) and f(bo) are the free-flow travel times on road link a and vehicle
link b, respectively.

Fig. 3 summarizes the relationship between different utility/disutility components of the JATP utility function (10)
presented in this Section 2.6. In particular, JATP utility ”Z increases with activity utility u}.'mg (k), and decreases with
path travel disutilities by private car cﬁ’,'vnvg (k) and by public transit éhmg (k). The components of activity utility uhmg (k)
are calculated by (11)—(14). Then, u?smg (k) increases with marginal utility (k) and extra utility of joint activity
participation %?Smg (k), and decreases with activity congestion disutility w;,(k). Note that activity congestion utility
@;s(k) is ignored here so as to illustrate the essential ideas presented in this paper. However, it can be extended to
consider the positive effect of capacity constraint at the activity destination if necessary.
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In addition, the components of path travel disutilities C%g (k) and é%g (k) are given via (15)—(22). It should be

noted that path travel disutility by private car cﬁ'xg (k) is positively related to road link travel disutility chg (k"), which
in turn increases with road link travel time 7,(k"), and decreases with extra utility of car joint travel ﬁzmg (K') (k' = k).
Similarly, path travel disutility by public transit 6%”’ (k) is also positively related to transit link travel disutility ézmg (k),
which increases with transit link travel time 7,(k’) and crowding discomfort factor i, (k"), and decreases with extra

utility of transit joint travel ﬁng (k') (K = k).

Marginal utility (12)
ug" (k)
+ Activity congestion
disutility (13)
~ Wis (k)
. . Extra utility for joint Road link travel
Activity utility (11) n activity (14) time (17)
ujy™ (k) ™9 (k) +/ ] ta(K) K >k
+
. 8 Path travel disutility Road link travel ) Extra utility of joint travel
JATP uthlllty (10) » by private car (15) + > disutility (16) by private car (21)
= e (k) O (k), K > (K, K > b
Path travel disutility Transit link travel N Transit link travel
by public transit (18) + > disutility (19) > time (5)-(9)
&hmo (k) EmI(k), K >k ty(K), kK > k
+
__ » Positive relation h: household type k k': time interval Crowding discomfort
- - factor (20)
—— Negative relation m: person p: path by (K), K >k
) -
g: group w: OD pair
q: JATP a: road link . .
o o Extra utility of joint travel by
it activity b: transit link public transit (22)
: ahmg g g
s: location 9 (k) k' >k

Figure 3: Relationship between different utility/disutility components of the JATP utility function.

Remark 1. Our novel activity-based model uses not only common parameters of conventional trip-based models,
such as the value of travel times by modes (i.e., y, and ¥1—y4), operating cost (i.e., gng (k)), and transit fare (i.e., ¢p), but
also household-related parameters that are associated with the marginal time-dependent activity utility function (i.e.,
uf’s’" (k)), and the preferences for joint activities and travel (i.e., a/?sg s ag , and ﬁzg ). These household-related parameters
have certain effects on household members’ aggregate activity—travel behaviors by time of day. For example, a higher
value of u?sm(k), Vh,m, leads more household members to participate in activity i at location s during interval &,
whereas a higher value of a/?f , Vh, g, leads to more joint activity i at location s. Similarly, higher values of ﬂZg and
ﬁzg , Vh, g, encourage more joint travel on road link a and on vehicle link b, respectively. Readers can refer to Ettema
and Timmermans (2003); Ettema et al. (2007) for the information on calibrating the household-related parameters for
the marginal activity utility function by time of day, and to Allahviranloo and Axhausen (2018); Lai et al. (2019) for

the information on calibrating joint activity and/or travel utilities between household members.
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3. Model formulation

In this section, we formulate the household-oriented activity-based mixed-equilibrium problem concerned. First,
we develop a logit-based stochastic JATP choice model to capture a mixed equilibrium with heterogeneous errors
of perception on the utility of different activity types. We then propose an equivalent VI problem for the mixed-
equilibrium problem concerned. Finally, we investigate the interactions between between different-sized travel groups
and different transportation modes, the model properties, and the existence and uniqueness of the solution to the
proposed VI problem.

Fig. 4 shows the relationship between different model components in the proposed household-oriented activity-
based mixed-equilibrium framework. First, the household-oriented activity-based mixed-equilibrium problem for-
mulated in this Section 3 requires the input from (1) parameters for utilities/disutilities of solo/joint activities and
travel (Section 2.6), (2) the multimodal transportation network (Section 2.4), (3) household demographic character-
istics (Section 2.2), and (4) household members’ heterogeneous errors of perception (Section 3.1). Based on these
input, the utility/disutility components of the JATP utility function (10) are then calculated (Section 2.6), and the
JATS supernetwork platform is constructed (Section 4.1). Finally, the output of the household-oriented activity-based
mixed-equilibrium model would be a predicted daily JATP flow pattern (i.e., a vector of numbers of households with
type h choosing JATP ¢, forallh = 1...H,q € Q").

Input
Parameters for utilities/disutilities Calculation of utility/disutility components of
of solo/joint activities and travel > > the JATP utility function n
(Section 2.6) (Section 2.6)

v

Multimodal transportation network T —

(Section 2.4) T (Section 4.1) - A
Household demographic characteristics v ﬂIzVC:;V:z daﬂilllgl; d
(Section 2.2) Household-oriented activity-based path travel times
mixed-equilibrium (Section 3)
Household members' heterogeneous Logit-based stochastic JATP choice (32)
errors of perception (Section 3.1) (formulated as the VI problem (36)-(39))
JATP flow 1 Activity aqd link
flows, and link and
pattern

path travel times

Dynamic network loading
(flow propagation (40)-(42))

l

Output: Predicted daily JATP flow pattern
(i.e., a vector of numbers of households with type 4
choosing JATP ¢ for all 4, q)

Figure 4: The proposed household-oriented activity-based network equilibrium framework.

3.1. Logit-based stochastic JATP choice model

Let U, 2‘ denote the perceived activity—travel net utility of household type & choosing JATP g. The perceived utility
can be decomposed into deterministic and error terms, as follows:

h _ h h
Uq = Uy + &4 (23)

16



475

485

From the RUM theory, the probability of household type 4 choosing JATP g can be expressed as
=Pr(Ul>Ul:Vg#ecQ"). (24)

The JATP choice model (24) results in a stochastic household utility optimum (SHO) principle based on which house-
hold members make JATP choices to maximize (or optimize) their perceived household utility.
If error term SZ follows a Gumbel distribution with a zero mean and is identical and independently distributed, the
JATP choice model (24) has the following closed-form expression:
h, h
P exp (9 uq)
D et (25)
Z exp (Hhue)

ecQ

where 6" > 0 is the household scale parameter that is associated with the perceived utilities of household type %, and
6" is inversely proportional to the variance o of error term &”. It is well-known that 6" = 7/ /60 . where 7 ~ 3.14.
If 6" increases (i.e., the deterministic term of the perceived household utility is scaled up), then the household’s error
of perception decreases, and vice versa.

We next modify the deterministic term of the perceived utility (23) to account for household members’ errors
of perception on the utilities obtained from different activity types, and thus retain the closed-form expression of the
multinomial logit (MNL) model. The closed-form expression is useful for investigating the properties of the stochastic
choice model (24) and deriving an equivalent VI problem for the corresponding mixed-equilibrium problem. We now
decompose uZ into different utility components, which are associated with different activity types:

Mh Xhm

= D, (26)

m=1x=1

where uqx is the activity—travel net utility obtained from type x activities by member m of household type 4 choosing
JATP ¢, X" represents the number of activity types conducted by member m of household type h, and ™ > 0 is the
individual scale parameter associated with the utility of type x activities. Note that u " > (0 results from the difference
between the utility of performing type x activities and the travel disutility for reachlng these activities. By substituting

(26) into (25), the JATP choice model (25) can be expressed as

Mh Xhm

H Hexp ehnhm hm)

h m=1x=1
Xq Mh Xhm . (27)

STTTT [exp (¢nmulir)

ethm 1 x=1

According to (27), the changes in the utility scale can be accommodated through changes in household and
individual scale parameters 6" and 7", respectively. Thus, similar to 6", as /" increases (i.e., the deterministic term
of the perceived utility obtained by member m conducting type x activities is scaled up), the household’s error of
perception decreases, and vice versa. This implies that /" is also inversely proportional to variance 0. Then, a
higher value of 1" leads to a lower error of perception being exhibited by member m of household type 4 regarding
the utility associated with type x activities, and vice versa.

The scale parameters 6" and 7" in (27) are confounded as different combinations of the two parameters can lead
to the same nhm = ¢"y™. Thus, i7" is commonly estimated in practice, instead of 6" and /" separately. This means
that #" and /" cannot be identified separately unless one parameter is fixed and the other is identified based on this
fixed parameter. This confounding identification problem of scale parameters is well-known in conventional MNL
models, and the scale parameter has usually been normalized to 1.0 (see e.g., Swait and Louviere (1993); Hess and
Rose (2012)). This problem has no effect on the predicted probability (27) if the error assumptions on the distribution
of & are satisfied. However, in this paper, #" and 7" must be separately identified to enable the mixed-equilibrium
problem to be formulated as an equivalent VI problem. To address this matter, for a given set of estimated parameters
{nhm Vm, x} the household scale parameter in this paper is fixed as

6" = max {ﬁf’c’" 1 Vm, x} , (28)
17
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and the individual scale parameter is derived as

~hm

n
"= (29)

where 17/ ranges between 0 and 1.0, and max {nﬁ’" : Vm, x} = 1.0.

Remark 2. The individual scale parameter 1/ in (27) can also represent the bargaining power of member m of house-
hold type 4 in jointly making the activity—travel choices relating to type x activities (Zhang et al. (2009); de Palma
et al. (2015); Lai et al. (2019). Thus, the household members’ errors of perception and bargaining powers are inter-
preted to be inversely proportional. Household members’ heterogeneous errors of perception on activity—travel utility
have rarely been investigated. However, this relationship allows us to link household members’ errors of perception
with their bargaining powers, which have been extensively investigated. For example, the wives in dual-earner house-
holds tend to have more bargaining power—and thus exhibit fewer errors of perception—than men (de Palma et al.
(2015); Lai et al. (2019)).

Remark 3. Various classifications of activity types conducted by household members in (26) can be used. Gliebe and
Koppelman (2002) classified daily household activities into four representative types: subsistence activities (e.g., out-
of-home work, school, or college activities), maintenance activities (e.g., out-of-home shopping, personal activities,
and appointments), leisure activities (e.g., out-of-home free-time and visiting), and home activities (e.g., unspecified
home activities). Similarly, Bradley and Vovsha (2005) divided daily activities into three types: mandatory, non-
mandatory, and home. As household members perceive various activity types differently, it is reasonable to assume
that they tend to exhibit lower (or at least equal) errors of perception regarding mandatory and home activities than
regarding nonmandatory activities.

Similar to the MNL model, the JATP choice model (27) has the property of independent and irrelevant alternatives.
In other words, the ratio of the choice probabilities of two JATPs remains entirely unaffected by the utilities of other
JATPs:

h Mh Xhm

Yo _ TT1]exp (0"l — ) (30)
. .

