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Abstract: This paper proposes a bi-objective reliable path-finding algorithm for routing battery 

electric vehicles on a road network, with vehicles’ energy consumption uncertainty and travel time 

uncertainty. A bi-objective stochastic optimization problem is proposed and formulated to 

simultaneously maximize energy consumption reliability (ECR) and travel time reliability (TTR). 

ECR is defined as the probability of finishing a trip without exhausting a given battery energy 

budget, while TTR is the on-time arrival probability with the travel time budget. In this study, the 

proposed optimization problem is decomposed into two sub-problems: (1) finding K most reliable 

paths for maximizing the TTR objective and (2) finding the most reliable path for optimizing the 

ECR objective. Then, a novel ranking algorithm is proposed to exactly solve the formulated 

optimization problem. A case study is carried out on Hong Kong’s road network to demonstrate 

the efficacy and efficiency of the proposed algorithm for real-world applications. 

 

Keywords: Bi-objective path finding; travel time reliability; energy consumption reliability; 

network uncertainties 

 

 

1. Introduction 

 

In recent years, worsening environmental problems and the rising price of oil have led to 

battery electric vehicles (BEVs) becoming increasingly popular. However, compared with 

traditional fuel vehicles, BEVs usually require a long time to be fully recharged and their charging 

facilities are less accessible (Shen et al., 2019). As a result, multiple objectives, e.g., energy 

consumption and travel times, may need to be considered by BEV users making path-choice 

decisions. Thus, there is a great need to develop multi-objective path-finding algorithms to aid 

BEV users in making complicated path-choice decisions, particularly for congested road networks 

with different sources of uncertainties. This paper addresses this bi-objective path-finding problem 

(PFP) in stochastic networks wherein a range of uncertainties exist. 
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In the literature, PFPs for traditional fuel vehicles in deterministic networks have been 

intensively studied over the past 50 years (Dijkstra, 1959; Li et al., 2015). In recent years, there 

has been a resurgence of interest in PFPs in stochastic networks with travel time uncertainties that 

are commonly encountered in realistic road networks, such as those due to traffic accidents or bad 

weather (Jiang & Szeto, 2016; Lam, Shao, & Sumalee, 2008; Shao, Lam, & Tam, 2006; Tan, Yang, 

& Guo, 2014). Many empirical studies have shown that travel time uncertainties have significant 

effects on travelers’ route-choice behaviors (Chen, et al., 2012; Lam & Small, 2001; Li, Huang, & 

Lam, 2012; Wu & Nie, 2011). Faced with travel time uncertainties, travelers tend to become risk-

averse (Beaud, Blayac, & Stephan, 2016; Engelson & Fosgerau, 2016). That is, they choose a 

reliable path despite its extra travel time budget to ensure a higher probability of their on-time 

arrival, a parameter that is denoted as travel time reliability (TTR). This behavior has led to TTR 

being explicitly considered in many studies. Several reliable path-finding models have been fully 

developed, with the most reliable model (Frank, 1969) and the -reliable model (Chen & Ji, 2005; 

Chen et al., 2018; Ji, Kim, & Chen, 2011) being the two most commonly used. The most reliable 

model finds the optimal path by maximizing TTR for a given travel time budget. The α-reliable 

model determines the optimal path by minimizing the travel time budget while satisfying a TTR 

constraint α. Based on these models, several effective and efficient solution algorithms have been 

developed (Chen et al., 2012; Chen, et al., 2013a; Chen, Li, & Lam, 2016; Chen et al., 2020; Nie 

& Wu, 2009). 

More attention has recently focused on developing path-finding algorithms for BEVs (Shen 

et al., 2019). Several effective energy consumption formulas have been proposed that take into 

account various factors which influence the energy consumption of BEVs, such as speed, slope, 

BEV mass, travel distance, and energy dissipated and recovered during acceleration and 

deceleration phases (Faraj & Basir, 2016; He, Yin, & Lawphongpanich, 2014; Yang et al., 2014; 

Zhang & Yao, 2015). Based on these formulas, many solution algorithms have been developed to 

identify the energy-optimal path. Frank, Castignani, Schmitz, and Engel (2013) presented an eco-

driving application which considered drivers’ energy-efficient driving attitude. Kluge et al. (2013) 

empirically determined that the average energy consumption associated with energy-optimal paths 

is approximately 10% less than the average energy consumption associated with fastest paths. Shen 

et al. (2019) presented a model that finds the energy-optimal paths using two different energy 

consumption formulas. However, these path-finding algorithms do not consider the effects of 

travel-speed variations and associated energy consumption uncertainties. 

To the best of our knowledge, there has been little attention paid in the literature to the 

development of path-finding algorithms for BEVs in stochastic road networks, with the notable 

exception of Jafari and Boyles (2017). In their study, the energy consumption of a BEV on a link 

was explicitly formulated as a random variable by using a simplified linear function of link length 

and random speed variables. A solution algorithm was then developed to find the optimal path by 

maximizing energy consumption reliability (ECR), which is defined as the probability of finishing 

the trip without exhausting a given energy budget. However, their energy consumption formulas 

can be further extended to improve the BEVs’ energy consumption phases (such as taking into 

account energy consumption due to uphill resistance and acceleration resistance) and to consider 

the BEVs’ energy recovery phases. Apart from their PFP algorithm for the optimization of the 

ECR objective only, other alternative path-finding objectives such as TTR should also be 

incorporated, particularly in congested road networks with uncertainties in travel times. 

This study aims to develop a bi-objective reliable path-finding algorithm for the routing of 

BEVs on road networks with energy consumption uncertainty and travel time uncertainty. A bi-
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objective stochastic optimization model is proposed and formulated to simultaneously maximize 

ECR and TTR. A new ranking algorithm is developed to exactly solve the formulated optimization 

model. This study extends previous studies in the following aspects. First, a comprehensive 

stochastic energy consumption formula is developed. The developed energy consumption formula 

is a stochastic extension of the state-of-the-art deterministic formulas (Faraj & Basir, 2016; Shen 

et al., 2019). Therefore, it extends the previous stochastic energy consumption formulas (Jafari & 

Boyles, 2017) by explicitly considering uncertainties during various energy consumption and 

recovery phases. Second, a novel ranking algorithm is developed to exactly solve the proposed bi-

objective stochastic optimization model. The proposed model cannot be solved using the existing 

bi-objective shortest path-finding algorithms (Skriver, 2000; Raith & Ehrgott, 2009) due to the 

non-additive property of the objectives considered in this paper. The developed ranking algorithm 

decomposes such an optimization problem into two sub-problems: (1) finding the K most reliable 

paths for the TTR objective, and (2) finding the most reliable path for the ECR objective. Two 

effective procedures are proposed to exactly solve the two sub-problems. The optimization of the 

developed ranking algorithm is rigorously proved together with the associated properties. 

Therefore, the developed algorithm enriches the previous related studies (Skriver, 2000; Raith & 

Ehrgott, 2009) by solving the bi-objective stochastic optimization problems with non-additive 

properties. Third, a realistic case study is carried out using real traffic data collected in Hong Kong. 

The results of the case study illustrate the efficacy and efficiency of the proposed algorithm for 

real-world applications. 

 

2. Model formulations 

 

2.1. Model assumptions 

 

A1. Link travel speeds are assumed to follow independent normal distributions (Lam, Chan, & 

Shi, 2002). 

A2. Link travel times are the reciprocal of normal distributions, which can be approximated as 

lognormal distributions (Chen et al., 2013a; 2013b). The path travel times also follow lognormal 

distributions. 

A3. If the link upstream travel speed is lower than the downstream travel speed, the vehicle will 

accelerate at a fixed acceleration; otherwise, the vehicle will decelerate at a fixed negative 

acceleration. 

A4. If a road link is downhill, the vehicle on that link will brake to maintain a stable speed. 

 

2.2. TTR objective 

 

Consider a directed network G(N, A), consisting of a set of nodes N and a set of links A. Each 

link 𝑎𝑖𝑗 ∈ 𝐴, from the tail node 𝑖  to the head node 𝑗, has a random travel speed 𝑉𝑖𝑗  which is 

assumed to follow a normal distribution (see Assumption A1), with its mean and standard 

deviation (SD) denoted by 𝑣𝑖𝑗 and 𝜎𝑖𝑗
𝑣 , respectively. Let 𝑑𝑖𝑗 be the length of link 𝑎𝑖𝑗. Accordingly, 

the link travel time, denoted by 𝑇𝑖𝑗, can be expressed as follows: 

𝑇𝑖𝑗 = 𝑑𝑖𝑗/𝑉𝑖𝑗 (1) 
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According to Chen et al. (2013b), 𝑇𝑖𝑗, the reciprocal of the normal distribution, can be well 

approximated by a lognormal distribution. Its mean 𝑡𝑖𝑗 and SD 𝜎𝑖𝑗
𝑡  can be calculated as follows: 

𝑡𝑖𝑗 = 𝑑𝑖𝑗/𝑣𝑖𝑗 (2) 

𝜎𝑖𝑗
𝑇 = √𝑑𝑖𝑗𝜎𝑖𝑗

𝑣 /(𝑣𝑖𝑗)2  (3) 

For each node 𝑖 ∈ N, the successor nodes and predecessor nodes of node 𝑛𝑖 are represented as 

SUCC(𝑖) and PRED(𝑖), respectively, and the elevation is denoted by ℎ𝑖. 