Xe m=1x=1

Thus, the JATP choice model (27) cannot account for the overlap or correlation between JATP choices.
To solve the overlapping problem, we extend the choice model (27) by using the following commonality factor,
which is also used in the well-known C-logit model proposed by Cascetta et al. (1996):

V1

h
|
cegh \ A/LEL:

where vy and v; are the calibrated parameters; Lh and L are the lengths of JATPs g and e chosen by household type

CF) =vpln 31)

h, respectively; L}, is their common “length”. We define the length of JATP g as the total number of intervals for
all household members that elapse in g (i.e., Lh M"K). Then, two JATPs overlap if they contain the same choices
regarding activity participation (i.e., activity locatlon, start time, and duration) and travel (i.e., departure time, path,
and mode choices) made by the same household member during the same interval.

The JATP choice model (27) that considers the correlation between various JATPs can be expressed as

Mh Xhm
exp ( HhCFh H Hexp thhm Z’")

h_ m=1 x=1
Xq o Mh Xhm ’ (32)

Z exp QhCFh H Hexp Qh hm hm)

ecQ" m=1x=1
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We next examine the direct and cross elasticities of the developed choice model. Direct elasticity represents a
change in the probability of a particular JATP being chosen in response to a change in the utility of that JATP. Cross-
elasticity represents the extent to which the probability of a particular JATP being chosen changes as the utility of
another JATP changes. Consider the following derivative of the JATP choice probability (32):

hm M xm
Z <9h77x P > exp (—ehCF;’) H HGXP (th?n hn>

h h ;
Xy I Quge \ ), Je0” n=la=t h (33)
oulr T oultr X Mt xhm Yo
Z exp (—GhCF;’) H Hexp <9h fin h")
jeoh n=1z=1
and obtain the direct and cross-elasticities
ox!
q ho_hm h h
S = 0 1:"xg (1 =xg) > 0, (34)
qx
oxe hm_ b h
614’;” = —thxm)(q)(e < 0. (35)
qx
510 Note that the direct elasticity (34) is positive, whereas the cross elasticity (35) is negative. Thus, improving the

utility obtained from type x activities by member m of household type & choosing JATP g will increase the probability
of households of type & choosing JATP ¢, and the incremental probability of choosing JATP ¢ originates from the
reduced probabilities of all other JATPs ¢ # g. Note that the cross elasticity is uniform for all JATPs e # ¢ (i.e., the
probabilities of all other JATPs e # g decrease by the same percentage).

si5 3.2. VI problem

Consider the following VI formulation problem: finding a JATP flow pattern f* = (..., ;*, ...) € Q such that

af ) (F*—£) >0 VfeQ (36)

where = denotes an equilibrated solution, f(f is the number of households with type & choosing JATP ¢, G(f) =

(..., ﬁg(f), ... ) is the mapping with

Mh Xh

Z Z’]hm hm ! ( +1nfq) CF;, (37)

m=1x=1

and Q is a compact set of feasible JATP flow patterns that satisfy

D f=F, (38)
qeQh
fl =0, (39)

where F" is the number of households with type .

Proposition 1. The solution to the VI problem (36) is equivalent to the JATP flow pattern derived from the logit-based
stochastic choice model (32).

Proof. See Appendix B. O

According to Vo et al. (2020a), the JATP flow propagation that is required to ensure a consistent movement
of household members forward in space and time through activity locations, paths, and links during a day can be
expressed as follows:

hmg 2 fq Zzzg (40)

qe Qh
|

activity person flow
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A
car user flow on car path

car user flow on road link

Ahmg Z 2 Z Z fq nggv K) Wk Z 2 Z Z fq Zgljbk' (k) VbeB, 42)
weW pepw k= qeQ" weW pepw k' =k geQ"

~
passenger flow on transit path

~
passenger flow on transit link

hmg hmg

(k) is a 01 integer variable that equals 1 if &, (K ){Wk/( ) = 1, and 0 otherwise; §hmg

where & o (k) is a 0-1

integer Vanable that equals 1 if &8 (k") Wk/( k) = 1, and 0 otherwise; vfs #(k) is the number of persons being member

qpw
m in group g of household type A participating in activity i at location s during interval k; vhm (k) is the number of car
users being member m in group g of household type % using road link a during interval k; and ¥ ‘hmg (k) is the number
of transit passengers being member m in group g of household type 4 using transit link b during 1nterval k.

Finally, we define v;s(k) as the total number of persons participating in activity i at location s during interval &,
V4 (k) as the total number of private cars using road link a during interval k, and 9, (k) as the total number of transit
passengers using transit link b during interval k:

H M' G"
vis(k) = D733 v (k) 43)
h=1m=1 g=1
H M' G"
ZZZ VI8 (k) Va € A, (44)
h=1m=1g= 1
Mh Gh

Z DS 9" (k) VbeB. (45)

h=1m=1g=1

The flow propagation (40)—(42) ensures the feasibility of the time—space trajectories of household members
through a JATP by using 0-1 integer variables. These variables are not indices, but instead depend on the (contin-
uous) link travel times of both private cars and transit vehicles, which in turn are affected by road congestion (see Vo
etal. (2020a)). Please refer to Appendix A for the relationship between the 0-1 integer variables and the path and link
travel times.

Remark 4. The solution to the VI problem (36) is only equivalent to the JATP flow pattern derived from the stochastic
choice model (25) under the assumption that flow propagation condition (40)—(42) and travel times of road links are
fixed (Janson (1991); Chen and Hsueh (1998); Boyce et al. (2001); Vo et al. (2020a)). If the fixed flow propagation
relation is also the relation realized at equilibrium, the solution to the VI subproblem is also the JATP flow pattern
derived from the stochastic choice model. Hereafter, we investigate the model properties and the existence and
uniqueness of a solution to the particular VI problem based on the assumption that the flow propagation (40)—(42) and
travel times are fixed.

3.3. Interactions between different-sized travel groups and different transportation modes

We next investigate the interactions between users belonging to different-sized travel groups and using different
transportation modes considered in our problem.

Interaction 1. There exists an interaction between car users and transit passengers on road links, such that the car
users may affect the travel disutility of transit passengers, but the reverse effect is not necessarily true.
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Based on (16) and (19), Interaction 1 can be expressed as

Ahmg(k) N a;\
Y4 Oip(k)
— k) >0 VYaeA,be By, 46
Z(k) ‘Z‘ 5\7u(k) lﬁb( ) ac € D4 ( )
inz
2B Gaeape s, “47

where é’Ahmg( k)/ovI™ (k) indicates the effect of the number of car users being member 7 in group z of household type j
on road link @ on the travel disutility of transit passengers being member m in group g of household type 4 on vehicle
link b during interval k, and the reverse effect oc.™(k)/ é“hmg (k) is negligible due to A4; and ﬁAhmg (k)/ovi(k) = 0
because the travel time of the bus mode is affected by the road travel time, which is in turn separable and strictly
increasing with the number of vehicles on the link.

Interaction 2. There is an asymmetric interaction between car users on road links, such that the car users in different-
sized travel groups may affect the travel disutilities of other car users in different ways.

Because the road link travel time is separable and strictly increasing with the number of vehicles on the link (i.e.,
0t (k)/0V,(k) > 0), from (16) we have

oci" (k) v dtalk)
ovi(k) 2| OVa(k)

>0 VaeA, (48)

where oc™ ¢ (k) /ovi™ (k) is the effect of the number of car users being member 7 in group z of household type j on
road link a during interval k on the travel disutility of other car users being member m in group g of household type A
on the road link during the same interval. Interaction 2 is asymmetric, as various travel groups z yield different group
sizes |z].

Interaction 3. There is a symmetric interaction between the transit passengers on transit vehicles, such that transit
passengers in different-sized travel groups may affect the travel disutilities of other transit passengers in similar ways.

As the in-vehicle crowding discomfort disutility is strictly increasing with the number of passengers in the transit
vehicle (i.e., Oy (k)/0Dp(k) > 0), based on (19), Interaction 3 can be expressed as

Ahmg
% (k) _ Sty (k) a‘f”(k) >0 Vbe B, (49)
091" (k) OV (k)
where 6Ahmg (k)/09)" (k) indicates the effect of the number of transit passengers being member 7 in group z of house-
hold type Jj on vehicle link b during interval k on the travel disutility of other transit passengers being member m in
group g of household type % on the vehicle link associated with the same vehicle.

Given the interactions between users belonging to different-sized travel groups and using different transportation
modes mentioned above, the novel model developed in this paper includes the model proposed by Vo et al. (2020a)
as a special case, as the congestion effects of transit modes are ignored. That is, the interaction between car users
and transit passengers on road links and that between transit passengers in transit vehicles were relaxed in Vo et al.
(2020a).

3.4. Model properties

In this section, we investigate the properties of the solution to the VI problem (36). Property 1 shows that the
proposed SHO principle includes the conventional SUE principle as a special case, in which there are no intra-
household interactions. Then, under the SUE principle, the household members make JATP choices to maximize their
perceived individual utility. Thus, the mixed equilibrium of activity—travel choices at both individual and household
levels can be solely stated by the SHO principle at the household level where each individual without intra-household
interactions can be regarded as a one-member household. However, because of the asymmetric interactions of different
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household types via their travel disutilities (Interactions 1, 2, and 3), the maximum utility for a given household
type at equilibrium (under the SHO or SUE principles) can be affected (improved or worsened) by the choices of
other household types. Thus, the system’s expected total utility can also be improved or worsened under a mixed
equilibrium condition, depending on the proportion of household members following the SHO or SUE principle. A
similar phenomenon was observed by Vo et al. (2020a) where household members of heterogeneous household types
follow a deterministic HO principle.

Property 1. In the absence of intra-household interactions, the solution to the VI problem (36) satisfies a SUE prin-
ciple.

Proof. See Appendix B. O

Property 2 shows that the SHO principle considered in this paper includes the HO principle in Vo et al. (2020a) as
a special case, in which household members’ errors of perception on the utility of different activity types are ignored.
Property 3 highlights a special case in which household members have no knowledge about the utility, and therefore,
tend to make random JATP choices. In such a case, the first term of the mapping (37) will be negligible. Consequently,
the VI problem (36) uniformly distributes the household travel demand to all available JATPs.

Property 2. When 6" — 40, Vh, the solution to the VI problem (36) satisfies a deterministic HO principle (Vo et al.
(2020a)).

Proof. See Appendix B. O

Property 3. When 6" — 0, Vh, the household travel demand tends to be uniformly distributed to the available JATPs
(i.e., the JATP choice is independent of the JATP utility).

Proof. See Appendix B. O

Property 4 highlights the importance of accounting for heterogeneity in errors of perception on the utility of
different activity types. In particular, when member m of household type % has a higher error of perception on the
utility obtained from type x activities than member 7 in the same household has on the utility obtained from type
z activities, the type x activities conducted by member m are less important than the type z activities conducted by
member 7 in the JATP choices of household type 4. Moreover, when member m of household type / has no knowledge
on the utility of any activity types (i.e., 7™ — 0, ¥x), he/she tends to not participate in decision-making on the JATP
choices of household type A. This property is reasonable from a behavioral viewpoint, as household members with
less knowledge about the network conditions tend to depend on others with more knowledge to make activity—travel
decisions.