Let 𝑃𝑟𝑠 be the set of all paths from origin 𝑟 to destination 𝑠. A path 𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑟𝑠 consists of a 

set of links. The path travel time, denoted by 𝑇𝑝𝑖

𝑟𝑠, can be calculated as the sum of link travel times 

along the path, as follows: 

 𝑇𝑝𝑖

𝑟𝑠 = ∑ 𝑇𝑖𝑗∀𝑎𝑖𝑗∈𝐴 𝑥𝑖𝑗
𝑟𝑠   (4) 

where 𝑥𝑖𝑗
𝑟𝑠 is a binary variable, 𝑥𝑖𝑗

𝑟𝑠 = 1 means that link 𝑎𝑖𝑗 is on path 𝑝𝑖
𝑟𝑠, and 𝑥𝑖𝑗

𝑟𝑠 = 0 otherwise. 

As link travel times follow a lognormal distribution, the path travel time distribution does not have 

a closed-form. Following the work of Kaparias, Bell, and Belzner (2008), it is assumed that the 

path travel time, 𝑇𝑝𝑖

𝑟𝑠 , follows a lognormal distribution (see Assumption A2). Many empirical 

studies have also reported that path travel time distributions can be well represented by lognormal 

distributions (Chen et al., 2013a). Let 𝑡𝑝𝑖

𝑟𝑠 and 𝜎𝑝𝑖

𝑟𝑠 be the mean and SD of 𝑇𝑝𝑖

𝑟𝑠, respectively. These 

can be calculated as follows: 

𝑡𝑝𝑖

𝑟𝑠 = ∑ 𝑡𝑖𝑗∀𝑎𝑖𝑗∈𝐴 𝑥𝑖𝑗
𝑟𝑠    (5) 

𝜎𝑝𝑖

𝑟𝑠 = √∑ (𝜎𝑖𝑗
𝑇)2𝑥𝑖𝑗

𝑟𝑠
∀𝑎𝑖𝑗∈𝐴   (6) 

The distribution of path travel time 𝑇𝑝𝑖

𝑟𝑠 can be expressed as 𝑇𝑝𝑖

𝑟𝑠~𝐿𝑜𝑔- 𝑁(𝑢𝑝𝑖

𝑇 , 𝑠𝑑𝑝𝑖

𝑇 ), where 

𝑢𝑝𝑖

𝑇  and 𝑠𝑑𝑝𝑖

𝑇  are the mean and SD of the natural logarithm of path travel time, respectively. These 

are given by the following relationships with 𝑡𝑝𝑖

𝑟𝑠 and 𝜎𝑝𝑖

𝑟𝑠: 

𝑠𝑑𝑝𝑖

𝑇 = [ln(1 + (𝜎𝑝𝑖

𝑟𝑠)2/(𝑡𝑝𝑖

𝑟𝑠)2)]1/2 (7) 

𝑢𝑝𝑖

𝑇 = ln(𝑡𝑝𝑖

𝑟𝑠) − 0.5(𝑠𝑑𝑝𝑖

𝑇 )
2
   (8) 

Therefore, TTR (i.e., the probability of arriving at the destination before a given travel time budget 

𝑡0) denoted by 𝑅𝑝𝑖

𝑇 , is expressed as follows: 

𝑅𝑝𝑖

𝑇 = Φ (
ln(𝑡0)−𝑢𝑝𝑖

𝑇

𝑠𝑑𝑝𝑖
𝑇 ) (9) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal distribution. 

 In this paper, the first objective (Eq. (9)) of the reliable PFP is to identify the optimal reliable 

path to maximize TTR within a given travel time budget 𝑡0. The threshold 𝑡0 is a specified travel 

time buffer that is required by travelers to allow a safety margin against the travel time uncertainty 

for their travel between a given origin and destination (OD) pair. 

 

2.3. ECR objective 

 

In recent years, researchers have proposed several formulas to estimate the energy 

consumption of BEVs. Most formulas are based on the vehicle dynamics model, with 

consideration of the braking process (Yang et al., 2014; Zhang and Yao, 2015; Faraj et al., 2016; 

Baek et al., 2019). A simple example shown in Fig. 1 is used to illustrate BEV operation. During 
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the entire process, the energy of a BEV consists of two components: energy consumed due to 

resistance and energy recovered due to regenerative braking. 

 

 

Fig. 1.  Process of BEV operation. 

 

As shown in Fig. 1, the applied resistance acting on a BEV in the longitudinal direction 

consists of four components in general: rolling resistance 𝐹𝑟, aerodynamic resistance 𝐹𝐴, uphill 

resistance 𝐹𝑢, and acceleration resistance 𝐹𝐼. Hence, the energy consumption of a link 𝑎𝑖𝑗, denoted 

by 𝐶𝑖𝑗, is expressed by four corresponding components: loss of energy due to rolling resistance 

(denoted by 𝑐𝑖𝑗,𝑟 ), loss of energy due to aerodynamic resistance (denoted by 𝐶𝑖𝑗,𝐴 ), energy 

consumed due to uphill resistance (denoted by 𝑐𝑖𝑗,𝑢), and energy consumed due to acceleration 

resistance (denoted by 𝐶𝑖𝑗,𝐼). They can be calculated by: 

𝑐𝑖𝑗,𝑟 =
1

𝜂𝑐𝜂𝑚
𝜀𝑟𝑚𝑔 cos 𝜃 𝑑𝑖𝑗 (10a) 

𝐶𝑖𝑗,𝐴 =
1

𝜂𝑐𝜂𝑚

1

2
𝜌𝜀0𝜀𝑎𝑑𝑖𝑗(𝑉𝑖𝑗)2 (10b) 

𝑐𝑖𝑗,𝑢 = {

1

𝜂𝑐𝜂𝑚
𝑚𝑔(ℎ𝑗 − ℎ𝑖), 𝑖𝑓 ℎ𝑗 > ℎ𝑖

0, 𝑖𝑓 ℎ𝑗 < ℎ𝑖

 (10c) 

𝐶𝑖𝑗,𝐼 =
1

𝜂𝑐𝜂𝑚
𝛿𝑚𝑎𝑉𝑖𝑗𝑡𝐴 (10d) 

where 𝜀𝑟  is the rolling-resistance coefficient, 𝑚  is the BEV mass, 𝑔  is the gravitational 

acceleration factor, 𝜃  is the road gradient (which can be calculated by elevation), 𝜌 is the air 

density, 𝜀0  is the aerodynamic drag coefficient, 𝜀𝑎  is the frontal area of the BEV, 𝑎  is the 

acceleration, 𝜂𝑐 and 𝜂𝑚 represent the controller efficiency and motor efficiency, respectively, 𝛿 is 

a coefficient that is related to the BEV mass, and 𝑡𝐴  is the travel time during the vehicle 

acceleration phase. If a link is a downhill, 𝑐𝑖𝑗,𝑢 equals zero. The energy consumed by accessories 

(e.g., an air conditioner) is not considered explicitly in this paper, as the aim is to generally 

illustrate the essential ideas. 

During the braking process, energy can be recovered, i.e., regenerated. This regenerated 

energy consists of downhill regenerative energy (denoted by 𝑐𝑖𝑗,𝑑) and deceleration regenerative 

energy (denoted by 𝑐𝑖𝑗,𝑑𝑒). Both 𝑐𝑖𝑗,𝑑 and 𝑐𝑖𝑗,𝑑𝑒 can be expressed by: 

𝑐𝑖𝑗,𝑑 = {
𝜂𝑐𝜂𝑚𝑚𝑔(ℎ𝑖 − ℎ𝑗), 𝑖𝑓 ℎ𝑖 > ℎ𝑗

0, 𝑖𝑓 ℎ𝑖 ≤ ℎ𝑗
 (11a) 



`  

6 
 

𝑐𝑖𝑗,𝑑𝑒 = 𝑘𝜂𝑐𝜂𝑚 (𝜀𝑟𝑚𝑔 cos 𝜃 +
1

2
𝜌𝜀0𝜀𝑎𝑣𝑖𝑗

2 + 𝑚𝑔 sin 𝜃 + 𝛿𝑚𝑎) 𝑣𝑖𝑗𝑡𝐷 (11b) 

where 𝑘 is the regenerative braking factor, which indicates the percentage of the energy that can 

be recovered by the motor, and 𝑡𝐷 is the travel time during the vehicle deceleration phase. To 

simplify the calculation of energy consumption due to acceleration and deceleration, the fixed 

acceleration 𝑎  is used and energy consumption variation during the deceleration phase is not 

considered (based on Assumptions A3 and A4). 