Property 4. When 7" < 17’;”, Vm # n, the change in utility obtained by member m from type x activities has a
smaller effect on the JATP probabilities chosen by household type & than the change in the utility obtained by member
n from type z activities.

Proof. See Appendix B. O

3.5. Existence and uniqueness of a solution

We now discuss the existence and uniqueness of a solution to the VI problem (36) in terms of a JATP flow pattern.
Proposition 2 indicates the existence of a solution to the VI problem as mapping (f) is continuous with JATP flow
pattern f.

Proposition 2. There exists at least one solution £* € Q to the VI problem (36).

Proof. See Appendix B. O
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As mentioned above, because of the interactions between users belonging to different-sized travel groups and
using different transportation modes in terms of link travel disutilities, the link travel disutility functions chg (k)
for car users and 6ng (k) for transit passengers may not be strictly monotonic with their link flow. In addition, the
household members’ errors of perceptions are heterogeneous. Hence, the monotonicity of mapping @(f) in terms of
JATP flow pattern f does not hold in general cases. This indicates that a solution to the VI problem (36) in terms of
JATP flow pattern f* may be not unique.

To establish a condition for the uniqueness of a solution to the VI problem (36), we define v = (..., vi(k),...)
as a vector of person flows participating in activities, v .= (...,v,(k),...) as a vector of car user flows on road
links, v = (...,¥,(k),...) as a vector of private car flows on road links, and ¥ = (...,P(k),...) as a vector of
transit passenger flows on vehicle links deduced from JATP flow pattern f. We also define @ (V) = (..., @wis(k),...),
and @ (V) = (..., @(k),...) as the vectors of activity congestion disutilities and utilities under V, respectively;
t(V) = (...,t,(k),...) as the vector of travel times on road links under v, ¥(¥,¥) = (..., yp(k)#p(k),...) as the
vector of crowding discomfort disutilities on vehicle links under ¥ and ¥; and e(f) = (..., (In f;’) /0",...) as the
vector of entropy terms.

Proposition 3. Assuming that individuals are homogeneous in terms of individual scale parameter 7™, Yh,m, x,
which is denoted n, the VI problem (36) has exactly one solution f* € Q if

Z (£, £y — z, (¢ £ 4 z3 (¢ £2)) 4 z, (8D, £2)) 1+ Zz5(£D £y > 0 wvED) 2 £2) e Q, (50)
where

agmjw):n<wwm>_ww®0(aw_vm) (51)

b@mjm):n(ﬁﬁm)_ﬁwmw(ﬁn_¢m> (52)

Zﬁﬂnjm):nytwug_t@@g)bm>_vm) (53)

a@mjm):n%<wﬁnﬁm)_wanﬁmw<¢n_¢m) (54)

Zs (£, 1) = (e(f(”) - e(f<2>)) (f“) - f<2>) . (55)
Proof. See Appendix B. O

We now discuss the meanings and signs of the five terms defined in Proposition 3, which are related to the
monotonicity of the utility and disutility components of mapping @(f) in the set of feasible JATP flow patterns f € Q.
In particular, Z; and Z, represent the monotonicity of activity congestion disutilities and utilities, respectively; Z3
represents the monotonicity of travel times on road links; and Z4 represents the monotonicity of crowding discomfort
disutilities in transit vehicles. In addition, Z; > 0 and Z, > 0 because the activity congestion disutilities and utilities
are strictly increasing with the number of persons at the activity location (according to AS); that is

e
Z, (£, £2) {> 0 %fv( ) % v .

(57)

The sign of Z3 is unknown because there may exist joint travel of car users on road links that have a lower number of
car users but a higher number of private cars; that is

>0 if (ta(k)D — 1,(k)@) (va(K)V —ve(k)?) >0 Va,k
Zg(f(l),f(z)) =0 if v() = ¥@ or V(l) =v® (58)
unknown otherwise.

Condition Z; > 0 holds if a larger number of car users v,(k) leads to a longer travel time #,(k) for each road link a.
The sign of Z, is also unknown because there exists the interaction between private cars and transit vehicles on road
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links; that is

>0 if (7 (k) My (k) V) — 2, () Py (k) ) (9 (k) D) = 93 (k))) >0 Vb, k
Zy(tW ) { = 0 if ¥ = 9@ and () = 3@ (59)

unknown otherwise.

The condition for Z4 > 0 holds if a higher number of transit passengers ¥, (k) leads to a higher crowding discomfort
disutility , (k) (k) for all vehicle link b. In addition, Zs > 0 for any f!) 7 £(2) because (1/¢") In fJ' is an increasing
function. In summary, for any f M = £@ e Q, Z1 20,72, =2 0,Zs > 0, the signs of Z3 and Z4 are unknown due to the
joint travel and interaction between private cars and transit vehicles sharing same road links.

Proposition 3 states a condition under which the VI problem (36) has a unique solution in terms of a JATP flow
pattern. This condition is independent of the nonmonotonicity of the link disutility functions szg (k) for car users
and GZ'"g (k) for transit passengers resulting from the asymmetric interactions between users belonging to different-
sized travel groups and using different transportation modes. The homogeneous individual scale parameter 1" in
Proposition 3 does not indicate that individuals from different households make homogeneous errors of perception, as
the error in the perception of member m of household type # is not only parameterized by 7" but also by 6".

Remark 5. Condition (50) in Proposition 3 is expected to hold in practice. First, aside from social activities, which
have positive congestion effects (i.e., more participants result in a higher activity utility), most daily activities have
negative congestion effects (i.e., more participants result in lower activity utility). Thus, Z; often dominates Z,.
Second, activity duration is in reality much longer than travel time. For example, the UK Department for Transport
reported in 2017 (Department for Transport (2017)) that people spent an average of an hour a day traveling, which
included 36 min traveling by car. In addition, the Hong Kong Transport Department reported in 2011 (Transport
Department (2011)) that the average total mechanized trip rate on a weekday was 1.83 trips/person, while the mean
journey time per trip was 40 min. Hence, as activities are usually longer in duration than travel, the congestion effects
of activities are in practice likely to be much larger than the traffic congestion effects of travel by different modes
(i.e., Z; dominates Z3 and Z4). Consequently, the monotonicity of mapping G(f) of the VI problem (36) is often
governed by the monotonicity of activity congestion disutility Z;. Due to the uniqueness of a solution in terms of a
JATP flow pattern, condition (50) also ensures the uniqueness of the link and path flows by different travel groups and
transportation modes, and of households’ daily activity—travel schedules and time allocations. This can be regarded as
a merit of our activity-based approach, as the uniqueness of path and link flows cannot be ensured in conventional trip-
based traffic assignment models because of asymmetric interactions between users who participate in different-sized
travel groups and use different transportation modes.

4. Solution method

The VI problem (36) is solved using the predetermined JATP choice set. We first develop a JATS supernetwork
platform, on which we can apply the column generation method to generate feasible JATPs when needed. We then
develop a modified diagonalization method to solve the VI problem (36).

4.1. JATS supernetwork platform

The novel supernetwork platform is a time—space network, in which each time—space link represents participation
of an activity or a dynamic path choice between an OD pair for a travel mode during a certain time interval, which
involves a possible interaction with joint activity—travel choices. We extend the joint activity—time—space (JATS) su-
pernetwork platform, proposed by Vo et al. (2020a) for road users, to represent a unified JATP choice with multimodal
travel options as a path in the supernetwork. Crucially, this extended supernetwork explicitly accounts for multiple
transit path choices for each OD pair, rather than a single demand-excess transit link with constant cost, as used by
Vo et al. (2020a). The details of the supernetwork platform are as follows.

Let G"(N", L") be the JATS supernetwork of household type 4, where N and L are the sets of JATS nodes and
links, respectively. The sets of JATS nodes and links can be decomposed with respect to their time intervals as

K+1 K
N — U Nh(k) and L' = U Lh(k) Vh, (60)
k=1 k=1
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where N" (k) is the set of JATS nodes at interval k, and L (k) = N”(k) x N"(k + 1) is the set of JATS links during
interval k. We can express the sets of JATS nodes and links with respect to the sets of ATS nodes and links as

Mh Mh
N'(k) = {mne X N™(k) and L"(k) = {1e X L£"(k),1is feasible Vh, k, (61)
m=1 m=1

where “x” is the Cartesian product, N™ (k) is the set of activity—time-space (ATS) nodes at interval k, and L™ (k) =
N™(k) x N™(k + 1) is the set of ATS links during interval k. The sets of ATS nodes and links for member m during
interval k are given by

2
N (k) = | N7 k), Vm, (62)
j=1
6
Lm(k) = J LK), ¥m, (63)
j=1

where N"(k) and N} (k) are the sets of ATS nodes for member m at interval k who takes the driver (SD or RD) and
passenger (RP or TP) roles, respectively; L7'(k) and L} (k) are the sets of activity links for member m participating
in activities during interval k who takes the SD or RD and RP or TP roles, respectively; £ (k), Ly (k), and L7 (k) are
the sets of travel links for member m using private car paths during interval £ who takes the SD, RD, and RP roles,
respectively; and L' (k) is the set of travel links for member m using transit paths during interval k£ who takes the PT
role. Note that a household member can switch between taking the SD and RD roles (if he/she takes the driver role),
or between the RP and TP roles (if he/she takes the passenger role) at activity locations (according to A8). Thus, one
set of activity links is used by the SD and RD roles, and another set is used by the RP and TP roles. Additional details
on supernetwork construction are given in Vo et al. (2020a).

In the above-defined JATS supernetwork, a JATS link in L"(k) represents the activity and travel choices of all
members of household type & and their interactions during interval k, and a sequence of JATS links in JATS super-
network G for household type & represents a JATP choice that satisfies the feasibility constraints shown in Appendix
A. Thus, we can use this novel supernetwork and conventional path-finding algorithms (e.g., Dijkstra’s algorithm) to
generate the JATP choice set.

Husband
m An individual conducts his/her trip between each OD pair
° by taking one of the following four roles: solo driver (SD),
x| x5 ridesharing driver (RD), ridesharing passenger (RP) (when
c O c O X X N B 5 .
=79 | = g’ £ E £ using a private car), or transit passenger (TP) (when using
%‘ 5 %‘ Slw e 3O public transit).
S£|88|88 5o
Activity link Conditional on time—
C_t ty F F E E c onditional on time-space
(driver role) constraints of ridesharing
Activity link
ctivity F F F F F Feasible
(passenger role)
Travel link
ave F F F Infeasible
(SD role)

Wife

Travel link
(RD role)
Travel link
(RP role)
Travel link
(TP role)

Time—space constraints of ridesharing when the husband
takes the RP role and the wife takes the RD role.

Time—space constraints of ridesharing when the husband
F takes the RD role and the wife takes the RP role.

Figure 5: Feasibility rules for combining two activity—time—space (ATS) links of a working couple (modified from Vo et al. (2020a)).