Thus, the energy consumption of link 𝑎𝑖𝑗 can be expressed by: 

𝐶𝑖𝑗 = 𝑐𝑖𝑗,𝑟 + 𝑐𝑖𝑗,𝑢 + 𝐶𝑖𝑗,𝐴 + 𝐶𝑖𝑗,𝐼 − 𝑐𝑖𝑗,𝑑𝑒 − 𝑐𝑖𝑗,𝑑 (12) 

Clearly, four components, i.e., 𝑐𝑖𝑗,𝑟 , 𝑐𝑖𝑗,𝑢 , 𝑐𝑖𝑗,𝑑𝑒 , and 𝑐𝑖𝑗,𝑑 , are deterministic variables that are 

identical to the previous study (Shen et al., 2019). Nevertheless, the other two components, i.e., 

𝐶𝑖𝑗,𝐴 and 𝐶𝑖𝑗,𝐼, are random variables that are a stochastic extension of the previous study (Shen et 

al., 2019) by replacing deterministic speed 𝑣𝑖𝑗 with speed distribution 𝑉𝑖𝑗. Because 𝑉𝑖𝑗 is assumed 

to follow normal distributions, the mean and SD of 𝐶𝑖𝑗,𝐴 can be expressed as: 

𝑢𝑖𝑗
𝐴 =

1

2𝜂𝑐𝜂𝑚
𝜌𝜀0𝜀𝑎((𝑣𝑖𝑗)2 + (𝜎𝑖𝑗

𝑣 )2)𝑑𝑖𝑗 (13a) 

𝜎𝑖𝑗
𝐴 =

1

2𝜂𝑐𝜂𝑚
𝜌𝜀0𝜀𝑎𝑑𝑖𝑗√4𝑣𝑖𝑗

2(𝜎𝑖𝑗
𝑣 )2 + 2(𝜎𝑖𝑗

𝑣 )4 (13b) 

Similarly, the mean and SD of 𝐶𝑖𝑗,𝐼 can be expressed as: 

𝑢𝑖𝑗
𝐼 =

1

𝜂𝑐𝜂𝑚
𝛿𝑚𝑎𝑡𝐴𝑣𝑖𝑗 (13c) 

𝜎𝑖𝑗
𝐼 =

1

𝜂𝑐𝜂𝑚
𝛿𝑚𝑎𝑡𝐴𝜎𝑖𝑗

𝑣  (13d) 

Let 𝑢𝑖𝑗
𝑐  and 𝜎𝑖𝑗

𝑐  be mean and SD of link energy consumption 𝐶𝑖𝑗 , respectively. They can be 

calculated as follows: 

𝑢𝑖𝑗
𝑐 = 𝑐𝑖𝑗,𝑟 + 𝑐𝑖𝑗,𝑢 − 𝑐𝑖𝑗,𝑑𝑒 − 𝑐𝑖𝑗,𝑑 + 𝑢𝑖𝑗

𝐴 + 𝑢𝑖𝑗
𝐼  (14a) 

𝜎𝑖𝑗
𝑐 = √(𝜎𝑖𝑗

𝐴)2 + (𝜎𝑖𝑗
𝐼 )2 (14b) 

The energy consumption distribution along path 𝑝𝑖
𝑟𝑠 , denoted by 𝐶𝑝𝑖

𝑟𝑠 , is assumed to 

approximately follow a normal distribution. Thus, based on Assumptions A3 and A4, its mean 𝑢𝑝𝑖

𝐶  

and SD 𝜎𝑝𝑖

𝐶  are expressed as follows: 

𝑢𝑝𝑖

𝐶 = ∑ 𝑢𝑖𝑗
𝑐 𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴  (15a) 

𝜎𝑝𝑖

𝐶 = √∑ (𝜎𝑖𝑗
𝑐 )2

𝑎𝑖𝑗∈𝐴 𝑥𝑖𝑗
𝑟𝑠 (15b) 

Hence, ECR 𝑅𝑝𝑖

𝐶  (i.e., the probability of finishing the trip without running out of a given energy 

budget 𝑒0) is expressed as follows: 

𝑅𝑝𝑖

𝐶 = Φ((𝑒0 − 𝑢𝑝𝑖

𝐶 ) 𝜎𝑝𝑖

𝐶⁄ ) (16) 

The second objective, Eq. (16), of the reliable PFP is to find the optimal path for the maximization 

of ECR within a given energy consumption threshold 𝑒0. The threshold 𝑒0 is a perceived energy 

consumption buffer that is required by travelers to decrease their energy consumption uncertainty 

for their travel between an OD pair. 

 

2.4. Bi-objective reliable PFP 
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In view of the above objectives, bi-objective reliable PFP is formulated as the following bi-

objective minimization problem: 

Maximize: (𝑅𝑝𝑖

𝑇 , 𝑅𝑝𝑖

𝐶 ) (17a) 

Subject to: 

∑ 𝑥𝑖𝑗
𝑟𝑠

𝑗∈SUCC(𝑖) − ∑ 𝑥𝑞𝑖
𝑟𝑠

𝑞∈PRED(𝑖) = {
1,                 ∀𝑖 = 𝑟
0, ∀𝑖 ≠ 𝑟, ∀𝑖 ≠ 𝑠
−1,             ∀𝑖 = 𝑠

 (17b) 

𝑥𝑖𝑗
𝑟𝑠 ∈ {0,1}, ∀𝑎𝑖𝑗 ∈ 𝐴 (17c) 

where Eq. (17a) is the bi-objectives of which travelers aim to maximize simultaneously; Eq. (17b) 

ensures that links on a path are feasible; and Eq. (17c) is concerned with the link-path incidence 

variables which are binary in nature. 

 

Definition 1. Given two paths 𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑟𝑠 and 𝑝𝑗 ∈ 𝑃𝑟𝑠, 𝑝𝑖

𝑟𝑠 dominates 𝑝𝑗
𝑟𝑠 if and only if (i) 𝑅𝑝𝑖

𝑇 >

𝑅𝑝𝑗

𝑇  and 𝑅𝑝𝑖

𝐶 ≥ 𝑅𝑝𝑗

𝐶   or (ii) 𝑅𝑝𝑖

𝑇 ≥ 𝑅𝑝𝑗

𝑇  and 𝑅𝑝𝑖

𝐶 > 𝑅𝑝𝑗

𝐶  are satisfied. 

 

Definition 2. A path 𝑝𝑖
𝑟𝑠 is a non-dominated path, if and only if 𝑝𝑖

𝑟𝑠 is not dominated by any path 

𝑝𝑗
𝑟𝑠 ∈ 𝑃𝑟𝑠. 

 

A solution to solve this problem is a set of all non-dominated paths with respect to the bi-objectives 

(17a). In the next section, a solution algorithm is proposed to exactly solve such a problem. 

 

3. Solution algorithm 

 

In the literature, several solution algorithms have been proposed to exactly solve the 

traditional additive bi-objective PFPs. For example, the ranking method (Skriver, 2000) is used to 

determine the non-dominated paths by calculating K shortest paths with respect to each additive 

objective. However, these algorithms cannot be used to solve the proposed bi-objective reliable 

PFP, because of the non-additive property of TTR (Eq. (9)) and ECR (Eq. (16)). In this study, a 

new ranking algorithm is proposed to exactly solve the proposed bi-objective reliable PFP. The 

proposed algorithm consists of two major procedures: (1) finding K most reliable paths for the 

TTR objective, and (2) finding the most reliable path for the ECR objective. 

 

3.1. Procedure for finding K most reliable paths for the TTR objective 

 

This section presents a method for finding 𝐾 most reliable paths with respect to the TTR 

objective. By substituting Eq. (7) and Eq. (8) into the TTR formulation, Eq. (9), the TTR for path 

𝑝𝑖
𝑟𝑠, can be rewritten as follows: 

𝑅𝑝𝑖

𝑇 = Φ [
ln (𝑡0/𝑡𝑝𝑖

𝑟𝑠)

(ln(1+(𝜎𝑝𝑖
𝑟𝑠)2/(𝑡𝑝𝑖

𝑟𝑠)2))
0.5 + 0.5𝑠𝑑𝑝𝑖

𝑇 ] (18) 

Let 𝜎𝑚𝑖𝑛
𝑇 = 𝑚𝑖𝑛𝑝𝜖𝑃𝑟𝑠(𝜎𝑝

𝑟𝑠) be the least SD of path travel time distribution among all paths in 𝑃𝑟𝑠; 

and 𝑠𝑑𝑚𝑎𝑥
𝑇 = 𝑚𝑎𝑥𝑎𝑖𝑗𝜖𝐴(𝑠𝑑𝑖𝑗

𝑇 ) be the largest SD of underlying normal distribution for any link on 

the network. By replacing 𝜎𝑝𝑖

𝑟𝑠  and 𝑠𝑑𝑝𝑖

𝑇  with 𝜎𝑚𝑖𝑛
𝑇  and 𝑠𝑑𝑚𝑎𝑥

𝑇 , the upper bound, denoted by 

𝑈𝐵(𝑅𝑝𝑖

𝑇 ), of the TTR objective can be constructed as: 
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𝑈𝐵(𝑅𝑝𝑖

𝑇 ) = Φ [
ln (𝑡0/𝑡𝑝𝑖

𝑟𝑠)

(ln(1+(𝜎𝑚𝑖𝑛
𝑇 )2/(𝑡𝑝𝑖

𝑟𝑠)2))
0.5 + 0.5𝑠𝑑𝑚𝑎𝑥

𝑇 ] (19) 

The proof of the 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) ≥ 𝑅𝑝𝑖

𝑇  relationship is given in Proposition A2 (see Appendix). Since 

𝜎𝑚𝑖𝑛
𝑇  and 𝑠𝑑𝑚𝑎𝑥

𝑇  are fixed, this upper bound 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) is the function of only the mean path travel 

time 𝑡𝑝𝑖

𝑟𝑠. We can prove that 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) is a monotonically decreasing function of 𝑡𝑝𝑖

𝑟𝑠 when 𝑡𝑝𝑖

𝑟𝑠 is 

greater than max (𝜎𝑚𝑖𝑛
𝑇 , 𝑡0/𝑒), where 𝑒 is Euler’s number. 

 

Proposition 1. The upper bound 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) is a monotonically decreasing function of 𝑡𝑝𝑖

𝑟𝑠  when 

𝑡𝑝𝑖

𝑟𝑠 >  𝑚𝑎𝑥 (𝜎𝑚𝑖𝑛
𝑇 ,  𝑡0/𝑒) holds. 

Proof. See Proposition A3 in the Appendix. 

 

Given the additive property of 𝑡𝑝𝑖

𝑟𝑠, we can incrementally calculate K shortest paths of 𝑡𝑝𝑖

𝑟𝑠 by 

using the classical K shortest path algorithm with 𝑡𝑖𝑗 as link costs (Yen, 1971). Hence, we can 

calculate the first shortest paths 𝑝1
𝑡, the second shortest path 𝑝2

𝑡 ,…, until the kth shortest path 𝑝𝑘
𝑡  

satisfying 𝑡𝑝𝑘
𝑟𝑠 > max(𝜎𝑚𝑖𝑛

𝑇 , 𝑡0/𝑒) . After that, the upper bound, 𝑈𝐵(𝑅𝑝𝑘
𝑡 ) , is a monotonically 

decreasing function with respect to 𝑡𝑝𝑘
𝑟𝑠  of the newly calculated kth shortest path. Let 𝑃𝑘

𝑡 be the set 

of calculated k shortest paths with 𝑃𝑘
𝑡 ⊆ 𝑃𝑟𝑠  relationship. For any  𝑝𝑖

𝑟𝑠 ∈ 𝑃𝑘
𝑡, its actual TTR, 𝑅𝑝𝑖

𝑡 , 

can be calculated using Eq. (18). Then, we can determine 𝑚𝑎𝑥𝑝𝑖𝜖𝑃𝑘
𝑡(𝑅𝑝𝑖

𝑡 ) for 𝑃𝑘
𝑡 , which is the 

lower bound, denoted by 𝐿𝐵(𝑅𝑃
𝑇), of the most reliable path in the whole path set 𝑃𝑟𝑠. Clearly, this 

lower bound 𝐿𝐵(𝑅𝑃
𝑇) is a monotonically increasing function with respect to the newly calculated 

kth shortest path. When 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵(𝑅𝑝𝑘

𝑡 ) meets, we can identify the first most reliable path, 

denoted by 𝑝𝑅1

𝑇 , for the TTR objective as the path 𝑝𝐿𝐵
𝑇 ∈ 𝑃𝑘

𝑡 providing the lower bound, i.e., 𝑅𝑝𝐿𝐵
𝑇 =

𝐿𝐵(𝑅𝑃
𝑇) . Then, we can remove 𝑝𝐿𝐵

𝑇  from 𝑃𝑘
𝑡  and update the lower bound, 𝐿𝐵(𝑅𝑃

𝑇) . By 

incrementally calculating k shortest paths, 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵(𝑅𝑝𝑘

𝑡 )  meets again. In this way, the 

second most reliable path, 𝑝𝑅2

𝑇 ,…, until the 𝐾th most reliable path, 𝑝𝑅𝐾

𝑇 , can be determined. This 

method of finding K most reliable paths for the TTR objective is implemented in the FindKMRP-

TTR procedure. Its detailed steps are given in Table 1. 

 

Table 1 Detailed steps of the FindKMRP-TTR procedure. 

Input: origin 𝑜, destination 𝑑, travel time budget 𝑡0, pre-given 𝐾, and threshold 𝐾𝑚𝑎𝑥. 

Return: Set of 𝐾 most reliable paths 𝑃𝑇, and set of calculated paths 𝑃𝑘
𝑡. 

01: Call InitializeKMRP-TTR(𝑜, 𝑑, 𝑡0, 𝐾𝑚𝑎𝑥). 

02: Set 𝑗 ≔ 1. 

03: Call FindNextReliablePath-TTR to determine the jth most reliable path 𝑝𝑅𝑗

𝑇 . 

04: If 𝑝𝑅𝑗

𝑇 = ∅, then Stop and Return 𝑃𝑇 and 𝑃𝑘
𝑡. 

05: 𝑃𝑇 ≔ 𝑃𝑇 ∪ {𝑝𝑅𝑗

𝑇 }. 

06: If |𝑃𝑇| ≥ 𝐾 (|𝑃𝑇| is number of paths in 𝑃𝑇), then Stop and Return 𝑃𝑇 and 𝑃𝑘
𝑡. 

07: Set 𝑗 ≔ 𝑗 + 1, and Goto Line 03. 

 

Sub-procedure: InitializeKMRP-TTR 

Input: origin 𝑜, destination 𝑑, travel time budget 𝑡0, and threshold 𝐾𝑚𝑎𝑥
𝑇 . 
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01: Determine 𝜎𝑚𝑖𝑛
𝑇  by using a forward one-to-one Dijkstra’s algorithm with link travel time 

variance (𝜎𝑖𝑗
𝑇)2 as link costs. 

02: Determine 𝑠𝑑𝑚𝑎𝑥
𝑇 : = 𝑚𝑎𝑥𝑎𝑖𝑗𝜖𝐴(𝑠𝑑𝑖𝑗

𝑇 ). 

03: Set 𝑘: = 1, 𝑃𝑇 ≔ ∅ and 𝑃𝑘
𝑡 ≔ ∅; and Set 𝑈𝐵(𝑅𝑝𝑘

𝑡 ): = 1 and 𝐿𝐵(𝑅𝑃
𝑇) ≔ 0. 

04: If 𝑘 > 𝐾𝑚𝑎𝑥, then Stop. 

05: Calculate the kth shortest path  𝑝𝑘
𝑡  by using the k shortest path algorithm with 𝑡𝑖𝑗 as link costs. 

06: Add  𝑝𝑘
𝑡  into 𝑃𝑘

𝑡, Calculate its 𝑅𝑝𝑘
𝑡  using Eq. (18), and Update 𝐿𝐵(𝑅𝑃

𝑇). 

07: If 𝑡𝑝𝑘
𝑟𝑠 < max(𝜎𝑚𝑖𝑛

𝑇 , 𝑡0/𝑒), then Set 𝑘: = 𝑘 + 1 and Goto Line 04. 

 

Sub-procedure: FindNextReliablePath-TTR 

Return: Reliable path 𝑝𝑅𝑗

𝑇 . 

01: If 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵(𝑅𝑝𝐾

𝑡 ) then, 

02:   Remove lower bound path 𝑝𝐿𝐵
𝑟𝑠  from 𝑃𝑘

𝑡, and Update 𝐿𝐵(𝑅𝑃
𝑇). 

03:   Stop and Return 𝑝𝐿𝐵
𝑟𝑠 . 

04: End if 

05: Set 𝑘: = 𝑘 + 1. 

06: If 𝑘 > 𝐾𝑚𝑎𝑥, then Stop and Return ∅. 

07: Calculate the kth shortest path  𝑝𝑘
𝑡  by using the k shortest path algorithm with 𝑡𝑖𝑗 as link costs. 

08: Add  𝑝𝑘
𝑡  into 𝑃𝑘

𝑡, Calculate its 𝑅𝑝𝑘
𝑡  using Eq. (18), and Update 𝐿𝐵(𝑅𝑃

𝑇). 

09: Calculate 𝑈𝐵(𝑅𝑝𝑘
𝑡 ) using Eq. (19), and Goto Line 01. 

 

We can prove that, when  𝐾𝑚𝑎𝑥  is sufficiently large, the FindKMRP-TTR procedure can 

guarantee to obtain the 𝐾 most reliable paths for the TTR objective. 

 

Proposition 2. The FindKMRP-TTR procedure can determine the optimal solution of the 𝐾 most 

reliable paths for the TTR objective when 𝐾𝑚𝑎𝑥 is sufficiently large. 

Proof. See Proposition A4 in the Appendix. □ 

 

In this study, the A* technique is further adapted to improve the computational performance 

of the proposed procedure. Yen’s algorithm (Yen, 1971) is a classical algorithm for finding K 

shortest paths. Yen’s (1971) algorithm requires numerous deviation path calculations using the 

forward one-to-one Dijkstra’s algorithm. The A* technique is widely recognized as an effective 

means for speeding up the one-to-one Dijkstra’s algorithm by introducing a heuristic function to 

assign higher priorities to nodes closer to the destination. The A* technique can achieve the optimal 

shortest path when the heuristic function is admissible. Therefore, we introduce the A* technique 

in the classical Yen’s algorithm. The used admissible heuristic function is referred to as those 

shortest path distances from all nodes to the destination, denoted by 𝑡𝑝(𝑖, 𝑑), which are pre-

calculated using a backward one-to-all Dijkstra’s algorithm with 𝑡𝑖𝑗 as link costs. 