As defined by (61), a JATS link during an interval comprises a vector (or combination) of ATS links during that
interval, and not all combinations are feasible. The feasibility of a combination of ATS links can be determined using
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predefined rules relating to the household context, such as the number of cars owned and/or car licenses possessed by
the household. Fig. 5 shows the feasibility rules for combining two ATS links of a working couple who each has a car
license and owns a car. In this figure, a dark gray cell indicates a infeasible combination (I), a light gray cell indicates
a feasible combination (F), and a white cell indicates a conditional feasible combination (C), whose feasibility is
conditional on the time—space constraints for ridesharing when the couple travel by private car. For example, if the
ATS link of the husband is an activity link (for a RD or RP role) or a travel link (for a TP role), we can combine this
link with any ATS link of the wife, except with travel links for the RD and RP roles. This is because travel links for
the RD and RP roles are governed by the time—space constraints for ridesharing, in which a shared ride by private car
can only occur if there is one RD and one RP. On the other hand, if the ATS link of the husband is a travel link for the
RD role, we can only combine this link with a travel link for the RP role of the wife, provided that the two ATS links
use the same path and have the same departure time.

Due to the complexity of the JATS supernetwork of the household, we illustrate only the ATS supernetwork
associated with one household member. Thus, Fig. 6 illustrates the ATS supernetwork related to the wife’s daily
activity—travel schedule, and her interactions in the RP and TP roles in the JATP shown in Fig. 2. For ease of
illustration, the time intervals in the supernetwork are not evenly discretized, and each OD pair is connected by
only one simplified travel link. In fact, a travel link in this example supernetwork comprises multiple travel links each
of which represents a path choice by model between two activity locations for a travel role. For example, the travel
link connecting the home location and the restaurant includes one path 1 — 2 for the RP role, and two transit paths
1—->1—-2 —2and1 — 1" — 2" — 2 for the TP role. Similarly, the travel link connecting the restaurant and the
workplace 2 consists of one car path 2 — 4 for the RP role and one transit path 2 — 2" — 4’ — 4 for the TP role.

Next, we follow Vo et al. (2020a) by analyzing the size of the JATS supernetwork for each household type with
respect to the household size (i.e., the number of household members), the network size (i.e., the numbers of activity
locations and of paths between OD pairs), and the number of time intervals. Let S < S be the set of activity and
drop-off/pick-up locations, and W < W be the set of OD pairs related to member m. For each interval &, there are
|S™| activity links for member m for the SD and RD roles, |S™| activity links for member m for the RP and TP roles.
In addition, for each combination of interval k and OD pair w, there are |P"| feasible trips for member m for the SD
role, |P"| feasible trips for member m for the RD role, |P"| feasible trips for member m for the RP role, and |P"|
feasible trips for member m for the TP role. Moreover, each car trip using path p € P" during interval k is discretized
into [#, (k)] travel links, and each transit trip using path p € P" also consists of [7, (k)] travel links. Recall that #, (k)
and t”pv (k) are the travel times for the private car and the transit path p, respectively, between OD pair w with departure
interval k, and [ .| is a function used to convert path travel time to integer time intervals. The number of links in the
ATS supernetwork G™ for member m during interval k is then calculated as

6
LK) = Y 1 Lr®l = (28" + > |3 D k1 + D) (i) vm. (64)
j=1

weWwmn pEPW pe ﬁ,w

Based on (61), the number of links in JATS supernetwork G” for household type % is given by

K M K M
= X TTiemwi= 2 TT 27+ 3 (3 S mwi+ Simwn)|| v (65
k=1m=1 k=1m=1 wewmn pEPY pepPv

where A > 1 in practice because JATS links only represent feasible combinations of ATS links rather than all possible
combinations.

Remark 6. In (65), the size of the JATS supernetwork for each household type depends on the household size, the
number of daily activities, and the path choices. In practice, the daily activity—travel program of a household consists
of a limited number of daily JATP choices (Vo et al. (2020a)). This is partly due to real-life spatiotemporal activity—
travel constraints; specifically, each person can only be involved in a relatively small number of daily activities with
different durations at various locations, within a small part of a real transportation network (so-called personalized
network by Arentze and Timmermans (2004b); Liao et al. (2011, 2013a)). In addition, empirical studies have shown
that the daily activity—travel program of a household can be simplified to a few representative activities per typical day
(as noted in Remark 3). Thus, for strategic planning purposes, the JATS supernetwork can be confined to a very small
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Figure 6: Activity—time—space (ATS) supernetwork of the wife, who may switch between the ridesharing passenger (RP) and transit passenger
(TP) roles.

number of typical daily activities (e.g., an average of three or four daily activities) and path choices (fewer than 10)
for each household type, rather than the large numbers of OD pairs and path choices for aggregated travel behaviors
considered in conventional trip-based models. Moreover, most households comprise fewer than four persons (e.g., in
2017, approximately 69.8% of households in Hong Kong (Hong Kong Census and Statistics Department (2017)) and
77.4% of households in the US (US National Household Travel Survey (2017)) comprised fewer than four members).
Recently, Vo et al. (2020b) used Wi-Fi tracking data to investigate the activity—travel patterns of pedestrians on the
Hong Kong Polytechnic University campus, which has a reliable on-campus wireless network and a student population
that extensively uses Wi-Fi-enabled devices. As we enter the 5G era, multiple types of sensors and fully connected
infrastructure will become available. Our novel mixed-equilibrium model will thus benefit from the use of multiple
sources of urban big data for constructing JATS supernetworks (see Siripirote et al. (2015)).

4.2. Diagonalization method

In this section, we develop a diagonalization method to solve the VI problem (36). This method was first proposed
by Dafermos (1982) to solve static traffic assignment with asymmetric travel disutilities, and later adapted to manage
the interactions of temporal link flows in dynamic traffic assignment (Chen and Hsueh (1998)), in dynamic activity-
based traffic assignment (Lam and Yin (2001)), and in a household activity-based network equilibrium (Vo et al.
(2020a)). The core strategy of our novel diagonalization method is to relax the interaction of link flows in flow
propagation (40)—(42) and the interaction between car users and transit passengers sharing the same road links in the
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VI problem (36) in order to yield subproblems that can be solved more effectively. The method involves the following
steps:

Step 0: Initialization. Let n = 0.

Step 0.1: Initialize the estimated road link travel times 0 = (..., t_((lo)

link travel times t(%).
Step 0.2: Use the estimated road link travel times t?) to estimate the path travel times of car users and
transit passengers using (1) and (5).

(k),...) with the free-flow road

Step 1: Fix the flow propagation (40)—(42) with the estimated road link travel times t) and with the estimated
path travel times of car users and transit passengers. Then, solve the VI problem (36) to determine the JATP
flow pattern f*) and reproduce the actual road link travel times ().

Step 2: Stabilize the estimated road link travel times. Letn = n + 1.

Step 2.1: Update the estimated road link travel times using the method of successive averages:

i _ g L (t<n> _ f(wl)) , 66)
n

Step 2.2: Use the estimated road link travel times £ to update the estimated path travel times of car users

and transit passengers using (1) and (5).

Step 3: Convergence check. If {) ~ t"~1) stop and consider (") as the solution. Otherwise, go to Step 1.

Dafermos (1982) showed that sufficient conditions for the convergence of the diagonalization algorithm require the
continuity of link costs in the presence of weak effects of the off-diagonal components on link costs. Such conditions
are stringent and unnecessary for many practical applications, and do not hold in our mixed-equilibrium problem. The
empirical results show that the diagonalization algorithm converges despite these conditions being violated (Friesz
et al. (1984); Mahmassani and Mouskos (1988)). Hence, the developed method is expected to converge to a good-
quality solution and thereby achieve network equilibrium.

The VI problem (36) in Step 1 of the diagonalization method is solved with a predetermined set of JATP choices.
However, a different JATP choice set (satisfying the flow propagation (40)—(42)) should be generated for each JATP
flow pattern because road link travel times vary according to the level of network congestion (Vo et al. (2020a)).
Thus, it may be difficult to enumerate in advance the JATP choice sets for all feasible JATP flow patterns. To solve
this problem, we couple the solution algorithm for the VI subproblem with a column generation strategy based on
the shortest-path problem, which enables the JATP choice set to be generated when required (see also Ramadurai
and Ukkusuri (2010); Ouyang et al. (2011); Fu and Lam (2014, 2018); Vo et al. (2020a)). Unlike the previous works
where utility and disutility components are deterministic during column generation, in this paper utility and disutility
components are stochastic due to households’ errors of perception. Thus, during the column generation, we multiply
the utility and disutility components of JATP utility uZ in (10) by a random factor rand = (1 + unif(0,0.1)/6"),
denoted by rand o uZ, where unif(0,0.1) is the uniform-distributed random value between 0 and 0.1. Then, the range
of random factor rand is proportional to the household’s errors of perception (i.e., 1/ oM.

Given that road link travel times are fixed by the diagonalization method to relax the interaction of link flows
in flow propagation (40)—(42) and the interaction between car users and transit passengers sharing same road links,
the VI subproblem (36) can be solved by a path-swapping algorithm (Vo et al. (2020a)). Under the assumption that
the path cost function (which in this paper is equivalent to mapping ﬁZ given by (37)) is strictly monotonic, Huang
and Lam (2002) proved that the path-swapping algorithm produces a converge solution. The mapping EtZ is strictly
increasing in the VI subproblem due to the condition given by Proposition 3. Our developed path-swapping algorithm
for the VI subproblem (36) is presented as below.

Step 0: Initialization. Let n = 0.

Step 0.1: Construct a JATS supernetwork for each household type .

Step 0.2: Find JATP g with a highest rand o uZ using the JATS supernetwork for each household type A
under free-flow conditions.

Step 0.3: Let Q" = {g} and assign the flow f;’ ©) _ Fh to obtain JATP flow pattern £(0).
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Step 1: Column generation.

Step 1.1: Find JATP g with a highest rand o uZ using the JATS supernetwork for each household type &

under JATP flow pattern (V).
Step 1.2: Update Q" = Q" U {q}.

Step 2: Convergence test. Stop if the relative gap (RGAP) satisfies

35 ) (00— )

h=1 qGQh

RGAP — <s, 67)
2 Z fh(n) h(n)
h= lquh

J) — max{ RO Qh} . 68)

Step 3: JATP flow swapping.

pgny) | max {o, £10) _ gl gD (an) _ ﬁz(ro)} Vg ¢ O

f = h(n foh(n) 9 69)
q q()+‘gh7)| Vg e QM
Z < h(n) n+l)> ’ (70)

q¢ Q"

0" = {qe @ g = u (1)
0.0001

() — 72
© 1+n/10° 72)

Letn =n+ 1. Go to Step 1.

5. Numerical examples

In relation to the contributions of this paper presented in Section 1.3, a small network is used below to illustrate
(1) the effect of individual and household mixed equilibrium on the system’s expected total utility and time allocation,
(2) the effect of mixed-mode interactions on the modal split, and (3) the effect of household members’ heterogeneous
errors of perception on the time-dependent utility of different activity types. Then, the Sioux Falls network is used to
illustrate (4) the monotonicity condition for the uniqueness of the solution to the VI problem, and (5) the convergence
result of our solution method, and the practical computational feasibility of this method.

5.1. Example 1: small network

5.1.1. Settings

Fig. 7 shows a small multimodal network that comprises four nodes, 10 road links, two bus lines, one metro line,
and four activity locations. We assume that the household comprises two full-time working members, who start and
end their daily activity—travel schedules at home. There are four activities: work at workplaces 1 and 2, at home, and
shopping. We set the duration of each time interval as t, = 30 min, which is sufficient for long-term transportation-
planning purposes. For example, the adopted time resolution can be up to one hour (see e.g., Bradley and Vovsha
(2005); Roorda et al. (2008); Lam and Yin (2001); Gupta and Vovsha (2013)), or four to five broad departure-time
periods throughout a day (e.g., Arentze and Timmermans (2004a)).