 

3.2. Procedure for finding the most reliable paths for the ECR objective 

 

This section presents a procedure for finding the most reliable path for maximizing the ECR 

objective. Recently, Chen et al. (2017) proposed an efficient two-stage algorithm, namely MRP-

TS, to exactly find the most reliable path when link costs follow independent normal distributions 
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and mean link costs are positive. However, such an algorithm cannot be directly utilized to find 

the most reliable path for the ECR objective, because 𝑢𝑖𝑗
𝑐  may become negative at certain links 

where BEVs are running on the energy recovery process. According to the work of Faraj and Basir 

(2016), the negative link cost issue can be addressed by transforming the weight function 𝑢𝑖𝑗
𝑐  into 

a positive reduced weighted function 𝑢Π,𝑖𝑗
𝑐 . Suppose that there are no negative cycles, it can be 

proven that whenever a potential function Π satisfies the requirement that Π(𝑗) − Π(𝑖) ≤ 𝑢𝑖𝑗
𝑐  and 

𝑢Π,𝑖𝑗
𝑐  is determined as 𝑢Π,𝑖𝑗

𝑐 = 𝑢𝑖𝑗
𝑐 + Π(𝑖) − Π(𝑗), then the optimal routes in the network weighted 

with 𝑢Π,𝑖𝑗
𝑐  are also the optimal routes in the network weighted with 𝑢𝑖𝑗

𝑐  (Faraj & Basir, 2016). The 

positive reduced weighted function on link 𝑎𝑖𝑗 and path 𝑝𝑖
𝑟𝑠 can be expressed as follows: 

𝑢Π,𝑖𝑗
𝑐 = 𝑢𝑖𝑗

𝑐 + Π(𝑖) − Π(𝑗) = 𝑐𝑖𝑗,𝑟 − 𝑐𝑖𝑗,𝑑𝑒 + 𝑢𝑖𝑗
𝐴 + 𝑢𝑖𝑗

𝐼  (20) 

Therefore, link energy consumption distribution can be expressed as 𝐶̌𝑖𝑗~𝑁(𝑢Π,𝑖𝑗
𝑐 , 𝜎𝑖𝑗

𝑐 ). Using this 

transformation technique, we can utilize the MRP-TS algorithm (Chen et al., 2017) to exactly find 

the most reliable path for the ECR objective. 

 

3.3. Ranking algorithm for solving the bi-objective reliable PFP 

 

This section presents the proposed ranking algorithm, namely FindTtrEcrPathSet, for exactly 

solving the bi-objective reliable PFP formulated in Section 2.4. The algorithm consists of three 

steps. In the first step, the algorithm utilizes the MRP-TS algorithm to determine, 𝑝𝑅1

𝐶 , the most 

reliable path for the ECR objective. The actual TTR of this 𝑝𝑅1

𝐶  is calculated using Eq. (18) and 

denoted by 𝑅𝑀𝑖𝑛
𝑇 . This 𝑅𝑀𝑖𝑛

𝑇  is the lowest TTR for all non-dominated paths, since 𝑅𝑝1
𝐶 =

𝑚𝑎𝑥𝑝𝑖𝜖𝑃𝑟𝑠(𝑅𝑝𝑖

𝐶 ) holds. In each iteration of the second step, the  𝑗th most reliable path, 𝑝𝑅𝑗

𝑇 , for the 

TTR objective is incrementally calculated. The actual ECR (denoted by 𝑅𝑅𝑗

𝐶 ) of the jth most reliable 

path 𝑝𝑅𝑗

𝑇  is determined using Eq. (16). If this 𝑅𝑅𝑗

𝐶  is lower than or equal to 𝑅𝑅𝑗−1

𝐶  of the previous 

𝑗 − 1th most reliable path 𝑝𝑅𝑗−1

𝑇 , then the jth most reliable path 𝑝𝑅𝑗

𝑇  can be discarded, because it is 

dominated by 𝑝𝑅𝑗−1

𝑇  with 𝑅𝑅𝑗

𝐶 ≤ 𝑅𝑅𝑗−1

𝐶  and 𝑅𝑅𝑗

𝑇 < 𝑅𝑅𝑗−1

𝑇  relationships. Otherwise, this 𝑅𝑅𝑗

𝐶  is larger 

than 𝑅𝑅𝑗−1

𝐶 , and the jth most reliable path 𝑝𝑅𝑗

𝑇  can be identified as a non-dominated path and added 

into the path set, Ω. The second step terminates when 𝑅𝑅𝑗

𝑇 < 𝑅𝑀𝑖𝑛
𝑇 , because all paths with TTR 

lower than 𝑅𝑀𝑖𝑛
𝑇  are obviously dominated by 𝑝𝑅1

𝐶 . In this scenario, the algorithm can obtain the 

optimal solution, i.e., all non-dominated paths between the OD pair. However, when 𝐾𝑚𝑎𝑥 is not 

sufficiently large, the algorithm can terminate without  𝑝𝑅𝑗

𝑇 < 𝑅𝑀𝑖𝑛
𝑇  and some non-dominated paths 

may be missed. To mitigate this issue, the third step is introduced to identify potential non-

dominated paths in  𝑃𝐾
𝑇  (see Section 3.1) by using Definition 1. The detailed steps of the 

FindTtrEcrPathSet algorithm are given in Table 2. 

 

Table 2 Detailed steps of the FindTtrEcrPathSet algorithm. 

Input: origin 𝑜, destination 𝑑, travel time budget 𝑡0, energy threshold 𝑒0, and threshold 𝐾𝑚𝑎𝑥. 

Return: Set of non-dominated paths Ω. 

Step 1. Most reliable path finding for the ECR objective: 

01: Transform mean energy consumption 𝑢𝑖𝑗
𝑐  of any link into 𝑢Π,𝑖𝑗

𝑐  using Eq. (20). 

02: Call MRP-TS(𝑜, 𝑑, 𝑒0) to find the most reliable path 𝑝𝑅1

𝐶 . 
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03: Calculate 𝑅𝑀𝑖𝑛
𝑇  as the actual TTR of 𝑝𝑅1

𝐶  using Eq. (18). 

Step 2. K most reliable path findings for the TTR objective: 

04: Call InitializeKMRP-TTR(𝑜, 𝑑, 𝑡0, 𝐾𝑚𝑎𝑥). 

05: Call FindNextReliablePath-TTR to determine the first most reliable path 𝑝𝑅1

𝑇 . 

06: If 𝑝𝑅1

𝑇 = ∅, then Set Ω: = {} and Goto Line 14. 

07: Set Ω: = {𝑝𝑅1

𝑇 } and 𝑗: = 2. 

08: Call FindNextReliablePath-TTR to determine the jth most reliable path 𝑝𝑅𝑗

𝑇 . 

09: If 𝑝𝑅𝑗

𝑇 = ∅, then Goto Line 14. 

10: If 𝑅𝑅𝑗

𝑇 < 𝑅𝑀𝑖𝑛
𝑇 , then Stop and Return Ω. 

11: Calculate 𝑅𝑅𝑗

𝐶  as the actual ECR for 𝑝𝑅𝑗

𝑇  using Eq. (16). 

12: If 𝑅𝑅𝑗

𝐶 ≤ 𝑅𝑅𝑗−1

𝐶 , then Set 𝑗: = 𝑗 + 1 and Go to Line 08. 

13: If 𝑅𝑅𝑗

𝐶 > 𝑅𝑅𝑗−1

𝐶 , then Ω: = Ω ∪ {𝑝𝑅𝑗

𝑇 }, Set 𝑗: = 𝑗 + 1 and Go to Line 08. 

Step 3. Additional non-dominated paths checking: 

14: If 𝑝𝑅1

𝐶 ∉ Ω, then Set Ω: = Ω ∪ {𝑝𝑅1

𝐶 }. 

15: Add potential non-dominated paths in 𝑃𝐾
𝑇, into Ω based on Definition 1. 

16: Stop and Return Ω. 

 

We can prove that, when 𝐾𝑚𝑎𝑥  is sufficiently large, the proposed FindTtrEcrPathSet 

algorithm can obtain the optimal solution (i.e., all non-dominated paths) of the bi-objective reliable 

PFP, as below. 

 

Proposition 4. The FindTtrEcrPathSet algorithm can attain the optimal solution of the bi-objective 

reliable PFP when 𝐾𝑚𝑎𝑥 is sufficiently large. 

Proof. See Proposition A5 in the Appendix. □ 

 

4. Case study 

 

4.1. Numerical example 

 

This section reports a case study using a real road network in Hong Kong, consisting of 1,367 

nodes and 3,655 links (Chen et al., 2013b). The elevation data for all links were extracted from 

Shuttle Radar Topography Mission (SRTM) – a popular data source of digital elevation models 

that can be downloaded from (https://srtm.csi.cgiar.org/). The travel speed distributions for all 

network links were extracted from a Real-time Traveler Information System, RTIS 

(www.hkemobility.gov.hk/en/traffic-information/live/cctv/all?cctv=on&jt=on&smp=on&ts=on), 

which was based on real-time traffic data and offline travel times estimated by a traffic flow 

simulator (Tam & Lam, 2008). 

Fig. 2 shows speed distributions for all links in the RTIS network. Fig. 2(a) gives the mean 

speed, 𝑣𝑖𝑗, of every link. In this figure, links shown in red represent congested links (<20 km/h), 

yellow represents slightly congested links (20–40 km/h), and green represents uncongested links 

(>40 km/h). It was found that 31.3% of links were congested, and most of them were located in 

Hong Kong Island. Fig. 2(b) illustrates travel speed uncertainty for all links in the RTIS network. 

The level of travel speed uncertainty was measured using the coefficient of variation (CV), i.e., 
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the ratio of standard deviation 𝜎𝑖𝑗
𝑣  to mean 𝑣𝑖𝑗. As shown, link travel speeds in the RTIS network 

were highly stochastic, with the average CV value equal to 0.24. Such travel speed uncertainties 

indicate large variations in travel times and energy consumption, which should not be ignored for 

BEV routing. 

 

 
Fig. 2. Link speed distributions for the Hong Kong RTIS road network: (a) mean speed, and (b) 

coefficient of variation. 

 

We first investigate how different input parameters, travel time budget 𝑡0  and estimated 

energy consumption threshold 𝑒0, affect the path finding results with respect to the TTR or ECR 

objective. One OD pair in the RTIS network, from the central business district (CBD) to Richland 

Gardens (residential estate) in Kowloon Bay (near the old airport), during the PM peak, was chosen 

as the numerical example. As shown in Fig. 3(a), two paths, i.e., Path 1 and Path 2, were 

determined as the most reliable paths for the ECR objective under different settings of 𝑒0 

parameters. Fig. 3(b) depicts the CDFs of energy consumption distributions for these two paths. 

When 𝑒0 = 1.42 𝑘𝑊ℎ , Paths 1 and 2 have the same ECR, i.e., 76.35%. As the value of 𝑒0 

increases, Path 2 becomes the optimal path, as it has the maximum ECR. For example, when 𝑒0 is 

increased to 1.53 𝑘𝑊ℎ, Path 1 has the highest ECR, i.e., 90%. Conversely, Path 2 is the optimal 

path when the value of 𝑒0  decreases. For example, when 𝑒0  decreases to 1.07 𝑘𝑊ℎ , ECR 

decreases to 20% on Path 2. 

Fig. 4(a) shows the most reliable paths for the TTR objective under different travel time 

budgets, i.e., 𝑡0  parameters. As shown, the optimal paths, Paths 3 and 4, found for the TTR 

objective were different from Paths 1 and 2 for the ECR objective. The travel time distributions of 

Paths 3 and 4 are given in Fig. 4(b). It was found that the optimal path was determined by the input 

𝑡0 parameter. Paths 3 and 4 can achieve an identical TTR of 37.49% when 𝑡0 = 18.2 min. Path 3 

was found as the optimal path with TTR = 90% when  𝑡0 = 19.7 min, while Path 4 was the optimal 

path with TTR = 10% when 𝑡0 = 17.2 min. 
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Fig. 3. Two most reliable paths for the energy consumption reliability objective under different 

𝑒0 parameters: (a) candidate paths, (b) cumulative distribution functions of path energy 

consumption. 

 

 
Fig. 4. Two most reliable paths for the travel time reliability objective under different 𝑡0 

parameters: (a) candidate paths, (b) cumulative distribution functions of path travel times. 

 

We then investigated the path-finding results of the developed FindTtrEcrPathSet algorithm 

for simultaneously maximizing both the ECR and TTR objectives between the same OD pair. We 

set 𝑒0 = 1.53 𝑘𝑊ℎ and 𝑡0 = 19.7 min, so that Path 1 and Path 3 were identified as the most 

reliable path for ECR = 90% and TTR = 90%, respectively. To make it sufficiently large, we set 

𝐾𝑚𝑎𝑥 = 1000, i.e., the number of calculated k shortest paths of 𝑡𝑝𝑖

𝑟𝑠 should be less than 1000. For 
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the most reliable path of the ECR objective, i.e., Path 1, its actual TTR can be calculated as 𝑅𝑀𝑖𝑛
𝑇 =

0.658%. Fig. 5 shows the bi-objective space for all calculated K most reliable paths for the TTR 

objective satisfying 𝑅𝑅𝑗

𝑇 ≥ 𝑅𝑀𝑖𝑛
𝑇 ,  ∀𝑅𝑅𝑗

𝑇 ∈ 𝑃𝑇. As can be seen, a total of 109 most reliable paths for 

the TTR objective were determined after 116 shortest paths of 𝑡𝑝𝑖

𝑟𝑠 were calculated. Among the 

most reliable paths, only four paths (in red) were identified as non-dominated paths, while 105 

paths (in green) were eliminated as dominated paths. These four non-dominated paths are useful 

solutions, trading off the ECR objective against the TTR objective. 

 

   
Fig. 5. Solution space for both travel time reliability and energy consumption reliability 

objectives. 

 

We further investigated how the 𝐾𝑚𝑎𝑥  parameter affects the solution accuracy of the 

developed FindTtrEcrPathSet algorithm. According to Proposition 4, the developed algorithm can 

achieve the optimal solution, i.e., all non-dominated paths, when 𝐾𝑚𝑎𝑥  is sufficiently large. 

Therefore, we used the non-dominated paths calculated when 𝐾𝑚𝑎𝑥 = 3000 as the ground truth. 

The solution accuracy under different 𝐾𝑚𝑎𝑥 values was measured using the percentage of actual 

non-dominated paths determined by the developed algorithm. Fig. 6 shows the solution accuracy 

using the same OD pair and the same setting of 𝑒0 and 𝑡0 as Fig. 5. As expected, the solution 

accuracy was improved with the increase of the 𝐾𝑚𝑎𝑥 parameter.  When 𝐾𝑚𝑎𝑥 = 7, accuracy of 

75% was achieved, i.e., three non-dominated paths were determined. This accuracy reached 100% 

when 𝐾𝑚𝑎𝑥 = 74. Fig. 6 also shows the solution accuracy of the developed algorithm without Step 

3 (see Table 2). This step was introduced to include 𝑝𝑅1

𝐶  and identify potential non-dominated paths 

in  𝑃𝐾
𝑇 when 𝐾𝑚𝑎𝑥 is not sufficiently large. Thus, such a step can effectively improve the solution 

accuracy when 𝐾𝑚𝑎𝑥 is not sufficiently large. 
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Fig. 6. Solution accuracy of the developed algorithm under  𝐾𝑚𝑎𝑥 values. 

 

4.2. Computational performance 

 

The proposed solution algorithm was coded in C# programming language. The F-heap data 

structure (Fredman & Tarjan, 1987) was used in all shortest path calculation procedures, including 

Dijkstra’s algorithms and the K shortest path algorithms. All of the experiments were conducted 

on a Windows 8 operating system on a PC equipped with a four-core Intel i5-3230M 2.6 GHz 

CPU and 8 GB of RAM. 

To examine the computational performance of the developed algorithm, we randomly selected 

100 OD pairs from the RTIS network. The average computational time for all OD pairs was 

calculated as an indicator of the computational performance of the developed algorithm. For each 

OD pair, we calculated the least mean energy consumption path by using one-to-one Dijkstra’s 

algorithm with 𝑢Π,𝑖𝑗
𝑐  as link costs. Then, the energy consumption distribution for this calculated 

path was obtained and its inverse CDF at θ level was set as 𝑒0 parameter for the OD pair. Similarly, 

we calculated the least travel time path by using one-to-one Dijkstra’s algorithm with 𝑡𝑖𝑗 as link 

costs. The travel time distribution of this least travel time path was obtained and its inverse CDF 

at θ level was set as 𝑡0 parameter for the OD pair. 

Fig. 7 shows the computational time required by the developed algorithm with the A* 

technique under different 𝐾𝑚𝑎𝑥  values. The parameter θ = 90% was used to set the 𝑡0  and 𝑒0 

parameters for each OD pair. As expected, the computational times increase nearly in a linear 

function of 𝐾𝑚𝑎𝑥 when  𝐾𝑚𝑎𝑥 is small, e.g., 𝐾𝑚𝑎𝑥 < 300. This is obvious because the larger the 

number of calculated shortest paths, the greater the computational effort required. The 

computational performance became relatively stable when  𝐾𝑚𝑎𝑥 was large, e.g., 𝐾𝑚𝑎𝑥 > 1000. 

This is because optimal solutions had been obtained for most OD pairs before the number of 

calculated shortest paths reached  𝐾𝑚𝑎𝑥 value. Nevertheless, as illustrated in Fig. 6, a small value 

of 𝐾𝑚𝑎𝑥 may reduce solution accuracy. Therefore, a suitable parameter of 𝐾𝑚𝑎𝑥 should be set in 

order to trade off solution accuracy against computational performance. 