Table 3 shows the input parameters for the marginal utility functions of different activities by time of day. The
curves of the marginal utility functions of activities are illustrated in Fig. 8. We assume that the household members
incur no activity congestion utility or disutility at home. The parameters for the activity congestion disutilities at the
shopping mall and workplaces are set as wsnop) = 30 HKS/h, wiwor) = 6 HKS/h, n(ghop) = 4, and npyorn) = 2.
The capacities for the shopping mall the workplaces are set as Cspop) = 20,000 persons, and Cyox) = 20,000

persons. The household preference parameters for joint activities and travel are set as a/(zh N = (0.5A, afl(zgh o) = = (0.6A,
29



800

Workplace 2
(wife)

Arterial road
—_—

Highway (tolled)
—
Bus line 1

N
N
.
N
N

""\’Norkplace 1
(husband)

Metro line
- =

Home

Figure 7: A small multimodal network.

Table 3: Input parameters for the marginal utility functions of different activities by time of day.

Activity U (HK$/min) U™ (HK$) ~ &™ o™ 77 (min)
At home 1.5 1000 —0.006 1 750
Work (husband) 0.0 2100 0.008 1 750
Work (wife) 0.0 1900 0.008 1 780
Shopping (husband) 0.0 900 0.015 1 1100
Shopping (wife) 0.0 1050 0.015 1 1130
T T
—s— Home
41 —+— Work (husband)
—a— Work (wife)
—— Shopping (husband)
3 Shopping (wife)

HK$/min
[\S]
I

| | | | |
0:00 3:20 6:40 10:00 13:20 16:40 20:00 23:20

Time of day

Figure 8: Marginal utility function curves of different activities by time of day.

Zg = 1.8A, and ﬁzg = 1.8A, where A is the normalized household preference parameter for joint activities and travel
(i.e., 0 < A < 1), and is used for the illustrative purposes. Unless otherwise stated, A = 1.
Table 4 shows the input parameters for the link travel times of private cars. The congestion parameters of private
cars are set as w = 1.5, and /i = 4. The value of the travel time of car users is y = 60 HK$/h. The operating cost
Zg (k) includes the fuel cost, which is set as 1.4 HK$/km, and a toll. A time-varying toll scheme is imposed on the
highway, which has a HK$40 toll in the morning peak period [7:00, 9:00] and evening peak period [17:00, 19:00]
and a HK$20 toll in other periods. All paths used by car users connecting activity and drop-off/pick-up locations are
enumerated. Table 5 shows the input parameters for the transit travel disutilities. The congestion parameters of transit
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sos HK$/h. The access/egress times to/from transit stops are set as 3 min. In addition, all paths used by transit passengers
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are enumerated.

Table 4: Input parameters for road link travel times.

Link Free-flow Free-flow Length  Capacity  Fixed pre-loaded transit
travel time (h)  speed (km/h) (km) (veh/h) vehicle flow (veh/h)

1-2 0.3 50 15 1800 10

1-3 0.5 70 30 3600 0

2-3 0.3 50 15 1800 10

1-4 0.3 50 15 1800 10

34 0.3 50 15 1800 10

Note: Only one direction of the link is shown.

Table 5: Input parameters for transit disutilities.

Line* Links Link free-flow Link fares  Frequency  Capacity
travel times (h) (HK$) (veh/h) (pax/veh)

Bus line 1 1-2,2-3 0.3,0.3 55 10 120

Bus line 2 1-4,4-3 0.3,0.3 55 10 120

Metro line** 1-3 0.5 10 10 1500

*: only one direction of the transit line is shown.
**: the metro travel time is not affected by road congestion.

Unless otherwise stated, the husband’s and wife’s individual scale parameters associated with home, work, and

: H _ H _ H _ w _ \ _ W _ :
shopping are Mhome) = O'S’U(work) = 0.9, T (shop) — 0.7, M lhome) = O.9,n(work) = 1.0, and M ishop) — 0.8, respectively.
The household scale parameter is set as § = 1.0. The population is 20,000 households (or 40,000 persons) and all

household members follow the SHO principle. The commonality factors are vo = v; = 0.

5.1.2. Effect of individual and household mixed equilibrium

We first investigate the effect of the mixed equilibrium of individual and household activity—travel choices on
daily time allocation. In this scenario, household members are classified into two groups with different activity—
travel behaviors. The first group follows the SHO principle, which maximizes the perceived household utility for
each household, whereas the other follows the SUE principle, which maximizes the perceived individual utility for
each household member. Table 6 compares the average daily time allocation for various activities per person for
three proportions I" of household members following the SHO principle: I' = 0 (100% following the SUE principle),
I' =0.6,and I" = 1.0 (100% following the SHO principle). As observed, a higher I" leads to a longer time spent on
joint activities and travel. This is because the SHO principle, unlike the SUE principle, accounts for the extra benefits
of joint activities and travel, which encourage more household members to conduct activities and travel together.
A similar result was found by Vo et al. (2020a) for deterministic cases when households’ errors of perception are
ignored.

We further investigate the effect of the mixed equilibrium on the system’s expected total utility versus the house-
hold preference A for joint activities and travel. In this experiment, A is varied between 0 and 1, where A is propor-
tional to the extra benefits of joint activities and travel, and thus A = 0O indicates no extra benefit. Fig. 9 shows a
plot of the expected total household utility versus I and A. If A is low (i.e., A = 0), as I increases to a certain limit
(i.e., ' = 0.4), the expected total household utility initially increases, and then decreases. This result indicates that
if the extra benefits of joint activities and travel are relatively small and more household members follow the SHO
principle, the expected total household utility may be worse off. This is because the extra benefits of joint activities
and travel cannot compensate for the disutilities of additional pick-up and drop-off trips. In contrast, if A is high (i.e.,
A = 1.0), as I increases, the expected total household utility increases because households benefit more from joint
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Table 6: Average daily time allocation per person versus the proportion I of household members following the SHO principle.

Duration (h/person) r=00 r=06 I'=1.0

Solo travel by car 1.5 1.4 1.3
Joint travel by car 0.0 0.3 0.5
Solo travel by transit 1.7 1.4 1.3
Joint travel by transit 0.0 0.1 0.2
Solo at-home 1.5 1.2 0.9
Joint at-home 9.7 9.9 10.0
Work 9.0 8.8 8.7
Solo shopping 0.6 0.3 0.2
Joint shopping 0.1 0.6 0.8
Total 24.0 24.0 24.0

P 7.6
»
v
an
\9/ (1): Utility loss by joint activities and travel
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Figure 9: Expected total household utility versus the proportion I' of household members following the SHO principle and the household
preference A for joint activities and travel.

activity—travel choices. Clearly, the system benefits from certain values of I and A. This suggests that policies can
be imposed to ensure that a mixed equilibrium contains appropriate proportions of household members who optimize
their household and individual utilities, such that the benefits to the system can be maximized. Additional studies are
needed to investigate the complex interactions between individual and household activity—travel choices in a mixed
equilibrium.

5.1.3. Effect of mixed-mode interactions

In this section, we discuss the effect of mixed-mode interactions between private cars and public transit modes on
the modal split. Our novel model fully considers the congestion effect of multiple modes, where the travel times of
road-based transit modes (e.g., bus) are affected by road congestion. In contrast, previous household-oriented activity-
based network equilibrium models (Vo et al. (2020a); Fu and Lam (2018)) have only considered the congestion effects
of either private car or public transit modes, and have assumed that transit travel times are fixed and predetermined.
However, ignoring mixed-mode interactions can lead to biased estimates of travel demand and transit use, as these
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depend on how the travel times of road-based transit modes are predetermined.

Table 7: Modal split in the presence and absence of mixed-mode interactions.

With mixed- Without mixed-
mode interactions mode interactions
BTT = 1xFIT BTT =5%xFTIT
Number of person trips by private car 52227 (46%) 52632 (41%) 62518 (61%)
Number of person trips by metro 30848 (27%) 24757 (19%) 28840 (28%)
Number of person trips by bus 30523 (27%) 51378 (40%) 11470 (11%)
Total travel demand 113598 (100%) 128767 (100%) 102828 (100%)

Note: “BTT” denotes the bus travel time, and “FTT” denotes the free-flow travel time on a road link.

Table 8: Average daily time allocation per person in the presence and absence of mixed-mode interactions.

Duration With mixed- Without mixed-
(h/person) mode interactions mode interactions
BTT = 1 xFIT BTT = 5xFTT

Travel 3.4 2.8 3.5
Home 11.1 10.8 11.2
Work 8.7 8.8 8.7
Shopping 0.8 1.6 0.6

Total 24.0 24.0 24.0

Note: “BTT” denotes the bus travel time, and “FTT” denotes the free-flow travel time on a road link.

Table 7 compares the modal split in the presence and absence of mixed-mode interactions. If the predetermined
bus travel time (BTT) is small (i.e., equal to the road free-flow travel time (FTT)), ignoring the mixed-mode inter-
actions results in an overestimation of the use of the bus mode and thus an overestimation of the travel demand. In
contrast, as BTT increases (i.e., to SxFTT), ignoring the mixed-mode interactions results in an underestimation of
the use of the bus mode and an underestimation of the travel demand. Note that the total travel demand is elastic in
response to changes in BTT. We further investigate the effect of mixed-mode interactions on daily time allocation,
as shown in Table 8. In particular, a shorter BTT leads to a longer time spent doing out-of-home activities (e.g.,
shopping), as more household members are encouraged to choose the bus mode for traveling.

The results in this section indicate that if the predetermined travel times of road-based transit modes are low
(high), ignoring the mixed-mode interactions between private car and transit modes will lead to an overestimation
(underestimation) of the transit use, travel demand, and out-of-home activity duration.

5.1.4. Effect of household members’ heterogeneous perception errors

This section shows the effect of household members’ heterogeneous errors of perception on the utility of different
activity types. As household members’ errors of perception are parameterized by household and individual scale
parameters, we investigate the effect of these parameters on household and individual utilities.

Fig. 10 shows a plot of the expected total household utility versus the household scale parameter 6. As 6 increases
with a decrease in the household’s error of perception, the expected total household utility increases, and then reaches
a stable limit. After that, at a large value of 6, the stochastic effect of households’ errors of perception decreases, at
which point the SHO principle approaches the deterministic HO principle (Property 2). In this situation, household
members have perfect information about the network conditions, and can therefore choose the most efficient JATPs
with a highest expected utility, which increases the expected total household utility. In contrast, a smaller 6 causes
more households to choose JATPs with a smaller expected utility, and the JATP flows tend to be even (Property 3).

To investigate the effect of individual scale parameters on the individual utilities of different activity types, we

vary the husband’s and wife’s individual scale parameters of shopping, which are nl({shop) and nghop), respectively,
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Figure 10: Expected total household utility versus the household scale parameter 6.