In this study, the A* technique was adapted to speed up the computational performance for 

finding K most reliable paths for the TTR objective. To distinguish its effectiveness, the developed 
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algorithm without the A* technique was also implemented for comparison. As can be seen in Fig. 

7, the A* technique can significantly speed up the computational performance of the developed 

algorithm under all 𝐾𝑚𝑎𝑥 values. For example, when 𝐾𝑚𝑎𝑥 = 500, the developed algorithm with 

the A* technique required 0.43 seconds, which was about 2.67 (1.58 / 0.43 - 1) times faster than 

that without the A* technique. This computational improvement was achieved due to the 

utilization of a pre-calculated shortest path tree, i.e., 𝑡𝑝(𝑖, 𝑑), as the heuristic function in the K 

shortest path calculations. 

 

 
Fig. 7. Computational performance of the developed algorithm under different 𝐾𝑚𝑎𝑥 values. 

 

Table 3 shows the computational performance of the developed algorithm with the A* 

technique under different settings of parameters 𝑡0 and 𝑒0. The values of these two parameters 

were determined by the θ level. A high-reliability level θ on travel time and energy consumption 

implies that there is a larger threshold on the travel time budget 𝑡0  and the estimated energy 

consumption 𝑒0. We set 𝐾𝑚𝑎𝑥 = 500. As can be seen in Table 3, the computational performance 

of the developed algorithm was stable under various values of 𝑡0 and 𝑒0, i.e., within 0.5 seconds. 

 

Table 3 Computational performance of the developed algorithm under various values of 𝑡0 and 

𝑒0 parameters. 

Reliabilities (θ) 10% 30% 50% 70% 90% 

Average computational times (s) 0.24 0.28 0.32 0.31 0.43 

Average number of non-dominated paths 4.68 4.73 5.01 5.39 5.81 

 

5. Conclusion 

 

This paper proposes a bi-objective reliable path-finding algorithm for the route guidance of 

BEVs in a road network with travel time and energy consumption uncertainties. A bi-objective 

stochastic optimization model was proposed and formulated for simultaneously maximizing TTR, 

i.e., on-time arrival probability with the travel time budget, and ECR, i.e., probability of finishing 
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the journey without exhausting a given energy budget. Due to its non-additive objectives, the 

proposed model cannot be solved exactly using the existing multi-objective shortest path 

algorithms built on the additive property of objectives. To address this challenge, the proposed bi-

objective reliable path-finding problem was decomposed into two sub-problems: (1) finding K 

most reliable paths for maximizing the TTR objective, (2) finding the most reliable path for 

optimizing the ECR objective. A novel ranking algorithm was developed to exactly solve the 

proposed optimization model. The A* technique was further adapted to improve the efficiency of 

the developed algorithm. The optimality of the developed algorithm was rigorously proved 

together with associated properties. 

To demonstrate the applicability of the new ranking algorithm, a case study was carried out 

in Hong Kong using real travel speed distributions collected from RTIS (real-time traveler 

information system). The path-finding results of the developed algorithm provide a set of non-

dominated paths with a trade-off of the TTR objective against the ECR objective. The developed 

algorithm is able to obtain all non-dominated paths in the RTIS road network when 𝐾𝑚𝑎𝑥  is 

sufficiently large. With the reasonable selection of the 𝐾𝑚𝑎𝑥 parameter, the developed algorithm 

can solve the bi-objective reliable path-finding problem with satisfactory solution accuracy within 

an acceptable amount of computational time. 

The analysis presented in this paper also provides several important insights and policy 

implications. It was found that travel speeds in road networks can be highly stochastic, leading to 

high variations in travel times and energy consumption. Travel time budget 𝑡0  and energy 

consumption threshold 𝑒0 , which reflect travelers’ assigned resources against travel time and 

energy consumption uncertainties, significantly affect travelers’ route choices – of which planners 

and policymakers should be aware. Resilient improvements to road network design and service 

facility location could be achieved by explicitly considering such impacts during planning and 

design stages (Chen et al., 2019, 2020; Fu et al., 2020). 

Several directions for future research are worth noting. First, it was assumed in this study that 

link travel speeds follow normal distributions and link travel times can be approximated by 

lognormal distributions. However, the normal distribution of link travel speeds may not always 

hold in reality. How to incorporate other travel speed distributions, such as gamma or Burr 

distributions, in the developed algorithm needs further investigation. Second, the correlation 

between travel time and energy consumption under different vehicle types has not been considered 

in this study. How to formulate the correlation in travel times and energy consumption by vehicle 

type and incorporate them into the developed algorithm is warranted for further study. Last but not 

least, further study should be conducted to consider the dynamics of travel speeds on different 

days. The extension of the developed algorithm to account for the stochastic dynamic 

characteristics of travel speeds is certainly another important research direction. 
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Appendix  

 

Proposition A1. The standard deviation, 𝑠𝑑𝑝𝑖

𝑇 , of the underlying normal distribution for any path 

𝑝𝑖
𝑟𝑠𝜖𝑃𝑟𝑠 satisfies 𝑠𝑑𝑝𝑖

𝑡 ≤ 𝑠𝑑𝑚𝑎𝑥
𝑡 , where 𝑠𝑑𝑚𝑎𝑥

𝑡 = 𝑚𝑎𝑥𝑎𝑖𝑗𝜖𝐴(𝑠𝑑𝑖𝑗
𝑇 ) is the largest standard deviation 

of underlying normal distribution for any link on the network. 

Proof. For the SD of path travel time, 𝜎𝑝𝑖

𝑟𝑠 , we have 𝜎𝑝𝑖

𝑟𝑠 ≤ ∑ 𝜎𝑖𝑗
𝑡

𝑎𝑖𝑗∈𝑝𝑖
= ∑ 𝑡𝑖𝑗

𝜎𝑖𝑗
𝑡

𝑡𝑖𝑗
𝑎𝑖𝑗∈𝑝𝑖

=

∑ 𝑡𝑖𝑗𝑎𝑖𝑗∈𝑝𝑖
𝑐𝑣𝑖𝑗

𝑡  , where 𝑐𝑣𝑖𝑗
𝑡  is the coefficient of variation of link travel time. By replacing 𝑐𝑣𝑖𝑗

𝑡  with 

𝑐𝑣𝑖𝑗,𝑚𝑎𝑥
𝑡 =𝑚𝑎𝑥𝑎𝑖𝑗𝜖𝐴(𝑐𝑣𝑖𝑗

𝑡 ), the maximal coefficient of variation of travel time on any link 𝑎𝑖𝑗 in the 

network, we have 𝜎𝑝𝑖

𝑟𝑠 ≤ ∑ 𝑡𝑖𝑗𝑎𝑖𝑗∈𝑝𝑖
𝑐𝑣𝑖𝑗

𝑡 ≤ 𝑐𝑣𝑖𝑗,𝑚𝑎𝑥
𝑡 ∑ 𝑡𝑖𝑗𝑎𝑖𝑗∈𝑝𝑖

= 𝑐𝑣𝑖𝑗,𝑚𝑎𝑥
𝑡 𝑡𝑝𝑖

𝑟𝑠 . Since 𝑡𝑝𝑖

𝑟𝑠 > 0, we 

have 𝜎𝑝𝑖

𝑟𝑠/𝑡𝑝𝑖

𝑟𝑠 ≤ 𝑐𝑣𝑖𝑗,𝑚𝑎𝑥
𝑡 . Thus, we have 𝑠𝑑𝑝

𝑡 = [ln(1 + (𝜎𝑝𝑖

𝑟𝑠)2/(𝑡𝑝𝑖

𝑟𝑠)2)]1/2 ≤ [ln (1 +

(𝑐𝑣𝑖𝑗,𝑚𝑎𝑥
𝑡 )

2
)]1/2 = 𝑠𝑑𝑚𝑎𝑥

𝑡  . Therefore, 𝑠𝑑𝑝𝑖

𝑡 ≤ 𝑠𝑑𝑚𝑎𝑥
𝑡  holds for any path 𝑝𝑖

𝑟𝑠𝜖𝑃𝑟𝑠. □ 

 

Proposition A2. The travel time reliability for any path 𝑝𝑖
𝑟𝑠𝜖𝑃𝑟𝑠 satisfies 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) ≥ 𝑅𝑝𝑖

𝑇 .  
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Proof. According to Proposition A1, we have 𝑠𝑑𝑝𝑖

𝑡 ≤ 𝑠𝑑𝑚𝑎𝑥
𝑡  for any path 𝑝𝑖

𝑟𝑠𝜖𝑃𝑟𝑠 . Since 

𝜎𝑝𝑖

𝑟𝑠 ≥ 𝜎𝑚𝑖𝑛
𝑇 = 𝑚𝑖𝑛𝑝𝑖𝜖𝑃𝑟𝑠(𝜎𝑝𝑖

𝑟𝑠), we have  (𝜎𝑝𝑖

𝑟𝑠)2/(𝑡𝑝𝑖

𝑟𝑠)2 ≥ (𝜎𝑚𝑖𝑛
𝑇 )2/(𝑡𝑝

𝑟𝑠)2. Thus, we have 𝑅𝑝𝑖

𝑇 =

Φ [
ln (𝑡0/𝑡𝑝𝑖

𝑟𝑠)

(ln(1+(𝜎𝑝𝑖
𝑟𝑠)2/(𝑡𝑝𝑖

𝑟𝑠)2))
0.5 + 0.5 𝑠𝑑𝑝𝑖

𝑇 ] ≤ Φ [
ln (𝑡0/𝑡𝑝𝑖

𝑟𝑠)

(ln(1+(𝜎𝑚𝑖𝑛
𝑇 )2/(𝑡𝑝𝑖

𝑟𝑠)2))
0.5 + 0.5𝑠𝑑𝑚𝑎𝑥

𝑡 ] = 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) . 