Table 9: Relationship between the expected total utility associated with different activity types and the individual scale parameters 77? and
shop)

nxhw)'

oy . . H W
Utility Individual scale parameters (1 (shop)” 1 (shop))

7 W o H
(10" HKS) Decrease in 7 (shop) Decrease in 7 (shop)

(0.8,0.2) (0.8,04) (0.8,0.6) (0.8,0.8) (0.6,0.8) (0.4,0.8) (0.2,0.8)

Work (H) 2.44 2.54 2.50 2.50 2.51 2.52 2.53
Work (W) 2.74 2.74 2.73 2.71 2.70 2.71 2.71
At-home (H) 0.97 0.87 0.83 0.74 0.82 0.83 0.84
At-home (W) 1.10 1.00 0.96 0.89 0.90 0.93 0.91
Shopping (H) 0.17 0.21 0.23 0.26 0.22 0.14 0.11
Shopping (W) 0.26 0.40 0.45 0.51 0.48 0.46 0.43

Note: “H” stands for “husband”, and “W”’ stands for “wife”.

Table 10: Relationship between the average time allocation of activities per person and the individual scale parameters 771({S hop) and r]mnp).

. . . H W
Duration Individual scale parameters (1 (shop)* ! (shop))
W - H
(h/person) Decrease in 7 (shop) Decrease in 7 (shop)
(0.8,0.2) (0.8,0.4) (0.8,0.6) (0.8,0.8) (0.6,0.8) (0.4,0.8) (0.2,0.8)

Work (H) 8.7 8.6 8.7 8.6 8.6 8.7 8.7
Work (W) 9.0 9.1 9.0 8.8 8.9 8.9 8.9
At-home (H) 11.3 11.1 10.8 10.6 10.8 11.2 11.0
At-home (W) 12.0 11.6 114 11.3 11.3 11.3 11.2
Shopping (H) 0.4 0.6 0.7 0.8 0.7 0.4 0.3
Shopping (W) 0.4 0.7 0.8 1.0 0.9 0.9 0.8

Note: “H” stands for “husband”, and “W”’ stands for “wife”.

while fixing the household and individual scale parameters of other activities. Table 9 shows the relationship between
the expected total individual utility of different activities and nl({shop) and nghop)' If n‘éhop) or nghop) decreases in value
(i.e., the husband’s or wife’s individual errors of perception on shopping increase), the expected individual utility

of shopping (for both the husband and wife) decreases. This leads to increases in the expected individual utilities

34



875

880

885

890

895

W

(shop)
indicate that more households choose JATPs with smaller expected individual utilities of shopping. This implies that

smaller values of nléhop) or nz’;’hop) result in a smaller effect of shopping on JATP choices (Property 4). Table 10 shows

associated with other activities (i.e., at-home and work activities). Note that smaller values of nﬁhop) orn also

that a smaller expected shopping utility leads to shorter joint and solo shopping durations, which result in longer
at-home and work durations.

These results suggest that the expected total utility in the system is overestimated if we assume that household
members have erfect information about network conditions, especially if their heterogeneous perceptions of the utility
associated with different activity types are highly inaccurate.

5.2. Example 2: Sioux Falls network

5.2.1. Settings

A second example is presented to illustrate the monotonicity condition for the uniqueness of a solution to the VI
problem, the convergence of the developed diagonalization method, and the computational feasibility of this method
in practice. The example network is a medium-sized Sioux Falls network (Leblanc (1973)), as shown in Fig. 11. The
path set for private cars between OD pairs used in this example is taken from Bekhor et al. (2008), which was also
used by Vo et al. (2020a). This path set is behaviorally generated using a combination of the link elimination method
and a penalty method. In this example, the average number of private car paths for each OD pair is 7.2, and the
maximum number of private car paths generated for any OD pair is 12. The road link capacity for each link is 1,800
veh/h. The fixed metro travel time is set as the road free-flow travel time. All transit paths connecting each OD pair
are enumerated.

Home 1 Home 2
=._ 2

Shopping

O Activity location

O Node

— Road link

............. Bus line 1

..... Bus line 2

« Busline 3

= = Metroline

Workplace 1 Workplace 2 Workplace 3

Figure 11: Sioux Falls network.

We assume that there are 10,000 households comprising two full-time workers, who start and end their daily
activity—travel schedules at homes 1, 2, or 3. The parameters for the marginal utility functions of different activities
by time of day for each couple are described in Table 3. The husband at home 1 works at workplace 1 and his
wife works at workplace 2, the husband at home 2 works at workplace 1 and his wife works at workplace 3, and
the husband at home 3 works at workplace 2 and his wife works at workplace 3. The household members can shop
at either shopping mall 1 or 2. We also assume that each household owns two cars, and set w(gpop) = 45 HK$/h,
W(work) = 15 HK$/h, C(ghopy = 10,000 persons, and C(yok) = 10,000 persons. The congestion parameters of private
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cars and transit passengers are set as w = 0.3, w = 0.15, and i = 7 = 4. The household preference parameter for
joint activities and travel is A = 1. Other parameters, if not mentioned, are the same as those in Example 1. The
computer program is coded in Java SE 8 on Windows 10, on a machine with a 3.50 GHz Intel Core i5 and 8 GB of
RAM. The threshold for the gap in the VI subproblem is 0.001.

5.2.2. Results

As discussed, it is not feasible to enumerate in advance the JATP choice set as road link travel times vary according
to the level of network congestion. Thus, it is also difficult to verify the monotonicity condition (50) for the set of
feasible JATP flow patterns €, which may not be available. According to Remark 5, the monotonicity condition (50)
holds when the expected total activity congestion and entropy disutility (related to Z; + Zs) dominate the expected
total travel congestion disutility (related to Z3 + Z4). Table 11 shows that the expected total activity congestion and
entropy disutility, in practice, may be much higher than the expected total travel congestion disutility. In addition, a
smaller 6 leads to a greater dominance of the expected total activity congestion and entropy disutility. This occurs
because a smaller 6 results in more households choosing JATPs with a smaller utility, which is attributable to the larger
expected activity congestion disutility, and also results in a larger entropy disutility.

Table 11: Relationship between expected total congestion disutility components and the household scale parameter 6.

Disutility component (10° HK$) HO SHO
f—+0 6=10 6=0.1
Activity congestion disutility (1) 35.46 36.20 35.88
Entropy disutility (2) 0.00 0.18 1.63
Travel congestion disutility (3) 6.68 6.47 6.04

Percentage difference {35~ x 100 430.71  462.32  521.42

Fig. 12 shows the convergence of the developed diagonalization method for the Sioux Falls network versus the
household scale parameter 6. The method requires an average computational time of 7 min per iteration. The con-
vergence index indicates the difference (in min) between the estimated travel times of road links for constructing
the supernetwork platform of two consecutive iterations. It appears that a smaller 8 leads to a faster convergence.
This may be because of a more evenly distributed JATP flow pattern when 6 decreases (see Property 3). As a result,
traffic flows (and also congestion effects) tend to be distributed more evenly on various road links of the transporta-
tion network. This leads to a smaller difference between the travel times of road links, and thus a smaller difference
between the estimated travel times of road links between two consecutive iterations of the diagonalization method.
Additional studies should be performed to develop a better understanding of the convergence characteristics of the
diagonalization method in solving the concerned mixed-equilibrium problem in this paper.

Remark 7. Based on Remark 6, for strategic planning purposes the constructed JATS supernetwork may be confined
to a very small number of daily activities (e.g., an average of three or four daily activities) and path choices (fewer
than 10) for each household type, rather than the large numbers of OD pairs and path choices for aggregated travel
behaviors considered in the conventional trip-based models. Thus, the settings in the Sioux Falls network example
(i.e., 24 nodes, 76 links, three activity types, eight activity locations, 30 OD pairs, an average of 7.2 private car paths
per OD pair, and three household types) may be sufficient for demonstrating the computational feasibility of our model
for strategic planning purposes, for at least three household types (see also Vo et al. (2020a)). However, because a
JATS supernetwork is constructed for each household type, the computational time of our model increases linearly
with the number of household types. This means that the computational time required for solving a problem related
to realistic networks with numerous household types could become impracticably long. Nevertheless, the linearity of
this increase means that the computational time may be acceptable for long-term planning purposes.
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Figure 12: Plot of the convergence gap of the developed diagonalization method versus the household scale parameter 6.

6. Applicability of the novel model for assessing the effect of the COVID-19 pandemic

6.1. Extension of model formulation for modeling the specific effect of the COVID-19 pandemic

In addition to its main purpose of assessing the effects of alternative transport policies on long-term strategic plan-
ning in normal scenarios (Vo et al. (2020a)), the novel model can also capture the effect of the COVID-19 pandemic.
We extend the model formulation as follows:

o risks of infection at out-of-home activity locations and in transit vehicles are incorporated into utility and disu-
tility component functions to capture household members’ preferences for teleworking and/or concerns about
being infected while using public transport and participating in out-of-home activities;

e new types of at-home activities (e.g., working at home), which are not subject to infection risks, can be flexibly
incorporated by redefining the supernetwork; and

o differential increases in household members’ errors of perception in uncertain nonrecurrent scenarios can be
specifically modeled by the heterogeneity in their errors of perception.

We adopt the following assumptions:

B1 As the novel model is mainly used for strategic planning, we assume that household members have perfect in-
formation about the SARS-CoV-2 infection ratio (i.e., expected number of confirmed cases of infection divided
by the total population in the design year), which is one of the most important indicators of the effect of the
COVID-19 pandemic (SCDHE’s Key Indicators (2021); Worldometer’s Coronavirus Update (2020)). Then, the
effect of the COVID-19 pandemic on households’ daily activity—travel choices, can be calibrated in terms of
utility and disutility, and assumed to be a function of the infection ratio (Barbieri et al. (2021)).

B2 As taxi trips or carpooling are not considered, the risk of infection presents only at out-of-home activity loca-
tions and in transit vehicles. Moreover, the risk disutility is separable and increasing with the number of persons
presented and the duration of time spent at an activity location or in a transit vehicle.

B3 Household members perceive that there is a higher infection risk when conducting joint out-of-home activities
and joint travel, as they may have a greater fear that they or their close family will become infected.

Based on B1, we define the activity—travel net utility of household type & choosing JATP ¢ when the infection
ratio is R as the trade-off between the activity—travel utility and the disutility of risks:

ﬁZ(R) = MZ —pZ(R), (73)
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where uZ is the activity—travel net utility obtained by household type / choosing JATP ¢ under normal (non-pandemic)
conditions, and pZ (R) is the disutility of risks which is an increasing function with respect to the infection ratio R.
When R = 0, the disutility of the risk is eliminated with pZ(O) = 0, and the JATP utility function (73) is reduced to
that for the normal case with IZZ(O) = uZ.

According to B2, there is a risk of infection only at out-of-home activity locations and in public transit vehicles.
Thus, the disutility of risks perceived by household type 4 choosing JATP g when the infection ratio is R is formulated

as

M" Gh K
eI H PRI CEDNSNDY Z Oy (R (K | (74)
m=1g=1k=1 \ i€l seS WEW pepw bEB4 k' =

where phmg (k,R) and p Ahmg (k, R) are, respectively, the disutilities of risk perceived by member m in group g of house-
hold type & for part1c1pating in activity i at location s and for traveling on vehicle link b during interval k£ under
infection ratio R.

As the disutility of risk at an activity location is separable and increasing with the number of persons at that
location and the activity duration (due to B2), the disutility of risk perceived by member m of household type & for
participating in activity i at location s during interval k when the infection ratio is R can be expressed as

vis(K)\
Cis ’

pIH 0 R) = (R 75)

where 08 (R) is the risk perception of member m in group g of household type / for out-of-home activity participation
when the infection ratio is R, v;;(k) is number of persons participating in activity i at location s during interval k, C;s
is the activity capacity, #, is the duration of each interval, and N is a calibrated parameter. Similarly, the disutility of
risk perceived by member m of household type & for traveling on vehicle link b during interval k when the infection
ratio is R is defined as

Ahm Ahmg ‘}}b(k) N
g(k R) (R)tb(k) <—(1/to.)ébDb> b € By, (76)

where ¢""%(R) is the risk perception of member m in group g of household type / for transit travel when the infection
ratio is R, Dp(k) is the number of transit passengers on vehicle link b during interval &, Cp is the capacity of each
transit vehicle, Dy, is the transit frequency associated with vehicle link b, 7, (k) is the transit travel time, 1/7, is used
to converted the unit of €, from pax/interval, and N is a calibrated parameter.

The risk-perception parameters o"¢(R) and 6""8(R) must satisfy the following two conditions:

e 0"8(R) and 9" (R) are increasing functions with respect to R, implying that when the infection ratio is higher,
member m in group g of household type / is more risk-averse toward infection at out-of-home activity locations
and in transit vehicles.

e 0"8(0) = 0 and 9""8(0) = 0, implying that the risk of infection disappears at a zero infection ratio.

In addition, we assume that household members incur higher risks of infection when conducting joint activities and
travel, as in such situations they may have a greater fear that they or their close family will be infected (according to
B3). We thus formulate the risk attitudes as

" (R) = exp [ (" + ") R] - 1, (77)
o"8(R) = exp[(0"" +0")R] — 1, (78)
where 0" > 0 and 0" > 0 are the individual risk-perception parameters, and "¢ and "¢ are the household risk-
perception parameters for joint out-of-home activities and travel by public transit, where
=0 ifg>1
o' o (79)
=0 ifg=1,
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>0 ifg>1
o' 8 (80)
=0 ifg=1.

The larger values of ¢"¢ and §"¢ in (79) and (80) indicate that the household member is more concerned about infecting
their family when participating in joint activities and travel by transit modes.

According to B1, household members perceive the risks of infection at out-of-home activity locations and in
transit vehicles based on the information they receive about the SARS-CoV-2 infection ratio during the COVID-19
pandemic. As the future value of the infection ratio is unknown, for long-term-planning purposes, we derive a value
for this ration from the average infection ratio and its probability. For simplicity, we derive a sample of three infection
levels from the provided information, as shown in Table 12, which are classified based on the list (sorted by infection
ratio) reported in Worldometer’s Coronavirus Update (2020). A low infection ratio is associated with countries at the
bottom of the list, such as Hong Kong; a medium ratio is associated with countries in the middle of the list, such
as the UK; and a high ratio is associated with those countries at the top of the list, such as the US. We denote the
provided information I = (P, P», P3) as a vector of probabilities of infection levels, where Py is the prior probability
of infection level ¢.

Table 12: Infection levels derived from the provided information on infection ratios.

Infection level Average ratio (%) Country
Low infection Ry =0.1 Hong Kong
Medium infection R, =4.0 The UK
High infection R; =60 The US
Note: ratio = number of confirmed cases 100.

total population

In practice, household members may perceive a posterior probability of each infection level based on their past
experiences. Let Pr|, represent the conditional probability of the provided information 7, with the infection level
perceived by the household member being ¢. Then, according to Bayes’ theorem, we formulate the following posterior
probability for infection level £ perceived by member m of household type h:

P
I\t
P == Pr. (81)
)
t’gl P"’Pjrlr;f’

Moreover, the following conservation of posterior probabilities holds: Z? 1 PZ’Z’. = L.
Given the posterior probability of a specific infection-level occurrence defined in (81), the resultant random utility
of household type A choosing JATP g based on different possible provided information 7 is a mixture distribution.

From (73) and (74), the mean of the mixture distribution is given by

3 Mh K
Tor == 2 Z 2|2 DBl (kRS () + 3 D) ) Z Bimpi™ (K R)E™S, (K) |. (82)

iel seS WeW pepw beBy k' =

where Ry is the average infection ratio at level ¢, as shown in Table 12.

Remark 8. Given that the household risk-perception parameters given by (79) and (80) are zero, if we substitute
the household JATP utility (73) during the COVID-19 pandemic into the mapping function of the VI problem (36),
condition (50) will also ensure the uniqueness of a solution to the extended VI problem in terms of a JATP flow pattern.
It is also straightforward to derive a stricter uniqueness condition related to the effect of the COVID-19 pandemic.
Note that the individual scale parameters remain reserved for the utility components presented in (82).

6.2. Results

In the case study for investigating the effect of the COVID-19 pandemic, we use the small network in Example 1
with settings given in Section 5.1.1. The household scale parameter is reduced as 6 = 0.5, whereas the individual scale
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parameter is the same as that under the normal condition. Household members are encouraged to work at home during
the pandemic, and their marginal utility functions for working at home by time of day are listed in Table 13. Household
members’ errors of perception on working at home are found to be similar to their errors of perception on at-home
activities; however, household members do not incur congestion effects at home. Three scenarios are assumed, based
on the provided information about infection levels, as shown in Table 14. The individual risk-perception parameters
are set as """ = 18 HK$/h, 9" = 60 HK$/h, and the household risk-perception parameters are set as "¢ = 6 HK$/h,
and 9" = 30 HK$/h. The parameters for the risk disutility functions are N = N = 1 The population is fixed at 20,000
households.

Table 13: Input parameters for the marginal utility functions for working at home during the COVID-19 pandemic by time of day.

Activity UM (HK$/min) U™ (HK$) kM o 77 (min)
Work at home (husband) 0.0 1000 0.01 1 750
Work at home (wife) 0.0 1000 0.01 1 780

Table 14: Scenarios based on different provided information about infection levels during the COVID-19 pandemic.

Provided information  Prior probability ~Conditional probability

Py P, Py P Prp Prp3

Low infection 06 03 0.1 0.5 04 0.1
Medium infection 03 05 02 03 04 0.3
High infection 03 03 04 03 03 04

Table 15: Comparison of the average daily time allocation of different activities per person with the infection level, before and during the
COVID-19 pandemic.

Duration (h/person) Before COVID-19 During COVID-19

Low Medium High
infection infection infection

Solo travel by car 1.3 1.4 0.9 0.8
Joint travel by car 0.5 0.5 0.5 0.2
Solo travel by transit 1.3 1.1 0.7 04
Joint travel by transit 0.3 0.1 0.0 0.0
Solo at-home 0.9 0.9 0.6 0.7
Joint at-home 10.1 10.1 11.5 124
Work (at-workplace) 8.7 7.8 5.7 4.5
work (at-home) 0.0 1.2 3.2 4.4
Solo shopping 0.2 0.2 0.2 0.2
Joint shopping 0.7 0.7 0.6 0.3
Total 24.0 24.0 24.0 24.0

Table 15 compares the average daily time allocation of different activities per person against the infection level.
When the infection ratio is low (i.e., the number of confirmed cases is high), household members tend to spend more
time together at home for teleworking and other at-home activities. In contrast, they spend less time at workplaces and
in transit travel. This result is reasonable because it means that household members avoid the risk of infection in public
areas. Furthermore, more people cancel joint shopping than solo shopping when the infection rate increases. This is
because household members perceive that there is higher infection risk when conducting joint shopping (according
to B3); this will lead to a decrease the congestion level at shopping malls, which will benefit people conducting solo
shopping.
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We further examine the effect of the COVID-19 pandemic at different population levels. Table 16 compares
household members’ activity—travel behaviors during the pandemic in terms of infection and population levels. When
the infection level increases, the numbers of office workers and shop-goers decrease, which leads to reductions in the
travel demands of all modes. There is also a shift from transit modes to private modes due to health concerns. These
results are consistent with empirical findings (Beck and Hensher (2020); Parady et al. (2020); Shamshiripour et al.
(2020); De Vos (2020)). Moreover, the effects of the pandemic are greater when the population increases, as the risk
of infection at public areas is proportional to the population density.

Table 16: Comparison of the effect of COVID-19 pandemic on activity—travel behaviors in terms of infection and population levels.

Percentage (%)

During COVID-19

Population = 10,000

Population = 15,000

Population = 20,000

Low Medium High Low Medium High Low Medium High
infection infection infection infection infection infection infection infection infection
Office workers 89.0 84.1 72.5 88.0 63.9 50.3 68.3 48.0 38.4
Shop goers 97.6 85.3 71.2 95.3 81.6 68.5 86.7 74.2 62.4
Travel demand 95.6 80.2 60.5 75.1 70.3 53.2 76.5 55.8 424
Person trips by private car 97.6 92.7 84.2 97.0 89.5 81.9 96.9 87.1 69.4
Person trips by transit 93.5 66.5 34.6 75.0 53.9 324 60.1 38.7 20.8

Note: 100% refers to the pre-pandemic situation, and the population is in number of households.

The above results show that our model provides better insights into the effect of the COVID-19 pandemic on spe-
cific joint/solo activity—travel behaviors than that has been achieved with conventional trip- or activity-based models.
This is because the latter models have not explicitly modeled at-home activities and the risks of infection in public
areas.

7. Conclusions and further studies

This paper develops a novel household-oriented activity-based mixed-equilibrium model for estimating the indi-
vidual and household activity—travel choices in multimodal transportation networks with interactions between private
car and public transit modes. In this novel model, household members with heterogeneous errors of perception on
utility make daily joint/solo activity—travel choices in a mixed-equilibrium manner, which maximizes either their per-
ceived household utility for each household (under the SHO principle) or their perceived individual utility for each
household member (under the SUE principle). The novel mixed-equilibrium model is formulated as an equivalent VI
problem, and solved using a diagonalization method. The solution method converts the time-dependent household
activity—travel scheduling problem into an equivalent static traffic-assignment problem on JATPs on a supernetwork
platform, and solves the problem within a unified framework.

The conditions for the existence and uniqueness of a solution to the mixed-equilibrium problem in terms of a
JATP flow pattern are established. These conditions indicate the existence and uniqueness of link and path flows
by different transportation modes, household activity—travel scheduling, and time allocation. This activity-based
approach is superior to the trip-based approach, as the latter cannot ensure the uniqueness of link and path flows due to
the asymmetric link cost functions resulting from joint travel and mixed-mode interactions in road-based multimodal
networks. Such a monotonicity condition is also expected to hold in practice, if the congestion effects of activities
with longer duration are greater than those of travel by different modes.