Therefore, we have  𝑅𝑝𝑖

𝑇 ≤ 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) for any path ∀𝑝𝑖
𝑟𝑠𝜖𝑃𝑟𝑠. □ 

 

Proposition A3. The upper bound 𝑈𝐵(𝑅𝑝𝑖

𝑇 ) of path travel time reliability is a monotonically 

decreasing function of mean travel time 𝑡𝑝𝑖

𝑟𝑠  when 𝑡𝑝𝑖

𝑟𝑠 >  𝑚𝑎𝑥 (𝜎𝑚𝑖𝑛
𝑇 ,  𝑡0/𝑒)  holds, where 𝑒  is 

Euler’s number. 

Proof. See the proof of Proposition 2 in Srinivasan, Prakash, and Seshadri (2014). □ 

 

Proposition A4. The FindKMRP-TTR procedure can determine the optimal solution of the 𝐾 

most reliable paths for the TTR objective when 𝐾𝑚𝑎𝑥 is sufficiently large. 

Proof. Suppose that 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵(𝑅𝑝𝐾1

𝑡 ) meets in the first time when 𝑘1 shortest paths were 

calculated and maintained in  𝑃𝑘1

𝑡 . Let 𝑃𝑟𝑠 be the set of all paths between the OD pair, and 𝑃̅𝑟𝑠 =

𝑃𝑟𝑠 − 𝑃𝑘1

𝑡  be the set of all other paths that have not been calculated between the same OD pair. 

According to Proposition A3, 𝑈𝐵(𝑅𝑝𝑘1
𝑡 ) is a monotonic decreasing function with respect to the 

newly calculated kth shortest path. Thus, we have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵(𝑅𝑝𝑘1

𝑡 ) ≥ 𝑈𝐵(𝑅𝑝𝑖

𝑡 ) ≥ 𝑅𝑝𝑖

𝑡  for 

∀𝑝𝑖
𝑟𝑠 ∈ 𝑃̅𝑟𝑠. Since 𝐿𝐵(𝑅𝑃

𝑇) = 𝑚𝑎𝑥𝑝𝑖𝜖𝑃𝑘1
𝑡 (𝑅𝑝𝑖

𝑡 ), we have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑘1

𝑡 . Thus, we 

have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑟𝑠. Therefore, path 𝑝𝐿𝐵

𝑇  providing the lower bound 𝐿𝐵(𝑅𝑃
𝑇) was 

the first most reliable path for the TTR objective. 

Without loss of generality, it is assumed that j (j=1, …, or 𝐾𝑇 − 1) most reliable paths have been 

determined and maintained in 𝑃𝑇  when 𝑘𝑗  shortest paths were calculated. Let 𝑃𝑘𝑗

𝑡  be the set of 

calculated 𝑘𝑗  shortest paths excluding 𝑃𝑇 . Thus, we have 𝑅𝑝𝑤
𝑡 ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑤
𝑟𝑠 ∈ 𝑃𝑇  and ∀𝑝𝑖

𝑟𝑠 ∈

𝑃𝑘𝑗

𝑡  . It is assumed 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵 (𝑅𝑝𝐾𝑗+1

𝑡 ) holds again when 𝑘𝑗+1 shortest paths were calculated. 

Let 𝑃𝑘𝑗+1

𝑡  be the set of calculated 𝑘𝑗+1 shortest paths excluding 𝑃𝑇. According to Proposition A3, 

we have 𝑅𝑝𝑤
𝑡 ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑤
𝑟𝑠 ∈ 𝑃𝑇  and ∀𝑝𝑖

𝑟𝑠 ∈ 𝑃𝑘𝑗+1

𝑡 . Therefore, 𝑅𝑝𝑤
𝑡 ≥ 𝐿𝐵(𝑅𝑃

𝑇) for ∀𝑝𝑤
𝑟𝑠 ∈ 𝑃𝑇 . 

Let 𝑃̅𝑟𝑠 = 𝑃𝑟𝑠 − 𝑃𝑘𝑗+1

𝑡 − 𝑃𝑇 be the set of all other paths that have not been calculated between the 

same OD pair. According to Proposition A3, we have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑈𝐵 (𝑅𝑝𝐾𝑗+1

𝑡 ) ≥ 𝑈𝐵(𝑅𝑝𝑖

𝑡 ) ≥ 𝑅𝑝𝑖

𝑡  

for ∀𝑝𝑖
𝑟𝑠 ∈ 𝑃̅𝑟𝑠 . Since 𝐿𝐵(𝑅𝑃

𝑇) = 𝑚𝑎𝑥𝑝𝑖𝜖𝑃𝑘𝑗+1
𝑡 (𝑅𝑝𝑖

𝑡 ) , we have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑘𝑗+1

𝑡 . 

Therefore, we have 𝐿𝐵(𝑅𝑃
𝑇) ≥ 𝑅𝑝𝑖

𝑡  for ∀𝑝𝑖
𝑟𝑠 ∈ 𝑃𝑟𝑠 − 𝑃𝑇. Therefore, path 𝑝𝐿𝐵

𝑇  providing the lower 

bound 𝐿𝐵(𝑅𝑃
𝑇) was the j+1th most reliable path for the TTR objective. □ 

 

Proposition A5. The FindTtrEcrPathSet algorithm can determine the optimal solution of the bi-

objective reliable PFP when 𝐾𝑚𝑎𝑥 is sufficiently large. 

Proof. Let Θ be the optimal solution containing all non-dominated paths between the OD pair. 

Without loss of generality, it is assumed that the algorithm terminates when 𝑅𝑅𝑗

𝑇 < 𝑅𝑀𝑖𝑛
𝑇  holds, 

where 𝑅𝑀𝑖𝑛
𝑇  is the actual TTR of 𝑝𝑅1

𝐶 , the most reliable path in terms of the ECR objective. Let 𝑃𝑇 

be the set of calculated j most reliable paths, and 𝑃̅𝑟𝑠 = 𝑃𝑟𝑠 − 𝑃𝑇 be the set of all other paths that 
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have not been calculated between the same OD pair. According to the definition of K most reliable 

paths of the TTR objective, we have 𝑅𝑅𝑗

𝑇 ≥ 𝑅𝑅𝑖

𝑇  for any 𝑝𝑖
𝑟𝑠 ∈ 𝑃̅𝑟𝑠. Therefore, we have 𝑅𝑀𝑖𝑛

𝑇 >

𝑅𝑅𝑗

𝑇 ≥ 𝑅𝑅𝑖

𝑇  for any 𝑝𝑖
𝑟𝑠 ∈ 𝑃̅𝑟𝑠 . According to the definition of the most reliable, we have 𝑅𝑝1

𝐶 =

𝑚𝑎𝑥𝑝𝑖𝜖𝑃𝑟𝑠(𝑅𝑝𝑖

𝐶 ), and thus 𝑅𝑝1
𝐶 ≥ 𝑅𝑅𝑖

𝐶  for any 𝑝𝑖
𝑟𝑠 ∈ 𝑃̅𝑟𝑠. Thus, all paths in 𝑃̅𝑟𝑠 are dominated by 

𝑝𝑅1

𝐶 . Therefore, we have Θ ⊂ 𝑃𝑇. For paths in 𝑃𝑇, the algorithm eliminates any path, 𝑝𝑅𝑗

𝑇 , with 

𝑅𝑅𝑗

𝐶 ≤ 𝑅𝑅𝑗−1

𝐶  (see Line 12), and maintains other paths in Ω (see Line 13). Because  𝑅𝑅𝑗

𝑇 < 𝑅𝑅𝑗−1

𝑇  

and 𝑅𝑅𝑗

𝐶 ≤ 𝑅𝑅𝑗−1

𝐶  hold, the eliminated path 𝑝𝑅𝑗

𝑇  is dominated by  𝑝𝑅𝑗−1

𝑇 . Therefore, we have Θ ⊂ Ω. 

In the algorithm, paths are added into Ω in a descending order of the TTR value but an ascending 

order of the ECR value. Thus, we have 𝑅𝑅1

𝑇 ≥ ⋯ ≥ 𝑅𝑅𝑗

𝑇  and 𝑅𝑅1

𝐶 ≤ ⋯ ≤ 𝑅𝑅𝑗

𝐶  for all paths in Ω. 

Then, each path 𝑝𝑖
𝑟𝑠 ∈ Ω is not dominated by any other path 𝑝𝑤

𝑟𝑠 ∈ Ω. According to Definition 2, 

all paths in Ω are non-dominated paths. Thus, we have Ω ⊂ Θ . Therefore, we have Ω = Θ. □ 

 