The applications of our novel mixed-equilibrium model are illustrated in numerical examples and lead to the
following new insights and important findings. First, when the extra benefits of joint activities and travel are high,
more household members follow the SHO principle, compared to those following the SUE principle, will improve
the system’s expected total utility. However, under the small extra benefits of joint activities and travel that cannot
compensate the disutilities of additional pickup and drop-off trips, more household members following the SHO
principle may worsen the system’s expected total utility. Second, ignoring the mixed-mode interactions between the
private car and public transit modes when the predetermined travel times of road-based transit modes are low (high)
will lead to overestimations (underestimations) of the travel demand and transit use. Third, the system’s expected
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total utility is overestimated if we assume that the household members have perfect information on the network
conditions, especially if their heterogeneous perceptions on the time-dependent utility of different activity types are
highly inaccurate. Fourth, our novel model can be used to assess the effect of the COVID-19 pandemic, which exerts
negative effects on the travel demand. Notably, the higher the number of confirmed cases and the higher population
the level, the greater the effect of the COVID-19 pandemic. This effect is difficult to examine using conventional trip-
or activity-based models, as these have been developed without explicit modeling of at-home activities or the risks of
infection in public areas.

Our novel model does not consider some realistic aspects, which will be addressed in future work. These will
involve calibrating the parameters of utility/disutility functions and household members’ errors of perception under
normal and COVID-19 pandemic conditions with survey data, and developing efficient solution algorithms and data
structures for solving the JATP choice problem on the supernetwork platform. Our approach could also be used in
a new avenue of research to investigate the effect of various types of land use and transportation planning, such as
household location and high-occupancy vehicle lanes/tolls, on joint/solo activity—travel choices in multimodal trans-
portation networks, and vice versa. Furthermore, our model could be extended to assess post-COVID-19 pandemic
effects on land use and transportation planning to assist sustainable city development.
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Appendix A. Feasibility of JATPs

In this appendix, we formulate the flow propagation relations between JATPs, paths, and links. Similar to Vo et al.
(2020a), the 0—1 integer variables in constraints (40)—(42) satisfy the following constraints:

Gh
hm hm, hm, hm
Z Z(sqmg Z Z 6qtsg Z Z Z gqp;g Z Z Z f‘”’ﬁ k o 1)
g=1iel g=1 iel g=1weW—(s) peP" g=1weW=(s) pePv
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car and transit users m arrive at s during k — 1
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Sylome - Sy lbamey
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~
private car carrying member m at s during k private car carrying member m at s during k—1

- Z Z 2 Zz"ﬁ —1) +2 SN e [~ 1) (A2)
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J

~
private car carrying member m departs from s during k — 1 private car carrying member m arrives at s during k — 1

where k' is the departure interval from the origin of OD pair w via path p to reach destination s during interval
(k — 1). Constraints (A.1) and (A.2) ensure a consistent flow movement for member m of household type /4 and
his/her private car on JATP ¢ forward in space and time through location s during interval kK where W~ () and W+ (s)
are, respectively, the sets of OD pairs with s indicating origins and destinations.
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In addition, the following constraints must hold.

D (k)shm = £ k), (A3)
neg
hi
Zéqﬁg (A.4)
iel
Z?fi < (A.5)
Zﬁé < (A.6)
Alh
Dl < v, (A7)
m=1

Constraint (A.3) is the ridesharing constraint, which forces each travel group of car users to have at least one driver
from their household. Constraint (A.4) allows each JATP to have only one activity during one interval. Con-
straints (A.5) and (A.6) allow each JATP to use each of its private car paths and transit dummy links during only
one departure interval. Constraint (A.7) is a car allocation constraint where gg’m equals 1 if household type / choosing

JATP g assigns a private car to member m during the day and 0 otherwise, and V" is the number of cars owned by
household type h.
Finally, the boundary constraint is

68 (1) = 6™ (K) = 1. (A.8)

41050 41050

Constraint (A.8) shows that each member m within household type & choosing JATP ¢ participates in activity iy at
location sp during the initial and final intervals.
Appendix B. Proofs
Proof of Proposition 1. The Karush-Kuhn-Tucker conditions for the VI problem (36) are given by
i —u+ =0 (B.1)
—fral =0 (B.2)

where ¢ > 0 and A» > 0 are the Lagrangian multipliers of constraints (38) and (39), respectively. Based on
M q grang p Y y

condition (B.2), if f; > 0 then A2 = 0, and if /' = 0 then A} > 0. Hence, conditions (B.1) and (B.2) lead to the
following condition

{agzuh if f#>0 ©3)
~h h ¢ rh _ ’
g <p' i fy =

i — ﬁg (B.4)

From (37), we obtain

M x" M x"
DS gl — — (1 +Inf) — CFl = > Yyt — — (1 +1n f) — CFE. (B.5)
m=1x=1 m=1x=1

Based on 8" > 0, we can derive

Alh ){h ﬁlh ){h
Infl=Inf)+ | > > &gl —e"CFr | — [ >0 > ¢yl — 0'CF} . (B.6)
m=1 x=1 m=1 x=1
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This leads to

Mh Xh
on( $ &t - rt)

m=1 x=1

=1 (B.7)

Mh o Xh ’
exp < Z Z thhm hm QhCFh>

m=1 x=1

Substituting (B.7) into constraint (38) gives

M xh

Zh exp ( Z] Z] eh hm hm QhCFf})
m=1x

P _ (B.8)

q Mh Xh
exp ( > thﬁmuf}’;’ — HhCFZ>

m=1 x=1

which leads to the JATP choice model (32). This completes the proof. O

Proof of Property 1. Because there are no intra-household interactions between individuals, we can treat each indi-
vidual in the system as a separate household, and the sizes of all households equal one. Then, the mapping (37) can
be rewritten as

Z Z () — 4 o (1L+Infy) — CFy. (B.9)

m=1x=1

Substituting (B.9) into (36) results in a VI problem whose solution is equivalent to the JATP flow pattern derived from
the following choice model:

Xhm
H H exp thhm hm)
X = = ;hm (B.10)

> H [ exp (¢nemu)

ecQhm=1x=1

As the choice model (B.10) corresponds to only one member in the household, its solution satisfies an SUE principle.
This completes the proof. O

Proof of Property 2. When 8" — +c0,Vh, (37) shows that the mapping L"tZ = uZ + CF Z,Vh, g. In addition, as
6" — 40, the estimated 7 — +c0. Due to (29), the value of 7/ can be arbitrarily set (e.g., 7" = 1). If we ignore
the commonality factor (i.e., CF 2 = 0), the condition (B.3) can be rewritten as

uh <t it =0 '
The above condition satisfies the deterministic HO principle in Vo et al. (2020a). This completes the proof. O
Proof of Property 3. When 6" — 0, Yh, from (27) we have
Mh Xhm
exp (—6"CF}) H Hexp (& uli)
: h _ q: m=1x=1 . 1
leino)(q B 91/11210 M xm o (B.12)
Z exp (—0"CF") H Hexp (6"l
ecQh m=1x=1
This completes the proof. O
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Proof of Property 4. When " < 77?", from (34) and (35), it is straightforward to verify that

6)(Z 0)(2

pwE > pwe >0 (B.13)
qz qx

aXh aXh
1 I -0 Ve#qge O (B.14)

<
o " au
The above relations indicate that the utility improvement obtained from type x activities by member m of household
type h choosing JATP g has smaller effects on both the increased probability of household type & choosing JATP ¢
(positive effect) and the decreased probability of household type /& choosing any other JATP e # g (negative effect)

than does the utility improvement obtained from type z activities by member »n of household type & choosing JATP g.
This completes the proof. O

Proof of Proposition 2. First, we know that the feasible set of JATP flow patterns € is compact. Second, the link
disutility functions ¢ (k) for car users and 6ng (k) for transit passengers are continuous with the link flows as the
road link travel time and the in-vehicle congestion discomfort functions are strictly increasing (A6 and A7). Thus,
mapping u(f) is continuous with JATP flow pattern f. According to Brouwer’s fixed-point theorem, this completes
the proof. O

Proof of Proposition 3. For any two solutions f (M* ¢ O and f@* € Q to the VI problem (36), we have
(e <f(1)* - f) >0 Ve (B.15)

a(f®*) <f<2>* _ f) >0 VieQ. (B.16)
Let £ = £f(* and substitute it into (B.15),and letf = f (D* and substitute it into (B.16). Adding the resultants yields
(a(eV*) —a(@@*)) (1% —£2) > 0. (B.17)

According to condition (B.17), the uniqueness of a solution to the VI problem (36) in terms of the JATP pat-
tern (i.e., f)* = £(2)*) can be established through contradiction to the following strictly monotonicity (decreasing)
condition

(ﬁ(f(l)) - ﬁ(f<2>)> (f“) - f<2>> <0 v 2f@eq (B.18)
First, let us rewrite (B.18) in an expanded form

d h(1 (2

Z > (D) - wht@) (Y- 5@) <0 v 2P e (B.19)

h=1 Qh

Because the scale factors /" for all &, m, x, are homogeneous, which is denoted as 7, the mapping (37) can be
rewritten as

_ 1
iy (f) = mug — o (1 +In fy') = CFg. (B.20)

Based on (10), we can rewrite (B.20) as

M" G" K

Z Z Z ZZ hmg hmg Z Z hmg hmg Z Z Ahmg hmg )
=n 0 i cpw (k) Egpw (K qpw

m=1g=1k=1 \ i€l s€S weW peP” weW pepw

th (1+Inf) —CF). (B2

Substituting (15) and (18) into (B.21) yields
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Mt G K
CEREDID DI OHWATTATED YD IR LN

m=1g=1k=1 \ i€l s€S weWw pePW acA k' =

Y Yy Z s (k) 2me, k/)> _ % (1+Infl) —CF!. (B.22)

WeW pepw beB K =1

Because the disutility functions of access, egress, and transfer links are flow-independent, we have

) ) = 3 Y Y [22( ) — () ) 81 k)

m=1g=1k=1 L iel seS

-3 33 (0 - ) )

weW peP" acA k'=1
- ZV:V > bZ Z <5ng(’€’)(1) — @ng(k’)(z))EZZ’jbk(k’)] - elh (lnf;’( “In f”(2)>. (B.23)
we pef"*‘ €By k=1

According to (11), (16), and (19), (B.23) can be rewritten as

Mt Gt K
A DIDIDY [ZZ (@10 = @)@ — 3 () + 1 ()P ) ST (k)

m=1g=1k= iel se§

K
DI CIOREIG R FHME

weW peP" acA k' =k

IPIPIPRACICRTIORE fb(k’>‘2>wb<k')(”)éﬁ?ﬁihk&’)] 2 (0 - ).

weW pepw beBy k=1

>

(B.24)
Then, by substituting (B.24) into (B.19), we have

A (k) — w0 — a0+ a0®) Y Y ST Y (70 Y gy

il seS k=1 =1 geQh m=1g=1

("is (k)(l) —v,-,(k)<2) )

( =

K H M G
OIDNCGREACEIDIDIDIDIDID I (AR A TN
acA k'=1 weW peP" k=1 h=1 geQh m=1g=1
(k) —va(k)@))
M G"
) () D K) ) = i) Pup k) ) 3 Y IDIDIDI (2 = 19) e k)
bEBy k' =1 WEW pepw k=1h=1 geQh m=1g=1

(9b(k')<l)t9h(k’) @)

H
B Z % (lnfh(l) —lnf;(2)> ( h(1) fq ) < 0. (B.25)
h=1 geQ"

Based on (51)—(55), from (B.25) we have
Z £V, £y — z, (¢ @) 4 z3 (¢ £2)) 4 z, (6D, £2)) 4 Zzs(£V £y > 0 viD) 2P e, (B.26)

This completes the proof. O
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